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1. Introduction

In 1927, Madelung gave a fluid-dynamical description of quantum systems governed
by the Schrodinger equation for the wave function :

2
ieOpp =—52—A¢—V¢ in R?x (0,00),
¥(-,0) =4 in RY

where d > 1 is the space dimension, € > 0 denotes the scaled Planck constant, and
V = V(z,t) is some (given) potential. By separating the amplitude and phase of ¢ =
|| exp(iS/e), the particle density p = |¥|? and the particle current density j = pVS
for irrotational flow satisfy the so-called Madelung equations (1]

8¢p+divj =0, (1.1)

.. 2
0 + div ('1%;]) — pV¢ — —E-— yAv (A\/—> =0 in[R%x (0, 00). (1.2)
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The equations (1.1)-(1.2) can be interpreted as the pressureless Euler equations includ-
ing the quantum Bohm potential
< AVP (1.3)

2 p
They have been used for the modelling of superfluids like Helium I [2, 3].

Recently, Madelung-type equations have been derived to model quantum phenom-
ena in semiconductor devices, like resonant tunnelling diodes, starting from the Wigner-
Boltzmann equation [4] or from a mixed-state Schrodinger-Poisson system [5, 6]. There
are several advantages to the fluid-dynamical description of quantum semiconductors.
First, kinetic equations, like the Wigner equation, or Schrodinger systems are computa-
tionally very expensive, whereas for Euler-type equations efficient numerical algorithms
are available [7, 8]. Second, the macroscopic description allows for a coupling of classical
and quantum models. Indeed, setting the Planck constant ¢ in (1.2) equal to zero, we
obtain the classical pressureless equations. So in both pictures, the same (macroscopic
) variables can be used. Finally, as semiconductor devices are modelled in bounded do-
mains, it is easier to find physically relevant boundary conditions for the macroscopic
variables than for the Wigner function or for the wave function.

The Madelung-type equations derived by Gardner [4] and Gasser et al. [5] also
include a pressure term and a momentum relaxation term taking into account of in-
teractions of the electrons with the semiconductor crystal, and are self-consistently
coupled to the Poisson equation for the electrostatic potential ¢:

dp + divj = 0, (1.4)
8 + div (’f )+vp(p) —pVe — —pv (A:f) —%, (1.5)
MAp=p—C(z) in§x(0,0), (1.6)

where Q2 C R? is a bounded domain, 7 > 0 is the (scaled) momentum relaxation time
constant, A > 0 the (scaled) Debye length, and C(z) is the doping profile modelling the
semiconductor device under consideration [9, 10]. The pressure is assumed to depend
only on the particle density and, like in classical fluid dynamics, often to have the
expression
Ty
P(p) = —;p , p20, y21, (1.7)

with the temperature constant Ty > 0 employed [4, 11]. Isothermal fluids correspond to
v =1, isentropic fluids to ¥ > 1. Notice that the particle temperature is T'(p) = Top? L.

The equations (1.4)-(1.6) are referred to as the quantum FEuler-Poisson system or
the quantum hydrodynamic model.

In this paper, we investigate the local existence of solutions of the following one-
dimensional quantum Euler-Poisson problem:

pt + (pu)z = 0, (1.8)
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(pu)s + (pu? + P(p))z = poz + %Ezp C@”) — pT—u, (1.9)
Pz =P — C(.’E), (1.10)
(u,p)(:z:,t = 0) = (UD,PD), (111)
(vaxad)r)(m =0,1) = (u, va¢:)(m =1,1) = (0107 0), (1-12)

for (z,t) € (0,1) x (0, 00), where pg > 0.

So far, to our knowledge, the known results on the existence of the time-dependent
system (1.4)-(1.6) with different boundary conditions have been obtained in {12] for
smooth local-in-time solutions on bounded domains and in [13] for general pressure
and non-constant doping profile with the smallness of the velocity.

In this paper, we consider the initial-boundary-value problem (IBVP) (1.8)-(1.12),
with different boundary conditions compared to the one in [13] and [12] with general
pressure and non-constant doping profile, and without the restriction on the smallness
of the velocity. We will establish the local-in-time existence of classical solutions (p, u, ¢)
of the IBVP (1.8)-(1.12).

In dealing with the IBVP (1.8)-(1.12), we introduce a new variable to overcome the
difficulties caused by the lack of smallness of initial data and by the avoidance avoid
hyperbolicity with the equation for u. This will be explained later in Section 3.

Notations: Denote Q := (0,1). Let L2 = L?(Q) and H* = H*(Q) stand for the
Lebesgue space of square integrable functions and the Sobolev space of function with
square integrable weak derivatives of up to order k, respectively. The norm of L2
is denoted by || - ||, and the norm of H* is | - ||t. The space Hf¥ = HE(Q) is the
closure of C§°(Q) in the norm of H*. Let T > 0 and let B be a Banach space. Then
C*(0,T; B) (C*([0,T}; B), respectively) denotes the space of B-valued up to k-times
continuously differentiable functions on (0,T) ([0, T] respectively), L2(0,T; B) is the
space of B-valued L2?-functions on (0,7). C always denotes a generic positive constant.

It is convenient to make use of the variable transformation p=w? e=¢;in
(1.8)-(1.12) which yields the following IBVP for (w,u,e):

2ww; + (wu), =0, (1.13)
(wiu) + (w?u? + P(w?)), = wle + —;-szwz (%)I — —j—u, (1.14)
e; = w? —C(z), (
(U,’UJ,C)(.’L‘,t = 0) = (UO: w0160)7 (116)
(U,’LUI,C)(.'L‘ = O’t) = (U,’UJI,C)(.’L‘ = ]‘Tt) = (01070)7 (

z

where wg = /pg, eg = / (w3(y) — C(y))dy. From (1.14) and (1.17), it is clear that

0
Wzzz(0,1) = wezz(1,t) = 0. This problem is equivalent to (1.8)-(1.12) for the classical
solution with positive particle density.
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Throughout this paper, we will assume compatibility conditions for the IBVP (1.13)-
(1.17) in the sense that the time derivatives of the boundary values and the spatial
derivatives of the initial data are compatible at (z,t) = (0,0) and (z,t) = (1,0) in
(1.13)-(1.17).

We have the following local existence result for the IBVP (1.8)-(1.12):

Theorem 1.1 Assume that

P(p) € C*(0,+), C(z)€ H', (1.18)

(po,uo) € H® x H* such that po(z) > 0 for z € [0,1]. Then, there is a number T, >0
(determined by (3.57)), such that there exists a classical solution (p,u, @) of the IBVP
(1.8)-(1.12) in the time interval [0,T.] satisfying

lo(®IE + llu(®)llf + l6)IF < oo for t<T..

Theorem 1.1 is proven by an iteration method and compactness arguments. More
precisely, we construct a sequence of approximate solutions which is uniformly bounded
in a certain Sobolev space in a fixed time interval. Compactness arguments imply that
there is a limiting solution which is just a local-in-time solution of (1.13)-(1.17).

Following [13], the idea of the local existence result is first to linearize the system
(1.13)-(1.15), around the initial data (wo,uo,eg), and then, to consider the equations
for the perturbation (¢, n, E) = (w — wp, u—up, € — €9). The main step is to change the
evolution equation for the perturbation of particle density into a semi-linear fourth-
order wave equation, then, construct iterated equations of (1, 7p, Ep) (p € N) from
a fixed-point procedure, and obtain the uniformly boundedness of their solutions. At
last, by the standard compactness argument, the desired solutions (4,7, E) of the
perturbation problem come out as p tend to infinity. A further analysis shows that
(w,u, E) = (3 + wo,n + ug, E + €p) with w > 0 is the expected local-in-time solution
of the original problem (1.13)-(1.17).

2. A Semi-linear Fourth-order Wave Equation

Consider V := {u € H* : uz|z=01 = Uzzz|z=0,1 = 0} and L2, endowed the scalar
products (-,-) and (-,-), respectively. Furthermore, we consider the following initial-
value problem on L2:

1
u"+;u'+uAu+u+£u'=F(t), t>0, (2.1)
u(0) = ug, u'(0) =wuq, (2.2)

where the primes denote derivatives with respect to time, 7, > 0 are constant, A = 93
is an operator defined on

D(A) = {U (S H4 N uI|I=0,l = uIII|I=0,1 = 0}, (23)
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and the operators £ and F are given by

1
(Lu,v) =/ b(z,t)uzvdz, u,veEV,
0

1
(F(t),v) =/0 f(z, tvdz, ve L?

where b, f : [0,1] x [0,T] — R are measurable functions.
Related to the operator A, we introduce the coercive, continuous, symmetric bilinear
form a(u,v)

1
a(u,v) = z// UgzVpzdT, U,V E V.
0

There exists a complete orthonormal family of eigenvectors {ri}tien of L? and a family
of eigenvalues {u;}ien such that 0 < p3 < p2 < -+ and p; — 0 as i — oc. The family
{ri}ien is also orthogonal for a(u,v) on H, i.e.

(ri,75) = 6ij, a(ri,r;) = v(Ap;, p;) = vdi; Vi, j.

By using the Faedo-Galerkin method [14, 15], it is possible to prove the existence
of the solutions of (2.1)-(2.2). The result is summarized in the following theorem.
Theorem 2.1 Let T > 0. Assume that

F € CH(0,To; L?), be CY([0,To); H?) N W2°(0,To; H'). (2.4)
Then, if ug € D(A) and u1 € H, there ezists a solution of (2.1)-(2.2) satisfying
u € C([0, To); D(A)) n C*([0, Tv); H) N C*([0, To; L?). (2.5)
Moreover, assume additionally that
F e CY0,Ty); HY).
Then, if ug € H> N D(A) and u1 € H satisfy
vAug + L(uy) — F(0) € HY,

it holds
u € CH[0, To; H™#), 1=0,1,2. (2.6)

Proof The proof is standard, cf. [13, 16], the details are omitted.
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3. Local Existence

In this section we prove Theorem 1.1. We linearize the equations (1.13)-(1.15)
around the initial state (wp, up, ep) and prove the local-in-time existence for the per-
turbation (¢,7, E) = (w — wo,u — ug,e — eg). For this, we reformulate the original
initial-boundary value problem (1.13)-(1.15). For given UP = (v, np, Ep), we obtain
the following linearized problems for UPT! = (4p41, Mp+1, Ept1), P € N, write “0,” for

the spatial derivative and “’” for the time derivative:
1
/ —
T’p+1 + ;np-%—l = 90(3:) UP)’ (31)
77P+1($) 0) = 0.

1
g+1 + ;¢Ip+1 + Yp1 + Va§¢p+1 + K(z, Up)az¢;+1 = g1(z,UP),

1
Yp+1(2,0) =0, ¥p41(2,0) = 81 (2) := —wozuo — Fwotez, (3.2)
3::¢p+1(0a t) = a:tw,‘p-é-l(la t) = 0)
32¢p+1(0, t) = 32¢p+1(1, t) =0.

{ BIEP+1 = (2'w0 + "pp)‘pp; (3 3)
E;+1(0,t) = Epy1(1,¢) = 0. '
where v = %62 and

1 2Pl((¢p + wo)z)(tﬁp + wO)r 52(¢p + wO)rzz

Py — _ . —
go(:c,U) Tu() wp+w0 + E+ ey + 2(¢p+w0)
_ 52(¢p + wO):t(wp + Wo)zz T zw;(np + uo) + 2(77;) + 'U'O)Q("/)p + wo)z
2(p + wp)? Yp + wp PYp + wo ’
w(z,UP) =2(np + uo),
12
Py _ _ . o4 _ D (¢p+w0)i(77p+'-"0)
91(z,UP) = — v8iwy ——— o + o
+ ("pp + wO):l:(np + UD)(np + up)z — (77p + U'O)z(wp + Wo)zz
[P ((¢p + w0)?)],

+ (¢p+w0)(np+u0)i+ £ +'¢’p_ (¢p+w0):(Ep+60)

2("/’;: + wO)
(¥p + wo)Z,
"/)p + wo .
We apply an induction argument to prove the existence of solutions of (3.1)-(3.3).
Lemma 3.1 Under the assumption of Theorem 1.1, i.e. P(p) € C*(0,00), C(z) €
H', (wo,uq) € H® x H? with wy(z) > 0, z € (0,1), there ezists a sequence {UP}2,
of solutions of (3.1)-(3.3) in the time interval t € [0, T] for some T, > O which is
independent of p, satisfying the regularity properties

{ np € C* ([0, T.]; H?)

— 3+ wo)® + Sy + w0)C(z) +v (3.4)

Yp € CH([0,T.); H-%) 1=0,1,2;pe N (3.5)
E, € C' ([0, T.]; H?)
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and the uniform boundedness

7p®)|5 + Il(Ep,f;Kt)llZ < My,
|y W, W) () | ogs gy < Mo, PEN, t€(0,T.] (3.6)
2 <1, Ipze @) < 211611

where My > 0 is a constant independent of U? (p € N) and T,.
Proof Stepl: solutions of (3.1)-(3.3). We introduce a new variable ¢, satis-

fying

©p(0,2(0)) = wo(zo), (3.7)
z'(t) = up(z(t), t).
where ¢ = z(0). From (1.6), (1.9) and (3.7), for (z,t) € (0,1) x (0,0c) we have

{ 20, + 20pzup + Pptipz = 0,

[wp - (pP](za t) = 07 Zf [wp - <pp](z70) = 0.
Along the characteristic
z'(t) = up(z(t),t), z(0) =z0 € (0,1),

it follows from (3.7) that

op(2(0)8) = VVoazs) exp { [ ~Gupela(s),o)ds

which implies
‘Pp > 0 Zf Po > 03

and
m<pp, KM if up€H2

where m and M are constants independent of p. Moreover, we have

‘P’
—£ < Cllupller o,y 2) < CM.
¥p Il Loo(at)
1 1 1
Therefore, we shall replace — or ———— by — and reset U? := (yp,np, Ep, ¥p)-

Obviously, U! = (0,0,0,wp(zp)) satisfies (3.5)-(3.6). Starting with U! = (0,0, 0,

wo(To)), we prove the existence of a solution U? = (12,72, Ea, p2) to (3.1)-(3.3) satis-
fying (3.5)-(3.6). The functions go(z,U!), g1(x,U") and k(z,U!) only depend on the
initial value (0,0, 0, wo(zo)) and the boundedness of ¢, such that

go(z,U') € H?, qi(z,U") € H', x(z,U') € H?,

lgo(z, UM, + |lgr(z, U], + ||x(z, UM||, < Colr,e, M)(Io + 1), (3.8)
Bego(z, U') = 8eg1(z,U") = 8,s(z,U) = 0
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where Cg > 0 is some constant and
Io = |lwolls + lluoll3 + lICII3 + lieall3- (3.9)

For the linear system (3.1)-(3.3), the local existence of a solution U? = (42, 72, E2, @2)
follows from the theory of ordinary differential equations, applied to (3.1); Theorem
2.1 with f(z,t) = go(z,U!) and b(z,t) = «(z,U!), applied to (3.2); and integral
theory, applied to (3.3). The solution U? satisfies (3.5) with 7. = T and the first two
inequalities of (3.6) with p = 2.

We show in the following that U? satisfies the last two inequalities of (3.6) for
t € [0,T], where T7 > 0 is given by

2
Ty = min { cggﬁlﬂr 1)z’ 2(311210)’ co(Ij 1) } : (3.10)
From (3.1) and by integrating, we obtain
mlt) = go(a0") [ expl~(¢ = o)}ds, € (0,73
hence, in view of (3.10),
2 ()13 < TEllgo(z, UM < 1, te€[0,T1]. (3.11)

Multiplying the differential equation in (3.2) by 4%, integrating the resulted equation
over (0,1) x (0,t) for t € [0,T1] and integrating by parts, we have

222 (011> < = (111117 + Co(lo + 1)°Ty)e* P+ )Ty

AN AN

< ZloylP. (3.12)

This proves the last two estimates in (3.6). Moreover, by the Poincaré inequality
and the boundary conditions in (3.2), it follows from (3.12) that

2 < (S + i8¢ e o,Ti] (313)

Now, assume that there exist solutions {U*}._, (p > 2) of (3.1)-(3.3) on the time
interval [0,T}] where T} is given by (3.10), satisfying (3.5)-(3.6). As the procedure
above, for given U?, there exists a solution UPT! = (¢4 1, mpt1, Epi1, @p+1) of (3.1)-
(3.3) in the interval [0, T}], satisfying

Mp+1 € CH([0, T1]; H?),
Yp+1 € CH{{0, T1]; H5#), 1=0,1,2. (3.14)
EP-H € Cl([O,Tl];Hz).
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We will prove that there exist constants T, € (0,T1] and K; > Co{i = 1,2,3,4,5)

independent of {U/*}f_,, such that if UP satisfies on [0,T*] that

4
[EATMGIEES ;I|91II2 =: Ko,

1(p, ) (E)I% + Il (D)1 < K,
18300112 < Ko, 110300112 < K3, (1829, (1)]1F < Ka,
Inp (0113 €1, 187D} < K,

then on [0, 7], UP*! also satisfies the following inequalities

4
1824051 (81 < ;nelll?,
| 1 (pt15 e YOI + bpa (DT < K1,
1834p1 (N2 € Ko,  118%0pr 1 ()13 < K3, 182951 ()11} < Ka,
Impr1 (I3 <1, 118210, (B2 < K.

(3.15)

(3.16)
(3.17)
(3.18)

(3.19)

(3.20)
(3.21)
(3.22)

Notice that it follows from (3.15) and (3.19), employing the boundary conditions in

(3.2) and Poincaré’s inequality,

: 4 4
legp(B)IT < (= + 6017, (B < (= +4)16:11%, te 0,77,

(3.23)

Step 2: estimates for gg, g1 and k. Let UP satisfy (3.15)-(3.18). Then a direct
computation shows the following estimates for go(z, UP) and g;(z, UP), for t € [0,T\],

llgo (-, UPYI> < C(L + Io + 11820 () 1% + 118345 (£)11% + 1w, (B)II%)*
< C(l + Ip+ Ko + K3 +K2)4,
lgoz (-, UPYHEN® < C(L + Io + 1824, (£) 12 + 1w, (E)1* + 1824 (2)]1?
+IB3wp ()13 + 118245 (1) 113)*
SC+1I)+ Ko+ K, + Ko + K3 + K4)4,
llgozz(-, UPY(E)I> < C(1 + o + 18245 () I1> + N(wp, 1) () 1I% + 182405 (£) 1]
+18awp (WIIT + 118240, () 17)°
SCO+ I+ Ko+ K1 + Ko + K3 + K4)5,
llgs (-, UPYEN® € C(1+ Io + 19,11} + 189 8) 13 + 11824, ()11
+lwa (113 + Ilwp(t))%)®
SC+ I+ Ko+ K, + Ky + Ky)°,
gz (-, U@ < C(1L + Io + Il (D) 1T + 1195, (0IIF + 110:40() 12
+829p ()12 + 1831, (2)11)®
SCA+ILi+ Ko+ K| + Ky + Ky)°,

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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g, (L, UPY 2 < C(L + To + 10, (OIF + Nl ()11 + 182, (1)1 + [l (2112
FN0p (02 + 118295 ()2 + 1824 (1) 13 + [1824,(8)11%)°
SC(l+I+ Ko+ K| + Ky + Ky + Ks)8,
lgi=( UPY®)IP S C(L + Iy + 10205 (0113 + 110=0, (DT + Il (D113
+18x0y (DI + by (NI + 18355 (DI + llmp (D113
+182n,(ON1? + 1182¢p (D)1} + 1103%5()11%)®
< C(1+IO+K0+K1+K2+K3+K4+K5)8,

and estimates for x(z, UP) and Ep(z,t), for t € [0,T.],

e UP)Y )5 < C(L+ To + lImp(1)113)?
< C(1+ I)?,
', UPY ()5 C(1 + Io + |Im, ()115)?
<C(1+ I+ Ks)?,

IE, ()13 + 1B, (8113 < C(1 + To + I (D115 + e (WIIT + N9 (£)113)?
<0(1+10+K0+K1 +K4) ,

where C > 1 is a constant independent of K; (i =0,1,2,3,4,5).
Step 3: estimates for 7,.,. Integrating (3.1), we have

t
Np+1(z, 1) = / exp{—(t — s)}go(z,UP)(s)ds, 0<t<T.<Ty, z€](01]
0

From (3.24)-(3.26) we obtain the following estimates

t 2
I (B2 < ( /0 oo (=, UP)Hds)
SCT 1+ Iy + Ky + K, + K»)%,

t 2
19z (B2 < ( /0 ugm,up)uds)
SCT?(1+ Iy + Ko+ K, + Ko + K, + K4)*,

¢ 2
182np (D112 < ( [ Ngoaatz, Up)uds)
0
SCT21+ Iy + Ko + K, + Kz + K3 + K3)®.

Moreover, from (3.1) we have

17511 N2 < ClImpr1 I + llgo(z, UP)|I?)
S CA 4T+ I + Ko + K, + Kj)4,

102711 (D12 < C18zmp+1 (D12 + llgoz(z, UP)||?)
< C(l+Ti2)(1+10+K0+K1+K2+K3+K4)4,

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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182m, 1 (DI < C(\82np1 (N + llg0z= (2, Uun)|?) (3.40)
<C+TH(1+ I+ Ko+ Ky + Ky + K3+ K3)®. '

Thus, 7p+1 satisfies (3.22) if

Ks = 2(;‘(1+T12)(1+IO+K0+K1+K2+K3+K4)6 (3.41)

and if T, satisfies .
T, < —, 3.42
Ve (3.42)

where
L, = min{3C(1 + Lo+ Ko + K1+ K2)*, 3C(1 +Ip+ Ko+ K1+ Ko+ Ks+ Kq)°}. (3.43)

Step 4: estimates for ¥p11. We multiply the differential equation in (3.2) by
¥p41 and integrate the resulted equations over (0,1) x (0,7,) and integrate by parts.
In view of (3.27) and (3.22), we obtain

lpar @12 + [ 1 (O + V10 (DI
t t
< (ueluu /0 uglu?ds) exp{ /0 (2+2nnp+1(t>u%+2nuou%>ds}

< (1 + Ip + T Ly)e™ €20, (3.44)

where
Ly=CQ1+1Ip+ Ko+ Ki + Ko+ K4)®.

We have (3.16) if

K, = 4(1 + o), (3.45)
and 9
n 1
T,. S i 7 (-
i { 3+ 1p L3}

By differentiating the evolution equation in (3.2) with respect to ¢, then multiplying
the resulted equation by ¥,41 and ¥ and integrating over (0, 1) x (0,T,) respectively,
and integrating by parts, we have from (3.29) and (3.22),

921 (012 + 201051 (1)
t
< (3H¢Z+1(0)H2 + 3)161 (17 + 2v1|1826)1* + 3/0 lgr( Up)(t)112d8>

2r 1. [t 11
- exp {max(2, 1 -T—) /0 (-2— + 3HT);+1H2 + 3limp+1ll3 + 3”“0“%)‘13}

< C(l + IO + TtL4)eT-L51 (346)
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where 8
L4=C(1+10+K'0+K1+K2+K4+K5), (347)
Ls = 3max(2, 1)(Z + K3). '
We have (3.21) if
Ky, =2C(1 + I), (3.48)
and 1 In2
n
< mi _— 2.
Te < mln{L4, s }

Applying 9, to the differential equation in (3.2) with respect to z, then multiplying the
resulted equation by 0:4p+1 and 9,9, and integrating over (0, 1) x (0, 7. ) respectively,
and using integration by parts, we have, with the help of (3.28), (3.22) and (3.44), that

1
10:41 01 + (24 1) 100 (17 + 2102 ()1°
t
< {2000+ [ [Blora, UPEIR + (3 + 6182511 + Sllos )} 7] s

exp {maxta, 75) [ (54 311 O1F + 3ol
< C(1 + Iy + T, Lg)e*(®+300)T- (3.49)
where
Le = 3C(1 + Ip + Ko+ K1 + K2 + K4)® + (15 + 61)(1 + Iy + Ty L3)eT:(6+200),

We have (3.21) if
Ky = C(1 + L), (3.50)

1 In2
T, <ming —, ———— % .
o { Ls’ 4(8 + 31p) }
Differentiating the differential equation in (3.2) with respect to z and ¢, then multiply-
ing the resulted equation by Oz, 1 and Oy, and integrating over (0,1) x (0,T.)
respectively, and using the integration by parts, we get, with the help of (3.30), (3.22)
and (3.46), that

and

1
10:05 O < (310:0r @I + (& + 9101217 + 2011636417
t
+ [ Bllgka( UP)OIP + 3l (D12 + 2l () + 2l + U021 (1))

t
3
exp {2 [ @+ 2lnr D2 + 2ol + e I + 2 ()1

SC(1+1Io+Tu(1+ I+ Ks + Ly))el-Ls (3.51)
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where
L:=C(l+ I+ Ko+ K1+ Ko+ K3 + K4 + K3)8, (3.52)
3C
Ly =2(7+ 2l + Ks + (1 + Lo + TyLq)eT1Ls). (3.53)
We have (3.20) if
T. < mi {L 1n2}
» < min K L

From (3.2), (3.46), (3.44), (3.31), (3.49) and (3.27), we obtain

192 %p+1 (N1 < CUlY 41 (I + W1 (B + lIops1 ()11
+ |ls(z, UP) (£) Bty 1 (O + llgr (=, UP)(0)1?)
SCO+ Ip+T.Ly)eT 55 +2(1 + Iy + T L3)eT~6+200) 4 [,
+ C(L + Ip)°C(1 + Iy + T, Ly)e™Ls
+ C(1 + Iy + T, Lg)e*(B+300)T- (3.54)

Differentiating the differential equation in (3.2) with respect to z, integrating over
(0,1), and employing (3.51), (3.49), (3.46) and (3.28), we can estimate 821,11 as

183%p+1(DII* < C 182441 (DI + 1021 (E) 1 + 1102p41 () ||
+kz (2, UP)(8) B2y 41 (1) 1P+ Il (, UP) ()24, 11 (1) 1%+ [l g1z (2, UPY(B)(|%)
SCL+ Iy +Tu(l+ Ig+ Ks + L7))eT-L2 4 2C(1 + Iy + T, L) e*(8+300)T-

+ C(1 + 1)*(C(1 + Iy + Ty Lg)e 13
+ C(1 + Ig + TuLy)eTLs5) 4 L. (3.55)

We have (3.21) if

K3 =L3+ K1+ C(1 + Iy + L3)°Ky, (3.56)

and

1 2
T, < min{ —, 2 :
L4 31'!1&)((2,;)(-6‘ +K5)

Thus, we take

: { 116112 In2 1 1 1 1
T« = min 2 R 3 ) YT v T s s 3
G (Io +1)2°2(3+ Iy) Co(lo+1) /L L3’ Ly 5 Lg
In2 1 In2 In2
— = == o3 . (3.57)
4(8 +3Io)’ K5 Ls ’ 3max (2,1) (2 + K;)
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Now we choose the constants K; as follows. Let K be given by (3.45), K2 by (3.50),
K3 by (3.56), K4 by (3.48), K5 by (3.41). The constant T, is determined by (3.57).
This shows that (¥p4+1,mp+1) satisfies (3.19)-(3.22) for ¢ € [0, T.].

Step 5: the end of the proof. The uniform boundedness of E,.; € C!([0,T%]; H?)
of (3.14) follows from similar computation as (3.33), where the index p is replaced by
p+1.

By induction, we conclude that {U?}52, is uniformly bounded in [0, T,] with T,
given by (3.57) and satisfies (3.5)-(3.6) uniformly for

MO = ma.x{Ko, Kl) K2a K3) K47 KS}

The proof of Lemma 3.1 is complete.

Proof of Theorem 1.1 By Lemma 3.1, the sequence {UP}52, satisfies (3.5)-(3.6)
uniformly in [0,7.]. By applying the Ascoli-Arzela theorem and the Aubin lemma to
{UP}32,, it follows that there exists U = (¢, n, E, p) satisfying

neCY[0,T.;H?), EeCY0,T.];H?),

¥ e CH0,T.; H>%), 1=0,1,2 (3.58)

and (maybe after extracting a subsequence)

vp L2 ¢ strongly in CY([0, T.]; H5~2-7), 1=0,1,2, (3.59)
Mo p—)_oo) n strongly in Cl([O,T.]; HQ_U), (3.60)
E, P °°% B strongly in C\(0, T.]; H2~°), (3:61)

for any o > 0. Note here, as in [11], we can prove that the whole approximate solution
sequence converges as p — o0.

It is not difficult to verify that U is a solution of (3.1)-(3.3) where U? is replaced
by U. Setting

w:w0+¢>09 u = up + 7, ¢I=¢OI+E1

we see that u € C([0,T.]; H*) from (3.58) and (1.13), (w,u, ) ( (p = w?,u, @), respec-
tively) is a local-in-time solution of the IBVP (1.13)-(1.17) ( (1.8)-(1.12), respectively).
The proof of Theorem 1.1 is complete.
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