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SUMMARY

In this paper, we establish the global well posedness of the Cauchy problem for the Gross–Pitaevskii
equation with a rotational angular momentum term in the space R2. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The Gross–Pitaevskii equation (GPE), derived independently by Gross [1] and Pitaevskii [2], arises
in various models of nonlinear physical phenomena. This is a Schrödinger-type equation with an
external field potential Vext(t, x) and a local cubic nonlinearity:

ih̄�t u + h̄2

2m
�u = Vextu + �|u|2u (1)

The GPE (1) in physical dimensions (two and three dimensions) is used in the meanfield quantum
theory of Bose–Einstein condensate (BEC) formed by ultracold bosonic coherent atomic ensembles.
Recently, several research groups [3–6] have produced quantized vortices in trapped BECs, and
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a typical method they used is to impose a laser beam on the magnetic trap to create a harmonic
anisotropic rotating trapping potential. The properties of BEC in a rotational frame at temperature
T being much smaller than the critical condensation temperature Tc [7] are well described by
the macroscopic wave function u(t, x), whose evolution is governed by a self-consistent, mean
field nonlinear Schrödinger equation (NLS) in a rotational frame, also known as the GPE with an
angular momentum rotation term:

ih̄�t u + h̄2

2m
�u = V (x)u + NU0|u|2u − �Lzu, x ∈ R3, t�0 (2)

where the wave function u(t, x) corresponds to a condensate state, m is the atomic mass, h̄
is the Planck constant, N is the number of atoms in the condensate, � is the angular velocity
of the rotating laser beam, and V (x) is an external trapping potential. When a harmonic trap
potential is considered, V (x)= (m/2)(�2

1x
2
1 + �2

2x
2
2 + �2

3x
2
3) with �1, �2 and �3 being the trap

frequencies in the x1-, x2- and x3-direction, respectively. The local nonlinearity term NU0|u|2u
arises from an assumption about the delta-shape interatomic potential. U0 = 4�h̄2as/m describes
the interaction between atoms in the condensate with as (positive for repulsive interaction and
negative for attractive interaction) the s-wave scattering length, and Lz = −ih̄(x1�x2 − x2�x1) is the
third component of the angular momentum L = x × P with the momentum operator P =−ih̄∇.

After normalization, proper nondimensionalization and dimension reduction in certain limiting
trapping frequency regime [8], it turns to be the dimensionless GPE in d-dimensions (d = 2, 3):

iut + 1
2�u = Vd(x)u + �d |u|2u − �Lzu, x ∈ Rd , t>0 (3)

where Lz = i(x1�x2 − x2�x1) and

�d =
⎧⎨
⎩�

√
�z/2�

�
, Vd(x)=

{
(�21x

2
1 + �22x

2
2)/2, d = 2

(�21x
2
1 + �22x

2
2 + �23)/2, d = 3

(4)

with �1>0, �2>0 and �3>0 constants, �= 4�as N/a0, a0 = √
h̄/m�m and �m = min{�1, �2, �3}.

In general, it is a rather complicated process about the dynamics of solutions (in particular,
vortex) for GPE (2) under the interaction of trapping frequencies and angular rotating motion. The
recent numerical simulation of GPE (2) for different choice of trap frequencies (�1, �2) can help
us to understand the complicated dynamical phenomena caused by the angular rotating and spatial
high-frequency motion. The case of different frequency �1 �= �2 gives much complicated behavior
and thus is rather difficult to be studied rigorously [9, 10]. To our knowledge, Equation (2) has
been only investigated for some specific cases by numerical simulation. Therefore, to develop
methods for constructing analytical solutions of the GPE (1) or some specific cases is the first step
in order to understand the dynamics caused by the trapping and rotation.

To begin with, we first consider the case �1 = �2 = � that means the spatial isotropic motion
and focus on the Cauchy problem of the GPE with an angular momentum rotational term in two
dimensions:

iut + 1
2�u = �2

2
|x |2u + �|u|2�u − �Lzu, x ∈ R2, t�0 (5)

u(0, x) = u0(x), x ∈ R2 (6)
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WELL POSEDNESS FOR ROTATING GPE 657

where the wave function u = u(t, x) : [0,∞) × R2 → C corresponds to a condensate state, � is
the Laplace operator on R2, �>0, �>0 and � ∈ [1/�, ∞) are constants, and Lz = −i(x1�x2 −
x2�x1) = i(x2�x1 − x1�x2) is the dimensionless angular momentum rotational term [9, 10]. We
assume that the initial value

u0(x)∈ � := {u ∈ H1(R2) : |x |u ∈ L2(R2)} (7)

with the norm

‖u‖� =‖u‖H1 + ‖|x |u‖L2

It is clear that (5) is a special case of (3) with a spatial isotropic trapping frequency (i.e. �1 = �2)
and � =� in two-dimensions. Note that for multi-dimensional GPE (2), nothing is known about
the exact integration except for the case when �1 = �2 (= �3 for three dimensions) without the
angular momentum rotational term, namely, �= 0 considered in [11, 12].

There are three ingredients that play important roles in the proof of our result. The first involves
the solution of the Cauchy problem to the linear equation:

iut + 1

2
�u = �2

2
|x |2u − �Lzu, x ∈ R2, t�0

u(0, x) = u0(x), x ∈ R2

(8)

which is significant for investigating the properties of the evolution operator corresponding to the
linear operator:

i�t + 1

2
� − �2

2
|x |2 + �Lz

The second one is to obtain the Strichartz estimates for the foregoing linear operator. The last one
is that there exist two Galilean operators J (t) and H(t) (as below) that can commute with the
linear operator and can be viewed as the substitute of ∇ and x , respectively, in the nonpotential
case.

Now we state the main result of this paper.

Theorem 1.1
Let u0 ∈ � and �∈ [2,∞). Then, there exists a unique solution u(t, x) to the Cauchy problem
(5)–(6). And the solution satisfies, for any T ∈ (0,∞), that

u(t, x), J (t)u(t, x), H(t)u(t, x) ∈C(R; L2(R2))∩ L�(�)(0, T ; L�(R2)) ∀t ∈ [0, T ]
where 1/�(�) = 1

2 − 1/�, J (t) and H(t) are defined as below as in (15) and (16), respectively.

Remark 1.2
Since the GPE (5) (or (3)) in a rotational frame is time reversible and time transverse invariant,
the above result is also valid for the case when t<0.

The paper is organized as follows. In Section 2, the evolution operator of the linear equation and
the Strichartz estimates about the former operator are first established. Section 3 is devoted to the
derivation of some conservation identities, such as the mass, the energy, the angular momentum
expectation, the pseudo-conformal conservation laws in the whole space R2 for (5)–(6). Finally,
the nonlinear estimates and the proof of Theorem 1.1 are obtained in Section 4.
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2. THE STRICHARTZ ESTIMATES AND SOME MAIN OPERATORS

Let u(t) be the solution of the linear equation (8), then by a computation, it can be expressed as

u(t) = S(t)u0 = �

2�i sin(�t)

∫
R2

ei�((|x−y|2/2) cot(�t)−x⊥·y)u0(y) dy (9)

where x⊥ := (−x2, x1) and S(t) is the evolution operator that can be formally written as S(t) :=
ei(t/2)(∇−i�x⊥)2 . This formula, which can be deduced from the three-dimensional NSE with a
magnetic field discussed in [13, Section 9.1, 14], defines a operator S(t), unitary on L2. Note
that this formula is valid only for small time, due to the singularity formation for the fundamental
solution. For this NSE, Strichartz estimates are available. These estimates, mixed time–space
estimates, are exactly the same as for S0(t) = e(i/2)t�. Recall the main properties from which such
estimates stem. The operator S(t) is unitary on L2, ‖S(t)‖L2→L2 = 1. In fact, by the Plancherel
theorem, we have for any �∈ L2

‖S(t)�‖2 = �

2�| sin�t |
∥∥∥∥
∫

R2
ei�((|x−y|2/2) cot(�t)−x⊥·y)�(y) dy

∥∥∥∥
2

= �

2�| sin�t |
∥∥∥∥ei�|x |2 cot(�t)/2

∫
R2

ei�(x cot(�t)−x⊥)·yei�(|y|2/2) cot(�t)�(y) dy

∥∥∥∥
2

= �

| sin�t |
∥∥∥[F−1(ei�(|y|2/2) cot(�t)�(y))](�(x cot(�t) − x⊥))

∥∥∥
2

= ‖F−1(ei�(|y|2/2) cot(�t)�(y))‖2 =‖ei�(|y|2/2) cot(�t)�(y)‖2
= ‖�‖2

And for 0<t��/2�, the operator is dispersive, with ‖S(t)‖L1→L∞�(1/4)|t |−1, since |sin t |�
(2/�)|t | for |t |��/2. Thus, we can obtain similar Strichartz estimates to the linear Schrödinger
operator ei(t/2)� by the standard methods (cf. [15]) provided that only finite time intervals are
involved (cf. [12]).

Proposition 2.1
Let I be an interval contained in [0, �/2�]. Then, it holds that
(1) For any admissible pair (�(p), p) (that is, 1/�(p) = 1/2 − 1/p for 2�p<∞), there exists

Cp such that for any � ∈ L2

‖S(t)�‖L�(p)(I ;L p)�Cp‖�‖L2 (10)

(2) For any admissible pairs (�(p1), p1) and (�(p2), p2), there exists Cp1,p2 such that∥∥∥∥
∫
I∩{s�t}

S(t − s)F(s) ds

∥∥∥∥
L�(p1)(I ;L p1 )

�Cp1,p2‖F‖
L�(p2)′ (I ;L p′2 )

(11)

The above constants are independent of I ⊂ [0, �/2�].
Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:655–664
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The integral equation reads

u(t) = S(t)u0 − i�
∫ t

0
S(t − s)|u|2�u(s) ds (12)

Since the initial data belong to the space �, we naturally need the estimates of ∇S(t)� and
xS(t)�. In fact, from (9), we can compute and obtain that

∇S(t)�= i�x cot(�t)S(t)� − i� cot(�t)S(t)(x�) + i�S(t)(x⊥�)

and

S(t)∇⊥� = i�x⊥ cot(�t)S(t)� − i� cot(�t)S(t)(x⊥�) − i�xS(t)�

S(t)∇� = i�x cot(�t)S(t)� − i� cot(�t)S(t)(x�) + i�x⊥S(t)�

which yield to

∇S(t)� = cos(�t)S(t)(cos(�t)∇ − sin(�t)∇⊥)�

−i� sin(�t)S(t)[(cos(�t)x − sin(�t)x⊥)�] (13)

xS(t)� = cos(�t)S(t)[(cos(�t)x − sin(�t)x⊥)�]

− i

�
sin(�t)S(t)(cos(�t)∇ − sin(�t)∇⊥)� (14)

Thus, we have

S(t)(−i∇)� = [� sin(�t)(cos(�t)x + sin(�t)x⊥) − i cos(�t)(cos(�t)∇ + sin(�t)∇⊥)]S(t)�

and

S(t)�x� = [� cos(�t)(cos(�t)x + sin(�t)x⊥) + i sin(�t)(cos(�t)∇ + sin(�t)∇⊥)]S(t)�

For convenience of computations, we denote

J (t) =� sin(�t)(cos(�t)x + sin(�t)x⊥) − i cos(�t)(cos(�t)∇ + sin(�t)∇⊥) (15)

and the corresponding ‘orthogonal’ operator

H(t) =� cos(�t)(cos(�t)x + sin(�t)x⊥) + i sin(�t)(cos(�t)∇ + sin(�t)∇⊥) (16)

which will appear in the pseudo-conformal conservation law and play a crucial role in the nonlinear
estimates.

Thus, we obtain

J (t) = S(t)(−i∇)S(−t), H(t) = S(t)�xS(−t)

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:655–664
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By computation, we can obtain the following commutation relation[
J (t), i�t + 1

2
� − �2

2
|x |2 + �Lz

]
= 0

[
H(t), i�t + 1

2
� − �2

2
|x |2 + �Lz

]
= 0

(17)

In addition, denote M(t) = e−i�(|x |2/2) tan(�t) and Q(t) = ei�(|x |2/2) cot(�t), then

J (t) = −i cos(�t)M(t)(cos(�t)∇ + sin(�t)∇⊥)M(−t)

H(t) = i sin(�t)Q(t)(cos(�t)∇ + sin(�t)∇⊥)Q(−t)
(18)

3. THE CONSERVED QUANTITIES

Proposition 3.1
Let u be a solution of Equation (5) with the initial data �∈ �(R2). Then, we have the following
conserved quantities for all t�0:

(1) The L2-norm:

‖u(t)‖2 =‖u0‖2 (19)

(2) The energy for the nonrotating part:

E0(u) = 1

2
‖∇u‖22 + �2

2
‖xu‖22 + �

� + 1
‖u‖2�+2

2�+2 = E0(u0) (20)

(3) The angular momentum expectation:

〈Lz〉(t) =
∫

R2
ūLzu dx =〈Lz〉(0) (21)

Proof
For convenience, we introduce

eq(u) := iut + 1

2
�u − �2

2
|x |2u − �|u|2�u + �Lzu

It is clear that (19) holds by applying the L2-inner product between eq(u) and ū, and then taking
the imaginary part of the resulting equation.

Since we can use identity (21) in the proof of (20), we derive (21) first. Differentiating 〈Lz〉(t)
with respect to t , and integrating by parts, we have

d〈Lz〉(t)
dt

= i
∫

R2
[ūt (x2�x1u − x1�x2u) + ū(x2�x1ut − x1�x2ut )] dx

=
∫

R2
[−iut (x2�x1u − x1�x2u) − iut (x2�x1 ū − x1�x2 ū)] dx

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:655–664
DOI: 10.1002/mma



WELL POSEDNESS FOR ROTATING GPE 661

=
∫

R2

[(
1

2
�ū − �2

2
|x |2ū − �|u|2�ū + �Lzū

)
(x2�x1u − x1�x2u)

+
(
1

2
�u − �2

2
|x |2u − �|u|2�u + �Lzu

)
(x2�x1 ū − x1�x2 ū)

]
dx

=
∫

R2
Re(�u(x2�x1 ū − x1�x2 ū)) − �2

2
(|x |2(x2�x1 |u|2 − x1�x2 |u|2))

−�Re(|u|2�(x2�x1 |u|2 − x1�x2 |u|2)) dx

= �2

2

∫
R2

(2x1x2|u|2 − 2x2x1|u|2)) dx

= 0

which yields the desired identity (21).
Next, we prove the energy conservation law for the nonrotating part (20). We consider

Re(eq(u), ut ) = 0

where (·, ·) denotes the L2-inner product. From the above, we can get∫
R2

[
1

2
�t |∇u|2 + �2

2
�t |xu|2 + �

� + 1
�t |u|2�+2 + �

2
�t (ūLzu)

]
dx = 0

which implies the identity (20) with the help of (21). �

Remark 3.2
For Equation (5), the pseudo-conformal type conservation laws are also valid:

‖H(t)u‖22 + 2� sin2(�t)

� + 1
‖u‖2�+2

2�+2 + 2�[�� − 1]
� + 1

∫ t

0
sin 2�s‖u(s)‖2�+2

2�+2 ds = �2‖xu0‖22
and

‖J (t)u‖22 + 2� cos2(�t)

� + 1
‖u‖2�+2

2�+2 = ‖∇u0‖22 + 2�

� + 1
‖u0‖2�+2

2�+2

+2�[�� − 1]
� + 1

∫ t

0
sin 2�s‖u(s)‖2�+2

2�+2 ds

4. NONLINEAR ESTIMATES AND THE PROOF OF THEOREM 1.1

By computation, we can get, with the help of (18),

J (t)|u|2�u = (� + 1)|u|2� J (t)u − �|u|2�−2u2 J (t)u

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:655–664
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which implies, in view of 1/�′ + ε = 2�/q + 1/� with 0<ε<1/�, that

‖J (t)|u|2�u‖L(�/(1−�ε))′ �C‖u‖2�Lq‖J (t)u‖L�

From the Sobolev embedding theorem and the Hölder inequality, it yields

‖J (t)|u|2�u‖L�(�/(1−�ε))′ (0,T ;L(�/(1−�ε))′ )

�CT 1−ε−2/�(�)‖u‖2�L∞(0,T ;H1)
‖J (t)u‖L�(�)(0,T ;L�)

Similarly, we have

‖H(t)|u|2�u‖L�(�/(1−�ε))′ (0,T ;L(�/(1−�ε))′ )

�CT 1−ε−2/�(�)‖u‖2�L∞(0,T ;H1)
‖H(t)u‖L�(�)(0,T ;L�)

and

‖|u|2�u‖L�(�/(1−�ε))′ (0,T ;L(�/(1−�ε))′ )�CT 1−ε−2/�(�)‖u‖2�L∞(0,T ;H1)
‖u‖L�(�)(0,T ;L�)

For convenience, we denote

|||u|||A := ‖u‖A + ‖J (t)u‖A + ‖H(t)u‖A

where A denotes a normalized space. Thus, we have

||||u|2�u|||L�(�/(1−�ε))′ (0,T ;L(�/(1−�ε))′ )

�CT 1−ε−2/�(�)‖u‖2�L∞(0,T ;H1)
|||u|||L�(�)(0,T ;L�) (22)

For any �∈ [2,∞) and M�2C‖u0‖�, define the workspace (D, d) as

D := {u : |||u|||L∞(0,T ;L2) ∩ L�(�)(0,T ;L�)�M}
with the distance

d(u, v) = |||u − v|||L�(�)(0,T ;L�)

It is clear that (D, d) is a Banach space. Let us consider the mapping T : (D, d)→ (D, d)

defined by

T : u(t) �→ S(t)u0 − i�
∫ t

0
S(t − s)|u|2�u(s) ds

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:655–664
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For u ∈ (D, d), by the commutation relation (17), Proposition 2.1 and the nonlinear estimate (22),
we obtain

|||Tu|||L�(�)(0,T ;L�) �C‖u0‖� + CT 1−ε−2/�(�)‖u‖2�L∞(0,T ;H1)
|||u|||L�(�)(0,T ;L�)

� M/2 + CT 1−ε−2/�(�)M2�M

� M (23)

where we have taken T ∈ (0, �/2�] so small that CT 1−ε−2/�(�)M2��1/2. Similar to the above, a
straightforward computation shows that it holds

d(Tu,Tv) �CT 1−ε−2/�(�)(‖u‖2�L∞(0,T ;H1)
+ ‖v‖2�L∞(0,T ;H1)

)|||u − v|||L�(�)(0,T ;L�)

�CT 1−ε−2/�(�)M2�d(u, v)

� 1
2d(u, v) (24)

Hence,T is a contracted mapping from the Banach space (D, d) to itself. By the Banach contraction
mapping principle, we know that there exists a unique solution u ∈ (D, d) to (5)–(6). In view of
the conservation laws, we can use the standard argument to extend it uniquely to a solution at the
interval [0, �/2�] that satisfies for any t ∈ [0, �/2�] and � ∈ [2,∞)

u(t, x), J (t)u(t, x), H(t)u(t, x)∈C(0, �/2�; L2(R2))∩ L�(�)(0, �/2�; L�(R2))

Then, we can extend the above solution to a global one by translation. In fact, in order to get the
solution in the interval (�/2�, �/�], we can apply a translation transformation with respect to the
time variable t such that the initial data u(�/2�) are replaced by ũ(0). Let ũ(t, x) := u(t−�/2�, x),
then we have from the original equation with initial data u(�/2�, x)

iũt + 1

2
�ũ = �2

2
|x |2ũ + �|ũ|2�ũ − �Lzũ, x ∈ R2, t�0 (25)

ũ(0, x) = ũ0(x) := u(�/2�, x), x ∈ R2 (26)

In the same way, we can get a solution ũ(t, x) of (25)–(26) for t ∈ [0, �/2�]. It is also a solution
u(t, x) of (5)–(6) for t ∈ [�/2�, �/�] and it is unique. Thus, by an induction argument with the
help of those conserved identities stated in Proposition 3.1, we can obtain a global solution u(t, x)
of (5)–(6) satisfying for any T ∈ (0,∞)

u(t, x), J (t)u(t, x), H(t)u(t, x)∈C(R; L2(R2))∩ L�(�)(0, T ; L�(R2))

Therefore, we have completed the proof of the main theorem. �
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13. Cazenave T. Semilinear Schrödinger Equations. Courant Lecture Notes on Mathematics, vol. 10, New York

University. Courant Institute of Mathematical Sciences/American Mathematical Society: New York/Providence,
RI, 2003.

14. Avron J, Herbst I, Simon B. Schrödinger operators with magnetic fields, I. General interactions. Duke Mathematical
Journal 1978; 45:847–883.

15. Keel M, Tao T. Endpoint Strichartz estimates. American Journal of Mathematics 1998; 120:955–980.
16. Borisov A, Shapovalov A, Trifonov A. Transverse evolution operator for the Gross–Pitaevskii equation in

semiclassical approximation. Symmetry, Integrability and Geometry: Methods and Applications 2005; 1:1–17.
17. Zhang YZ, Bao W. Dynamics of the center of mass in rotating Bose–Einstein condensates. Applied Numerical

Mathematics 2007; 57:697–709.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:655–664
DOI: 10.1002/mma


