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Abstract

For one and two spatial dimensions, we show the existence of the scattering operators for the nonlinear
Schrodinger equation with exponential nonlinearity in the whole energy spaces.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the existence of the scattering operators in energy spaces for the non-
linear Schrédinger equation (NLS):

iu; + Au— f(u) =0, (1.1)

where u(t,x) is a complex valued function of (¢,x) € Rt = /=1, Uy = du/ot, Au =
Yo 0%u) 8xi2, n=1,2. f(u) is a nonlinear function with exponential growth, say

* Corresponding author.
E-mail addresses: wbx @math.pku.edu.cn (B.X. Wang), hcc@amss.ac.cn (C.C. Hao), hudzik@amu.edu.pl
(H. Hudzik).

0022-0396/$ — see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2006.05.010



312 B.X. Wang et al. / J. Differential Equations 228 (2006) 311-338

2
,u(e“”‘2 —1=Au)*— }‘7|u|4)u, n=1,

(1.2)
w(coshilul — 1 — A% |ul®)u, n=2,

f(u)={

for some A, i > 0, coshv = (e” 4 e~V)/2. For convenience, we say that H! is the energy space
for NLS. We will show that the scattering operators for Eq. (1.1) with the nonlinearity as in (1.2)
are well defined and bijective in the energy spaces.

If f(u) is a power function, say f (u) = |u|%u, a large amount of work has been devoted to the
study of the scattering theory of the nonlinear Schrédinger equation; cf. [2,5,7,8,14,18,19,23,25,
29,30]. If n > 3 and « is a subcritical power in H', i.e., 4/n < a <4/(n — 2), the energy scat-
tering was obtained by Ginibre and Velo [7,8] and Tsutsumi [25]. Bourgain [2] considered the
critical NLS with f(u) = |u|*®~?y in three and four spatial dimensions and obtained the exis-
tence of the scattering operators in energy spaces for the radial solutions, where a new method
so-called “separation of localized energy” was invented (Grillakis [9] gave a different approach
which recovered the global well-posedness for the smooth radial solutions in 3D). Applying this
argument and setting up a new Morawetz-type inequality, Nakanishi [18,19] was able to show
the energy scattering in one and two spatial dimensions for 4/n < a < co. Recently, Collian-
der, Keel, Staffilani, Takaoka and Tao [5] developed the localization techniques in both physical
and frequency spaces. By establishing a frequency-localized interaction Morawetz-type estimate,
they obtained the energy scattering for the critical NLS in three spatial dimensions and removed
the radial assumption in [2]; one can consult their paper for details. Recently, Ryckman and
Visan have generalized their work to higher spatial dimensions; cf. [21,26]. The regularity of the
scattering operator was also shown in [2,5-7,29].

If the nonlinearity has the exponential growth, Nakamura and Ozawa [16] considered the
small data scattering for NLS in the critical space H /2 Nakamura and Ozawa [17], Wang [30]
showed that the scattering operator carries a band in H* into H* for s > n/2. We will use Bour-
gain’s localization arguments (separation of localized mass) to study the energy scattering of
Eq. (1.1) with the nonlinearity as in (1.2). In order to state our results more precisely, we will use
Taylor’s expansion of f(u) and consider a generalized version of f(u):

Y 2
Fay=p Yo hulu, koy=1+-. (13)
k=k(m) "

Taking Ay = A and )J,i = 2%kk!/(2k)! for n = 1 and n = 2, respectively, we then get the nonlin-
earity as in (1.2). We denote

2 It )‘]12 2k+2
F(|u| )= — E ——u| . (1.4)
]
2 i k+ 1!

The solution of (1.1) with the nonlinearity as in (1.3) and initial value ug at t = #¢ formally
satisfies the conservations of mass and Hamiltonian:

M) = [u(®) |20y = 10022 g (15)

1
H(u) :=i”Vu(t)”iz(Rn)+/F(‘u(t,x)‘2)dx=H(uo). (1.6)
Rn
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For convenience, we also write
E(u):=M@u)+ H(u). (L.7)

The scattering operator of NLS (1.1) in H! is defined as follows. Let u, € H !, we look for
a unique global solution u of NLS satisfying u € C(R, H') and |ju(t) — ei’Au5|lH1 — 0 as
t — —o0. Moreover, if there exists a unique ug e H! satisfying ||u(t) — eimuarnm — 0 as
t — +o00, then we can define a mapping S:u, — uar and say that the scattering operator
S:H'—- H'

For any 0 < E < oo, we denote

HE ={v: E) < E}. (1.8)
The following is our main result.

Theorem 1.1. Letn =1,2, 0 < E <00, 0 < u < 00. Let f(u) be as in (1.3) with Ay > 0 for
k> k(n) and

SUPy >k Mi=A<o00o, n=1,
{ ™ (1.9)

limsup;_, o, Ak < c/E2, n=2

for some small constant c that is independent of E. Then the scattering operator S : H}E — H}E
is a homeomorphism.

It is easy to see that condition (1.9) covers the nonlinearity as in (1.2). Indeed, A = A for
n=1,and Ay = A%(k!/(2k)!))!/* — 0 for n = 2. Hence, we have

Corollary 1.2. Let n =1,2, 0 < E <00, 0 < A, u < 00. Let f(u) be as in (1.2). Then the
scattering operator S : H}z — H}E is a homeomorphism.

If n =2, we see that Theorem 1.1 also contains f (1) = ,u(e’”“'2 —1 —A|u|2)u, 0<A< c/Ez,
as a special case. In one spatial dimension, the growth of the nonlinearity in Theorem 1.1 is not
optimal. In fact, Theorem 1.1 also holds for a class of more general functions and we have the
following:!

Theorem 1.3. Let n =1, 0 < E < 0o. Assume that f(u) := h(|u|2)u satisfies

|ue|?
F(Jul?) :=/h(s>ds2|u|8,
0
G(lul®) == h(lul*)|ul* = F(jul?) 2 lul®,
| fa) = F@)| S P(ul v [ol) (1] v [v])°lu — vl (1.22)

! The authors are greatly indebted to Professor M. Nakamura, who pointed out that Theorem 1.1 could most likely be
generalized to the nonlinearity f(u) with arbitrary growth at u = oco.
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Sfor some continuous function P :[0, 00) — [0, 00). Then the scattering operator S : H}E — H}E
is a homeomorphism.

Aul™ _ Du,m =6, a0 >0, as a

It is easy to see that condition (1.2a) covers f(u) = u(e
special case.

Roughly speaking, the exponential nonlinearity in two spatial dimensions is critical in H'!,
which corresponds to the limit case in Sobolev embedding; cf. [16]. But it seems necessary to
make a delicate difference between the exponential growth orders for the nonlinearities. Let us

compare the nonlinearity f(u) in (1.2) with

k
fay=>" wu+y" %Iulzku, (1.2b)

2<k<N k=N

which corresponds to the cases )»ﬁ = A%k /(2k)! and A = A (k> 1) in (1.3), respectively. Due
to limg_, 50 Ax = 0 in the former case, we see that the growth of f(u) as in (1.2) is slower than
that of f () as in (1.2b). In the latter case, by Theorem 1.1 we need A < ¢/E? to guarantee the
existence of the scattering operators. For the nonlinearity as in (1.2b), the Hamiltonian should
be

T 1),n ul 5. (1.6a)

T 2 2k+2
H) ~ 1Vull ygy + D IS5+
2<k<N k=N

If the initial datum ug is only assumed to range over a bounded region in H I we could not
get that the Hamiltonian H (ug) is finite if A is very large. Indeed, by Ozawa’s critical Sobolev
embedding (see (2.24)),

2k+2 2k+2 k+2 2k+2
luoll 752 < CHF2 @k +2) 2 luo 75t

and so, the Hamiltonian H (up) is controlled by

Ak
H(uo) < |Vuoll3 + Z = 1),c2k+2(2k+z>k+2

When A is large, the above series is not convergent. This fact leads to condition (1.9) in our
Theorem 1.1. On the other hand, let us recall Trudinger’s inequality (cf. [20]): There exists Ao > 0
such that for any 0 < X < Ao, |lull g1 S 1,

f(e““@f”2 —1)dx < 1.

Rn

From Trudinger’s inequality we also need A suitably small to guarantee that the Hamiltonian
H (ug) is finite. We do not know what happens if A > 0 is sufficiently large. Further, if f(u)
grows faster than f (u) as in (1.2b), we do not know how to obtain the existence of the scattering
operators with large states even if A > 0 is small enough, see below, Remark 2.6.
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It is convenient to use the integral version of Eq. (1.1). One can rewrite (1.1) with initial data
uo at t = 1y as the following equation:

t

u(t) = Stug —i/ St — 1) f(u(v))dr, (1.10)

fo
where S(r) = !’2. We have the following time—space estimates (cf. [4,10—13,27]).

Proposition 1.3 (Strichartz inequalities). We have

”S(I)uo"Ly(r)(R’L)) <C||M0||2, (111)

t

/S(t —1)f(r)drt

0]

S CIf Il 2027049, (1.12)
x,teR
LY (R,L7)

where 2 <r < oo, 2/y(r)=n(1/2—1/r), y(r) € (2,00].

Notation 1.4. Throughout this paper, ¢ < 1, C > 1 will stand for universal constants that can
be changed from line to line, C4, g, .. means that the constant C depends only on A, B, .... We
denote by A < B that A < CB and by A ~ B that A < B and B < A. For any p € [1, 00],
we denote by p’ the conjugate number of p, ie., 1/p+ 1/p’ = 1. Let L? := L?(R") be the
Lebesgue space and the norm on L? is denoted by || - || ,. We denote by || f || La(s,.r) the space—
time norm (f; (fgn |£ (8, x)|7 dx)?/P dt)'/9, and LY ,_; = LP(I, L?). We write D, = (—=A)"/2.
The Bessel (Riesz) potential spaces H, (H;,) are defined by (I — A)™S/2LP ((—A)™S/2LP),
H’ = H3 (I-'Ix = I-'Izs). The Besov spaces Bz,q can be defined as follows; cf. [1,24].

Let ¢ : R" — [0, 1] be a smooth radial bump function adapted to the ball {£ € R": || < 2},
which equals 1 on the ball {£ € R": |£] < 1}. Denote ¢(§) := ¢ (§) — ¥ (2£) and ¢ (§) :=
©(27%€), k € N. Assume that ¢y := 1 — Y i, ¢k (=¥ (&)). One easily sees that suppgy C
(€ e R": 21 < |g] < 2K1) for k > 1 and suppyy C {€ € R": |&] <2}. Let 0 < p, g < oo.
Denote Ay := F !¢ . The norm on Besov spaces is defined as follows:

00 1/q
£ 11, =<sz5q||Akf||?7> : (1.13)

Pq
k=0

In the case p = g = 0o, we have a modification on the norm:

111, o = sup 2% (| Ak £lloo- (1.14)
k=0

2. Low mass implies the energy scattering

Using Nakamura and Ozawa’s results as in [17], we see that the small Cauchy data in L?
imply the energy scattering for NLS in one spatial dimension.
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Theorem 2.1. Letn =1, 0 < E < 00, ug € H'. Assume that f () satisfies

f(0)=0, 2.1
£ @) = F @) < P(lul v ol) (jul v [o]) | — vl 2.2

‘or some non-negative continuous function PRy — R.. There exists n := n(E) > 0 such that
8 + + n n

if
luoll2 < n, (2.3)
then
g +uxx — f(u) =0, u(to) = uo (24)
is globally well posed in C(R, H') N LO(R, H61) and the solution u satisfies
lullys_ +losulls, < Cr <oo. 25)

It is obvious that if f(u) is given by (1.2), condition (2.2) holds for

Ck
P(jul) ~ Z F|u|2’<—6. (2.6)
— k!

Moreover, condition (2.2) also covers the nonlinearity

(e —1u, m=6. 2.7
It is also known that the small Cauchy data in H! imply the existence of scattering operators
in two spatial dimensions; cf. [16]. In this section we give an improved version in two spatial

dimensions and we show the following theorem.

Theorem 2.2. Letn =2, 0 <t <00, 0 < E < 00, ug € H' and E(ug) < E,

)\'k
fay=p) i, 2.8)

k>1
where {A} satisfies condition (1.9). Assume that |luglla <n, 0 < n:=n(E) K 1. Then
i + Au— f(u) =0, u(to) = uo (2.9)
is globally well posed in C(R, H") N L*(R, Hi) and the solution u satisfies

lllzs  + 1Dl < Cr <oo. (2.10)
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For the proof of Theorem 2.2, our idea is to use the energy and |lu| ;4 N to estimate the
x,1€

nonlinearity. We resort to the interpolation inequality

lullLamey < CIIMIILp(Rz)IIMIIHl(Rz) where (2.11)
1 0 1
———+(1—9)<———), (2.12)
q p n
0<6 <1, 1<qg <o0. (2.13)

If we treat g € [p, 00) as a variable parameter (p is a fixed number), the constant C in (2.11) is
increasing as g tends to co. For our purpose it seems necessary to give a delicate value of C :=
Cy in (2.11). We will mainly use a critical embedding inequality which is due to Ozawa [20],
see (2.24).

Proposition 2.3. Let | <r < p < 00 be fixed indices. Then for any q € [p, o0),

/ 1
lullagany < Cprg " Pl Dl ,,7/&,, (2.14)

where C, , depends only on p, r and n.
In order to show Proposition 2.3, we need the following proposition.

Proposition 2.4. Let 1 <r < p <00, 0 <s < 00 be fixed indices. Let p € [r, p] be a variable
parameter. Suppose that 0 < 0 < 1 satisfying

1-6
+

1 0
—_=— , (2.15)
P1 P r
=60-04+(1—0)s. (2.16)
Then
IIMIIH;‘]I ) < Cp, rsIIMIILp(Rn)IIMIIHA(R,,) (2.17)

where C, ;. s depends only on p, r, s and n.

Proof. Proposition 2.4 is essentially known; cf. [8,10]. Since we need to fix C,, .5 in (2.17), we
sketch its proof. We write (see Triebel [24])

5 12
el H( 2’“1|Aku|))
keZ

where Ay is the same one as in (1.13) if k > 1; Ay = F 1o~ %) F if k <O0. It is known that
(see Stein [22], Triebel [24])

, (2.18)
LP1(RY)

Apllullpo < luller < Bpllullzo - (2.19)
r1» p1-
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Since p; € [r, g], by complex interpolation we have
Cpr<Ap <Bp <Cp;. (2.20)
Hence,
Cp,r”””[l“gll < llullpr < Cp,r”u”]l";))lvz- (221

On the other hand, using Hérmander’s multiplier theorem (cf. Triebel [24, p. 88]) and by complex
interpolation, we see that if 51 € [0, 5], p1 € [, ¢], then

Cprslull g < lullgsr < Cprsllull g1 . (2.22)
p1.2 Pl p1.2
By (2.22) and Hoélder’s inequality
leell 31 <Cp,r,s||ul|15;il < prs”’/‘”FO IIMII prs”””LP“u”HY , (2.23)
which implies the result, as desired. O

Proof of Proposition 2.3. Let us recall that in [20], Ozawa established the following embedding
inequality:

litllg < Cpyg" /P11l sy -nsa (224)
r1

where py € [r, p]. Since p; ranges over a compact interval, we know that the constant Cp,, has
an upper bound C), ,; cf. [16], that is,

lelly < Cprg"/Pilull PSLE (2.25)
Taking
1 1 1-
r_t, 1-rla (2.26)
P1 q r
we see that for 8 = p/q,
1 6 1-90 n
—=—+ , ————9 O+(1—9)—. 2.27)
P1 14 r P1 q
Hence, by Proposition 2.4,
1
el gorm-nsa < Coppllally/? Nl 7. (2.28)

Noticing that 1/p} =1/r" + (p/r — 1)/¢, by (2.25) and (2.28) we immediately have the result,
as desired. O
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Proof of Theorem 2.2. We can assume that i = 1. Recall that

0 4k

A
fay=3 il u,
k=1
o0 )\'k
Df@) =) 23 (K + Dl Du+ kuu* = Da),
k=1 "

where D = 9/0x1, or D = d/dx,. We have for any interval I C R,

o0
lrwl, <323 el \Z—uulw ol

Using Proposition 2.3, we have

1/k 1— 1 k
lall e < CERYZH 2l I /*,

It follows from (2.32) that

1/k 1-1/k 1/k
lull e, < CEOYVEE Rl < CEA@YH X

Le(1,H))

Inserting (2.33) into (2.31), one has that

AI/ZC 2k
| £ @] o \Z%mmk“n 1,
x,tel k=1 .

Similarly,

o0

2k +
[DF @] 2, <;gn 7% Dulys

oo
2k+1) k
<2 oy UM CER) Iy 1Duly

— !

=~

=1

It is easy to see that if condition (1.9) holds, then

A < k>1,

E2 T 8e(CEX

which implies that the series

o0

2k + 1
Z +1)? (424 (CE)?k)* < Cp < o0
k=1

319

(2.29)

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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is convergent. Hence, by (2.34), (2.35) and (2.37), one has that
[l <Celulys . (2.38)
|Df @ < Crllulfs 1Dullgs - (2.39)

In view of the Strichartz estimates, (2.38) and (2.39) imply that
lellgs _, < Cliwol + Celuls . (240)

2
1Dulys, < CE+Crlul}y 1Dulys - 241)

Since |lugll2 < n and 7 is sufficiently small, in view of the standard continuity method we have
from (2.40) that

<
llu ”Li‘,tez <2Cn. (2.42)
It follows from (2.41) and (2.42) that
|Dull;+ <2CE. (2.43)
x,tel
Taking I = R, we obtain the result, as desired. O

Remark 2.5. Following the proof of Theorem 2.2, in view of the Strichartz inequalities (1.11) and
(1.12), we see that for any 2 < r < oo, the Strichartz norms ||ull ¢ s 1ry and || Dxull gy g pry
have the same upper bounds as those of ||u«|| L, and || Dy ul|| Lt respectively. So, by a standard
method as in [3,5,7,18], we conclude that (2.>1'0) has implied the existence of scattering operators
in energy spaces. Similarly, in one spatial dimension, (2.5) also implies the existence of scattering
operators in energy spaces.

Remark 2.6. Unfortunately, our method for two-dimensional NLS in this section is invalid for
the nonlinearity that grows faster than that of (1.2b), say f(u) = (e*"I" — 1)u, m > 2. Indeed, if
f (u) takes such a form, similar to (2.31)—(2.34), we have

Mu|™ - )‘k mk
I = Dl e, < 2 bz Wl
< ]; E(CE)mkk”‘k/z“ ”””ii.te,' (2.44)

We need to treat the series Y %(CE)mkkmk/ 21 which is divergent for any 0 < A < 1.
In this case, we cannot obtain an analogous result to Theorem 2.2 for NLS (1.1) with f(u) =
(e““'m — Du, m > 2, even if X is small enough. Moreover, using the method above, it seems also
difficult to get the local well-posedness in 7, since the nonlinearity is out of the control of the
Strichartz norms and the H'! norms.
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3. ||u||L(,, +22/x < 00 implies scattering
x,teR

In this section we show that the finiteness of |ju ”L(" +22/, implies the existence of scattering

x,teR
operators. In view of Remark 2.5, it suffices to get an upper bound of ||u|| 2+ [| Dyul| L2
x,teR x,teR

Lemma 3.1. Let n = 1,2, 0 < E < o0 and f(u) be as in (1.3). Assume that condition (1.9) is
satisfied. Let u be the energy solution of (1.1) with E(u) < E. If there exists Cg > 0 such that

||u||L(n+2)2/n < Cg <00, 3.1
x,teR
then we have
lutl 214 + | Ditl] 215 < Cp < 00 (32)
x,teR x,teR

Proof. We divide the proof into the following two cases. First, we consider the case n = 1. We
need to prove that |lul|;o < Cg implies that ||u| ;s + [|0xull;6 < Cg.One has that
x,teR x,teR x,teR

00 Nk
A
k 2k 6 6
u < —(CE)"|u u < Ckgllu u . 33
| £¢ >||ngts€,\k§_3 L CEXluly lullye | <Celulfy lulys - (33)

Similar to (3.3), we also have

e @]

Ak
k 2k 6
loxf@l o < ; HCEXChADulfs deullys
<Celullly  Nowulls . (3.4)
x,tel x.tel

Using the same way as in Bourgain [2,3], one can split R into finite many pairwise disjoint
intervals,

J
R=J1 Ml <o Cen®<1y2. (3.5)
j:l e
By the Strichartz inequalities, and (3.3) and (3.4),
|otul e < CE+Cen|ofuf,e . k=01 j=1...1 (3.6)
xrel; xrelj

Hence, by (3.5) and (3.6)

lotul e <2CE. k=01 j=1....J (3.7)
x.1€l;

which implies the result, as desired.
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Next, we consider the case n = 2. One needs to show that if
lull,s < Cg<oo, (3.9)
x,teR
then
< < . .
lulls,_ +1Dsullys < Cp<oo (39

Let D =09/0x; or D = d/9dx>. Using the same way as in (2.31), (2.33) and (2.35), we have

4
[ F@lpon < Celuls s - (3.10)
4
|DF@] 5, < Cellulys 1Dullgs - G.11)
In fact,

ok

k
RAOIRES Z TGk Dl 1Dl . (3.12)

Interpolating L* between L and H, by (2.14) we have

il e < CCR Pl g, (3.13)
2/k 1-2/k
lull s, < C@OVHVEuI ”m/l i (3.14)
By (3.12) and (3.14), we obtain that
o0 )\'k
[Dr@an <3075 Ck+ D@ TACE Huly Dulys o G15)
X,t€ — X,t€ X, 1€

Noticing that A; < c/E2 for k > 1, (3.15) implies (3.11).
In view of the Strichartz estimates, together with (3.10) and (3.11), and using the same way
as in the case n = 1, we can get (3.9). The details are omitted. O

Remark 3.2. If n = 1, one can easily generalize the argument above to the case that f(u) is
given by (1.2a) and the details are omitted.

4. Mass concentration phenomenon

In this section, we show that if the space—time L"+2"/" norm of the solution in a time interval

I is not small, say |lu|| L2 ™ 1, then there exist #gp € I and xg € R such that the mass at 7
x tel
will have a concentration phenomenon in a spatial ball with center at x¢, and the size of such a

ball depends only on 7 and is independent of the length of /. We write

(n+2)>2 9, n=1, 2+4 6, n=1, @D
= = o= - = .
P " 8, n=2, n 4. n=2.
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In the sequel we will always assume that p and « are as in (4.1) if there is no explanation. Let
n > 0 be a small number, say 0 < n < no,

Ceng ™" =1)2. 4.2)
Lemmad.1. Let n = 1, 2. Let u be the energy solution of (1.1) and (1.2), 0 < E <00, E(u) < E,
lluell f» S =0 Then there exist C;, > 0, which depends only on E and n, and ty € 1, xo € R" such
X, te
that

Hu(t()) ”Lz(\x—xolgC,]) > CEna/z' (43)

In order to show (4.3), we use an interpolation lemma, which is established in Wang [28] by
applying Bourgain’s idea in [3].

Proposition 4.2. Let 1 <rg<r <00, —00<s]1 <s5 <8590 <00,0<6 <1 and

1 6 1-96
= s =0s9+ (1 —0)s;1. (4.4)
r ro o
Then we have
lull gy < Cllull s Nl “5)
00,00 0.0

Proof of Lemma 4.1. In view of (3.3), (3.4), (3.10) and (3.11), we have
|Umwuwmvﬂaww<cmmﬁ&Jmmﬂw“@W”. (4.6)
By the Strichartz inequalities and (4.6),
||M ||L2+4/"(1,H21+4/n) < CE + CEr/O[ ”M ||L2+4/n(1,H21+4/n) . (47)
(4.7) and (4.2) imply that
”l/l ||L2+4/)1(I’H21+4/n) < 2CE (48)

Letso =n(na—4)/8 and s1 = —n /2. Itis easy to see that 51 (1 —4/na) +so(4/na) = 0. Noticing
that Hy,/, C By 4/,.214/n> DY Proposition 4.2 we have

1-4/na
L®(1, B3

4/na

LAY, ) 4.9)

= ||u <C u
n=lull  <Clul lul

Hence, by (4.8) and (4.9)

”u”LOO(I,B;éYOO) P CEna/z- (4.10)
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So, we get some ty € I, xg € R", j € NU {0} satisfying (we can assume that j > 1, since j =0
is similar to the case j > 1)

21| (Aju(to)) (x0)| = een®’?, (4.11)
which implies that
2 [(F ) # uto)] (x0)| = cen’?, (4.12)
where ¢; is as in (1.13), that is
20ts0J f (F ') (27 y)ulto, xo — y) dy| = cgn®’>. (4.13)
R?l
Notice that
-1 i —jn/2| -1
| ¥ e (27) HL2(|x|>C,,) =27 |7 (p’|L2(|x|>21C,7)' (4.14)
We can take C), large enough (j > 1) verifying
—1 2
|7 (p”Lz(\x|>C,7) |uto) |, < cen/?/2. (4.15)
Collecting (4.13)—(4.15), we have
|F o] 2 llull > cpn®/? (4.16)
@l 2wl L2(x—xo)<c,) Z CEN'T- )
Hence, (4.3) is deduced. O
5. Length estimate of I with [lu]|;» , =1
x,te
Let u be the energy solution. Let £, M > 0 and M < E. Now we assume
sup{llullr M) <M, E@)<E}>G> Cp (5.0

for some interval [A, B] C R. It is easy to see that B — A > Cg. Considering the decomposition
(4, B1=Ujen 1),

lullp  =n, JjeA, 6.1
Lx,te]j
we have from Lemma 4.1 that there exists #; € I; and x; € R" satisfying
l4@) 2 e—sy1<cp cen’?, (52)

where C;; > 1 is a fixed constant depending only on 1, E. Our goal of this section is to show that
if G is sufficiently large, then

sup [1;| > Cg y. (5.3)
jeA

We will use the ideas of Bourgain [3] and Nakanishi [18].
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Lemma 5.1. [3,18] Let u be the energy solution of (1.1) and (1.2). Let B C R" be a compact set.
B(Q):={xeR": 3y € B, |x — y| < Q}. Then we have

lu@O | 2500y = [4C0)] 25 — CEIT =101/ Q. (54)
In particular,
Hu(tl)||L2(|x—x0|<C,]+Q|t1—to|) > ||u(t0)||L2(\x—x0|<C,7) —Ce/Q. 6-5)
The following generalized Morawetz-type estimate is also due to Nakanishi [18].
Lemma 5.2. Let u be the energy solution of (1.1) and (1.2). We have
G(Iulz)
xdt < Cg, 5.6
/ / S+ x |3 g 00
RIl+n
where (t) =1 +12, G(u|?) = fw)i — F(Jul?) > clu|*+.
In (5.5), we can take Q :=C), > Cen~*, it follows from (5.2) and (5.5) that (n* <« n%/?)
/2
lu(®) ”L2(|x—x_,-\<c,,(1+|t—tj\)) = cgn'”. 5.7
Hence, if |t —t;| < C;), we have from Holder’s inequality,
) ”L2+a(|x—xj|<cn(1+\z—t,|)) Z CE.y- G-8)
By (5.1), we have

n=lully  <IIYPulleq, oy < CENLIYP, (5.9)
waelj

which yields |1;| > cgn?.
Therefore, for any j € A, there exists J; C I; with |J;| > ¢, such that (5.7) and (5.8) hold for
any ¢ € J;. We may assume that ¢; is the left end-point of J;.

Lemma 5.3. Let u be the energy solution of (1.1) and (1.2). Let I be as in (5.1). If G in (5.0) is
sufficiently large, then we have sup;c 4 |1j| > Cg p.

Proof. We imitate Nakanishi’s proof in [18] (some earlier ideas related this issue can be found
in [7,14,15]). Denote k; = 1, by induction we define

ke =min{j € A: |xy, —xj| > 2C, + Cyltx, —tj], i=1,....0—1}. (5.10)
Then we define

Ne = {.] € A: J > kg, |xkg —X/| <2C77+C77|tk@ _t/|} (5.11)
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It is easy to see that A = _J ¢ Ng. First, we show the above k1, ... ., k¢ are finitely many. We easily
see that B(xk,, Cy) N B(xy;, Cy(1 + |tx, —t; 1)) =9,i=1,...,£ — 1. Hence, by Lemma 5.1,

> utt) 2 e Bk, ,Cy (1t~ 1))

> ”u(tkf)“Lz(B(xk(,C,,)) + ”u(lkz_l)HLz(Uf;ll Blxk, (it 15, D) cen®?)2

t
> Y1) 3oy~ CeEn” 2> e 612
i=1

Hence, £ < Cg . By Lemma 5.2 and (5.8),

2
—t,)°G
CE/// o () L dxdi
<t_tk1 +|.X—Xk1|

R+l

|u|2+a

(t - tk1>
[x =Xk, |<Cn(1+|f—tk1 D

dx dt

ZCy

2+a
e Y / I ON i<
JEN1
=c > 5.13
E"ZI+|t]—t E"Zl+|t] e
jeNy
Replacing (f,, xk,) by (%;, xk;) in (5.13), and noticing that k1, ..., k¢ are finitely many, we im-

mediately obtain that

1

Cen>) ——. 5.14

E.n . 1+|l‘j| ( )
JjeA

Hence, (5.3) follows. O

Lemma 54. Let E > 0, M > 0, M < E be fixed constants. Let n > 0 be a small number, say
Cen® < 1/2. Let L > 1 be an arbitrarily large number. If the energy solution u of (1.1) and (1.2)
satisfies M(u) < M, E(u) < E and

u C
l ||L5‘t€[A_B] >CLE

for some interval [A, B] C R, then there exist [ty,d] C [A, B] (or [d,ty] C [A,B]), R > 1,
|d —to| > LR, xo € R" satisfying the following properties:

lluellr <, IIMIIL2+4/n +|ID wll  24am <,
x,1€l1q.d] x,1€lty.d L, relty.d]

|u0)/(x = x0) | 2oy <77 ||M(t0) |2y <y = €EN
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Proof. By Lemma 5.3, if G is sufficiently large, then there exists an [; := [v,b], |1 il >
C E,,,LCEW. Assume without loss of generality that

b—1t|> |1 | > Cg LS. (5.15)
One can divide [t}, b] into
[t b1= | J 14, (5.16)
acA;
such that
llull, ”,4/," + I Dyull, L =1 (5.17)
Tt el

Due to ||u|| 2+4/)1 + | Dyul| (2 S < 2CE, we see that A has at most O(CEg /n*t*/") elements.

] X tel ./
Assume that

=0, =1 (5.18)

Using a decaying estimate (cf. [18, Lemma 5.3]),

lu(z, x)|? )‘“2 dt
= d < Cp, 5.19
/<f<x—xj'> AT G19

R R}‘l

we see that there exists Tj” > t;‘ verifying

5(2+a)
lu(T) /= xp) | oy <1 Tf =18 <eETTT = Cy. (5.20)
We show that there exists at least an a € A satisfying

1
j+ —-T{>LC (1+T“—tj) (5.21)

Assume for the contrary that (5.21) does not hold:

(=T LG, (14 T) — 1)), Vae 4y, (5.22)

which implies that foralla € A},

14— 1) SLCE 4+ LCy (T — 1)), (5.23)

by induction,

t;?“ — 14 <L“Cpy. (5.24)
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Hence,
b—1; <LECp,, (5.25)

which contradicts the choice of /;.
Therefore, we have found a subinterval J; := [Tj“, t]”.'H] =[T;,d]CIj and R :=Cy(1 +
T; —t;) > 1,]Jj] > LR satisfying

(T /x = x )l 2 ny < . (5.26)

llu(Tj) ||L2(|x—xj|<R) > CEn"‘/Z,
which implies the result, as desired. O
6. Induction on M (u)

Let M >0, E >0, M < E. Let u be the energy solution of (1.1) and (1.2) with initial data ug
at t = 1g. In Section 2 we have shown that

Muo) <n**'? and E@o) <E = |ulyr  <Cp<oo. 6.1)
By induction hypothesis, we assume that the following claim holds:
M@uo) <M —n*t1? and Ew) <E = lullp, . < Cr < oo. 6.2)
Our aim of this and the next sections is to show the following conclusion:

Lemma 6.1. Assume that M (uog) < M and E(uy) < E. Then we have

lullr < Cr<oo. (6.3)

Recalling that p = (n 4+ 2)?/n, from Lemmas 3.1 and 6.1 one can easily deduce the result of
Theorem 1.1.
Assume for the contrary that (6.3) does not hold, that is,

sup{llullpr _: M(uo) < M. E(uo) < E} = o0, (6.4)

where u is taken over all energy solutions of (1.1) and (1.2).

Now we connect our discussions with Lemma 5.4. Let E, L be as in Lemma 5.4 and assume
that u is a solution satisfying ||u||; » N > CE, 1. One easily sees that there exists a decomposition
of R, R=(—o00, A]U[A, B]U [B, 00) verifying |[u|, » 5 > Cg, for J = (—o0, A], [A, B]

X, 1€
and [B, 00).
Let ¢ :R" — [0, 1] be a smooth radial bump function, say

Lo xl <1,
.=

6.5
0, |x|>2. ©.5)



B.X. Wang et al. / J. Differential Equations 228 (2006) 311-338 329

Let R be as in Lemma 5.4. Put ¢g = ¢ ((x — x0)/R),
v(to) = u(to)sr- (6.6)
Considering the free Cauchy problem
v, + Av=0, V|t=r, = v (). 6.7)

Lemma 6.2. Let u be the solution of (1.1) and (1.2) as in Lemma 5.4. Then for the solution v
of (6.7), we have

||v||L2+4/n + ||va||L2+4/n < Cen, (6.8)
x,teJ x,tel
where 1 is the same one as in Lemma 5.4.

Proof. We follow Bourgain [3]. By Strichartz’s inequality, (3.4), (3.11) and Lemma 5.4,

t

u —i/S(t — 1) f(u(x))dr

fo

<l 2am + ClF @] j@ssmr <n+Cpn** <20 (69)
x,te x,tel

(NG IO)M(IO)”L%/J" <

244/n
x,teJ

L

We have
Sy (10) | = |F [ ORE (2w u(t0)©))]|

_ ’ f Er(E1) / AU IE HixE e —sods'. (6.10)
Rn

Rn

Using Minkowski’s inequality, we have

~ . _ 2 . ~
HS(I‘ — to)v(t0)||L2+[4/J,, < /|§R($1)| H /el(f 10) €] +1x§u(§ _El)dé‘ o d&
' R~ R~ Lx,tej
A TIPS
<[ x|, sup / MW G —gpag| o (61D)
El R x,teJ
Taking notice of ||Z'R||L1 = ||g:||L1 and
, (6.12)

‘ f QM EF i g sl)ds‘ = (7% ut0)) (x +2(1 — 10)§1)
Rn

we immediately have

IS = to)v(to) | 24 < Ce | St = to)u(to) | 24 < 2Cen. (6.13)
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Similarly, we can estimate || D, v|| L2/ Indeed,
x,teJ

DS = 10)v(20) ’|L2-+,i/}l < S — 10)(DxgR)uto) ||L2+ti/1n + s - tO)CR(Dxu(tO))”LZti/Jﬂ'

(6.14)

Analogous to (6.9), we have
| DS = t0)utto) | 2rsin < NDeull 2sssm + | Def @] asayur <11+ Con*™™ <20, (6.15)
x,t€ X, t€ x,teJ

Using the same way as in (6.13),

|G = t0)¢rDxtuto) | 2w < NERN L1 oy [ S = 10) D to) | 24470 (6.16)

Due to 3,¢r =¢'((x —x0)/R)/R forn =1, 8y,{r = ¢'((x — x0)/R)/R for n =2, we see that

C{I’]

Ceiyn
S = 0)(Dagryut)] 2eaim < — &kl 18¢ — 10)utio) | eon <=7 ©1D)

Since R > 1, it follows from (6.14), (6.16) and (6.17) that ||DXU||L2+4//1 <Cen. O
x,teJ

Now let u and v be the solution of (1.1) in Lemma 5.4 and (6.17), respectively. Let w = u — v.
One has that

{1wt+Aw—f(v+w)=0, 6.18)

Wli=q = (1 = ER)ul1o).

Recall that J = [to, d] (or J =[d, tp]). We now estimate ||[w(d) |l ;2(rn)- By (6.18), we have

d
|w@|; = ||w(to)||§+2//;“sf(v+w)wdxdt. (6.19)

fo R"

It is easy to see that I f(v + w)w = I f (v + w)v. For n = 1, by Lemmas 5.4 and 6.2, we have

d
//Sf(v—i-w)ﬁdxdt
fh R

o0 d )\.k
<Z//k—1§|u|2k+l|v|dxdt
R

k=35

< Cgllu|® u v < Cpnd. 6.20
<Celluly ullge, Wy, < Cen (620)
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For n =2, in a similar way as in (3.15), one has that

d
//Tsf(v—f-w)ﬁdxdt

1 R2

o k

k=2

4
<Celulys Ml Iolge
Invoking Lemmas 5.4 and 6.2, we have from (6.21) that

d
//Sf(v—i—w)ﬂdxdt

1 R2

< Cen®.

Summarizing (6.20) and (6.22), we have

d
//;”sf(v—i—w)@dxdt

fo R"

g CET]2+01

Since
[wo) |5 < Ju) 5 = |40 | 2, gy < M = Con®,
from (6.19), (6.23) and (6.24) we have

||w(d)H2 M — Cgn® + Cgn*t* < M — n*+1/2,

‘We now estimate H (w(fp)):

1 1
H(w() < 5| (Vu) (1 = to)[5 + 3 [uto) Ver [ + / F(Jwto, x)|*) dx

Rn

1
<5 vut 3+ ||u(t0)/<x—xo>||§+/F(|w(t0,x)|2)dx

Rn
H (u(t0)) + Cen'®

Since w satisfies (6.18), we see that

d
H(w(d)) — H(w(10)) =/2m(iw, + Aw — f(w), w,)dr

4]
d
= /[2m(f(u) — f(w),iAw) + 2R(f (w), —if (w))]dt
4]

k
u v
> il ||L4k s ol

331

6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

6.27)
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Integrating by part and then using the same ways as in (6.20) and (6.21), we conclude that

d

f 2.‘){(f(u), iAw) dt

to

<CllulSy  N1Vull 24am VWl 2470 (6.28)
x,teJ x,te] x,teJ

Noticing that w = u — v, by Lemmas 5.4 and 6.2, it follows from (6.28) that

d
[ 2§)i(f(u), iAw) dr| < CEn2+“. (6.29)
Analogous to (6.29), we have
d
/ 2§Yt(f(w), iAw) dt| < Cgn**®. (6.30)

]

We now estimate the last term in the RHS of (6.27). For n =1,

k PR
//|f(w)f(u)|dxdt > k—kg—‘n ulZ® lwlzee lulfs lwlys luls
o R k,0>3 et ’ -
< Z 4 E‘(CE)zk(CE)% 8 <Cenb. 6.31)
k€23
Forn =2,

k 16
/ / |f ) f@)]dxdr < ) k—"z—fn Iz Wl Nullzs lwlzs

0w k2
2 )‘]li )‘g k+1 C+1 ~2k ~20
<Cn* Y. T ZL @)k tgeyttlic* e
k,2>2
X5 G,y P oy el TwllZs (6.32)

Noticing that Ay < c/E2 as k> 1, we see that

d

//|f(w)f(u)|dxdt < Cen. (6.33)

1 R2
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By (6.31) and (6.33), one has that

d
/ 20(f (), if w))dt| < Cpn*™. (6.34)
fo
Collecting (6.26), (6.27), (6.29) and (6.34), we have
H(w(d)) < H(w(t)) + Cen'® + Cpn* ™. (6.35)
Hence,
E(w(d)) < E(u(t0)) = Cen® + Cen'® + Cen™* < E. (6.36)

By (6.25) and (6.36), and the induction hypothesis, we get:
Lemma 6.3. The solution W of the following problem
iw; + Aw — f(w) =0, W=g = w(d) (6.37)
satisfies a uniform estimate
||@||L)1:JE]R < Cg < o0. (6.38)
7. Perturbation analysis
Our goal of this section is to show that (6.4) will lead to a contradiction, which implies the
result as in Lemma 6.1. The main technique is to use Bourgain’s perturbation analysis argument
as in [2].

Proof of Lemma 6.1. Let u, v and w be the solutions of (1.1), (6.7) and (6.37), respectively.
Denote

S=u—v—uw. (7.1)
It is easy to see that § satisfies
i85+ A8 — f(w)+ f(w) =0, 8li=q =0. (7.2)

We will show that if « is small enough, then [|8]],» u is also small, whence |u]|,»
x,teld,00) P

. . x,t€[d,00)
< CEg. But this contradicts (6.4).
One can rewrite (7.2) as an integral equation:

t

3(:):1/5(; —O)(f () - f(B(D)))d. (7.3)

d
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Recall that
IS — 10)v(to) HL2+4{; ) < |v@o)||, < CE,
x,t€ld, 00
IS¢ —to)vto) | o, <1t — 1ol >R |v(t0) -
It follows from (7.5) and |J| =d — typ > LR that
ISt =t~  <CpL™2
x,t€[d,00)

2+4/n
x,teld,00)?

Interpolating L” between L° and L

x,1€[d,00) x.1€[d,00) we get

[s¢ v, <CpLT =k
By Lemmas 6.3 and 3.1, we can split [d, co) into consecutive intervals

K
[d, 00) = UI,
j=1

such that

~ ~ 2
@I, 2040 + 1Bl p <y <1, Cey*?<1/4.
xrel; xtelj

Assume that
Ij:[dj,dj+l]v d0=d, j=1,...,K.

Let us rewrite (7.3) as

t

5(t) =S(t—dj)5(dj)+i/S(t—t)(f(u(r)) — f(@(0)))dr.

dj

Using the Strichartz estimates, we have

”8”L2+4/I"0L°°(1,~ 1) S Cla@pl, + . — s ||L<2+4I/")"
xX,1€l I x.1€l;

Let us observe the following identity

|Cl|2ka _ |b|2kb:ak+1 (C_Zk _ l;k) + (Clk+1 _bk+1)l;k,

k—1
(@ —oy=(a—b)> a''v.
=0

i

(7.4)

(7.5)

(7.6)

(1.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)
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It follows from (7.13) and (7.14) that

k—1
ulu BT =+ B+ G+ Y (5+T+8) T F
i1=0
k
+T O+ W+ T+ (7.15)
i=0
By (7.15) we have
[ u — 11| <352 (Jo* + 1B +181%) (Jv] + 151). (7.16)
In view of (7.16) one has that
k
[f@ = r@ ] erm = 3 kk32k+2(H(||2k—%|u42k—%|afk) “L@+Mm,
X,[Ej . x,tel

k>k(n)

+ ” (|U|2k + |w|2k + |5|2k)5”L(2+4/n> )

x,tel

Ak
> k—’;32"+2(rk1 + ). (7.17)
k>k(n)
First, we consider the case n = 1.
2k—6 ~ 2k 6
SUBIES? VB, | 1lrg Wiy + RIS W0l | ole
+ka4nw ol (7.18)
Ij x,tEIj
r? an6|H| A8lls un%6n 155 N8Iz, +ka4mn
x rel] i x 1el; €l x 1€l
(7.19)
We write
gj =14l 2+4/nmc(1 12)° (7.20)
Using the following facts:
o <K < <
ol <ol <o vl <CE.
|I8I|L°<> <llu—v—wlpe  <CE, (7.21)

xtelj
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together with (7.9), we have

I <k® 4+ (CEY* YOk + (CE)* e, (7.22)

I <«%j+ (CE)*y%e; + (CE)* ). (7.23)

Collecting (7.17), (7.22) and (7.23), we obtain that
| £ @) — @) L,?,/zsezj < Ce(k® +y%% + sj + (kK + 90+ s?)sj). (7.24)
Hence, by (7.12) and (7.24) (Cer® < 1/4),
£j <2Cej 1 +k +Cp(e] +¢)), c0=0, j=1,....K. (7.25)

By choosing « is sufficiently small, say (4C)X 1k « 1, we get thate; < 4C)k, j=1,...,K.
Hence,

51 6 < 1. (7.26)
x.teld,00)
By (7.21) and (7.26), we also have
slee . <Ce- (7.27)

Hence, we have from u = v + § 4+ w that

llull ,» < Cg. (7.28)

x,t€[d,00)

But this contradicts the fact ||ul|; oo > Ckg.
X, l€|B,00
Next, we consider the case n = 2. We have from (7.6), (7.7) and (7.4) that

2
oz, <€ Mol <6 ol <CE.

[8@)] ;1 < | —v=@)@O)| ;i <CE, t>d. (7.29)
Let ¢; be as in (7.20). Using Holder’s inequality and Proposition 2.3,

2k—1 2k—4

< wll sakll),gllﬁllqjdj lvlls . +llvllzs ||v|| s il o +||8||L4k vl
XIEJ‘ J / J
<K +(6k)’<+1(CE)2’<y4K+(4k)k+‘(CE)2k+‘ 2, (7.30)
ﬁ\UMW4HMI -HWMM +MMM1Mwﬁ”
X, 1€ J

J

<itej + (4k)k“(CE)2k(y £j +£3). (7.31)
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Inserting (7.30) and (7.31) into (7.17) and noticing that A; < c/E2, we have

| @ - f(w)HLi,/fez. <Ce( +yhc+ e+ (K +y* +67)g)). (7.32)

Hence (Cpk? < 1/4),
£j<2Cej 1 +xk+Ce(e;+¢)),  &=0 j=1,..K. (7.33)
By the same reason as above, we have

luls  <Ck. (734)

x,teld,00)

But this contradicts the fact ||u]| ;s oo > Cg. This finishes the proof of Lemma 6.1. O
X,l€|B,o0

As indicated in Section 6, it follows from Lemma 6.1 that Theorem 1.1 holds true. It is easy
to see that the arguments in Sections 4—7 can be developed to the nonlinearity as in (1.2a), which
implies that Theorem 1.3 holds.

Final remark. The idea of this paper can also be developed to the modified sinh-Gordon equation
Uy — Au ~+ (sinhu — u3 /3! —u’ /5! = 0.
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