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Abstract

For one and two spatial dimensions, we show the existence of the scattering operators for the nonlinear
Schrödinger equation with exponential nonlinearity in the whole energy spaces.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the existence of the scattering operators in energy spaces for the non-
linear Schrödinger equation (NLS):

iut + �u − f (u) = 0, (1.1)

where u(t, x) is a complex valued function of (t, x) ∈ R
1+n, i = √−1, ut = ∂u/∂t , �u =∑n

i=1 ∂2u/∂x2
i , n = 1,2. f (u) is a nonlinear function with exponential growth, say
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f (u) =
{

μ
(
eλ|u|2 − 1 − λ|u|2 − λ2

2 |u|4)u, n = 1,

μ(coshλ|u| − 1 − λ2|u|2)u, n = 2,
(1.2)

for some λ,μ > 0, coshv = (ev + e−v)/2. For convenience, we say that H 1 is the energy space
for NLS. We will show that the scattering operators for Eq. (1.1) with the nonlinearity as in (1.2)
are well defined and bijective in the energy spaces.

If f (u) is a power function, say f (u) = |u|αu, a large amount of work has been devoted to the
study of the scattering theory of the nonlinear Schrödinger equation; cf. [2,5,7,8,14,18,19,23,25,
29,30]. If n � 3 and α is a subcritical power in H 1, i.e., 4/n < α < 4/(n − 2), the energy scat-
tering was obtained by Ginibre and Velo [7,8] and Tsutsumi [25]. Bourgain [2] considered the
critical NLS with f (u) = |u|4/(n−2)u in three and four spatial dimensions and obtained the exis-
tence of the scattering operators in energy spaces for the radial solutions, where a new method
so-called “separation of localized energy” was invented (Grillakis [9] gave a different approach
which recovered the global well-posedness for the smooth radial solutions in 3D). Applying this
argument and setting up a new Morawetz-type inequality, Nakanishi [18,19] was able to show
the energy scattering in one and two spatial dimensions for 4/n < α < ∞. Recently, Collian-
der, Keel, Staffilani, Takaoka and Tao [5] developed the localization techniques in both physical
and frequency spaces. By establishing a frequency-localized interaction Morawetz-type estimate,
they obtained the energy scattering for the critical NLS in three spatial dimensions and removed
the radial assumption in [2]; one can consult their paper for details. Recently, Ryckman and
Visan have generalized their work to higher spatial dimensions; cf. [21,26]. The regularity of the
scattering operator was also shown in [2,5–7,29].

If the nonlinearity has the exponential growth, Nakamura and Ozawa [16] considered the
small data scattering for NLS in the critical space Hn/2. Nakamura and Ozawa [17], Wang [30]
showed that the scattering operator carries a band in Hs into Hs for s � n/2. We will use Bour-
gain’s localization arguments (separation of localized mass) to study the energy scattering of
Eq. (1.1) with the nonlinearity as in (1.2). In order to state our results more precisely, we will use
Taylor’s expansion of f (u) and consider a generalized version of f (u):

f (u) = μ
∑

k�k(n)

λk
k

k! |u|2ku, k(n) := 1 + 2

n
. (1.3)

Taking λk ≡ λ and λk
k = λ2kk!/(2k)! for n = 1 and n = 2, respectively, we then get the nonlin-

earity as in (1.2). We denote

F
(|u|2) = μ

2

∑
k�k(n)

λk
k

(k + 1)! |u|2k+2. (1.4)

The solution of (1.1) with the nonlinearity as in (1.3) and initial value u0 at t = t0 formally
satisfies the conservations of mass and Hamiltonian:

M(u) := ∥∥u(t)
∥∥2

L2(Rn)
= ‖u0‖2

L2(Rn)
, (1.5)

H(u) := 1

2

∥∥∇u(t)
∥∥2

L2(Rn)
+

∫
n

F
(∣∣u(t, x)

∣∣2)
dx = H(u0). (1.6)
R
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For convenience, we also write

E(u) := M(u) + H(u). (1.7)

The scattering operator of NLS (1.1) in H 1 is defined as follows. Let u−
0 ∈ H 1, we look for

a unique global solution u of NLS satisfying u ∈ C(R,H 1) and ‖u(t) − eit�u−
0 ‖H 1 → 0 as

t → −∞. Moreover, if there exists a unique u+
0 ∈ H 1 satisfying ‖u(t) − eit�u+

0 ‖H 1 → 0 as
t → +∞, then we can define a mapping S :u−

0 → u+
0 and say that the scattering operator

S :H 1 → H 1.
For any 0 < E < ∞, we denote

H1
E = {

v: E(v) � E
}
. (1.8)

The following is our main result.

Theorem 1.1. Let n = 1,2, 0 < E < ∞, 0 < μ < ∞. Let f (u) be as in (1.3) with λk � 0 for
k � k(n) and { supk�k(n) λk := λ < ∞, n = 1,

lim supk→∞ λk � c/E2, n = 2
(1.9)

for some small constant c that is independent of E. Then the scattering operator S :H1
E → H1

E

is a homeomorphism.

It is easy to see that condition (1.9) covers the nonlinearity as in (1.2). Indeed, λk ≡ λ for
n = 1, and λk = λ2(k!/(2k)!)1/k → 0 for n = 2. Hence, we have

Corollary 1.2. Let n = 1,2, 0 < E < ∞, 0 < λ,μ < ∞. Let f (u) be as in (1.2). Then the
scattering operator S :H1

E → H1
E is a homeomorphism.

If n = 2, we see that Theorem 1.1 also contains f (u) = μ(eλ|u|2 −1−λ|u|2)u, 0 < λ � c/E2,
as a special case. In one spatial dimension, the growth of the nonlinearity in Theorem 1.1 is not
optimal. In fact, Theorem 1.1 also holds for a class of more general functions and we have the
following:1

Theorem 1.3. Let n = 1, 0 < E < ∞. Assume that f (u) := h(|u|2)u satisfies

F
(|u|2) :=

|u|2∫
0

h(s) ds � |u|8,

G
(|u|2) := h

(|u|2)|u|2 − F
(|u|2) � |u|8,∣∣f (u) − f (v)

∣∣ � P
(|u| ∨ |v|)(|u| ∨ |v|)6|u − v| (1.2a)

1 The authors are greatly indebted to Professor M. Nakamura, who pointed out that Theorem 1.1 could most likely be
generalized to the nonlinearity f (u) with arbitrary growth at u = ∞.
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for some continuous function P : [0,∞) → [0,∞). Then the scattering operator S :H1
E → H1

E

is a homeomorphism.

It is easy to see that condition (1.2a) covers f (u) = μ(eλ|u|m − 1)u, m � 6, λ,μ > 0, as a
special case.

Roughly speaking, the exponential nonlinearity in two spatial dimensions is critical in H 1,
which corresponds to the limit case in Sobolev embedding; cf. [16]. But it seems necessary to
make a delicate difference between the exponential growth orders for the nonlinearities. Let us
compare the nonlinearity f (u) in (1.2) with

f̃ (u) =
∑

2�k<N

|u|2ku +
∑
k�N

λk

k! |u|2ku, (1.2b)

which corresponds to the cases λk
k = λ2kk!/(2k)! and λk ≡ λ (k � 1) in (1.3), respectively. Due

to limk→∞ λk = 0 in the former case, we see that the growth of f (u) as in (1.2) is slower than
that of f̃ (u) as in (1.2b). In the latter case, by Theorem 1.1 we need λ � c/E2 to guarantee the
existence of the scattering operators. For the nonlinearity as in (1.2b), the Hamiltonian should
be

H̃ (u) ∼ ‖∇u‖2
L2(Rn)

+
∑

2�k<N

‖u‖2k+2
L2k+2 +

∑
k�N

λk

(k + 1)! ‖u‖2k+2
L2k+2 . (1.6a)

If the initial datum u0 is only assumed to range over a bounded region in H 1, we could not
get that the Hamiltonian H̃ (u0) is finite if λ is very large. Indeed, by Ozawa’s critical Sobolev
embedding (see (2.24)),

‖u0‖2k+2
L2k+2 � C2k+2(2k + 2)k+2‖u0‖2k+2

H 1 ,

and so, the Hamiltonian H̃ (u0) is controlled by

H̃ (u0) � ‖∇u0‖2
2 +

∑
k

λk

(k + 1)!C
2k+2(2k + 2)k+2.

When λ is large, the above series is not convergent. This fact leads to condition (1.9) in our
Theorem 1.1. On the other hand, let us recall Trudinger’s inequality (cf. [20]): There exists λ0 > 0
such that for any 0 < λ � λ0, ‖u‖H 1 � 1,∫

Rn

(
eλ|u(x)|2 − 1

)
dx � 1.

From Trudinger’s inequality we also need λ suitably small to guarantee that the Hamiltonian
H̃ (u0) is finite. We do not know what happens if λ > 0 is sufficiently large. Further, if f (u)

grows faster than f̃ (u) as in (1.2b), we do not know how to obtain the existence of the scattering
operators with large states even if λ > 0 is small enough, see below, Remark 2.6.
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It is convenient to use the integral version of Eq. (1.1). One can rewrite (1.1) with initial data
u0 at t = t0 as the following equation:

u(t) = S(t)u0 − i

t∫
t0

S(t − τ)f
(
u(τ)

)
dτ, (1.10)

where S(t) = eit�. We have the following time–space estimates (cf. [4,10–13,27]).

Proposition 1.3 (Strichartz inequalities). We have∥∥S(t)u0
∥∥

Lγ (r)(R,Lr )
� C‖u0‖2, (1.11)∥∥∥∥∥

t∫
t0

S(t − τ)f (τ) dτ

∥∥∥∥∥
Lγ (r)(R,Lr )

� C‖f ‖
L

2(n+2)/(n+4)

x,t∈R

, (1.12)

where 2 � r � ∞, 2/γ (r) = n(1/2 − 1/r), γ (r) ∈ (2,∞].

Notation 1.4. Throughout this paper, c < 1, C > 1 will stand for universal constants that can
be changed from line to line, CA,B,... means that the constant C depends only on A,B, . . . . We
denote by A � B that A � CB and by A ∼ B that A � B and B � A. For any p ∈ [1,∞],
we denote by p′ the conjugate number of p, i.e., 1/p + 1/p′ = 1. Let Lp := Lp(Rn) be the
Lebesgue space and the norm on Lp is denoted by ‖ · ‖p . We denote by ‖f ‖Lq(I,Lp) the space–
time norm (

∫
I
(
∫

Rn |f (t, x)|p dx)q/p dt)1/q , and L
p
x,t∈I = Lp(I,Lp). We write Dx = (−�)1/2.

The Bessel (Riesz) potential spaces Hs
p (Ḣ s

p) are defined by (I − �)−s/2Lp ((−�)−s/2Lp),

Hs = Hs
2 (Ḣ s = Ḣ s

2 ). The Besov spaces Bs
p,q can be defined as follows; cf. [1,24].

Let ψ : Rn → [0,1] be a smooth radial bump function adapted to the ball {ξ ∈ R
n: |ξ | � 2},

which equals 1 on the ball {ξ ∈ R
n: |ξ | � 1}. Denote ϕ(ξ) := ψ(ξ) − ψ(2ξ) and ϕk(ξ) :=

ϕ(2−kξ), k ∈ N. Assume that ϕ0 := 1 − ∑∞
k=1 ϕk (= ψ(ξ)). One easily sees that suppϕk ⊂

{ξ ∈ R
n: 2k−1 � |ξ | � 2k+1} for k � 1 and suppϕ0 ⊂ {ξ ∈ R

n: |ξ | � 2}. Let 0 < p,q � ∞.

Denote Δk := F −1ϕkF . The norm on Besov spaces is defined as follows:

‖f ‖Bs
p,q

=
( ∞∑

k=0

2ksq‖Δkf ‖q
p

)1/q

. (1.13)

In the case p = q = ∞, we have a modification on the norm:

‖f ‖Bs∞,∞ = sup
k�0

2ks‖Δkf ‖∞. (1.14)

2. Low mass implies the energy scattering

Using Nakamura and Ozawa’s results as in [17], we see that the small Cauchy data in L2

imply the energy scattering for NLS in one spatial dimension.
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Theorem 2.1. Let n = 1, 0 < E < ∞, u0 ∈ H 1. Assume that f (u) satisfies

f (0) = 0, (2.1)∣∣f (u) − f (v)
∣∣ � P

(|u| ∨ |v|)(|u| ∨ |v|)6|u − v| (2.2)

for some non-negative continuous function P : R+ → R+. There exists η := η(E) > 0 such that
if

‖u0‖2 � η, (2.3)

then

iut + uxx − f (u) = 0, u(t0) = u0 (2.4)

is globally well posed in C(R,H 1) ∩ L6(R,H 1
6 ) and the solution u satisfies

‖u‖L6
x,t∈R

+ ‖∂xu‖L6
x,t∈R

� CE < ∞. (2.5)

It is obvious that if f (u) is given by (1.2), condition (2.2) holds for

P
(|u|) ∼

∑
k

Ck

k! |u|2k−6. (2.6)

Moreover, condition (2.2) also covers the nonlinearity

μ
(
eλ|u|m − 1

)
u, m � 6. (2.7)

It is also known that the small Cauchy data in H 1 imply the existence of scattering operators
in two spatial dimensions; cf. [16]. In this section we give an improved version in two spatial
dimensions and we show the following theorem.

Theorem 2.2. Let n = 2, 0 < μ < ∞, 0 < E < ∞, u0 ∈ H 1 and E(u0) � E,

f (u) = μ
∑
k�1

λk
k

k! |u|2ku, (2.8)

where {λk} satisfies condition (1.9). Assume that ‖u0‖2 � η, 0 < η := η(E) � 1. Then

iut + �u − f (u) = 0, u(t0) = u0 (2.9)

is globally well posed in C(R,H 1) ∩ L4(R,H 1
4 ) and the solution u satisfies

‖u‖L4
x,t∈R

+ ‖Dxu‖L4
x,t∈R

� CE < ∞. (2.10)
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For the proof of Theorem 2.2, our idea is to use the energy and ‖u‖L4
x,t∈R

to estimate the

nonlinearity. We resort to the interpolation inequality

‖u‖Lq(R2) � C‖u‖θ
Lp(R2)

‖u‖1−θ

Ḣ 1(R2)
, where (2.11)

1

q
= θ

p
+ (1 − θ)

(
1

2
− 1

n

)
, (2.12)

0 < θ < 1, 1 < q < ∞. (2.13)

If we treat q ∈ [p,∞) as a variable parameter (p is a fixed number), the constant C in (2.11) is
increasing as q tends to ∞. For our purpose it seems necessary to give a delicate value of C :=
Cq in (2.11). We will mainly use a critical embedding inequality which is due to Ozawa [20],
see (2.24).

Proposition 2.3. Let 1 < r < p < ∞ be fixed indices. Then for any q ∈ [p,∞),

‖u‖Lq(Rn) � Cp,rq
1/r ′+p/rq‖u‖p/q

Lp(Rn)
‖u‖1−p/q

Ḣ
n/r
r (Rn)

, (2.14)

where Cp,r depends only on p, r and n.

In order to show Proposition 2.3, we need the following proposition.

Proposition 2.4. Let 1 < r < p < ∞, 0 < s < ∞ be fixed indices. Let p1 ∈ [r,p] be a variable
parameter. Suppose that 0 < θ < 1 satisfying

1

p1
= θ

p
+ 1 − θ

r
, (2.15)

s1 = θ · 0 + (1 − θ)s. (2.16)

Then

‖u‖
Ḣ

s1
p1(Rn)

� Cp,r,s‖u‖θ
Lp(Rn)‖u‖1−θ

Ḣ s
r (Rn)

, (2.17)

where Cp,r,s depends only on p, r , s and n.

Proof. Proposition 2.4 is essentially known; cf. [8,10]. Since we need to fix Cp,r,s in (2.17), we
sketch its proof. We write (see Triebel [24])

‖u‖
Ḟ

s1
p1,2

=
∥∥∥∥(∑

k∈Z

(
2ks1 |Δku|)2

)1/2∥∥∥∥
Lp1 (Rn)

, (2.18)

where Δk is the same one as in (1.13) if k � 1; Δk = F −1ϕ(2−k·)F if k � 0. It is known that
(see Stein [22], Triebel [24])

Ap1‖u‖Ḟ 0 � ‖u‖Lp1 � Bp1‖u‖Ḟ 0 . (2.19)

p1,2 p1,2
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Since p1 ∈ [r, q], by complex interpolation we have

Cp,r � Ap1 � Bp1 � Cp,r . (2.20)

Hence,

Cp,r‖u‖Ḟ 0
p1,2

� ‖u‖Lp1 � Cp,r‖u‖Ḟ 0
p1,2

. (2.21)

On the other hand, using Hörmander’s multiplier theorem (cf. Triebel [24, p. 88]) and by complex
interpolation, we see that if s1 ∈ [0, s], p1 ∈ [r, q], then

Cp,r,s‖u‖
Ḟ

s1
p1,2

� ‖u‖
Ḣ

s1
p1

� Cp,r,s‖u‖
Ḟ

s1
p1,2

. (2.22)

By (2.22) and Hölder’s inequality

‖u‖
Ḣ

s1
p1

� Cp,r,s‖u‖
Ḟ

s1
p1,2

� Cp,r,s‖u‖θ

Ḟ 0
p,2

‖u‖1−θ

Ḟ s
r,2

� Cp,r,s‖u‖θ
Lp‖u‖1−θ

Ḣ s
r

, (2.23)

which implies the result, as desired. �
Proof of Proposition 2.3. Let us recall that in [20], Ozawa established the following embedding
inequality:

‖u‖q � Cp1q
1/p′

1‖u‖
Ḣ

n/p1−n/q
p1

, (2.24)

where p1 ∈ [r,p]. Since p1 ranges over a compact interval, we know that the constant Cp1 has
an upper bound Cp,r ; cf. [16], that is,

‖u‖q � Cp,rq
1/p′

1‖u‖
Ḣ

n/p1−n/q
p1

. (2.25)

Taking

1

p1
= 1

q
+ 1 − p/q

r
, (2.26)

we see that for θ = p/q ,

1

p1
= θ

p
+ 1 − θ

r
,

n

p1
− n

q
= θ · 0 + (1 − θ)

n

r
. (2.27)

Hence, by Proposition 2.4,

‖u‖
Ḣ

n/p1−n/q
p1

� Cp,r‖u‖p/q
p ‖u‖1−p/q

Ḣ
n/r
r

. (2.28)

Noticing that 1/p′
1 = 1/r ′ + (p/r − 1)/q , by (2.25) and (2.28) we immediately have the result,

as desired. �
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Proof of Theorem 2.2. We can assume that μ = 1. Recall that

f (u) =
∞∑

k=1

λk
k

k! |u|2ku, (2.29)

Df (u) =
∞∑

k=1

λk
k

k!
(
(k + 1)|u|2kDu + ku2|u|2k−2Dū

)
, (2.30)

where D = ∂/∂x1, or D = ∂/∂x2. We have for any interval I ⊂ R,

∥∥f (u)
∥∥

L
4/3
x,t∈I

�
∞∑

k=1

λk
k

k!
∥∥|u|2ku

∥∥
L

4/3
x,t∈I

�
∞∑

k=1

λk
k

k! ‖u‖2k

L4k
x,t∈I

‖u‖L4
x,t∈I

. (2.31)

Using Proposition 2.3, we have

‖u‖L4k
x

� C(4k)1/2+1/2k‖u‖1/k

L4
x

‖u‖1−1/k

Ḣ 1
x

. (2.32)

It follows from (2.32) that

‖u‖L4k
x,t∈I

� C(4k)1/2+1/2k‖u‖1/k

L4
x,t∈I

‖u‖1−1/k

L∞(I,Ḣ 1
x )

� CE(4k)1/2+1/2k‖u‖1/k

L4
x,t∈I

. (2.33)

Inserting (2.33) into (2.31), one has that

∥∥f (u)
∥∥

L
4/3
x,t∈I

�
∞∑

k=1

(λ
1/2
k CE)2k

k! (4k)k+1‖u‖3
L4

x,t∈I

. (2.34)

Similarly,

∥∥Df (u)
∥∥

L
4/3
x,t∈I

�
∞∑

k=1

(2k + 1)λk
k

k! ‖u‖2k

L4k
x,t∈I

‖Du‖L4
x,t∈I

�
∞∑

k=1

(2k + 1)

(k − 1)!
(
4λk(CE)2k

)k‖u‖2
L4

x,t∈I

‖Du‖L4
x,t∈I

. (2.35)

It is easy to see that if condition (1.9) holds, then

λk <
c

E2
:= 1

8e(CE)2
, k � 1, (2.36)

which implies that the series

∞∑
k=1

(2k + 1)

(k − 1)!
(
4λk(CE)2k

)k � CE < ∞ (2.37)
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is convergent. Hence, by (2.34), (2.35) and (2.37), one has that∥∥f (u)
∥∥

L
4/3
x,t∈I

� CE‖u‖3
L4

x,t∈I

, (2.38)∥∥Df (u)
∥∥

L
4/3
x,t∈I

� CE‖u‖2
L4

x,t∈I

‖Du‖L4
x,t∈I

. (2.39)

In view of the Strichartz estimates, (2.38) and (2.39) imply that

‖u‖L4
x,t∈I

� C‖u0‖2 + CE‖u‖3
L4

x,t∈I

, (2.40)

‖Du‖L4
x,t∈I

� CE + CE‖u‖2
L4

x,t∈I

‖Du‖L4
x,t∈I

. (2.41)

Since ‖u0‖2 � η and η is sufficiently small, in view of the standard continuity method we have
from (2.40) that

‖u‖L4
x,t∈I

� 2Cη. (2.42)

It follows from (2.41) and (2.42) that

‖Du‖L4
x,t∈I

� 2CE. (2.43)

Taking I = R, we obtain the result, as desired. �
Remark 2.5. Following the proof of Theorem 2.2, in view of the Strichartz inequalities (1.11) and
(1.12), we see that for any 2 � r < ∞, the Strichartz norms ‖u‖Lγ (r)(I,Lr ) and ‖Dxu‖Lγ (r)(I,Lr )

have the same upper bounds as those of ‖u‖L4
x,t∈I

and ‖Dxu‖L4
x,t∈I

, respectively. So, by a standard

method as in [3,5,7,18], we conclude that (2.10) has implied the existence of scattering operators
in energy spaces. Similarly, in one spatial dimension, (2.5) also implies the existence of scattering
operators in energy spaces.

Remark 2.6. Unfortunately, our method for two-dimensional NLS in this section is invalid for
the nonlinearity that grows faster than that of (1.2b), say f (u) = (eλ|u|m − 1)u, m > 2. Indeed, if
f (u) takes such a form, similar to (2.31)–(2.34), we have

∥∥(
eλ|u|m − 1

)
u
∥∥

L
4/3
x,t∈I

�
∞∑

k=1

λk

k! ‖u‖mk

L2mk
x,t∈I

‖u‖L4
x,t∈I

�
∞∑

k=1

λk

k! (CE)mkkmk/2+1‖u‖3
L4

x,t∈I

. (2.44)

We need to treat the series
∑∞

k=1
λk

k! (CE)mkkmk/2+1, which is divergent for any 0 < λ � 1.
In this case, we cannot obtain an analogous result to Theorem 2.2 for NLS (1.1) with f (u) =
(eλ|u|m − 1)u, m > 2, even if λ is small enough. Moreover, using the method above, it seems also
difficult to get the local well-posedness in H1

E , since the nonlinearity is out of the control of the
Strichartz norms and the H 1 norms.
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3. ‖u‖
L

(n+2)2/n
x,t∈R

< ∞ implies scattering

In this section we show that the finiteness of ‖u‖
L

(n+2)2/n

x,t∈R

implies the existence of scattering

operators. In view of Remark 2.5, it suffices to get an upper bound of ‖u‖
L

2+4/n

x,t∈R

+ ‖Dxu‖
L

2+4/n

x,t∈R

.

Lemma 3.1. Let n = 1,2, 0 < E < ∞ and f (u) be as in (1.3). Assume that condition (1.9) is
satisfied. Let u be the energy solution of (1.1) with E(u) � E. If there exists CE > 0 such that

‖u‖
L

(n+2)2/n

x,t∈R

� CE < ∞, (3.1)

then we have

‖u‖
L

2+4/n

x,t∈R

+ ‖Dxu‖
L

2+4/n

x,t∈R

� CE < ∞. (3.2)

Proof. We divide the proof into the following two cases. First, we consider the case n = 1. We
need to prove that ‖u‖L9

x,t∈R

� CE implies that ‖u‖L6
x,t∈R

+ ‖∂xu‖L6
x,t∈R

� CE . One has that

∥∥f (u)
∥∥

L
6/5
x,t∈I

�
∞∑

k=3

λk
k

k! (CE)2k‖u‖6
L9

x,t∈I

‖u‖L6
x,t∈I

� CE‖u‖6
L9

x,t∈I

‖u‖L6
x,t∈I

. (3.3)

Similar to (3.3), we also have

∥∥∂xf (u)
∥∥

L
6/5
x,t∈I

�
∞∑

k=3

λk
k

k! (CE)2k(2k + 1)‖u‖6
L9

x,t∈I

‖∂xu‖L6
x,t∈I

� CE‖u‖6
L9

x,t∈I

‖∂xu‖L6
x,t∈I

. (3.4)

Using the same way as in Bourgain [2,3], one can split R into finite many pairwise disjoint
intervals,

R =
J⋃

j=1

Ij ; ‖u‖L9
x,t∈Ij

� η, CEη6 � 1/2. (3.5)

By the Strichartz inequalities, and (3.3) and (3.4),∥∥∂k
xu

∥∥
L6

x,t∈Ij

� CE + CEη6
∥∥∂k

xu
∥∥

L6
x,t∈Ij

, k = 0,1, j = 1, . . . , J. (3.6)

Hence, by (3.5) and (3.6)∥∥∂k
xu

∥∥
L6

x,t∈Ij

� 2CE, k = 0,1, j = 1, . . . , J, (3.7)

which implies the result, as desired.
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Next, we consider the case n = 2. One needs to show that if

‖u‖L8
x,t∈R

� CE < ∞, (3.8)

then

‖u‖L4
x,t∈R

+ ‖Dxu‖L4
x,t∈R

� CE < ∞. (3.9)

Let D = ∂/∂x1 or D = ∂/∂x2. Using the same way as in (2.31), (2.33) and (2.35), we have∥∥f (u)
∥∥

L
4/3
x,t∈I

� CE‖u‖4
L8

x,t∈I

‖u‖L4
x,t∈I

, (3.10)∥∥Df (u)
∥∥

L
4/3
x,t∈I

� CE‖u‖4
L8

x,t∈I

‖Du‖L4
x,t∈I

. (3.11)

In fact,

∥∥Df (u)
∥∥

L
4/3
x,t∈I

�
∞∑

k=2

λk
k

k! (2k + 1)‖u‖2k

L4k
x,t∈I

‖Du‖L4
x,t∈I

. (3.12)

Interpolating L4k
x between L8

x and Ḣ 1
x , by (2.14) we have

‖u‖L4k
x

� C(4k)1/2+1/k‖u‖2/k

L8
x

‖u‖1−2/k

Ḣ 1
x

, (3.13)

‖u‖L4k
x,t∈I

� C(4k)1/2+1/k‖u‖2/k

L8
x,t∈I

‖u‖1−2/k

L∞(I,Ḣ 1
x )

. (3.14)

By (3.12) and (3.14), we obtain that

∥∥Df (u)
∥∥

L
4/3
x,t∈I

�
∞∑

k=2

λk
k

k! (2k + 1)(4k)k+2(CE)2k−4‖u‖4
L8

x,t∈I

‖Du‖L4
x,t∈I

. (3.15)

Noticing that λk < c/E2 for k � 1, (3.15) implies (3.11).
In view of the Strichartz estimates, together with (3.10) and (3.11), and using the same way

as in the case n = 1, we can get (3.9). The details are omitted. �
Remark 3.2. If n = 1, one can easily generalize the argument above to the case that f (u) is
given by (1.2a) and the details are omitted.

4. Mass concentration phenomenon

In this section, we show that if the space–time L(n+2)2/n norm of the solution in a time interval
I is not small, say ‖u‖

L
(n+2)2/n
x,t∈I

∼ η, then there exist t0 ∈ I and x0 ∈ R such that the mass at t0

will have a concentration phenomenon in a spatial ball with center at x0, and the size of such a
ball depends only on η and is independent of the length of I . We write

p := (n + 2)2

=
{

9, n = 1,
α := 2 + 4 =

{
6, n = 1,

(4.1)

n 8, n = 2, n 4, n = 2.
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In the sequel we will always assume that p and α are as in (4.1) if there is no explanation. Let
η > 0 be a small number, say 0 < η < η0,

CEη
2+4/n

0 = 1/2. (4.2)

Lemma 4.1. Let n = 1,2. Let u be the energy solution of (1.1) and (1.2), 0 < E < ∞, E(u) � E,
‖u‖L

p
x,t∈I

= η. Then there exist Cη > 0, which depends only on E and η, and t0 ∈ I , x0 ∈ R
n such

that ∥∥u(t0)
∥∥

L2(|x−x0|�Cη)
� cEηα/2. (4.3)

In order to show (4.3), we use an interpolation lemma, which is established in Wang [28] by
applying Bourgain’s idea in [3].

Proposition 4.2. Let 1 � r0 < r < ∞, −∞ < s1 < s < s0 < ∞, 0 < θ < 1 and

1

r
= θ

r0
+ 1 − θ

∞ , s = θs0 + (1 − θ)s1. (4.4)

Then we have

‖u‖Hs
r (Rn) � C‖u‖1−θ

B
s1∞,∞

‖u‖θ

B
s0
r0,r0

. (4.5)

Proof of Lemma 4.1. In view of (3.3), (3.4), (3.10) and (3.11), we have∥∥f (u)
∥∥

L(2+4/n)′ (I,H 1
(2+4/n)′ )

� CE‖u‖α

L
p
x,t∈I

‖u‖L2+4/n(I,H 1
2+4/n). (4.6)

By the Strichartz inequalities and (4.6),

‖u‖L2+4/n(I,H 1
2+4/n) � CE + CEηα‖u‖L2+4/n(I,H 1

2+4/n). (4.7)

(4.7) and (4.2) imply that

‖u‖L2+4/n(I,H 1
2+4/n) � 2CE. (4.8)

Let s0 = n(nα−4)/8 and s1 = −n/2. It is easy to see that s1(1−4/nα)+s0(4/nα) = 0. Noticing
that H

s0
2+4/n ⊂ B

s0
2+4/n,2+4/n, by Proposition 4.2 we have

η = ‖u‖L
p
x,t∈I

� C‖u‖1−4/nα

L∞(I,B
s1∞,∞)

‖u‖4/nα

L2+4/n(I,H
s0
2+4/n)

. (4.9)

Hence, by (4.8) and (4.9)

‖u‖
L∞(I,B

s1∞,∞)
� cEηα/2. (4.10)
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So, we get some t0 ∈ I , x0 ∈ R
n, j ∈ N ∪ {0} satisfying (we can assume that j � 1, since j = 0

is similar to the case j � 1)

2js1
∣∣(Δju(t0)

)
(x0)

∣∣ � cEηα/2, (4.11)

which implies that

2js1
∣∣[(F −1ϕj

) ∗ u(t0)
]
(x0)

∣∣ � cEηα/2, (4.12)

where ϕj is as in (1.13), that is

2(n+s1)j

∣∣∣∣ ∫
Rn

(
F −1ϕ

)(
2j y

)
u(t0, x0 − y)dy

∣∣∣∣ � cEηα/2. (4.13)

Notice that ∥∥F −1ϕ
(
2j ·)∥∥

L2(|x|�Cη)
= 2−jn/2

∥∥F −1ϕ
∥∥

L2(|x|>2j Cη)
. (4.14)

We can take Cη large enough (j � 1) verifying∥∥F −1ϕ
∥∥

L2(|x|>Cη)

∥∥u(t0)
∥∥

2 � cEηα/2/2. (4.15)

Collecting (4.13)–(4.15), we have∥∥F −1ϕ
∥∥

L2‖u‖L2(|x−x0|<Cη) � cEηα/2. (4.16)

Hence, (4.3) is deduced. �
5. Length estimate of I with ‖u‖L

p
x,t∈I

= η

Let u be the energy solution. Let E,M > 0 and M � E. Now we assume

sup
{‖u‖L

p
x,t∈[A,B]

: M(u) � M, E(u) � E
}

� G � CE (5.0)

for some interval [A,B] ⊂ R. It is easy to see that B − A � CE . Considering the decomposition
[A,B] = ⋃

j∈Λ Ij ,

‖u‖L
p
x,t∈Ij

= η, j ∈ Λ, (5.1)

we have from Lemma 4.1 that there exists tj ∈ Ij and xj ∈ R
n satisfying∥∥u(tj )

∥∥
L2(|x−xj |�Cη)

� cEηα/2, (5.2)

where Cη > 1 is a fixed constant depending only on η, E. Our goal of this section is to show that
if G is sufficiently large, then

sup
j∈Λ

|Ij | � CE,η. (5.3)

We will use the ideas of Bourgain [3] and Nakanishi [18].
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Lemma 5.1. [3,18] Let u be the energy solution of (1.1) and (1.2). Let B ⊂ R
n be a compact set.

B(Q) := {x ∈ R
n: ∃y ∈ B, |x − y| � Q}. Then we have∥∥u(t1)

∥∥
L2(B(Q))

�
∥∥u(t0)

∥∥
L2(B)

− CE |t1 − t0|/Q. (5.4)

In particular, ∥∥u(t1)
∥∥

L2(|x−x0|�Cη+Q|t1−t0|) �
∥∥u(t0)

∥∥
L2(|x−x0|�Cη)

− CE/Q. (5.5)

The following generalized Morawetz-type estimate is also due to Nakanishi [18].

Lemma 5.2. Let u be the energy solution of (1.1) and (1.2). We have∫ ∫
R1+n

〈t〉2G(|u|2)
〈t〉3 + |x|3 dx dt � CE, (5.6)

where 〈t〉 = √
1 + t2, G(|u|2) = f (u)ū − F(|u|2) � c|u|2+α .

In (5.5), we can take Q := Cη > CEη−4, it follows from (5.2) and (5.5) that (η4 � ηα/2)∥∥u(t)
∥∥

L2(|x−xj |�Cη(1+|t−tj |)) � cEηα/2. (5.7)

Hence, if |t − tj | � Cη, we have from Hölder’s inequality,∥∥u(t)
∥∥

L2+α(|x−xj |�Cη(1+|t−tj |)) � cE,η. (5.8)

By (5.1), we have

η = ‖u‖L
p
x,t∈Ij

� |Ij |1/p‖u‖L∞(Ij ,Lp) � CE|Ij |1/p, (5.9)

which yields |Ij | � cEηp .
Therefore, for any j ∈ Λ, there exists Jj ⊂ Ij with |Jj | � cη such that (5.7) and (5.8) hold for

any t ∈ Jj . We may assume that tj is the left end-point of Jj .

Lemma 5.3. Let u be the energy solution of (1.1) and (1.2). Let Ij be as in (5.1). If G in (5.0) is
sufficiently large, then we have supj∈Λ |Ij | � CE,η.

Proof. We imitate Nakanishi’s proof in [18] (some earlier ideas related this issue can be found
in [7,14,15]). Denote k1 = 1, by induction we define

k� = min
{
j ∈ Λ: |xki

− xj | > 2Cη + Cη|tki
− tj |, i = 1, . . . , � − 1

}
. (5.10)

Then we define

N� = {
j ∈ Λ: j � k�, |xk�

− xj | � 2Cη + Cη|tk�
− tj |

}
. (5.11)
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It is easy to see that Λ = ⋃
� N�. First, we show the above k1, . . . , k� are finitely many. We easily

see that B(xk�
,Cη) ∩ B(xki

,Cη(1 + |tk�
− tki

|)) = ∅, i = 1, . . . , � − 1. Hence, by Lemma 5.1,

E �
∥∥u(tk�

)
∥∥

L2(
⋃�

i=1 B(xki
,Cη(1+|tk�−tki |)))

�
∥∥u(tk�

)
∥∥

L2(B(xk�
,Cη))

+ ∥∥u(tk�−1)
∥∥

L2(
⋃�−1

i=1 B(xki
,Cη(1+|tk�−1 −tki |))) − cEηα/2/2

� · · · �
�∑

i=1

∥∥u(tki
)
∥∥

L2(B(xki
,Cη))

− �cEηα/2/2 � �cEηα/2/2. (5.12)

Hence, � � CE,η. By Lemma 5.2 and (5.8),

CE �
∫ ∫
Rn+1

〈t − tk1〉2G(|u|2)
〈t − tk1〉3 + |x − xk1 |3

dx dt

� cη

∫ ∫
|x−xk1 |�Cη(1+|t−tk1 |)

|u|2+α

〈t − tk1〉
dx dt

� cη

∑
j∈N1

∫
Jj

dt

〈t − tk1〉
∥∥u(t)

∥∥2+α

L2+α(|x−xk1 |�Cη(1+|t−tk1 |))

� cE,η

∑
j∈N1

1

1 + |tj − tk1 |
� cE,η

∑
j∈N1

1

1 + |tj | . (5.13)

Replacing (tk1 , xk1) by (tki
, xki

) in (5.13), and noticing that k1, . . . , k� are finitely many, we im-
mediately obtain that

CE,η �
∑
j∈Λ

1

1 + |tj | . (5.14)

Hence, (5.3) follows. �
Lemma 5.4. Let E > 0, M > 0, M � E be fixed constants. Let η > 0 be a small number, say
CEηα � 1/2. Let L > 1 be an arbitrarily large number. If the energy solution u of (1.1) and (1.2)
satisfies M(u) � M , E(u) � E and

‖u‖L
p
x,t∈[A,B]

� CL,E

for some interval [A,B] ⊂ R, then there exist [t0, d] ⊂ [A,B] (or [d, t0] ⊂ [A,B]), R > 1,
|d − t0| > LR, x0 ∈ R

n satisfying the following properties:

‖u‖L
p
x,t∈[t0,d]

� η, ‖u‖
L

2+4/n
x,t∈[t0,d]

+ ‖Dxu‖
L

2+4/n
x,t∈[t0,d]

� η,∥∥u(t0)/〈x − x0〉
∥∥

L2(Rn)
� η5,

∥∥u(t0)
∥∥

L2(|x−x0|�R)
� cEηα/2.
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Proof. By Lemma 5.3, if G is sufficiently large, then there exists an Ij := [b′, b], |Ij | >

CE,ηL
CE,η . Assume without loss of generality that

|b − tj | � 1

2
|Ij | > CE,ηL

CE,η . (5.15)

One can divide [tj , b] into

[tj , b] =
⋃

a∈Λj

Ia
j , (5.16)

such that

‖u‖
L

2+4/n

x,t∈Ia
j

+ ‖Dxu‖
L

2+4/n

x,t∈Ia
j

= η. (5.17)

Due to ‖u‖
L

2+4/n
x,t∈Ij

+ ‖Dxu‖
L

2+4/n
x,t∈Ij

� 2CE, we see that Λj has at most O(CE/η2+4/n) elements.

Assume that

I a
j = [

taj , ta+1
j

]
, t0

j = tj . (5.18)

Using a decaying estimate (cf. [18, Lemma 5.3]),∫
R

( ∫
Rn

|u(t, x)|2
〈x − xj 〉 dx

)α+2
dt

〈t − taj 〉 � CE, (5.19)

we see that there exists T a
j > taj verifying

∥∥u
(
T a

j

)
/〈x − xj 〉

∥∥
L2(R)

< η5, T a
j − taj < eCE/η5(2+α) := CE,η. (5.20)

We show that there exists at least an a ∈ Λj satisfying

ta+1
j − T a

j > LCη

(
1 + T a

j − tj
)
. (5.21)

Assume for the contrary that (5.21) does not hold:

ta+1
j − T a

j � LCη

(
1 + T a

j − tj
)
, ∀a ∈ Λj, (5.22)

which implies that for all a ∈ Λj ,

ta+1
j − taj � LCE,η + LCη

(
T a

j − tj
)
, (5.23)

by induction,

ta+1 − taj � LaCE,η. (5.24)
j
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Hence,

b − tj � LCE,ηCE,η, (5.25)

which contradicts the choice of Ij .
Therefore, we have found a subinterval Jj := [T a

j , ta+1
j ] := [Tj , d] ⊂ Ij and R := Cη(1 +

Tj − tj ) > 1, |Jj | > LR satisfying⎧⎪⎪⎨⎪⎪⎩
‖u‖

L
2+4/n
x,t∈Jj

+ ‖Dxu‖
L

2+4/n
x,t∈Jj

� η,

‖u(Tj )/〈x − xj 〉‖L2(Rn) � η5,

‖u(Tj )‖L2(|x−xj |�R) � cEηα/2,

(5.26)

which implies the result, as desired. �
6. Induction on M(u)

Let M > 0, E > 0, M � E. Let u be the energy solution of (1.1) and (1.2) with initial data u0
at t = t0. In Section 2 we have shown that

M(u0) � ηα+1/2 and E(u0) � E �⇒ ‖u‖L
p

x,t∈R

� CE < ∞. (6.1)

By induction hypothesis, we assume that the following claim holds:

M(u0) � M − ηα+1/2 and E(u0) � E �⇒ ‖u‖L
p

x,t∈R

� CE < ∞. (6.2)

Our aim of this and the next sections is to show the following conclusion:

Lemma 6.1. Assume that M(u0) � M and E(u0) � E. Then we have

‖u‖L
p

x,t∈R

� CE < ∞. (6.3)

Recalling that p = (n + 2)2/n, from Lemmas 3.1 and 6.1 one can easily deduce the result of
Theorem 1.1.

Assume for the contrary that (6.3) does not hold, that is,

sup
{‖u‖L

p

x,t∈R

: M(u0) � M, E(u0) � E
} = ∞, (6.4)

where u is taken over all energy solutions of (1.1) and (1.2).
Now we connect our discussions with Lemma 5.4. Let E,L be as in Lemma 5.4 and assume

that u is a solution satisfying ‖u‖L
p

x,t∈R

� CE,L. One easily sees that there exists a decomposition

of R, R = (−∞,A] ∪ [A,B] ∪ [B,∞) verifying ‖u‖L
p

x,t∈J
� CE,L for J = (−∞,A], [A,B]

and [B,∞).
Let ζ : Rn → [0,1] be a smooth radial bump function, say

ζ =
{

1, |x| � 1,
(6.5)
0, |x| > 2.
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Let R be as in Lemma 5.4. Put ζR = ζ((x − x0)/R),

v(t0) = u(t0)ζR. (6.6)

Considering the free Cauchy problem

ivt + �v = 0, v|t=t0 = v(t0). (6.7)

Lemma 6.2. Let u be the solution of (1.1) and (1.2) as in Lemma 5.4. Then for the solution v

of (6.7), we have

‖v‖
L

2+4/n
x,t∈J

+ ‖Dxv‖
L

2+4/n
x,t∈J

� Cζ η, (6.8)

where η is the same one as in Lemma 5.4.

Proof. We follow Bourgain [3]. By Strichartz’s inequality, (3.4), (3.11) and Lemma 5.4,

∥∥S(t − t0)u(t0)
∥∥

L
2+4/n
x,t∈J

�
∥∥∥∥∥u − i

t∫
t0

S(t − τ)f
(
u(τ)

)
dτ

∥∥∥∥∥
L

2+4/n
x,t∈J

� ‖u‖
L

2+4/n
x,t∈J

+ C
∥∥f (u)

∥∥
L

(2+4/n)′
x,t∈J

� η + CEη2+α � 2η. (6.9)

We have ∣∣ei(t−t0)�v(t0)
∣∣ = ∣∣F−1[ei(t−t0)|ξ |2(ζ̂R ∗ u(t0)(ξ)

)]∣∣
=

∣∣∣∣ ∫
Rn

ζ̂R(ξ1) dξ1

∫
Rn

ei(t−t0)|ξ |2+ixξ û(ξ − ξ1) dξ

∣∣∣∣. (6.10)

Using Minkowski’s inequality, we have

∥∥S(t − t0)v(t0)
∥∥

L
2+4/n
x,t∈J

�
∫
Rn

∣∣ζ̂R(ξ1)
∣∣∥∥∥∥∫

Rn

ei(t−t0)|ξ |2+ixξ û(ξ − ξ1) dξ

∥∥∥∥
L

2+4/n
x,t∈J

dξ1

�
∥∥ζ̂R

∥∥
1 sup

ξ1

∥∥∥∥∫
Rn

ei(t−t0)|ξ |2+ixξ û(ξ − ξ1) dξ

∥∥∥∥
L

2+4/n
x,t∈J

. (6.11)

Taking notice of ‖ζ̂R‖L1 = ‖ζ̂‖L1 and∣∣∣∣ ∫
Rn

ei(t−t0)|ξ |2+ixξ û(ξ − ξ1) dξ

∣∣∣∣ = ∣∣(ei(t−t0)�u(t0)
)(

x + 2(t − t0)ξ1
)∣∣, (6.12)

we immediately have∥∥S(t − t0)v(t0)
∥∥

L
2+4/n � Cζ

∥∥S(t − t0)u(t0)
∥∥

L
2+4/n � 2Cζ η. (6.13)
x,t∈J x,t∈J
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Similarly, we can estimate ‖Dxv‖
L

2+4/n
x,t∈J

. Indeed,

∥∥DxS(t − t0)v(t0)
∥∥

L
2+4/n
x,t∈J

�
∥∥S(t − t0)(DxζR)u(t0)

∥∥
L

2+4/n
x,t∈J

+ ∥∥S(t − t0)ζR

(
Dxu(t0)

)∥∥
L

2+4/n
x,t∈J

.

(6.14)

Analogous to (6.9), we have

∥∥DxS(t − t0)u(t0)
∥∥

L
2+4/n
x,t∈J

� ‖Dxu‖
L

2+4/n
x,t∈J

+ ∥∥Dxf (u)
∥∥

L
(2+4/n)′
x,t∈J

� η + CEη2+α � 2η. (6.15)

Using the same way as in (6.13),

∥∥S(t − t0)ζRDxu(t0)
∥∥

L
2+4/n
x,t∈J

� ‖ζR‖L1(Rn)

∥∥S(t − t0)Dxu(t0)
∥∥

L
2+4/n
x,t∈J

. (6.16)

Due to ∂xζR = ζ ′((x − x0)/R)/R for n = 1, ∂xi
ζR = ζ ′((x − x0)/R)/R for n = 2, we see that

∥∥S(t − t0)(DxζR)u(t0)
∥∥

L
2+4/n
x,t∈J

� Cζ

R

∥∥ζ̂ ′
R

∥∥
L1

∥∥S(t − t0)u(t0)
∥∥

L
2+4/n
x,t∈J

� Cζ η

R
. (6.17)

Since R > 1, it follows from (6.14), (6.16) and (6.17) that ‖Dxv‖
L

2+4/n
x,t∈J

� Cζ η. �
Now let u and v be the solution of (1.1) in Lemma 5.4 and (6.17), respectively. Let w = u−v.

One has that {
iwt + �w − f (v + w) = 0,

w|t=t0 = (1 − ζR)u(t0).
(6.18)

Recall that J = [t0, d] (or J = [d, t0]). We now estimate ‖w(d)‖L2(Rn). By (6.18), we have

∥∥w(d)
∥∥2

2 = ∥∥w(t0)
∥∥2

2 + 2

d∫
t0

∫
Rn

�f (v + w)w dx dt. (6.19)

It is easy to see that �f (v + w)w = �f (v + w)v̄. For n = 1, by Lemmas 5.4 and 6.2, we have

∣∣∣∣∣
d∫

t0

∫
R

�f (v + w)v̄ dx dt

∣∣∣∣∣ �
∞∑

k=3

d∫
t0

∫
R

λk
k

k! |u|2k+1|v|dx dt

� CE‖u‖6
L9

x,t∈J

‖u‖L6
x,t∈J

‖v‖L6
x,t∈J

� CEη8. (6.20)
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For n = 2, in a similar way as in (3.15), one has that

∣∣∣∣∣
d∫

t0

∫
R2

�f (v + w)v̄ dx dt

∣∣∣∣∣ �
∞∑

k=2

λk
k

k! ‖u‖2k

L4k
x,t∈J

‖u‖L4
x,t∈J

‖v‖L4
x,t∈J

� CE‖u‖4
L8

x,t∈J

‖u‖L4
x,t∈J

‖v‖L4
x,t∈J

. (6.21)

Invoking Lemmas 5.4 and 6.2, we have from (6.21) that

∣∣∣∣∣
d∫

t0

∫
R2

�f (v + w)v̄ dx dt

∣∣∣∣∣ � CEη6. (6.22)

Summarizing (6.20) and (6.22), we have

∣∣∣∣∣
d∫

t0

∫
Rn

�f (v + w)w dx dt

∣∣∣∣∣ � CEη2+α. (6.23)

Since ∥∥w(t0)
∥∥2

2 �
∥∥u(t0)

∥∥2
2 − ∥∥u(t0)

∥∥2
L2(|x−x0|<R)

� M − CEηα, (6.24)

from (6.19), (6.23) and (6.24) we have∥∥w(d)
∥∥2

2 � M − CEηα + CEη2+α � M − ηα+1/2. (6.25)

We now estimate H(w(t0)):

H
(
w(t0)

)
� 1

2

∥∥(∇u(t0)
)
(1 − ζR)

∥∥2
2 + 1

2

∥∥u(t0)∇ζR

∥∥2
2 +

∫
Rn

F
(∣∣w(t0, x)

∣∣2)
dx

� 1

2

∥∥∇u(t0)
∥∥2

2 + Cζ

∥∥u(t0)/〈x − x0〉
∥∥2

2 +
∫
Rn

F
(∣∣w(t0, x)

∣∣2)
dx

� H
(
u(t0)

) + Cζ η
10. (6.26)

Since w satisfies (6.18), we see that

H
(
w(d)

) − H
(
w(t0)

) =
d∫

t0

2�(
iwt + �w − f (w),wt

)
dt

=
d∫ [

2�(
f (u) − f (w), i�w

) + 2�(
f (w),−if (u)

)]
dt. (6.27)
t0
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Integrating by part and then using the same ways as in (6.20) and (6.21), we conclude that

∣∣∣∣∣
d∫

t0

2�(
f (u), i�w

)
dt

∣∣∣∣∣ � CE‖u‖α

L
p
x,t∈J

‖∇u‖
L

2+4/n
x,t∈J

‖∇w‖
L

2+4/n
x,t∈J

. (6.28)

Noticing that w = u − v, by Lemmas 5.4 and 6.2, it follows from (6.28) that

∣∣∣∣∣
d∫

t0

2�(
f (u), i�w

)
dt

∣∣∣∣∣ � CEη2+α. (6.29)

Analogous to (6.29), we have

∣∣∣∣∣
d∫

t0

2�(
f (w), i�w

)
dt

∣∣∣∣∣ � CEη2+α. (6.30)

We now estimate the last term in the RHS of (6.27). For n = 1,

d∫
t0

∫
R

∣∣f (w)f (u)
∣∣dx dt �

∑
k,��3

λk
k

k!
λ�

�

�! ‖u‖2k−6
L∞

x,t∈J
‖w‖2�

L∞
x,t∈J

‖u‖6
L9

x,t∈J

‖w‖L6
x,t∈J

‖u‖L6
x,t∈J

�
∑

k,��3

λk
k

k!
λ�

�

�! (CE)2k(CE)2�η8 � CEη8. (6.31)

For n = 2,

d∫
t0

∫
R2

∣∣f (w)f (u)
∣∣dx dt �

∑
k,��2

λk
k

k!
λ�

�

�! ‖u‖2k

L8k
x,t∈J

‖w‖2�

L8�
x,t∈J

‖u‖L4
x,t∈J

‖w‖L4
x,t∈J

� Cη2
∑

k,��2

λk
k

k!
λ�

�

�! (8k)k+1(8�)�+1C2kC2�

× ‖u‖2k−2
L∞(J,H 1)

‖w‖2�−2
L∞(J,H 1)

‖u‖2
L8

x,t∈J

‖w‖2
L8

x,t∈J

. (6.32)

Noticing that λk < c/E2 as k � 1, we see that

d∫
t0

∫
R2

∣∣f (w)f (u)
∣∣dx dt � CEη6. (6.33)
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By (6.31) and (6.33), one has that

∣∣∣∣∣
d∫

t0

2�(
f (w), if (u)

)
dt

∣∣∣∣∣ � CEη2+α. (6.34)

Collecting (6.26), (6.27), (6.29) and (6.34), we have

H
(
w(d)

)
� H

(
w(t0)

) + Cζ η
10 + CEη2+α. (6.35)

Hence,

E
(
w(d)

)
� E

(
u(t0)

) − CEηα + Cζ η
10 + CEη2+α � E. (6.36)

By (6.25) and (6.36), and the induction hypothesis, we get:

Lemma 6.3. The solution w̃ of the following problem

iw̃t + �w̃ − f (w̃) = 0, w̃|t=d = w(d) (6.37)

satisfies a uniform estimate

‖w̃‖L
p

x,t∈R

� CE < ∞. (6.38)

7. Perturbation analysis

Our goal of this section is to show that (6.4) will lead to a contradiction, which implies the
result as in Lemma 6.1. The main technique is to use Bourgain’s perturbation analysis argument
as in [2].

Proof of Lemma 6.1. Let u, v and w̃ be the solutions of (1.1), (6.7) and (6.37), respectively.
Denote

δ = u − v − w̃. (7.1)

It is easy to see that δ satisfies

iδt + �δ − f (u) + f (w̃) = 0, δ|t=d = 0. (7.2)

We will show that if κ is small enough, then ‖δ‖L
p

x,t∈[d,∞)
is also small, whence ‖u‖L

p

x,t∈[d,∞)

� CE . But this contradicts (6.4).
One can rewrite (7.2) as an integral equation:

δ(t) = i

t∫
S(t − τ)

(
f

(
u(τ)

) − f
(
w̃(τ )

))
dτ. (7.3)
d
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Recall that ∥∥S(t − t0)v(t0)
∥∥

L
2+4/n

x,t∈[d,∞)

�
∥∥v(t0)

∥∥
2 � CE, (7.4)∥∥S(t − t0)v(t0)

∥∥∞ � |t − t0|−n/2Rn/2
∥∥v(t0)

∥∥
2. (7.5)

It follows from (7.5) and |J | = d − t0 > LR that∥∥S(t − t0)v(t0)
∥∥

L∞
x,t∈[d,∞)

� CEL−n/2. (7.6)

Interpolating L
p

x,t∈[d,∞) between L∞
x,t∈[d,∞) and L

2+4/n

x,t∈[d,∞), we get∥∥S(t − t0)v(t0)
∥∥

L
p

x,t∈[d,∞)
� CEL−n/α := κ. (7.7)

By Lemmas 6.3 and 3.1, we can split [d,∞) into consecutive intervals

[d,∞) =
K⋃

j=1

Ij (7.8)

such that

‖w̃‖
L

2+4/n
x,t∈Ij

+ ‖w̃‖L
p
x,t∈Ij

� γ < 1, CEγ α/2 � 1/4. (7.9)

Assume that

Ij = [dj , dj+1], d0 = d, j = 1, . . . ,K. (7.10)

Let us rewrite (7.3) as

δ(t) = S(t − dj )δ(dj ) + i

t∫
dj

S(t − τ)
(
f

(
u(τ)

) − f
(
w̃(τ )

))
dτ. (7.11)

Using the Strichartz estimates, we have

‖δ‖
L

2+4/n
x,t∈Ij

∩L∞(Ij ,L2)
� C

∥∥δ(dj )
∥∥

2 + C
∥∥f (u) − f (w̃)

∥∥
L

(2+4/n)′
x,t∈Ij

. (7.12)

Let us observe the following identity

|a|2ka − |b|2kb = ak+1(āk − b̄k
) + (

ak+1 − bk+1)b̄k, (7.13)

(
āk − b̄k

) = (
ā − b̄

) k−1∑
i=0

āk−1−ibi . (7.14)
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It follows from (7.13) and (7.14) that

|u|2ku − |w̃|2kw̃ = (v + w̃ + δ)k
(
v̄ + δ̄

) k−1∑
i=0

(
v̄ + w̃ + δ̄

)k−1−i
w̃ i

+ w̃ k(v + δ)

k∑
i=0

(v + w̃ + δ)k−i w̃ i . (7.15)

By (7.15) we have∣∣|u|2ku − |w̃|2kw̃
∣∣ � 32k+2(|v|2k + |w̃|2k + |δ|2k

)(|v| + |δ|). (7.16)

In view of (7.16) one has that

∥∥f (u) − f (w̃)
∥∥

L
(2+4/n)′
x,t∈Ij

=
∑

k�k(n)

λk
k

k! 32k+2(∥∥(|v|2k + |w̃|2k + |δ|2k
)
v
∥∥

L
(2+4/n)′
x,t∈Ij

+ ∥∥(|v|2k + |w̃|2k + |δ|2k
)
δ
∥∥

L
(2+4/n)′
x,t∈Ij

)
:=

∑
k�k(n)

λk
k

k! 32k+2(Γ 1
k + Γ 2

k

)
. (7.17)

First, we consider the case n = 1.

Γ 1
k � ‖w̃‖2k−6

L∞
x,t∈Ij

‖w̃‖5
L9

x,t∈Ij

‖w̃‖L6
x,t∈Ij

‖v‖L9
x,t∈Ij

+ ‖v‖2k−6
L∞

x,t∈Ij

‖v‖6
L9

x,t∈Ij

‖v‖L6
x,t∈Ij

+ ‖δ‖2k−4
L∞

x,t∈Ij

‖δ‖4
L6

x,t∈Ij

‖v‖L6
x,t∈Ij

, (7.18)

Γ 2
k � ‖v‖2k−6

L∞
x,t∈Ij

‖v‖6
L9

x,t∈Ij

‖δ‖L6
x,t∈Ij

+ ‖w̃‖2k−6
L∞

x,t∈Ij

‖w̃‖6
L9

x,t∈Ij

‖δ‖L6
x,t∈Ij

+ ‖δ‖2k−4
L∞

x,t∈Ij

‖δ‖5
L6

x,t∈Ij

.

(7.19)

We write

εj = ‖δ‖
L

2+4/n
x,t∈Ij

∩C(Ij ,L2
x)

. (7.20)

Using the following facts:

‖v‖L∞
x,t∈Ij

� κ3, ‖v‖L9
x,t∈Ij

� κ, ‖v‖L6
x,t∈Ij

� CE,

‖δ‖L∞
x,t∈Ij

� ‖u − v − w̃‖L∞
x,t∈Ij

� CE, (7.21)
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together with (7.9), we have

Γ 1
k � κ6 + (CE)2kγ 6κ + (CE)2kε4

j , (7.22)

Γ 2
k � κ6εj + (CE)2kγ 6εj + (CE)2kε5

j . (7.23)

Collecting (7.17), (7.22) and (7.23), we obtain that

∥∥f (u) − f (w̃)
∥∥

L
6/5
x,t∈Ij

� CE

(
κ6 + γ 6κ + ε4

j + (
κ6 + γ 6 + ε4

j

)
εj

)
. (7.24)

Hence, by (7.12) and (7.24) (CEκ5 � 1/4),

εj � 2Cεj−1 + κ + CE

(
ε4
j + ε5

j

)
, ε0 = 0, j = 1, . . . ,K. (7.25)

By choosing κ is sufficiently small, say (4C)K+1κ � 1, we get that εj � (4C)jκ , j = 1, . . . ,K .
Hence,

‖δ‖L6
x,t∈[d,∞)

< 1. (7.26)

By (7.21) and (7.26), we also have

‖δ‖L
p

x,t∈[d,∞)
< CE. (7.27)

Hence, we have from u = v + δ + w̃ that

‖u‖L
p

x,t∈[d,∞)
� CE. (7.28)

But this contradicts the fact ‖u‖L
p

x,t∈[B,∞)
� CE.

Next, we consider the case n = 2. We have from (7.6), (7.7) and (7.4) that

‖v‖L∞
x,t∈Ij

� κ2, ‖v‖L8
x,t∈Ij

� κ, ‖v‖L4
x,t∈Ij

� CE,∥∥δ(t)
∥∥

H 1 �
∥∥(u − v − w̃)(t)

∥∥
H 1 � CE, t � d. (7.29)

Let εj be as in (7.20). Using Hölder’s inequality and Proposition 2.3,

Γ 1
k � ‖w̃‖2k−1

L
8(2k−1)/3
x,t∈Ij

‖w̃‖L4
x,t∈Ij

‖v‖L8
x,t∈Ij

+ ‖v‖2k−4
L∞

x,t∈Ij

‖v‖4
L8

x,t∈Ij

‖v‖L4
x,t∈Ij

+ ‖δ‖2k

L4k
x,t∈Ij

‖v‖L4
x,t∈Ij

� κ3 + (6k)k+1(CE)2kγ 4κ + (4k)k+1(CE)2k+1ε2
j , (7.30)

Γ 2
k �

(‖v‖2k−4
L∞

x,t∈Ij

‖v‖4
L8

x,t∈Ij

+ ‖w̃‖2k

L4k
x,t∈Ij

+ ‖δ‖2k

L4k
x,t∈Ij

)‖δ‖L4
x,t∈Ij

� κ4εj + (4k)k+1(CE)2k
(
γ 2εj + ε3

j

)
. (7.31)
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Inserting (7.30) and (7.31) into (7.17) and noticing that λk < c/E2, we have∥∥f (u) − f (w̃)
∥∥

L
4/3
x,t∈Ij

� CE

(
κ3 + γ 4κ + ε2

j + (
κ4 + γ 2 + ε2

j

)
εj

)
. (7.32)

Hence (CEκ2 � 1/4),

εj � 2Cεj−1 + κ + CE

(
ε2
j + ε3

j

)
, ε0 = 0, j = 1, . . . ,K. (7.33)

By the same reason as above, we have

‖u‖L8
x,t∈[d,∞)

� CE. (7.34)

But this contradicts the fact ‖u‖L8
x,t∈[B,∞)

� CE. This finishes the proof of Lemma 6.1. �
As indicated in Section 6, it follows from Lemma 6.1 that Theorem 1.1 holds true. It is easy

to see that the arguments in Sections 4–7 can be developed to the nonlinearity as in (1.2a), which
implies that Theorem 1.3 holds.

Final remark. The idea of this paper can also be developed to the modified sinh-Gordon equation
utt − �u + (sinhu − u3/3! − u5/5!) = 0.
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