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Abstract Considering the generalized Davey-Stewartson equation iu̇ −∆u + λ|u|pu + µE(|u|q)|u|q−2u = 0,

where λ > 0, µ � 0, E = F−1(ξ2
1/|ξ|2)F , we obtain the existence of scattering operator in Σ(Rn) := {u ∈

H1(Rn) : |x|u ∈ L2(Rn)}.
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1 Introduction

In the present paper, we study the existence of the scattering operator for the generalized
Davey-Stewartson equation

iu̇−∆u+ λ|u|pu+ µE(|u|q)|u|q−2u = 0, (1.1)

where λ > 0, µ � 0, u = u(t, x) : R
1+n → C, u̇ = ∂u/∂t, ∆ is the Laplace operator on R

n,
E = F−1(ξ21/|ξ|2)F , F denotes the Fourier and F−1 is its inverse transformation. Eq.(1.1) is a
generalization of the following Davey-Stewartson system:

{
iut + δux1x1 + ux2x2 = χ|u|2u+ buφx1 ,

φx1x1 +mφx2x2 = (|u|2)x1 .
(1.2)

In the theory of surface waves of water waves, the 2D generalization of the usual cubic 1D
Schrödinger equation turns out to be the Davey-Stewartson equation (cf. [2, 3]). The parameters
δ and m are real, both χ and b are complex. A large amount of work has been devoted to the
study of the Cauchy problem of equation (1.2) (e.g. [3, 5, 6, 8, 9, 10, 11, 13]). Ghidaglia and
Saut[3], Guo and Wang[5] discussed the well-posedness of (1.2) and (1.1) (q = 2) in the energy
space H1, Wang and Guo[13] showed the existence of scattering operators in a “band” of Hs,
where the Cauchy data should be suitably small in the critical spaces. In this paper, we shall
use a different way considering the scattering operator of (1.1) for the large initial data. First,
we will derive the pseudo conformally invariant conservation law of (1.1), which is similar to the
nonlinear Schrödinger equation (cf. [4]). But some of the methods in [4] can not work on this
kind of nonlinearity E(|u|q)|u|q−2u, we need to use some special properties of the operator E
in the theory of Fourier analysis, and some techniques in [12]. By using the pseudo conformally
invariant conservation law of (1.1) and applying the time-space Lp − Lp′

estimate method, we
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shall establish a decaying estimate and uniform boundedness for the solutions of (1.1), where
we assume that the initial value

u(0, x) = u0(x) ∈ Σ(Rn) := {u ∈ H1(Rn) : |x|u ∈ L2(Rn)}
with the norm

‖u‖Σ = ‖u‖H1 +
∥∥|x|u∥∥

L2 . (1.3)

Whence, we can obtain that the scattering operator S : Σ(Rn) → Σ(Rn).
Now we state the main result of this paper.

Theorem 1.1. Let n ∈ N, p, 2q − 2 ∈ [ 4
n ,

4
n−2 ), ( 4

n−2 := ∞ if n = 1, 2), S(t) = e−it∆,

2
γ(r) = n( 1

2 − 1
r ), α(n) =

{ 2n
n−2 , n � 3,
∞ n = 1, 2,

f(u) = λ|u|pu+ µE(|u|q)|u|q−2u. If u− ∈ Σ, then

there exists a unique solution u(t) of the integral equation

u(t) = S(t)u− + i
∫ t

−∞
S(t− τ)f(u(τ))dτ (1.4)

such that u ∈ C(R,Σ) ∩ Lγ(r)(R, Lr),
(
2 � r < α(n)

)
lim

t→−∞ ‖S(−t)u(t) − u−‖Σ = 0.

Moreover, there exists a unique u+ ∈ Σ such that

lim
t→+∞ ‖S(−t)u(t) − u+‖Σ = 0.

In addition,

u(t) = S(t)u+ − i
∫ ∞

t

S(t− τ)f(u(τ))dτ.
Thus the scattering operator S : u− → u+ is a well-defined homeomorphism from Σ to itself.

Let us now describe the content of this paper. The first section is introduction. In the second
section we shall derive three conservation identities including the L2, the energy conservation
law and the pseudo conformally invariant conservation law. Finally, we prove the main theorem
in section 3. As a byproduct, the global existence and uniqueness for initial data in Σ are also
obtained.

2 Derivation of the Conservation Laws

Proposition 2.1. Let n ∈ N, u be a solution of (1.1) with the initial value u0(x) ∈ Σ. Then,
we have the following conservation laws for all t ∈ R:

(i) L2-norm law:
‖u(t)‖2 = ‖u0‖2;

(ii) Energy conservation law:

1
2
‖∇u(t)‖2

2 +
λ

p+ 2
‖u(t)‖p+2

p+2 +
µ

2q

∥∥E 1
2 (|u(t)|q)∥∥2

2

=
1
2
‖∇u0‖2

2 +
λ

p+ 2
‖u0‖p+2

p+2 +
µ

2q

∥∥E 1
2 (|u0|q)

∥∥2

2
;

where E
1
2 = F−1(|ξ1|/|ξ|)F .
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(iii) Pseudo conformally invariant conservation law (the pcic law for short, cf. [4]):

‖xu− 2it∇u‖2
2 +

8λ
p+ 2

t2‖u‖p+2
p+2 +

4µ
q
t2

∥∥E 1
2 (|u|q)∥∥2

2
+

4λ
p+ 2

(np− 4)
∫ t

0

τ‖u(τ)‖p+2
p+2dτ

+
4µ
q

(nq − n− 2)
∫ t

0

τ
∥∥E 1

2 (|u(τ)|q)∥∥2

2
dτ = ‖xu0‖2

2.

Proof. Let eq(u) = iut − ∆u+ λ|u|pu+ µE(|u|q)|u|q−2u.
(i) It is known that it holds by virtue of the properties of the operator E. We omit its

proof.
(ii) We consider

Re
(
eq(u), ut

)
= 0,

where (·, ·) denotes L2-inner product.
Noticing that

Dt‖u‖p+2
p+2 = (p+ 2)Re(|u|pu, ut)

and
Dt

∥∥E 1
2 (|u|q)∥∥2

2
= 2qRe

(
E(|u|q)|u|q−2u, ut

)
,

we have
Dt

[1
2
‖∇u‖2

2 +
λ

p+ 2
‖u‖p+2

p+2 +
µ

2q

∥∥E 1
2 (|u|q)∥∥2

2

]
= 0. (2.1)

Integrating (2.1) over [0, t], we obtain the desired identity.
(iii) We consider

Re
(
eq(u)ū

)
= 0.

Noticing that
∇(∇uū) = ∆uū+ |∇u|2,

we have
−Imutū−Re∇(∇uū) + |∇u|2 + λ|u|p+2 + µE(|u|q)|u|q = 0. (2.2)

Next, we easily see that
Re

(
eq(u)ūrr

)
= 0.

Noticing that

Re∆uūrr = ∇(Re∇uūrr) −∇
(x
2
|∇u|2

)
+
n− 2

2
|∇u|2,

∇(x|u|p+2) = n|u|p+2 + (p+ 2)Re|u|puūrr,

we have

− Imutūrr −∇
[
Re(∇uūrr) − x2 |∇u|

2
]
− n− 2

2
|∇u|2

+
λ

p+ 2
[∇(x|u|p+2) − n|u|p+2

]
+ µReE(|u|q)|u|q−2uūrr = 0. (2.3)

Consider
∂t(uūrr) + ∇(xutū) = 2utūrr + 2Rexu∇ūt + nutū,

its imaginary part yields

Im∂t(uūrr) + Im∇(xutū) = nIm(utū) + 2Im(utūrr). (2.4)



336 C.C. Hao

From (2.2)–(2.4), we have

− Im∂t(uūrr) − Im∇(xutū) − nRe∇(∇uū) + 2|∇u|2 + nλ|u|p+2 + nµE(|u|q)|u|q

− 2∇
[
Re(∇uūrr) − x2 |∇u|

2
]
+

2λ
p+ 2

[∇(x|u|p+2) − n|u|p+2
]

+ 2µReE(|u|q)|u|q−2uūrr = 0. (2.5)

Denoting (2.5) by
∂X

∂t
+ ∇ · Y + Z + S = 0, (2.6)

where

X = −Im(uūrr), (2.7)

Y = −nRe∇uū− 2Re(∇uūrr) + x|∇u|2 +
2λ
p+ 2

x|u|p+2 − Imxutū, (2.8)

Z = 2|∇u|2 +
npλ

p+ 2
|u|p+2 + nµE(|u|q)|u|q, (2.9)

S = 2µReE(|u|q)|u|q−2uūrr, (2.10)

we also have

∂t|xu− 2it∇u|2 = ∂t|ur|2 − 4Imxu∇ū− 4t(∇Y + Z + S) + 4∂t(t2|∇u|2). (2.11)

Since
Im∇(∇uūr2) = Im∆uūr2 + 2Im∇uūx

and
1
2
∂t|ur|2 = Im∆uūr2,

we have

∂t|xu− 2it∇u|2 = 2Im∇(∇uūr2) − 4t(∇Y + Z + S) + 8t|∇u|2 + 4t2∂t|∇u|2. (2.12)

Integrating (2.12) over R
n and in view of (2.1), we obtain that

Dt

[
‖xu− 2it∇u‖2

2 +
8λ
p+ 2

t2‖u‖p+2
p+2 +

4µ
q
t2

∥∥E 1
2 (|u|q)∥∥2

2

]
+

4λ
p+ 2

(np− 4)t‖u‖p+2
p+2

+
4µ
q

(nq − 2)t
∥∥E 1

2 (|u|q)∥∥2

2
+

∫
Rn

ReE(|u|q)|u|q−2uūrrdx = 0. (2.13)

Now, we estimate
∫

Rn

ReE(|u|q)|u|q−2uūrrdx =
∫

Rn

E(|u|q)|u|q−2xReu∇ūdx =
1
q

∫
Rn

E(|u|q)x · ∇(|u|q)dx

=
1
q

∫
Rn

ξ21
|ξ|2 (F|u|q)F(

x∇(|u|q))dξ
= −n

q

∥∥E 1
2 (|u|q)∥∥2

2
− 1
q

∫
Rn

ξ21
|ξ|2 (F|u|q)ξ · ∇(F|u|q)dξ.

Let v = F|u|q, we have

4t
∫
Sdx = −4nµt

q

∥∥E 1
2 (|u|q)∥∥2

2
. (2.14)
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Hence, we have from (2.13)

Dt

[
‖xu− 2it∇u‖2

2 +
8λ
p+ 2

t2‖u‖p+2
p+2 +

4µ
q
t2

∥∥E 1
2 (|u|q)∥∥2

2

]
+

4λ
p+ 2

(np− 4)t‖u‖p+2
p+2

+
4µ
q

(nq − n− 2)t
∥∥E 1

2 (|u|q)∥∥2

2
= 0. (2.15)

Integrating (2.15) over [0, t], we obtain the pcic law.

3 Proof of Theorem 1.1

Now we recall the lemma needed to prove this theorem.

Lemma 3.1. (cf. [12, Proposition 0.1] or [7, Theorem 10.1]) Let 2 � r, q � α(n) (r, q �=
∞ if n = 2), S(t) = e−it∆. Then there exists a constant C > 0 such that

‖S(t)ϕ‖Lγ(r)(I;Bs
r,2)

� C‖ϕ‖Hs , (3.1)∥∥∥
∫

τ<t

S(t− τ)fdτ
∥∥∥

Lγ(r)(I;Bs
r,2)

� C‖f‖Lγ(q)′ (I;Bs
q′,2)

(3.2)

hold for all ϕ ∈ Hs, f ∈ Lγ(q)′(I;Bs
q′,2) and for all I ⊂ R, where 1/p+ 1/p′ = 1.

Remark. Both (3.1) and (3.2) hold true if we replace Bs
r,2 by Hs

r when s ∈ N (see [1, 7]).

Proof of Theorem 1.1. It is clear that Proposition 2.1 holds if we replace u0 by u−.
Using Proposition 2.1, we can get

‖u‖p+2 � C, ‖u‖H1 � C.

Thus, we obtain by the Sobolev embedding and the interpolation inequality

‖u‖r � c‖u‖
H

1−(p+2)/r
2r

r−p

� C‖u‖1−(p+2)/r
H1 ‖u‖(p+2)/r

p+2 � C, p+ 2 � r < α(n)

and from the energy equality, we have for 2 � r � p+ 2,

‖u‖r � C‖u‖1−θ
2 ‖u‖θ

p+2 � C,

where θ = r−2
p · p+2

r ∈ [0, 1]. Hence, we obtain

‖u‖r � C, 2 � r < α(n). (3.3)

On the other hand, by the Sobolev embedding and the pcic law, we have

‖u‖r =
∥∥e− |x|2

4it u
∥∥

r
� C

∥∥∇(e−
|x|2
4it u)

∥∥2/γ(r)

2

∥∥e− |x|2
4it u

∥∥1−2/γ(r)

2

� C
∥∥∥e− |x|2

4it

(−2x
4it
u+ ∇u

)∥∥∥2/γ(r)

2
‖u‖1−2/γ(r)

2 � C|t|−2/γ(r). (3.4)

Therefore, we obtain

‖u‖r � Cmin{1, |t|−2/γ(r)}, 2 � r < α(n) (3.5)

and
‖u‖Lγ(r)(R;Lr) � C, 2 � r < α(n). (3.6)
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Noticing that
xS(−t)u = S(−t)(xu− 2it∇u), (3.7)

we have via the pcic law
‖xS(−t)u‖L∞(R;L2) � C.

So we have from the property of the operator S(t) (cf. [4])

u ∈ C(R,Σ).

Thus, we proved u ∈ C(R,Σ) ∩ Lγ(r)(R;Lr), 2 � r < α(n).
Now we introduce the Galilei-type operator

J(t) = x− 2it∇. (3.8)

By (3.7) and (3.4), we acquire

J(t) = S(t)xS(−t), (3.9)

J(t)u(t) = −2ite
|x|2
4it ∇(

e−
|x|2
4it u(t)

)
. (3.10)

Let w(t) = e−
|x|2
4it u(t), we get

|w(t)| = |u(t)|, |J(t)u(t)| = 2|t| |∇w(t)|. (3.11)

Owing to (1.4), we have

S(−t)u(t) = u− + i
∫ t

−∞
S(−τ)f(u(τ))dτ, (3.12)

J(t)u(t) = S(t)xu− + i
∫ t

−∞
S(t− τ)J(τ)f(u(τ))dτ. (3.13)

By (3.4), we have for T < 0 and r > 2 + 2/n

‖u‖Lr(−∞,T ;Lr) � C
( ∫ T

−∞

(|t|−n(1/2−1/r)
)r
dt

)1/r

� C|T |−n(r−2−2/n)/2r. (3.14)

In view of (3.10), it is clear that

J(τ)f
(
u(τ)

)
= −2iτe

|x|2
4iτ ∇(

f
(
w(τ)

))
(3.15)

and ∣∣Jf(u(τ))∣∣ = 2|τ | ∣∣∇f(w(τ)
)∣∣. (3.16)

Let ρ = 2 + 4/n, 1/ρ+ 1/ρ′ = 1, we have
∥∥Jf(u(τ))∥∥

ρ′ = 2|τ |∥∥∇f(w(τ)
)∥∥

ρ′ . (3.17)

Since

∇f(w) = λ(∇|w|p)w + λ|w|p∇w + µE(∇|w|q)|w|q−2w + µE(|w|q)∇(|w|q−2w),

we obtain from the Hölder’s inequality and the properties of the operator E, i.e. E ∈ Mp,
1 < p <∞ (cf. [1]), that

‖∇f(w)‖ρ′ � C
(‖w‖p

m1
+ ‖w‖2q−2

m2

)‖∇w‖ρ, (3.18)
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where p
m1

= 2q−2
m2

= 1
ρ′ − 1

ρ = 2
n+2 (obviously, m1,m2 � 2 + 4/n > 2 + 2/n). Then, by (3.15),

(3.16) and (3.11), we see that
∥∥Jf(u(τ))∥∥

ρ′ � C
(‖u‖p

m1
+ ‖u‖2q−2

m2

)‖Ju(τ)‖ρ. (3.19)

So we have by the Hölder’s inequality and (3.14)
∥∥Jf(u)∥∥

Lρ′
(−∞,T ;Lρ′

)
� C

(‖u‖p
Lm1 (−∞,T ;Lm1 ) + ‖u‖2q−2

Lm2 (−∞,T ;Lm2 )

)‖Ju‖Lρ(−∞,T ;Lρ)

� Cβ(T )‖Ju‖Lρ(−∞,T ;Lρ), (3.20)

where β(T ) := |T |−np(m1−2−2/n)/2m1 + |T |−n(2q−2)(m2−2−2/n)/2m2 . Thus, from (3.13) and
Lemma 3.1, we have

‖Ju‖Lρ(−∞,T ;Lρ) � C‖xu−‖2 +
∥∥Jf(u(τ))∥∥

Lρ′ (−∞,T ;L4/3)

� C‖xu−‖2 + Cβ(T )‖Ju‖Lρ(−∞,T ;Lρ). (3.21)

Taking T0 > 0 sufficiently large so that

Cβ(T0) � 1
2
,

we have for T < −T0

‖Ju‖Lρ(−∞,T ;Lρ) � C‖u−‖Σ. (3.22)

Due to (3.13), (3.20) and (3.22), we have for T < −T0∥∥xS(−t)u(t) − xu−∥∥
L∞(−∞,T ;L2)

=
∥∥J(t)u(t)− S(t)xu−∥∥

L∞(−∞,T ;L2)

�C
∥∥Jf(u)∥∥

Lρ′ (−∞,T ;Lρ′ ) � Cβ(T ) → 0, T → −∞.

Thus, we obtain ∥∥xS(−t)u(t) − xu−∥∥
2
→ 0, t→ −∞. (3.23)

On the other hand, by (1.4), the Strichartz inequality and (3.14), we have for T < −T0

‖u‖Lρ(−∞,T ;H1
ρ) � C‖u−‖H1 + C‖f(u)‖Lρ′

(−∞,T ;H1
ρ′ )

� C‖u−‖H1 + C
(‖u‖p

Lm1 (−∞,T ;Lm1 ) + ‖u‖2q−2
Lm2 (−∞,T ;Lm2 )

)‖u‖Lρ(−∞,T ;H1
ρ)

� C‖u−‖H1 +
1
2
‖u‖Lρ(−∞,T ;H1

ρ).

Thus,
‖u‖Lρ(−∞,T ;H1

ρ) � C. (3.24)

From (3.12), (3.14) and (3.24), we get
∥∥S(−t)u(t)− u−∥∥

L∞(−∞,T ;H1)
� C‖f(u)‖Lρ′ (−∞,T ;H1

ρ′ )
� Cβ(T ) → 0, T → −∞.

Thus, we have
‖S(−t)u(t) − u−‖H1 → 0, t→ −∞.

Hence, we obtain
‖S(−t)u(t) − u−‖Σ → 0, t→ −∞.

We now define

u+(t) = u(t) + i
∫ +∞

t

S(t− τ)f(u(τ))dτ
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and let u+(0) = u+. Then we show in the same way as above that
∥∥S(−t)u(t)− u+

∥∥
Σ
→ 0, t→ +∞.

The proof of the uniqueness of u(t) and u+ is standard, one can refer to [3, 4]. Thus, the
existence of the scattering operator S : u− → u+ is established.
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