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1. Introduction

In the present paper, we consider the Cauchy problem of the following compressible Navier-
Stokes-Poisson equations

pr +div(pu) =0,

(pu)¢ +div(pu®u) + VP(p) = pVep + nAu+ (u + A1) Vdivu,
Ap=p—p,

(0, w(0) = (po, uo),

for (t,x) € [0,4+00) x RN, N >3. p, u and ¢ denote the electron density, electron velocity and the
electrostatic potential, respectively. P(p) = % pY is the pressure with y =2. u, A are the constant
viscosity coefficients satisfying @ > 0 and 2 + NA > 0. The constant p stands for the density of
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positively charged background ions. The Navier-Stokes-Poisson system is a simplified model (for in-
stance, the energy equation is not taken into granted) to describe the dynamics of a charge transport
where the compressible charged fluid interacts with its own electric field against a charged ion back-
ground [5].

Recently, many interesting researches have been devoted to many topics of the compressible
Navier-Stokes-Poisson (NSP) system. The global existence of weak solutions of the compressible NSP
system subject to large initial data is shown [7,18]. The quasi-neutral limits and related combining
asymptotical limits are proven [6,8,12,17]. In the case that the potential force representing the self-
gravity in stellar gases, the global existence of weak solutions and asymptotical behaviors are also
investigated recently, and the stability analysis for compressible Navier-Stokes-Poisson and related
systems is also carried out, refer for instance to [9-11,14] and references therein.

The global existence of the classical solution is shown recently [13] in terms of the framework by
Matsumura and Nishida. In addition, the influence of the electric field is justified, which affects the
dissipation of the viscosity and the time-decay rate of global solutions of IVP (1.1) to the equilibrium
state (0, 0), namely,

G(1+073 <[ (0= PO 2y CA+D T, (1.2)

c1(1+07% < [m®) s, < CA+073, (13)

where the decay rate of the momentum or the velocity is slower than the rate (1 —|—t)_% for compress-
ible Navier-Stokes equations. A natural question follows then, that is, whether the similar phenomena
can be shown for global weak solutions or strong solutions with lower regularity.

To this end, the first step is to show the global existence of strong solutions in some Besov space
with lower regularity. In this paper, with the help of the classical Friedrichs’ regularization method,
Littlewood-Paley analysis and hybrid Besov spaces, we are able to construct the approximate solu-
tions, obtain the a priori estimates in hybrid Besov spaces, and prove the global existence of the
unique strong solution by the compactness arguments as in [1,3,15]. Indeed, in terms of the div-curl
decomposition we can decompose the velocity vector field into a vector field of the compressible part
and an incompressible part. Then, the original compressible system for the density and the velocity
can be decoupled into a system involving only the compressible system for the ir-rotational (com-
pressible) part of velocity vector field and the electron density and the diffusion equation for the
divergence free (incompressible) part of velocity vector field as used in [3]. Thus, we can investigate
the compressible velocity field part and the incompressible velocity field part separately to get the
expected estimates in some hybrid Besov spaces. As one can see later, however, the appearance of
the electric field leads to the rotational coupling effect and the loss of regularity of density and the
velocity vector field.

For simplicity, we only deal with the case y =2, the arguments used here can be applied to show
the global existence for general > 1. We have the main theorem as follows.
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Theorem 1.1.Let N >3,y =2, u > 0and 2t + NA > 0. Assume pp — p € B
Then, there exist two positive constants o small enough and M such that if
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and satisfies

o= b0 0)] <Moo =PIy g5 +luoll_y 3.y.,).
2,1

where M is independent of the initial data and the hybrid space B3'} = B3'; N B3, for s1 < s2.

The paper is organized as follows. We recall some Littlewood-Paley theories for homogeneous
Besov spaces and give the definitions and some properties of hybrid Besov spaces in the second
section. In Sections 3-4, we are dedicated into reformulation of the system and proving a priori
estimates for a linearized system with convection terms. In Section 5, we prove the global existence
and uniqueness of the solution.

2. Littlewood-Paley decomposition and Besov spaces

Let ¢ : RN — [0, 1] be a radial smooth cut-off function valued in [0, 1] such that

1, §1<3/4,
Y (&) ={ smooth, 3/4 < |&]| <4/3,
0, &1 > 4/3.

Let ¢ (&) be the function

&) :=v(/2) =¥ ().

Thus, v is supported in the ball {£ e RN: |£] <4/3}, and ¢ is also a smooth cut-off function valued
in [0, 1] and supported in the annulus {£ € RN: 3/4 < |&| < 8/3}. By construction, we have

Do) =1, ve#o0.

keZ

One can define the dyadic blocks as follows. For k € 7Z, let

Mf=F p(27) F f.

The formal decomposition

F=Y 0f (21)

keZ

is called homogeneous Littlewood-Paley decomposition. Actually, this decomposition works for just
about any locally integrable function which has some decay at infinity, and one usually has all the
convergence properties of the summation that one needs. Thus, the r.h.s. of (2.1) does not necessar-
ily converge in .#/(RN). Even if it does, the equality is not always true in ./(RN). For instance,
if f =1, then all the projections A f vanish. Nevertheless, (2.1) is true modulo polynomials, in
other words (cf. [4,16]), if f e ./(RN), then Y, , Axf converges modulo Z2[RN] and (2.1) holds
in ./ (RN)/ 2[RN].

Definition 2.1. Let se R, 1 < p, g < 0. For f € 5”(]1%”), we write

Iflls =D 212k fll2-

keZ
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A difficulty comes from the choice of homogeneous spaces at this point. Indeed, | - || B, cannot

be a norm on {f € ¥ (RN): ||f||Bs < oo} because ||f||Bs =0 means that f is a polynomlal This
enforces us to adopt the following deﬁmtlon for homogeneous Besov spaces (cf. [3]).

Definition 2.2. et sc R and m = —[g +1 —s]. If m <0, then we define Bi’l(RN) as
B%l_{er(RN) ”f”Bs <ooandu—ZAkf mﬂ(Rz)}
keZ

If m > 0, we denote by &7, the set of two variables polynomials of degree less than or equal to m
and define

2]_{er’(RN)/33m s <ooand u=) Arf my/(RN)/@m}
keZ

For the composition of functions, we have the following estimates.

Lemma 2.3. (See [3, Lemma 2.7].) Let s > 0 and u € B; 1 ML, Then, it holds:

(i) Let F € Wl[gl+2’°°(RN) with F(0) =0. Then F(u) € B; 1- Moreover, there exists a function of one variable

Co depending only on s and F, and such that

[Fa g, < Collullie)lullps -

LN .
(ii) Ifu,v 6.322’1, (v—u)e B;] forse (=X 5 ] and G € Wloc (]RN) satisfies G'(0) =0, then G(v) —
G(u) e BSZ’1 and there exists a function of two variables C depending only on s, N and G, and such that

|Gv) - G(“)HB;1 < C(llullre, IIVIILW)(IIUIIBg +vil y)lv —ullgs -

2,1 BZ,]
We also need hybrid Besov spaces for which regularity assumptions are different in low frequen-

cies and high frequencies [3]. We are going to recall the definition of these new spaces and some of
their main properties.

Definition 2.4. Let s, t € R. We define

1l =D 2N Ak flli2 + 3 2N Ak fll 2.

k<0 k>0

Let m= —[% + 1 —s], we then define

(ol

STRY) ={f e &' (RY): ||f||[;,;r1 <oo}, ifm<0,
B\ (RY) = {f € 7' (RY)) Pm: Ifllgs: < oo}, ifm=0.
Lemma 2.5. We have the following inclusions for hybrid Besov spaces.

. nS,S D
(i) We have B, = Bj ;.
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(i) Ifs <t then E;’fl = BS | N BY, ;. Otherwise, B%ﬂ =B5  + B,
(iii) The space Bg’i coincides with the usual inhomogeneous Besov space B ,
iv) If s <sz and t1 > ty, then B3 < B52 2.
2.1

Let us now recall some useful estimates for the product in hybrid Besov spaces.

Lemma 2.6. (See [3, Proposition 2.10].) Let sy, s, > O and f, g € L N B3, Then fg € B3';* and
||fg||351 2 Sl ||g||le s+ ||f||g$1 521181

Letsy, sy, t1,ty < %such that min(sq 452, t1+t2) > 0, f € le Handg e BS2 2 Then fg e le+52 Lott-1
and

||fg||§;11+5277 [1+t27% ~ ||f|| S1 [1 “g”'"SZ .

For o, B € R, let us define the following characteristic function on Z:

o, ifr<o,

~a’ﬁ —
g {,8, ifr>1.

Then, we can recall the following lemma.

Lemma 2.7. (See [3, Lemma 6.2].) Let F be a homogeneous smooth function of degree m. Suppose that —N /2 <
s1,t1, 52, t2 <1+ N/2. The following two estimates hold:

|(F(D)Ak(v - Va), F(D)Aga)| S 2 K@ 2 0=m 1y Jllalps [FD) A2,
21

|(F(D)Ak(V - Va), Agb) + (Ak(v- VD), F(D)Aga))|

— ) — — S ,S f—
Salvl g, x (2 @ IFD) s bl g0 + 27O al g2 |18k 2)

21

where (-,-) denotes the L?-inner product, the operator F(D) is defined by F(D)f := .F 1F(§).% f and
ZkeZ <1

3. Reformulation of the original system
Let p = p — p. Then (1.1) can be rewritten as

pr+u-Vp+ pdivu=—pdivu,
w+u-Vu—p 'uAu— 5 N+ 1)Vdivu+ Vj — Vo
(3.1)

0 .
—=  —_ Au+(M+)\.)leVU s
p(p+p) (k )
A = p.

Denote ASz:=.Z 1|g|°%z for all s € R. Let c = A~ divu be the “compressible part” of the ve-
locity and I = A~ curlu be the “incompressible part.” Then, we have

u=-A"1ve - A ldivl,
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since divdivI=0. In fact,
divi= A 'diveurlu= A~ (Au — Vdivu),
which yields
divdivi= A~ div(Au — Vdivu) = A~ (div Au — A divu) = 0.
Moreover,

curldivl = AL

The first equation in (3.1) is changed into
Pr+u-Vp+ pAc=—pdivu. (3.2)
For the second equation in (3.1), applying A~!div and A~ curl to both sides, respectively, we get

ct—p ' RUAMNAc—Ap—AT1p

1 o .
=—A 1le U‘vu+”—_ Au+ +)\, Vdivu },
{ P+ p) (1 () ) (3.3)
__ _ p .
I—p 'uAl=—A 1curl{u- Vu+ ——(nuAu+ (u+ 1) Vdivu }
t G )
where we have used the fact
curl Vf = (aja,-f — 81-8jf)1~j =(0);j;=0
for any function f.
Because the first equation of (3.3) involves A~!p, we denote h = A~!5. Then, we have
he + A~'(u-VAh) + pc =F,
) _ a1 CA2h _h—
ce+u-Ve—p ' Q2u+A)Ac— Ah—h =G, (3.4)

I —p 'uAl=H,
u=-A"1Ve - A ldivl,

where

F=-A"'(Ahdivu), G=u-Vc—A"'div], H=—-Alcurl],

J=u-Vu+ — ~'0

— (A AV di .
55+ AU (DY divy)

The third equation is, up to nonlinear terms, a mere heat equation on I. We therefore expect to
get appropriate estimates for the incompressible part of the velocity via the following lemma.
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Lemma3.1.lets e R, r € [1, +0o0], and u solve

{ut_p_ll"LAuzf’
u(0) = up.

Then there exists C > 0 depending only on N, p~'w and r such that, forall 0 < T < +o0
Il gsvarny < CIollgg  + 11y o ).

Moreover, u € C([0, T]; 352,1)-

For the first two equations, which is a linear coupling system, we can use the following proposi-
tion.

Proposition 3.2. Let (h, c) be a solution of

—1y . 5 —
{ht+A (V-VAh) +pc=F (35)

cte+v-Ve—p 'Qu+1)Ac—A?h—h=G

n[0,T), 3—N)/2<s<(N+1)/2and V(t) = /o V()| ~ _+1 dt. The following estimate holds on [0, T):

21

t

Hh(t)H~s 1S+3 + Hc(t)H~s 15— +/ |h(r)”~5+1 S+3 + ”C(T)H S+ls+ )dT

By, By,
0

21 21 21 21

t
<C CV(t)(Hh(O)||~s ls+3 + ||C(O)” s 1,s— 2 +/ _CV(T)(||F(T)||~S 15+3 + HG(T)” s 1.s— Z)d‘[)’
0

where C depends only on N and s.

Let us define the functional space for 2 — N/2 <s < N/2 +1:

_C(R": B B 2 S+ (B;—]%,S—I)N) (]R* ( s+2 s+1)1+N)’

2.1
||<h»u>||Es =Rl g Uy IR U e (36)
LOO(BZ,I ) LOO(BZ,] ) ! 2,1 ! 2,1 )
When the time variable t describes a finite length interval [0, T], we will denote by E% and | - | ES

the corresponding spaces and norms.

4. The estimates for the linear model

_This section is devoted to the proof of Proposition 3.2. Let (h, c) be a solution of (3.5) and denote
f:=e XVOf for any function f. Then the system (3.5) can be transformed into the following form:

he+ A=Y (v-VAh) + p&=F —KV'(t)h,

By (4.1)
G4+v-VE—p12u +A)Ac —A2h—h=G - KV'(t)é.

Applying the operator A to the system (4.1) and denoting f := Ay f, we have the following
system
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dhy + A~1 (V- VA + per = Fx — KV (O)hy,

J - (4.2)
3+ V-V — p 12U + 1) AS, — A%hy — hy = G — KV (£)&y.
4.1. Low frequencies (k < 0)

Taking the L2 scalar product of the first equation of (4.2) with hy, of the second equation with &,
we get the following two identities:

1d - - - . ~ N

5 e IMllEz + i o) = (Fie i) = KV @ 1ill, = (A7 (v VAR, By,

1d . __ . ~ - ~

S T + 57" @+ WIS — (A, A0 — (i &) (43)

= (Gr. &) — KV'OlIEk 1% — (V- Ve, &).

Now we want to get an equality involving Ahy. To achieve it, we take L? scalar product of the first

equation of (4.2) with A%hy, A%h, and A%& and of the second equation with A2k, and then sum
the last two resulting equalities, which yields, with the Plancherel theorem, that

| &

I ARK|IZ, + P(AEy, Ahy)

N —
Q

t
] = (AFp. Ah) = KV Ol A2, — ((v- VAR, Aly), a4
d ~ L L ~ . ~ 2 ~ ’

oo (A% &) + I AT, + 7 @u 1) (A%he, A%8) — | A2z — | Al
= (AFy, A&) — 2KV'(t)(A%hy, &) — (V- VAR, A8k) + (AGk, Ahy) — (A(V- VE), Ahy).

A linear combination of (4.3) and (4.4) yields

1dl1 - 1 - i . - i
2dr [5 il 7> + ;llAhkllfz + 1812, — 2K1 (A%hy, ck)] + Ky | A%R|| 72 + Kl Ahg |12,

+ [P @u+ 1) = pK Il AGK T, — 57 @+ WK (AR, AEL)

_1
P
— (- VAR, Ah)] + (G, &) = KV OISk, — ((v- VN, &)

I - .~ 1 - - -
[(Fx. i) = KV @O llhel|2, = (A7 (v - VAR, ) | + 5[(AF,<, Ah) = KV ()| ||

— K1[(AFy, AZy) + (AGy, Ahy) — 21<v’(t)(AZEk, k) — ((v- V Ah)y, ASy) — (A(V- VO, Aﬁk)].

Noticing that || Ahyll 2 < §2K|IRy ]2 < lhkll2 for k <0, we have

- 32M - 1
(A%, &) | < =5 ARkl + Mnckniz,

- B 32M ~ 1 -
(AP, 28| < =52 [ A% > + oz 48T

Thus, we have to choose K1, M1 and M, satisfying

73 32 _, V3

— —Z=p ' @u+MM2 >0, Ky <My <——,
64 9 8P
(2p + 1)Ky

————— >0

20+ A — p%K{ —
Mm+ TS| M,
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Hence, we can take

1 B 50
C16Q2u + A’

P2+ 1) 1 >

Kq =min| — )
1 (p3+2(2u+k)2 8./

Denote for k <0
L) 1= 0 ~ 2 27 =
= Sl + SR + 18l — 26 (4% &)
Then, there exist constants c3 and c4 such that

C1Otk ||hk||L2 + ||Ahk||,_z + ||Ck||L2 Czdk

Thus, there exists a constant ¢ such that for k <0

% ; a,f (622" +K V’)oz,f
1 ~ 1 - ~ - -
< = [(Fr i) — (AN (v VAR, i) ] + < [(AFk, Ahy) — ((v- VAR, ARy)]
P P
+ (Gk, &) — ((v- V&), &) — K1 [(AFy, AZk) + (AGy, Ahy)

— ((v- VAR, A&) — (A(V- Ve, Ahy)]. (4.5)
4.2. High frequencies (k > 0)

Taking the L? scalar product of the first equation of (4.2) with Aflk, of the second equation with
Acy, we get the following two identities:

HAzh,< 12, + (&, Al) = (Fi, Al — KV'© | A2 R |7, = ((v- V AR, ),

HAchHLz + 57 QuA+ V| AT &7 — (A2, A&) — (A, &)

N = N =

= (A7 Gk,Afék) KV (t)HAzckHLz — ((v- V&, A&).

Now we want to get an equality involving A3f1k. To achieve it, we take L? scalar product of the first

equation of (4.2) with A3hy, A%h, and A3&; and of the second equation with A3h; and then sum
the last two resulting equalities, which yields, with the Plancherel theorem, that

Q..|Q_

||A2 hk ” 2t /O(ACk, A hk)

N =

= (AFy, A%y) — KV | A2 Ry |2, — ((v- V AR), A%Ry),

”A2h1<”L2 + p(A%E, Ahy)

N —
Q..lg_

= (A%Fy, A3hy) — KV O] A3 R ||} — (Av- VAR, A%Ry),
d ~ _ 3 _ - B 5~ 3~
(R &) + AT + 57 @+ WA A%8) — [ AT} — A2}
= (AFy, A&y) — 2KV (6)(A3hy, &) — ((v- VAR, A%Ey)
+ (Aék, Azflk) — (A(V- V)i, Azﬁ]().
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A linear combination of (4.6) and (4.7) yields

1d[1, 1- 1, 3z 5 A e i, A28
EE[EHA%thiz At + 5@ ko | AR + a2 é —ZKZ(A%“"’A%C")}
n [,571(2[/“4-)») _/5K2]HA%6,<H; + KzHA%ﬁkHiz + KZHA%EkHiZ

1, - ~ 1~ - .
= —[(Fr, Al — KV' O] A7 Ry |7 — (- V AR, 1) ]

1

i
+5[(aF A%l — KV O] A2 Ry |2, — ((v- VAR, A%Ry)]

+p2Qu A+ MI[(A%F, A%hy) — KV/(t) HA%E,CH; (AW VARY, A3iy)]
+(A2G, ATE) — KV (O] A2 &5 — (A2 (v-VEN, A2 &)

_ Kz[(AZIEk, ASy) + (A%Gk, A%hk) _ ZKV/(t)(A%ﬂk, A%ék)

— (AW - VAR, A&) — (AW - VE), A%hy)].

Noticing that
~ - M 5~ 1 1.
(adhe, a2 < 52 [aThulz + 3| A2e
we have to choose K3, M3 such that

0<Ky<Msz<p2Qu+xr).

For example, we can take

Denote for k >0
o2 = %\\A%ﬁku; " %\\A%ﬁku; 24 K| ASR % + [ AT - 2Ka (A3 A2E).
Then, there are constants ¢y and ¢y such that
crof < | Azhe| G + [ A2 R[4 | AR + ] A2 & < caef.
Thus, by Bernstein’s inequality ||A2fzk|| 2 < %2"||Aﬁk|| 12, there exists a constant ¢ such that

1d -
5 Ea’% + (€ +KVha}
- - . 1 - - - -
< = [(Fy, Ahp) — ((v- VAR, b ) | + 5[(AF;<, A%hy) = ((v- VAh), A%hy)]

| =

+ 5 2Qu A+ WK (A7 Fro AZRy) — (A2 (V- VAR), AZy)]

1 ~ 1 _ 1 ~ 1.
+ (AZGy, A2&) — (A2 (V- VE), A2&y)
— Ka[(A? Fro A& + (A2 G, AZRy) — (AW - VAR, AS) — (AW VEY, A%)]. (48)
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Now, we combine (4.5) and (4.8). At this stage, we use Lemma 2.7 to estimate the terms involving
a convection in (4.5) and (4.8), and eventually get the existence of a sequence (yy)kez such that

ZkeZ Y <1 and

1d .
> dtak + (c m1n(22k, 1)+ I(V/)a,f
C)/kOlkz ke 1)[”(1: G)H~s ls+ ~S5— 1s—l +V H(h C)H s 1s+— ~s ls—%] (49)
By, Xle By, 2,1

where ¢ = min(c, ¢).
We are going to show that inequality (4.9) provides us with a decay for h and c. We actually have
a parabolic decay for c.

4.3. The damping effect for h

Let § > 0 be a small parameter (which will tend to 0) and denote ﬁ,f = a,f + 82. From (4.9) and
dividing by B, we get

iﬁk + (cmin(2%,1) + KV') By
<C)/k2 k(S U[H(F G)” s ls+3 ~s—1,5— +V ||(h C)” s ls+3 ~s ls—%]
21 BZ,l 21 2,1

+8(cmin(2%,1) + KV'). (4.10)
Integrating over [0, t] and making & tend to 0, we have

t
ai(t) +cmin(2%, 1) / o (T)dt
0

t
< @ (0) + 27D / HOIE O] iy reydt

0 Byy 2% 2,1
t
+fV/(r) [C27* Dy )| (R, &) R R — Kay(1)]dr. (4.11)
0 B, 4 ><321
By the definition of oz,f, we have for any k € Z
_ _ 3 ~ _ ky o~
2K Do ~ 2K~ max (1, 22%) 1|12, + 2567 max(1,22) |1 & 1%, (4.12)

Thus, we can take K large enough such that

22 @] iz ey — Ken®] <0

keZ 21 2 x 2,1

Multiplying both sides of (4.11) by 2k6—1 . According to the last inequality, and due to (4.11) and
(4.12), we conclude after summation on k in Z, that
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O sy + 1200 sy +e JIR@ g+ 3 f 2D min(27 1) &0 dv

2 1 keZ 0

< | (h(0), &) et} et /H(F G)(r)H RRTIE T dr. (4.13)

B, 1 xB, 4 xBj1

4.4. The smoothing effect for ¢

Once stated the damping effect for h, it is easy to get the smoothing effect on c. Since (4.13)
implies the desired estimate for low frequencies, it suffices to prove it for high frequencies only. We
therefore suppose in this part that k > 0.

Define 6y = ||Ck||;2. By the previous inequalities and using Lemma 2.7, the second equality of (4.3)
yields, for a constant ¢ > 0, that

1d - ~
S il + 208 S0(| AR 2 + Gkl 2)

+ 6V () (Cye2 ¥~ min(1, 2‘§)||6|| sy — K6k,
BZ,] ’

Using B# =62 + 8%, integrating over [0, t] and then having § tend to 0, we infer

t

O (t) + 2250 < 6,(0) + C/ |Gl 2 d +C / 2% | (o) ] 2 de

0
t

+C/V (T)(0)27K6" D min(1,277) ]| &(1)| | dr.

0 21

Therefore, we get

S Dleol e | L2 ol

k>0 0 k>0

SO +c/||c<r>|| eyl
21
t

+C/ZZI<(S+ )| (f)“LZdT+CV(t)sup||c(t)|| 15
0 k>0 21

Using (4.13), we eventually conclude that

t

[ oD am]

21 21

t
< (C+Cv(t))(”h(0)”~s ls+3 + ||c(0)”~s 1,5— +/ ||F(T)||~s 1s+3 + “G(I)H s 1,5— z)dt)'
0

Combining the last inequality with (4.13), we complete the proof of Proposition 3.2 as long as we
change the functions (h, ¢, F, G) back into the original ones (h, c, F, G).
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5. A global existence and uniqueness result

This section is devoted to the proof of Theorem 1.1. The principle of the proof is a very classi-
cal one. We shall use the classical Friedrichs’ regularization method, which was used in [1,2,15] for
examples, to construct the approximate solutions (h", u") of (3.4).

5.1. Building of the sequence (h", u")pen

Let us define the sequence of operators (_#;)nen by

Inf=F Ny (OFF.
We consider the approximate system:

h! + Zn A7 ( Zpu" - VA _Zph") + p_#pc = F",

!+ Zn( Zatd" -V _Znc") — 51 QU4 VA _Fyc — A2 _Zph" — _Zyh" = G",
I'—pluA gZyI"=H", (5.1)
u'=—A"1ve — A7 divI,

(h", ™, 1")(0) = (hy, A" divu,, A~ curluy),

where

hn = Zn(po—p), U= _Znlo,

F'=— Za A7 (A _Zyh"div _gpu"),

G'= _Zu( Fnu" -V _Zyc") — _ZrA” N div ",
H" = —/nA’l curl J",

,]n:/n(fnun‘vjnun)-l- Afnhn

pE(A _Znh™ + D)

(A gy + (4 1)V div _Zpu"),

where ¢ is a smooth function satisfying

p/4, Is| < p/4,

S, P/2<1Is|<3p/2,
0/4, IsI=7p/4,
smooth, otherwise.

(s) =

We want to show that (5.1) is only an ordinary differential equation in L? x L? x L2. We can observe
easily that all the source term in (5.1) turn out to be continuous in L? x L? x L%. For example, we

. -1 4: Ajnh”A/nun y Yo d :
consider the term _#,A™" div T FH ) By Plancherel’s theorem, Hausdorff-Young’s inequality

and Holder’s inequality, we have

1 A _FRhA_Zu! o A_Zyh"A_gpu®
AT _ =1 . _
Hf Tyl Pl LUy
A _Znh"A_Zpu" 1
< — | <A gih"A g | —————
“ C(A_Znh" + D) || 2 |47h" A Fu"] 2 L(A_Znh" + p) || oo
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4 n n 4n2 n n
< SlAA o A A2 < (181051 FH 0] 2

N
4n7+3
S L

Thus, the usual Cauchy-Lipschitz theorem implies the existence of a strictly positive maximal time T,
such that a unique solution exists which is continuous in time with value in L? x L? x L?. How-

ever, as /nz = _“n, we claim that _Z,(h",c",I") is also a solution, so uniqueness implies that
n(h", " 1) = (", ", 1"). So (h", ", 1") is also a solution of the following system:

h? + /nA_l (un . VAhn) + Iécn = Fn,

cf + Za(u"- V") = o7 2 + 1) AC" — A%R" —h" =G,

I — o' Al = HY, (5.2)
' =—A"1ve — A NdivIP,

(h", <", 1")(0) = (hy, A~ divu,, A" curluy),

where

FI' = — _Za A7 (AR divu"),
Gl = Zn(u"-Vch) — _ZoA™ div ",
HY=— #aA  eurl J",

Ah"

n_ 0 n.vn -
Ji= Il u)+pC(Ah”+,0)

(nAu" + (4 1)V diva®).

The system (5.2) appears to be an ordinary differential equation in the space

1
L2:= {ae L*(RN): supp Fac B(H,n)}.

Due to the Cauchy-Lipschitz theorem again, a unique maximal solution exists on an interval [0, T;)
which is continuous in time with value in L2 x L2 x L2

5.2. Uniform bounds

In this part, we prove uniform estimates independent of T < T in E? for (h™, u™). We shall show
that T = +oo by the Cauchy-Lipschitz theorem. Define

EQ =47 (00 =P _y-g.y:0 +l0oll_y 3y

B2 2
2,1 BZ

E(h,u,t) := | (h,u) ||Et%,
Tp:=sup{te[0,T;): E(h",u",t) < ACE(0)},

where C corresponds to the constant in Proposition 3.2 and A > max(2, C~!) is a constant. Thus, by
the continuity we have T, > 0.

We are going to prove that T, = T for all n € N and we will conclude that T, = +oo for any
neN.



C. Hao, H.-L. Li/ ]. Differential Equations 246 (2009) 4791-4812 4805

According to Proposition 3.2 and Lemma 3.1, and to the definition of (h,, u;), the following in-
equality holds

Cllu| N

<Ce T (AT 00 =] x g+ ol y 3w+ |
2

53—

B2 1 ’
.1 BZJ LT(BZ.I )

Therefore, it is only a matter of proving appropriate estimates for F{, J| and the convection term.
The estimate of F ? is straightforward. From Lemma 2.6, we have

HF?HL%(?]_%,%H = [ an" le“"HLlT(BZg]_g,g)
<clan] yy Jdive] oy
Lm(le ) Ly (B 27%)
CthHLW(BZ%I 3.5+ Hun” 17(32%1+%g+1
< CE*(h",u", T). (5.3)
With the help of Lemma 2.6 and interpolation arguments, we have
[u”- Vcn“L]T(B;l*%gﬂ) CHu”HLOO( 2—]—1 N chn”Ll(B%*z %)
S L TN L TR
CE*(h",u",T) (54)
In the same way, we can get
2
[u" - Vu" HmB _%.%_1)<CE (h",u", T). (5.5)
To estimate other terms of J7, we make the following assumption on E(0):
2C1ACE(0) < p, (5.6)

N .
where C; is the continuity modulus of the embedding relation Bzzyl(RN) < L®°@®RN). If T < T,, it
implies

HAhn”LOO([OT]xRN) C1||h”H B C1||hn“ % 3.0+
BZ,] 2,1 )
< C1ACE) < % (5.7)

which yields

0,

N =
le

Ah”-i—pe[ ,6} and ¢(Ah" +p)=Ah" + p.
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From Lemmas 2.6 and 2.3, we obtain

A
————(nAu" MV diva"
Hﬁ(Ah"m(” WG ANVAV)] L gy
i "
Ah™ + p L®(B2) L}(gzl+z’7+)
<clan
” ”L°°(B o HL}(BZT%'%“)
CthHLoo(BZ%I—%-%H H“"HL]T(B%%,%H)
SCEW..T) (53

Thus, we get

[(R" u") | w < CeACEO[14 CA2CE(0)]E(0).

2
ET

So we can choose E(0) so small that

2 -
14 CA?C?’E(0) < —— A eACEO) Avil

, 2C;ACE(0) < p, 5.9
Ar2 " 1 0 <p (5.9)

which yields || (h", u")[|g1 < AL ACE(0) for any T < Ty It follows that T, = Tj. In fact, if T, < Tj;, we

have seen that E(h",u", T,) < QEACE(O) So by continuity, for a sufficiently small constant o > 0

we can obtain E (h",u", T, + o) < ACE(0). This yields a contradiction with the definition of Tj.
Now, if Tp = T; < oo, we have obtained F(h",u",T;) < ACE(0). As [h"|, (Bo1+e) < OO and
TH P21
||u”||LT; (B9¢) < 0o, it implies that ||h"||LTﬁ(L%) < 00 and ||u”||LT;1k (12) < 0. Thus, we may continue the
solution beyond T, by the Cauchy-Lipschitz theorem. This contradicts the definition of T,:. Therefore,
the approximate solution (h", u"),ey is global in time.

5.3. Existence of a solution

In this part, we shall show that, up to an extraction, the sequence (h",u"),cy converges in
2'(RT x RN) to a solution (h,u) of (3.4) which has the desired regularity properties. The proof
lies on compactness arguments. To start with, we show that the time first derivative of (h",u") is
uniformly bounded in appropriate spaces. This enables us to apply Ascoli’s theorem and get the exis-
tence of a limit (h,u) for a subsequence. Now, the uniform bounds of the previous part provides us
with additional regularity and convergence properties so that we may pass to the limit in the system.

It is convenient to split (h",u") into the solution of a linear system with initial data (hy,u,),
and the discrepancy to that solution. More precisely, we denote by (h},u]) the solution to the linear
system

dh! + pA~diva] =0,
du! — o puAu! — 57w+ 1) Vdivu" + VAR + VAR =0, (5.10)
(hz, u,Z)[:O = (hn» un),

and (h",w") = (K" — hI, u" —u).
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Obviously, the definition of (h,, u,) entails

; . .N_ 3Ny . UN_3 N 4
hy— A" (po—p) inBj *?", u;, —>u inBj;*? asn— oo
The Lemma 3.1 and Proposition 3.2 insure us that
(W, u}) > (hp,u) in E?, (5.11)

where (hp,u;) is the solution of the linear system

achy + pA~1divay =0,
up — p luAu — oY (w +A)Vdivu+ VAh, + VA~ Th =0, (5.12)
(hp up)e—o = (A~ (0o — p). uo).

Now, we have to prove the convergence of (h",@"). This is of course a trifle more difficult and
requires compactness results. Let us first state the following lemma.

Lemma 5.1. ((h", @")),en is uniformly bounded in
LN_3 1 LN_3 N
CI(R*: B3, %) x (€3 (R B3, )",

Proof. Throughout the proof we will note u.b. for uniformly bounded. We first prove that 3:h™" is u.b.

in (L2 4+ L®)(R™, B 2) which yields the desired result for h. Let us observe that h" verifies the
following equation

fh" = — _Zn AT (AR divu") — _Zu A7 (u" - VAR") — pAT dive" + 5 AT divu].

N N
According to the previous part, (h")en is ub. in L°°(B 2) and (U")pen IS wb. in LZ(B2 1) in

view of 1r1terpolat10r1 arguments. Thus, _#, A 1(Ah”dlvu”) FIn AT - VARY), pA~ divu® is wb.
in L2(B 2) The definition of u] obviously provides us w1th unlform bounds for A~ lellL in

LOO(B 2) so we can conclude that 9:h" is u.b. in (L2 + L°°)(B )

Denote cl=A"ldivul, &" = A7l diva", I! = A~ ! curlu and I" = A~ !curl@”. Let us prove now
L N_3 i L N_3
that 8" is ub. in (L3 4+ L®)(R*; B2, ?) and that 81" is ub. in L3 (R*; B}, 2) which give the
required result for u" by using the relation u* = —A~1Vc? — A~ divI™

Let us recall that

¥ =p U+ MA(C" — ) + A2 (K" —h]) + (h" —h}) — _ZnA~div ",
' =p uA(l —1}) — ZnA~curl J.
Results of the previous part and an interpolation argument yield uniform bounds for u" and c" in
LN LN LN N1
L3 (B2, ?)NL2(BZ,). Since h" is ub. in LOO(BZH) and ¢ is wb. in L3 (B}, ?), we easily verify that
A(c! —c’i) and ¢, A~!div J" are u.b. in L3 (B 2) Because h" is u.b. in L°°(Bz+2) Azh” is ub in

3
L°°(B 2) We also have A2h" ub. in L°°(B . 2). In addition, h" and hf are u.b. in L°°(B 2) So
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LN _3 -
we finally get 9;c" u.b. in (L% + L®)(RT; By 2 2) The case of 91" goes along the same lines. As the

terms corresponding to (h" — h') do not appear, we simply get 3I" wb. in L3 (B ) O

Now, we can turn to the proof of the existence of a solution and use Ascoli theorem to get strong
convergence. We need to localize the spatial space because we have some results of compactness for
the local Sobolev spaces. Let (xp)pen be a sequence of CgO(RN ) cut-off functions supported in the
ball B(0, p +1) of RN and equal to 1 in a neighborhood of B(0, p).

For any p € N, Lemma 5.1 tells us that ((xp0", xpu"))nen is uniformly equicontinuous in

N _ 3
C(R-ﬁ-; (327"1_7)]+N).
3

N N
. . “N-3 N4
Let us observe that the application f ~ x,f is compact from B;, *'*
N 3 N

3N_ L N_3 _
Bj,*? " into B;, *. After we apply Ascoli’s theorem to the family ((xph", xpu™))nen on the time

LN_3
into By, *, and from

interval [0, p], we use Cantor’s diagonal process. This finally provides us with a distribution (h, @)

LN_3
belonging to C(R™; (322’1 2)1+Ny and a subsequence (which we still denote by ((0", @")nen)) such
that, for all p € N, we have

(xph™, xpu") = (xph, xp1) as n— +oo, in C([0, pl; ( )HN) (5.13)

This obviously infers that (h",@") tends to (h, @) in 2/ (Rt x RN). )
Coming back to the uniform estimates of the previous part, we moreover get that (h, u) belongs
to

and to C'/2(R*; B2 2) x (CV4[RT; B 2))N
Let us now prove that (h,u) := (hL,uL) + (h, ) solves (3.4). We first observe that, according to

(5.1),
W+ Zn A" (0" VAR") + pc" = —_Zu A7 (AR" divu®),
u + _Zy(u"-vu') — o pAw" — 57N (w + 1) Vdivu® + AVR" + AT VA"

Ah"
= —fn#
(AR + f)

(5.14)
(nAd" + (u+ 1) Vdiva").

The only problem is to pass to the limit in 2'(R* x RN) in nonlinear terms. This can be done
by using the convergence results stemming from the uniform estimates and the convergence results
(5.11) and (5.12).

As it is Just a matter of doing tedious verifications, we show, as an example, the case of the

term _Zp pf(‘ﬁh,ﬂ‘p) Denote L(z) =z/(z+ p). Let 0 € C°(RT x RY) and p € N be such that supp6 C

[0, p] x B(0O, p). We consider the decomposition

7 6 Ah™ Au" B 6 AhAu

"p(ARY +p)  p(Ah+ D)

= P2 Zn[0(1 = L(AR")) xp AR" xp A(u] —ur) +6(1 = L(AR")) xp AR" xp A(xp (0" — 1))
+6(1—L(AR"))(xpA(h" —h))Au— 6 Ahxp Au(L(xp AR") — L(xp Ah))]

6 AhAu
+(/n - )m
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The last term tends to zero as n — 400 due to the property of _#,. As 6L(Ah") and AR™ are u.b.

N_3

in L"O(B2 ;) and u} tends to u in L3(B 2) the first term tends to O in L3(B 2) Accordlng
N N

0 (5.12), xp(u" —u) tends to zero in L3 (B 2) so that the second term tends to 0 in L3 (B )

Clearly, xpAh™ — xpAh in L°°(B2 1) and L(XpAh”) — L(xpAh) in L(L*° N 32 1), so that the third
N
and the last terms also tend to 0 in L3 (B 2) The other nonlinear terms can be treated in the same
way.
SN
We still have to prove that h is continuous in B 21

The continuity of u is straightforward. Indeed, u satisfies

N  N_3 N
7+l 777—

NIW

_ 1
and that u belongs to C(R™; B; ).

w=—-u-Vu+p 'uAu+p ' (u+r)Vdivu
Ah
—~ AVh— A7'VWh — —— (uAu+ (u + 1) Vdivu
p(Ah+p)(M # )

N_q

JN_3 N_ LN _3
and the r.h.s. belongs to (L' + L®)(R™; By, %% ). We have already got that h e C(RT; By %).

Indeed, h; € L°(R™; B 2) from the equation
h = — A~V div(Ahu) — p A~ divu.
LN
Thus, there remains to prove the continuity of h in B 2;r "
Let us apply the operator dk to the first equation of (3.4) to get

oA Ah = —Ap(u-VAh) — pApdiva — Ap(Ahdivu). (5.15)

Obviously, for fixed k the r.h.s. belongs to L}OC(R+; L?) so that each Ay Ah is continuous in time with

values in L2
Now, we apply an energy method to (5.13) to obtain, with the help of Lemma 2.7, that

d N . .
EEIIAkAhIIfz < CllAkAh| 2 (V2 2 ) AR v lull e+ A divul| > + | Ax(Ahdivu) HLz),

BZ,] 2,1

where ) ., ¥k < 1. Integrating in time and multiplying 2k , we get

t
2G| Ao o <2V 2ea (00 = B)| 2+ C f @] g o]y

21 21
0

+ 2G| Agu(n) | o + 257 | Ar(Ahdivey (D)), ) dT
. N . N . N
Since h e L®(BZ; ), we L'(B7; ) and Ahdivue L'(B£,), we can get

Y akE +1)HAkh(t)”L2§||,oo—p||% (1+||h||LOO(Bg o)l s

keZ 2.1 2.1

-

+ |Ahdiva]  § < oo.
LY(BS))

Thus, 3~ <y Akh converges uniformly in L°(R™; B ) and we can conclude that h € C(R*; B} H).
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5.4. Uniqueness

Let (h1,u7) and (hy,uy) be solutions of

hi + A~ Y(u-VAh) + pA~ divu = — A~ (Ahdivu),

u+u-Vu—p 'pAu—p Y (w+1)Vdivu+ AVh+ A~1Vh
B Ah

~ Ak + D) (

(5.16)
pAu+ (1 + 1)V diva)

N
in E{ with the same data (A~ (pg — p), ug) constructed in the previous parts on the time interval
[0, T]. Denote (§h, du) = (hy — h1,uy —uq). From (5.16), we can get

3Sh+ A~ (uy - VAhy) + pA~ divéu = Fq,
ddu—+uy - Vou+ 5 ' puAsu— 5N (w + 1) Vdivu+ AVSh+ A"1Vsh = Fy, (5.17)
(6h, su) =(0,0),

where

F1=—A"1(u-Vhy) — A" (AShdivuy) — A~ (Ahy divSu),

Ahq
Fy=—6%éu-Vu — ——— Adu + + A Vdivéu
2 1 p(Ah2+p)(u (1L +2) )
+( ! ! ! +1)( Aug + (1 + 2)Vdivuy)
A+ p b Ah+p )M v

Similar to (3.1), we can get

Clluall N,
L2
|@h,sw)| y <cCe SO(F . s IRl w3 ).
ETZ Ll 2 22 2

Noticing that

and

P,

N[ —

1_
111l oo o, T1xRN) < 5P 12l o 0, T1x RNy <

by the construction of solutions, we have with the help of interpolation arguments

IFill v 3 vy SHhall o v an g léall o v o1n +lI8hI v 1wy, llugll  ~o1w
RN TG EA A A N G R A D A A AN KA
+lhll ~_an ISl Ni1N
1e@2 2 HEEARIEAS'

and
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< l|Sull N3N ]l o, (T4 (Rl Ny ) IThall Ny dull o niaw
GRS R A R A ( L?(Bz%l”) LA AN KA A
+ (Il wyy el xSRI w el v
L (B, L (B, L (BS, L} (B, *2
Thus, we obtain
Clluz]] LN
|@h,sw| v <Ce %0 H(1+1lhzll  wo )IMll ny +ZM}|Ghsw]| w,
Ef L¥ (B, LPBS ) E7

where limsupy_, o+ Z(T) =0. .
Supposing that 2C(1 + ,6C1_1)ACE(O) < }1 besides the conditions in (5.9), and taking T > 0 small
enough such that C|luy]| LN <In2and Z(T) < % we obtain ||(sh, su)|| N = 0. Hence, (h1,u7) =
TV 2.1 ET

(h2,uz) on [0, T].
Let T, (supposedly finite) be the largest time such that the two solutions coincide on [0, Ty,]. If
we denote

(hi (D), 6 (©)) := (hi(t + Tr), Wit + Tm)), i=1,2,
we can use the above arguments and the fact that

N 1 N
||hi||LOO(R+xRN)<§P and [ [hi| N

N
N
LOO(R+;322.1 )

< ACE(0)

_3
3

to prove that (h1,11) = (hy, i) on the interval [0, Tyy] with the same Ty, as in the previous. There-
fore, we complete the proofs.
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