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Abstract In this article; the author studies the initiaL(Dirich1et) boundary problem for 
a high-field version of the Schriidinger-Poisson equations, which include a nonlinear term in 
the Poisson equation corresponding to a field-dependent dielectric constant and an effective 
potential in the Schrodinger cquations on the unit cube. A global existence and uniqueness 
is established for a solution to this problem. 
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1 Introduction 

In the prescnt article, we consider the self-consistent quasi-linear Schrodinger-Poisson equa- 
tions (QSP) on the unit cube R := (0, 

Ix: 

na=l 

with the following initial data and boundary conditions 

~r,,(x, t )  = 0. on doZ. m E N. (1.5) 

V ( z , t )  = 0, on 80, (1.6) 

where d E N, d 5 3, t E R and E O ,  €1 > 0. The wave functions { $ m ( z , t ) } m E ~  forni a 
sequence of complex-valued functions. A is the Laplace operator on R3 and the electrostatic 
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potential V ( x ,  t )  is a real-valued function. {X,},,w is a specified sequence of probabilities with 
xrnEN A, = 1. n* is a given time-independent dopant density which may be represented as 

n* = n ; -  n A  - , (1.7) 

where n$ is the density of donors and n; is the density of acceptors. We always look forward 
to seeking a solution satisfying the following charge neutrality: 

l ( n  - n*)dx = 0. (1.8) 

This system (1.1) - (1.3) appears in the physical area of semi-conductor science and plasma 
in the simulation of transport of charged particle [la].  A great deal of interesting research has 
been devoted to  the mathematical analysis for the Schrodinger-Poisson systems (see [1,2,3,5,6,7,8,9, 
11,131 and references therein). In 121, Castella proved the global existence and the asymp- 
totic behavior of solutions in the function space L2 for the mixed-state unipolar Schrodinger- 
Poisson systems without the defocusing nonlinearity, and in [3], the initial boundary value 
problem for Schrodinger-Poisson system was considered where the system consists of a series of 
Schrodinger equations. In [5], by using the pseudo-conformal conservation law of the bipolar 
defocusing norilinear Schrodinger-Poisson system and applying the time-space LP-LP' estimate 
method, we established the global existence and uniqueness and large-time behavior of the 
solution to the bipolar defocusing nonlinear Schrodinger-Poisson system with initial data in 
C := {u E L2 : 1x1~ E L 2 } .  In addition, the stationary solutions of (QSP) were discussed in 

[6]. And the boundary valued problem with periodic conditions to (QSP) was considered in 
[7]. In [8], by applying the estimates of a modulated energy functional and the Wigner measure 
method, Jungel and Wang discussed the combined semi-classical and quasineutral limit of the 
bipolar nonlinear Schrodinger-Poisson in the whole space. However, to  our knowledge, there 
was no previous result on Dirichlet boundary problem for (QSP). In this article, we study the 
initial- (Dirichlet) boundary problem for a high field version of the Schrodinger-Poisson system 
including nonlinear terms in the Poisson equation (corresponding to a field-dependent dielectric 
constant) and effective potentials in the Schrodinger equation on a unit cube. We prove the 
global existence and uniqueness of solution for this problem with the help of the Schauder fixed 
point theorem. 

Now, let us introduce the following work spaces 

x := 9 = ( @ r n ) r n E w  : +m E ~ ~ ( o ) ,  11911x = (C L I / G ~ I I ~ L ~ ( ~ ) ) ~ / ~  < a}, (1.9) 
m € N  

{ 
x1 := {Q ( $ m ) r n E W  grn E H~(R), l ~ ~ ~ l x l  = (C ~ m ~ ~ ~ m ~ ~ ~ ~ ~ ~ ~ ) ) l ' z  < a} (1.10) 

m E N  

and 

x2 := 9 = (+rrL)mEN : $rn E H2p)nH, ' (O) ,  ll~l1x2 = (C ~ m \ l + m l l ~ 2 ~ ~ ~ ) 1 / 2  < m}. (1.11) 
rnEN 

{ 
We can state our result on the global existence as follows. 

Theorem 1.1 Let 
(9, V )  of (1.1)-(1.6) such that 

= ( 4 m ) m E ~  E X 2  and n* E C'(2) .  Then, there is a unique solution 

9 E c'(w; X) n C(R; x2) ,  (1.12) 
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2 Basic Estimates on Quasi-linear Poisson Equation 

For convenience. we first introduce some notations. Denote A = p = ( P I ,  . . . . p d )  E 
Rd, D,=a/dz, .  Dp, = a / a p , ,  D P = ( D p l , . . . , D p d ) = V P .  

We now recall the following lemmas which will be used to prove our results. 
Lemma 2.l(see [4, Theorem 15.191) Let R bv a bounded domain in Rd satisfying an 

exterior sphere condition at  each point of the boundary iSR. Let Q : u H divA(z, u, Du) + 
B(z.u,  Du) = 0 be a divergenu. striicture operator with coefficients Az E C1,y(R x R x I@)), 
i = 1, . . . , d ,  B E CY(R x R x R"). 0 < y < 1, satisfying thc following hypotheses for all E E Rd 
and (J. z ,  p) E I1 x R x R", 

CD, , ,AC(J ,  z ,  PIE& 3 v(I4)(1 + IPI)'IEIL 
z>3 

where 7 > -1 is some real number and v is a positivc, non-increasing function on R; 

where p is a positive, non-decreasing function on R: 

p .  A(x. 2, p) 3 /PI' ' - / u ~ z / "  - u;. (2.4) 

~ ( z ,  z, p)signz 5 bglplCY--l / ~ I I Z / ~ - '  +  IF-' (2.5) 

where a = 7+2.  a l ,  u2, bo, b l ,  6 2  arc iionriegative coristants. Then, for any function cp E C ( a O ) ,  
there exists a solution u E C(n) n C2 ' ( 0 )  of thc Dirichlrt problem Qu = 0 in 12, u = cp on dR. 

Let R c Rd be an  optm domain with regular bound- 
ary do.  Let A be an elliptic operator of second order 

Lemma 2.2(cf. [lO.Thi.ori>me 1.11) 

where 
a,, = a,,, b,, c E ~'(2). 

Cat,<,<, 3 v1<12, V< E R". 

c 3 0. 

Assume that f E H'>-(R) and p is a convrx function in C(Rd). If thcre exists w E H2iP(S2)(p > 
d )  such that 

A?, + p(V7v) ~ f 5 0 in R. 

for sonic v > 0. 
, I  
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v = O  on dR. 

Then, the problem 
A u  + cp(Vu) - f = 0 in R, 

u=O on dR. 

admits a unique solution u E Hi'"(R). Moreover, u E H3>p(0)  for all p < 00. 

that the structure conditions (2.1)-(2.5) hold. In fact, 
Let Ai(z, z ,  p) = ( E O  + E1lpl2)pi, B(z ,  z ,  p) = n - n* and 'p = 0. By computing, we know 

CDPjAiEZJJ^ 3 (Eo + EllPI2)1Cl2 2 C(1+ IPO21El21 
i,j 

ID&/ = ~ ( E O  + E i J p I 2 )  + 2 ~ i l p 1 ~  = ~ E O  + ~ l ( d  + 2)lpI2 I C(1+ 

(1 + [pl)[DzA[ + /DzAl+ 172 - n,*I 5 IIn - ~ * I I ~ ( E )  I 1172 - n*IIC(a)(l+ I P I ) ~ ,  
P .  A = (EO + EiIPI2)lpI2 3 ElIPI , 4 

1/3 4-1 n -  n* G Iln - n*llc(n) = (11. - n*llc(E)) . 

Then, for n - n* E C1(a), we obtain from Lemma 2.1 that there exists a solution V 
C2>y(a) of the Dirichlet problem (1.2) and (1.6). 

C(a) n 

Moreover, we have for p > d 

that is, 
v E H2'"(0).  

By Lemma 2.2, and taking coefficients 

satisfying 
Caz,E& 3 ( E o  +E11VVI2)IJl2 3 Eo15I2 
i , j  

and 

cp = 0, 

we obtain V E H3J' ( p  < cm). 
Lemma 2.3 

n - n* E H1(R). Then 
Let V be a solution of equation (1.2) with the boundary condition (1.6) and 

L2(n) 3 for 2 L P 5 4 ,  (i) I I V V J I ~ ~ ( ~ )  <: G~ln  C 
- n*ll(2-4'~)/31~n - ,*114/p-l 

(4 IlAvllLz(n) I -%In €0 - n*llL1(62)11n - n*llfi;,3(n). 

(2.6) 

(2.7) 
L l ( n )  

1/6 112 

Proof (i) Multiply (1.2) by V and integrate. We get 

b ( n  - n*)Vdz = -V . ( ( E O  + E1(VVI2)VV)Vdz .I 
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Thus, by the Holder and the Poincark inequalities, we have 

~oI/~V/l2,2(,) I bi. - n*)Vdz I /In - ~*I/L2(n)1lV11L2(62) I Clln - ~*IIL2(n)/IVVIlL~(62) 

that is. 
C 
EO 

IIVVIIL2(n) I -/In - n*/lL2(n), 

and 

ElIIvVl14L4(n) L l ( n  - n*)Vdx I Iln - n*llLl(n)llvllL-(n) 5 Clln - ~*/ lL~(n) l l~VI lL4(n)  

that is, 
C * 113 
E l  

/lVVIIL4(n) I -lln - 77, I IL ’ (62) ’  

Thus, by interpolation, we get the desired result (2.6). 

boundary condition (1.6), we arrive at 
(ii) Pvlultiply (1.2) by -AV and integrate. By applying the proceeding assertions and the 

- i ( n  - n*)AVdz = V . ( ( E ~  + E11VV/2)VV)AVdz b 
= EO//AV/~:,(,) + €1 V . (IVV/*VV)AVdr 
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3 Global Existence and Uniqueness 

We give the proof of Theorem 1.1 in the following. Let us show the conserved quantities 
(1.14) and (1.15) first. 

We use 1, 
(1.14) follows by 

Multiplying 

as a multiplier to (1.1) and integrate the resulting equation over 0. Then 
taking the imaginary part. 
(1.1) by &qm and integrating it, we obtain 

Taking the real part, we get 

Thus, we have 

which implies (1.15). 
Denote for R,T > 0 

Y R , ~  := { 9 = (+m)mEN : 4 E ~ ~ ( 0 ,  T ;  x) n ~ ~ ( 0 ,  T ;  x2) ,  
IIQIIc(o,T;x) 6 I I Q I I x ,  / I ' @ ' / / L - ( o , T ; x ~ )  5 R, I I ~ I I C ~ ( O , T ; X )  5 RE. 

It is clear that YR.T is a bounded closed convex set (cf.[3]). 
Given A = (a,(t, z)) E YR,T; denote 

then. we have 
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and 

Let S ( t )  be the L2 isometry group generated by $iA. For any t E [O,T] we have, with the 
above V ,  that 

Thus, we have 

1 C (  1+R1'2)T ll*tllx 5 ~11AQI1" + IlVQIlx 5 CI/@llx2e 

This implies, by the Gronwall's inequality, that 

Now, we can definc the mapping 7 from YR,T to itself by 

In order to apply the Schauder fixed point theorem, we will subsequently prove that the mapping 
7 is compact. Given any Ak E Y R , T ,  denote 7Ak = Q k .  By the definition of YR,T, we can 
assume that 

A k  2 A weakly* in L"(0. T :  X 2 )  

and A E Lx(O. T ;  X 2 ) .  By the conipactness principle, wc have 

A k  4 A strongly in C(O.T;X1) .  
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that is, 
v A k  -+ VA strongly in C(O, T ;  ~ ~ ( 0 )  n H ~ ( o ) ) .  

By the integral equation, we have 

Similar to (3.1), it yields to 

that is, 
qk -+ QA strongly in L"(0, T ;  X 2 ) :  

and !PA E YR,T. 
From the above convergence and the Schrodinger equation (l.l), we know that I is a 

compact mapping. Therefore, by the Schauder fixed point theorem, there exists a fixed point 
9 such that 9, the corresponding V and n satisfy (QSP) with (1.4)-(1.6) for t E [O,T]. By 
the standard argument, we can extend the local solution to a global one. 

Finally, we give the uniqueness of (QSP) with (1.4)-(1.6). We first state the following 
lemma which will be used to prove the uniqueness. 

Lemma 3.1 For any two functions u, w E H1>4(0), we have 

L{(Eo + ~ 1 I V u 1 ~ ) V u  - (EO + E1JVv12)Vw} . O(u - v)dz 
El (3.2) 

3 EoIIO(u - v)II$(n) + 4IIv(u - u)IIi4(a1. 
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Proof Let p = Vu, q = Vu. By using the Young‘s inequality: we arrive at 

where 

Integrating (3.6) over’ 12 and taking tlic irriaginary part. we get 

By cornputirig, we know 
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-v . ((&o + &ljVV(2)12)VV(2)) = 77, - n* 

By (3.8) and (3.9), we have 

(3.9) 

Thus, by the Poincark inequality, we obtain 

IlV(l) - v ( 2 ) l / L 2 ( q  5 CI/V(V(l) - V(2))llL2(q 5 0. 

Therefore, V(l) = V(2) in the sense of L2(0) .  
Remark 3.2 We do not need the condition 

V(z,  t)dz = 0 

which is needed to  prove the uniqueness of solution to (QSP) with periodic boundary conditions 
in [7]. 
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