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Abstract. We are concerned with the Cauchy problem for a viscous shallow
water system with a third-order surface-tension term. The global existence and
uniqueness of the solution in the space of Besov type is shown for the initial
data close to a constant equilibrium state away from the vacuum by using the
Friedrich’s regularization and compactness arguments.

1. Introduction. In the present paper, we consider the Cauchy problem for vis-
cous shallow water equations with a third-order surface-tension term:











ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − ν∇ · (ρ∇u) + ρ∇ρ = ρ∇∆ρ,

ρ(0) = ρ0, u(0) = u0,

(1)

where ρ(t, x) is the height of the fluid surface, u(t, x) = (u1(t, x), u2(t, x))⊤ is the
horizontal velocity field, x = (x1, x2) ∈ R

2 and 0 < ν < 1 is the viscous coefficient.
The nonlinear shallow water equation is used to model the motion of a shal-

low layer of homogeneous incompressible fluid in a three dimensional rotating sub-
domain and, in particular, to simulate the vertical average dynamics of the fluid in
terms of the horizontal velocity and depth variation. The related systems with a
third-order term have been considered by many people. For examples, F. Marche
recently derived a complicated shallow water model involving a third-order surface
tension term by considering second order approximation and parabolic correction in
[9]. R. Danchin and B. Desjardins studied a compressible fluid model of Korteweg
type in [6]:

{

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) − µ∆u − (λ+ µ)∇divu + ∇P (ρ) = κρ∇∆ρ,

where the third-order term ρ∇∆ρ stems from the capillary tensor.
For the shallow water system without a third-order surface tension term, there is a

mount of work to deal with small initial data. The local existence and uniqueness of
classical solutions to the Cauchy-Dirichlet problem for the shallow water equations
by using Lagrangian coordinates and Hölder space estimates with initial data in
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C2+α was studied in [1]. Kloeden [8] and Sundbye [14] proved the global existence
and uniqueness of classical solutions to the Cauchy-Dirichlet problem using Sobolev
space estimates by following the energy method of Matsumura and Nishida [11, 12,
10]. Sundbye [15] proved also the existence and uniqueness of classical solutions to
the Cauchy problem by using the method in [11, 12, 10]. Wang and Xu, in [16],
obtained local solutions for general initial data and global solutions for small initial
data ρ0− ρ̄0, u0 ∈ H2+s(R2) with s > 0. The result was improved by Haspot to get

the global existence in time for small initial data ρ0− ρ̄0 ∈ Ḃ0
2,1∩Ḃ1

2,1 and u0 ∈ Ḃ0
2,1

as a special case in [7].
In the present paper, we first separate the velocity field into a compressible part

and a incompressible part by the standard div-curl decomposition of velocities.
Unlike [6] where a linearized equation without convection terms was considered, we
investigate a linearized system with a convection term to get a uniform estimate
for the compressible part in a usual time-spatial space instead of hybrid Besov
spaces or Besov-Chemin-Lerner spaces used in [5, 6, 7]. It is a heat equation for the
incompressible part and so we can obtain a uniform estimate by the properties of
the heat equation. We use a classical Friedrich’s regularization to build approximate
solutions and prove the existence of a solution by compactness arguments. For the
uniqueness of solutions, due to the contribution of the third-order surface tension
term, we can prove it in the same space as for the existence. For the initial data ρ0,
we suppose that it is a small perturbation of some positive constant ρ̄0. The main
theorem of this paper reads as follows.

Theorem 1.1. There exist two positive constants ε0 and M such that if ρ0 − ρ̄0 ∈
Ḃ0

2,1 ∩ Ḃ1
2,1, u0 ∈ Ḃ0

2,1 and

‖ρ0 − ρ̄0‖Ḃ0
2,1∩Ḃ1

2,1
+ ‖u0‖Ḃ0

2,1
6 ε0,

then (1) has a unique global solution (ρ,u) in E1 which satisfies:

‖(ρ,u)‖E1 6 M(‖ρ0 − ρ̄0‖Ḃ0
2,1∩Ḃ1

2,1
+ ‖u0‖Ḃ0

2,1
),

for some M independent of the initial data where Ḃ0
2,1 and Ḃ1

2,1 are homogeneous
Besov spaces (defined in next section), and

‖(ρ,u)‖E1 =‖ρ‖L∞(Ḃ0
2,1∩Ḃ1

2,1)
+ ‖u‖L∞(Ḃ0

2,1)

+ ‖ρ‖L1(Ḃ2
2,1∩Ḃ3

2,1) + ‖u‖L1(Ḃ2
2,1).

The paper is organized as follows. We recall the Littlewood-Paley theory for
homogeneous Besov spaces in the second section. In section 3, we are dedicated
into proving uniform a priori estimates. In section 4, we prove the global existence
and uniqueness of solution for small initial data by using a classical iteration and
compactness method.

2. Littlewood-Paley theory and Besov spaces. Let ψ : R
2 → [0, 1] be a radial

smooth cut-off function valued in [0, 1] such that

ψ(ξ) =







1, |ξ| 6 3/4,
smooth, 3/4 < |ξ| < 4/3,
0, |ξ| > 4/3.

Let ϕ(ξ) be the function

ϕ(ξ) := ψ(ξ/2) − ψ(ξ).
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Thus, ψ is supported in the ball
{

ξ ∈ R
2 : |ξ| 6 4/3

}

, and ϕ is also a smooth cut-off
function valued in [0, 1] and supported in the annulus {ξ : 3/4 6 |ξ| 6 8/3}. By
construction, we have

∑

k∈Z

ϕ(2−kξ) = 1, ∀ξ 6= 0.

One can define the dyadic blocks as follows. For k ∈ Z, let

△kf := F
−1ϕ(2−kξ)Ff.

The formal decomposition

f =
∑

k∈Z

△kf (2)

is called homogeneous Littlewood-Paley decomposition. Actually, this decomposi-
tion works for just about any locally integrable function which has some decay at
infinity, and one usually has all the convergence properties of the summation that
one needs. Thus, the r.h.s. of (2) does not necessarily converge in S ′(R2). Even if
it does, the equality is not always true in S ′(R2). For instance, if f ≡ 1, then all
the projections △kf vanish. Nevertheless, (2) is true modulo polynomials, in other
words (cf.[4, 13]), if f ∈ S ′(R2), then

∑

k∈Z
△kf converges modulo P[R2] and (2)

holds in S ′(R2)/P[R2].

Definition 2.1. Let s ∈ R, 1 6 p, q 6 ∞. For f ∈ S ′(RN ), we write

‖f‖Ḃs
p,q

=
(

∑

k∈Z

(

2ks‖△kf‖Lp

)q
)

1
q

.

A difficulty comes from the choice of homogeneous spaces at this point. Indeed,
‖ · ‖Ḃs

p,q
cannot be a norm on {f ∈ S ′(R2) : ‖f‖Ḃs

p,q
< ∞} because ‖f‖Ḃs

p,q
= 0

means that f is a polynomial. This enforces us to adopt the following definition for
homogeneous Besov spaces (cf. [5]).

Definition 2.2. Let s ∈ R and 1 6 p, q 6 ∞. Denote m =
[

s− 2
p

]

if s− 2
p /∈ Z or

q > 1 and m = s− 2
p − 1 otherwise. If m < 0, then we define Ḃs

p,q(R
2) as

Ḃs
p,q =

{

f ∈ S
′(R2) : ‖f‖Ḃs

p,q
<∞ and u =

∑

k∈Z

△kf in S
′(R2)

}

.

If m > 0, we denote by Pm[R2] the set of polynomials of degree less than or equal
to m and define

Ḃs
p,q =

{

f ∈ S
′(R2)/Pm[R2] :‖f‖Ḃs

p,q
<∞ and

u =
∑

k∈Z

△kf in S
′(R2)/Pm[R2]

}

.

Let us now recall some useful estimates for homogeneous Besov spaces.

Lemma 2.3 ([5, Proposition 1.5]). Let s > 0 and f, g ∈ L∞ ∩ Ḃs
p,q. Then fg ∈

L∞ ∩ Ḃs
p,q and

‖fg‖Ḃs
p,q

. ‖f‖L∞‖g‖Ḃs
p,q

+ ‖f‖Ḃs
p,q

‖g‖L∞.
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Let s1, s2 6 1 such that s1 + s2 > 0, f ∈ Ḃs1
2,1 and g ∈ Ḃs2

2,1. Then fg ∈ Ḃs1+s2−1
2,1

and

‖fg‖
Ḃ

s1+s2−1
2,1

. ‖f‖Ḃ
s1
2,1
‖g‖Ḃ

s2
2,1
.

Lemma 2.4 ([5, Lemma 1.6]). Let s > 0 and u ∈ Ḃs
2,1 ∩ L∞.

i) Let F ∈ W
[s]+2,∞
loc (R2) such that F (0) = 0. Then F (u) ∈ Ḃs

2,1. Moreover,
there exists a function of one variable C0 depending only on s and F , and such that

‖F (u)‖Ḃs
2,1

6 C0(‖u‖L∞)‖u‖Ḃs
2,1
.

ii) If u, v ∈ Ḃ1
2,1, (v − u) ∈ Ḃs

2,1 for a s ∈ (−1, 1] and G ∈ W 4,∞
loc (R2) satisfies

G′(0) = 0, then G(v) −G(u) ∈ Ḃs
2,1 and there exists a function of two variables C

depending only on s and G, and such that

‖G(v) −G(u)‖Ḃs
2,1

6 C(‖u‖L∞, ‖v‖L∞)
(

‖u‖Ḃ1
2,1

+ ‖v‖Ḃ1
2,1

)

‖v − u‖Ḃs
2,1
.

Now, we define the following work space as follows.

Definition 2.5. For T > 0 and s ∈ R, we denote

Es
T =

{

(ρ,u) ∈ C
(

[0, T ]; Ḃs−1
2,1 ∩ Ḃs

2,1

)

∩ L1
(

0, T ; Ḃs+1
2,1 ∩ Ḃs+2

2,1

)

×
(

C
(

[0, T ]; Ḃs−1
2,1

)

∩ L1
(

0, T ; Ḃs+1
2,1

))2 }

and

‖(ρ,u)‖Es
T

=‖ρ‖L∞

T (Ḃs−1
2,1 ∩Ḃs

2,1)
+ ‖u‖L∞

T (Ḃs−1
2,1 )

+ ‖ρ‖L1
T (Ḃs+1

2,1 ∩Ḃs+2
2,1 ) + ‖u‖L1

T (Ḃs+1
2,1 ).

We use the notation Es if T = +∞, changing [0, T ] into [0,+∞) in the definition
above.

3. A priori estimates. For convenience, we take ρ̄0 = 1. Substituting ρ by ρ+ 1
in (1), we have



















ρt + u · ∇ρ+ divu = −ρ divu,

ut + u · ∇u − ν∆u + ∇ρ−∇∆ρ = ν
∇ρ · ∇u

1 + ρ
,

ρ(0) = ρ0 − 1, u(0) = u0.

(3)

For all s ∈ R, we denote Λsf = F−1(|ξ|sf̂). Let c = Λ−1 divu and I = Λ−1 curlu
where c represents the compressible part of the velocity and I the incompressible
part, and curlg = ∇g − (∇g)⊤ for the vector function g. Then, we have

u = −Λ−1∇c− Λ−1 divI,

since div divI = 0. In fact,

divI =Λ−1 div curlu = Λ−1

(

∂2
2u

1 − ∂2∂1u
2

∂2
1u

2 − ∂1∂2u
1

)

= Λ−1(∆u −∇divu),

which yields

div divI = Λ−1 div(∆u −∇divu) = Λ−1( div∆u− ∆divu) = 0,
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and

curl divI =Λ−1 curl

(

∂2
2u

1 − ∂2∂1u
2

∂2
1u

2 − ∂1∂2u
1

)

= Λ−1

(

0 ∆(∂2u
1 − ∂1u

2)
∆(∂1u

2 − ∂2u
1) 0

)

=Λ−1∆curlu = ∆I.

Moreover, for any function f , we have

curl∇f = ∇∇f − (∇∇f)⊤ = 0

because ∇∇f is a symmetric matrix.
We rewrite now the system (3) in terms of these notations as the following:































ρt + u · ∇ρ+ Λc = F,

ct + u · ∇c− ν∆c− Λρ− Λ3ρ = G,

It − ν∆I = Λ−1 curlH,

u = −Λ−1∇c− Λ−1 divI,

ρ(0) = ρ0 − 1, u(0) = u0,

(4)

where

F = −ρdivu, G = u · ∇c+ Λ−1 divH, H = −u · ∇u + ν
∇ρ · ∇u

1 + ρ
.

For the third equation of (4), we can use the estimates for the heat equation in [5].

Proposition 1. Let s ∈ R, r ∈ [1,+∞], and u solve
{

ut − ν∆u = f,

u(0) = u0.

Then there exists C > 0 depending only on ν and r such that, for all 0 < T 6 +∞,

‖u‖
Lr

T (Ḃ
s+2/r
2,1 )

6 C
(

‖u0‖Ḃs
2,1

+ ‖f‖L1
T (Ḃs

2,1)

)

.

Moreover, u ∈ C([0, T ]; Ḃs
2,1).

For the first two equations, we study the following system:
{

ρt + v · ∇ρ+ Λc = F,

ct + v · ∇c− ν∆c− Λρ− Λ3ρ = G,
(5)

where v is a vector function and we will precise its regularity in the next proposition.
System (5) has been studied in the case where v = 0 by Danchin and Desjardins in
[6]. Here, we take into account the convection terms.

Proposition 2. Let (ρ, c) be a solution of (5) on [0, T ), 0 < s 6 2 and V (t) =
∫ t

0 ‖v(τ)‖Ḃ2
2,1
dτ . The following estimate holds on [0, T ):

‖ρ(t)‖Ḃs−1
2,1 ∩Ḃs

2,1
+ ‖c(t)‖Ḃs−1

2,1
+ ν

∫ t

0

(‖ρ(τ)‖Ḃs+1
2,1 ∩Ḃs+2

2,1
+ ‖c(τ)‖Ḃs+1

2,1
)dτ

6CeCV (t)
(

‖ρ(0)‖Ḃs−1
2,1 ∩Ḃs

2,1
+ ‖c(0)‖Ḃs−1

2,1

+

∫ t

0

e−CV (τ)
(

‖F (τ)‖Ḃs−1
2,1 ∩Ḃs

2,1
+ ‖G(τ)‖Ḃs−1

2,1

)

dτ
)

,

where C depends only on s.
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Proof. Let (ρ, c) be a solution of (5) and we set

(ρ̃, c̃, F̃ , G̃) = e−KV (t)(ρ, c, F,G).

Thus, (5) can be transformed into
{

ρ̃t + v · ∇ρ̃+ Λc̃ = F̃ −KV ′(t)ρ̃,

c̃t + v · ∇c̃− ν∆c̃− Λρ̃− Λ3ρ̃ = G̃−KV ′(t)c̃.
(6)

Applying the operator △k to the system (6), and denoting ρ̃k = △kρ̃ and c̃k =
△kc̃, we obtain the following system:

{

∂tρ̃k + △k(v · ∇ρ̃) + Λc̃k = F̃k −KV ′(t)ρ̃k,

∂tc̃k + △k(v · ∇c̃) − ν∆c̃k − Λρ̃k − Λ3ρ̃k = G̃k −KV ′(t)c̃k.
(7)

To begin with, we consider the case where v = 0, K = 0 and F = G = 0 which
implies that (7) takes the form

{

∂tρ̃k + Λc̃k = 0,

∂tc̃k − ν∆c̃k − Λρ̃k − Λ3ρ̃k = 0.
(8)

Taking the L2 scalar product of the first equation of (8) with ρ̃k, and of the second
equation with c̃k, we get the following two identities:











1

2

d

dt
‖ρ̃k‖2

L2 + (Λc̃k, ρ̃k) = 0,

1

2

d

dt
‖c̃k‖2

L2 + ν‖Λc̃k‖2
L2 − (Λρ̃k, c̃k) − (Λ2ρ̃k,Λc̃k) = 0.

(9)

Now we want to get an equality involving Λρ̃k. To achieve it, we apply Λ to the first
equation of (8) and take L2 scalar product with Λρ̃k and c̃k respectively, then take
the L2 scalar product of the second equation with Λρ̃k and sum both equalities,
which yields











1

2

d

dt
‖Λρ̃k‖2

L2 + (Λ2c̃k,Λρ̃k) = 0,

d

dt
(Λρ̃k, c̃k) + ‖Λc̃k‖2

L2 − ‖Λρ̃k‖2
L2 − ‖Λ2ρ̃k‖2

L2 + ν(Λc̃k,Λ
2ρ̃k) = 0.

(10)

Let K1 > 0 be a constant to be chosen later and denote

f2
k = ‖ρ̃k‖2

L2 + (1 + νK1)‖Λρ̃k‖2
L2 + ‖c̃k‖2

L2 − 2K1(Λρ̃k, c̃k).

By a linear combination of (9) and (10), we can get

1

2

d

dt
f2

k + (ν −K1)‖Λc̃k‖2
L2 +K1‖Λρ̃k‖2

L2 +K1‖Λ2ρ̃k‖2
L2 = 0. (11)

Using Schwartz’ inequality and Young’s inequality, we find for any M1 > 0

|(Λρ̃k, c̃k)| 6
M1

2
‖Λρ̃k‖2

L2 +
1

2M1
‖c̃k‖2

L2 .

Thus, we need to determine the values of K1 and M1 such that

1 + νK1 −K1M1 > 0, K1 < M1.

One can verify that it holds for

M1 = ν, K1 = ν/2.
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Hence, we obtain

1

2
f2

k 6 ‖c̃k‖2
L2 + ‖ρ̃k‖2

L2 + ‖Λρ̃k‖2
L2 6 2f2

k . (12)

Therefore, we obtain

f2
k = ‖ρ̃k‖2

L2 + (1 +
ν2

2
)‖Λρ̃k‖2

L2 + ‖c̃k‖2
L2 − ν(Λρ̃k, c̃k),

and

1

2

d

dt
f2

k +
aν

4
22kf2

k 6 0,

where a > 0 is a constant from Bernstein’s inequality

‖△kh‖L2 6
1√
a
2−k‖Λ△kh‖L2.

In the general case where F , G, K and v are not zero, we have, with the help of
Lemma 5.1 in [5], that

1

2

d

dt
f2

k +
(aν

4
22k +KV ′

)

f2
k

6(F̃k, ρ̃k) + (G̃k, c̃k) + (1 +
ν2

2
)(ΛF̃k,Λρ̃k) − ν

2
(ΛF̃k, c̃k) − ν

2
(G̃k,Λρ̃k)

− (△k(v · ∇ρ̃), ρ̃k) − (△k(v · ∇c̃), c̃k) − (1 +
ν2

2
)(Λ△k(v · ∇ρ̃),Λρ̃k)

+
ν

2
(Λ△k(v · ∇ρ̃), c̃k) +

ν

2
(△k(v · ∇c̃),Λρ̃k)

.fk

(

‖F̃k‖L2 + ‖G̃k‖L2 + ‖ΛF̃k‖L2 + αk2−k(s−1)‖v‖Ḃ2
2,1
‖ρ̃‖Ḃs−1

2,1

+ αk2−k(s−1)‖v‖Ḃ2
2,1

‖c̃‖Ḃs−1
2,1

+ αk2−k(s−1)‖v‖Ḃ2
2,1

‖ρ̃‖Ḃs
2,1

+ αk‖v‖Ḃ2
2,1

(2−k(s−1)‖c̃‖Ḃs−1
2,1

+ 2−k(s−1) min(2k, ν−1)‖ρ̃‖Ḃs−1
2,1 ∩Ḃs

2,1
)
)

,

where
∑

k αk 6 1 and s ∈ (0, 2].
Thus, we obtain

d

dt
fk +

(aν

4
22k +KV ′

)

fk

.‖F̃k‖L2 + ‖G̃k‖L2 + ‖ΛF̃k‖L2 + αk2−k(s−1)V ′
∑

l

2l(s−1)fl,
(13)

where we choose V (t) =
∫ t

0
‖v‖Ḃ2

2,1
. Multiplying (13) with 2k(s−1) and sum in k,

we have

d

dt

∑

k

2k(s−1)fk +
aν

4

∑

k

2k(s+1)fk +KV ′
∑

k

2k(s−1)fk

6C‖F̃‖Ḃs−1
2,1 ∩Ḃs

2,1
+ C‖G̃‖Ḃs−1

2,1
+ CV ′

∑

k

2k(s−1)fk.
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Taking K > C, we obtain

∑

k

2k(s−1)fk(t) +
aν

4

∫ t

0

∑

k

2k(s+1)fk(τ)dτ

.
∑

k

2k(s−1)fk(0) +

∫ t

0

(

‖F̃ (τ)‖Ḃs−1
2,1 ∩Ḃs

2,1
+ ‖G̃(τ)‖Ḃs−1

2,1

)

dτ.

Hence, in view of (12), we obtain

‖ρ̃(t)‖Ḃs−1
2,1 ∩Ḃs

2,1
+ ‖c̃(t)‖Ḃs−1

2,1
+ ν

∫ t

0

(‖ρ̃(τ)‖Ḃs+1
2,1 ∩Ḃs+2

2,1
+ ‖c̃(τ)‖Ḃs+1

2,1
)dτ

.‖ρ̃(0)‖Ḃs−1
2,1 ∩Ḃs

2,1
+ ‖c̃(0)‖Ḃs−1

2,1
+

∫ t

0

(

‖F̃ (τ)‖Ḃs−1
2,1 ∩Ḃs

2,1
+ ‖G̃(τ)‖Ḃs−1

2,1

)

dτ.

Therefore, we complete the proof as long as we change the functions (ρ̃, c̃, F̃ , G̃)
into the original ones (ρ, c, F,G).

4. Existence and uniqueness results. This section is devoted to the proof of
Theorem 1.1. The principle of the proof is a very classical one. We shall use the
classical Friedrichs’ regularization method, which was used in [2, 3, 7] for examples,
to construct the approximate solutions (ρn,un)n∈N to (3) which are solutions of
(5) coupled with a heat equation, and then we will use Proposition 2 to get some
uniform bounds on (ρn,un)n∈N.

4.1. Building of the sequence (ρn,un)n∈N. let us define the sequence of opera-
tors (Jn)n∈N by

Jnf := F
−11B( 1

n ,n)(ξ)Ff,

and consider the following approximate system:


































ρn
t + Jn(Jnun · ∇Jnρ

n) + ΛJnc
n = Fn,

cnt + Jn(Jnun · ∇Jnc
n) − ν∆Jnc

n − ΛJnρ
n − Λ3Jnρ

n = Gn,

In
t − ν∆JnIn = JnΛ−1 curlHn,

un = −Λ−1∇cn − Λ−1 divIn,

(ρn, cn, In)(0) = (ρn,Λ
−1 divun,Λ

−1 curlun),

(14)

where

ρn = Jn(ρ0 − 1), un = Jnu0,

Fn = −Jn(Jnρ
n divJnun),

Gn = Jn(Jnun · ∇Jnc
n) + JnΛ−1 divHn,

Hn = −Jn(Jnun · ∇Jnun) + νJn
∇Jnρ

n · ∇Jnun

ζ(1 + Jnρn)
,

with ζ a smooth function satisfying

ζ(s) =















1/4, |s| 6 1/4,
s, 1/2 6 |s| 6 3/2,
7/4, |s| > 7/4.
smooth, otherwise.

We want to show that (14) is only an ordinary differential equation in L2×L2×L2.
We can observe easily that all the source term in (14) turn out to be continuous
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in L2 × L2 × L2. For example, we consider the term JnΛ−1 div∇Jnρn·∇Jnu
n

ζ(Jnρn+1) . By

Plancherel’s theorem, Hausdorff-Young’s inequality and Hölder’s inequality, we have

‖JnΛ−1 div
∇Jnρ

n · ∇Jnun

ζ(Jnρn + 1)
‖L2 = ‖1B( 1

n ,n)|ξ|−1(ξ1, ξ2) · F
∇Jnρ

n · ∇Jnun

ζ(Jnρn + 1)
‖L2

6‖∇Jnρ
n · ∇Jnun

ζ(Jnρn + 1)
‖L2 6 ‖∇Jnρ

n · ∇Jnun‖L2‖ 1

ζ(Jnρn + 1)
‖L∞

64‖∇Jnρ
n‖L∞‖∇Jnu

n‖L2 6 4n‖|ξ|1B( 1
n ,n)Fρn‖L1‖un‖L2

64n3‖ρn‖L2‖un‖L2.

Thus, the usual Cauchy-Lipschitz theorem implies the existence of a strictly positive
maximal time Tn such that a unique solution exists which is continuous in time with
value in L2 × L2 × L2. However, as J2

n = Jn, we claim that Jn(ρn, cn, In) is also a
solution, so uniqueness implies that Jn(ρn, cn, In) = (ρn, cn, In). So (ρn, cn, In) is
also a solution of the following system:



































ρn
t + Jn(un · ∇ρn) + Λcn = Fn

1 ,

cnt + Jn(un · ∇cn) − ν∆cn − Λρn − Λ3ρn = Gn
1 ,

In
t − ν∆In = JnΛ−1 curlHn

1 ,

un = −Λ−1∇cn − Λ−1 divIn,

(ρn, cn, In)(0) = (ρn,Λ
−1 divun,Λ

−1 curlun),

(15)

with

Fn
1 = −Jn(ρn divun),

Gn
1 = Jn(un · ∇cn) + JnΛ−1 divHn

1 ,

Hn
1 = −Jn(un · ∇un) + νJn

∇ρn · ∇un

ζ(1 + ρn)
.

The system (15) appears to be an ordinary differential equation in the space

L2
n :=

{

a ∈ L2(R2) : suppFa ⊂ B(
1

n
, n)

}

.

Due to the Cauchy-Lipschitz theorem again, a unique maximal solution exists on
an interval [0, T ∗

n) which is continuous in time with value in L2
n × L2

n × L2
n.

4.2. Uniform estimates. In this part, we prove uniform estimates independent of
T < T ∗

n in E1
T for (ρn,un). We shall show that T ∗

n = +∞ by the Cauchy-Lipschitz
theorem. Denote

E(0) :=‖ρ0 − 1‖Ḃ0
2,1∩Ḃ1

2,1
+ ‖u0‖Ḃ0

2,1
,

E(ρ,u, t) :=‖(ρ,u)‖E1
t
,

T̃n := sup
{

t ∈ [0, T ∗
n) : E(ρn,un, t) 6 AC̃E(0)

}

,

where C̃ corresponds to the constant in Proposition 2 and A > max(2, C̃−1) is a

constant. Thus, by the continuity we have T̃n > 0.
We are going to prove that T̃n = T ∗

n for all n ∈ N and we will conclude that
T ∗

n = +∞ for any n ∈ N.
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According to Proposition 2 and Proposition 1, and to the definition of (ρn,un),
the following inequality holds

‖(ρn,un)‖E1
T

6C̃e
C̃‖un‖

L1
T

(Ḃ2
2,1)

(

‖ρ0 − 1‖Ḃ0
2,1∩Ḃ1

2,1
+ ‖u0‖Ḃ0

2,1

+ ‖Fn
1 ‖L1

T (Ḃ0
2,1∩Ḃ1

2,1) + ‖un · ∇cn‖L1
T (Ḃ0

2,1) + ‖Hn
1 ‖L1

T (Ḃ0
2,1)

)

.

Therefore, it is only a matter of proving appropriate estimates for Fn
1 , Hn

1 and
un · ∇cn. The estimate of Fn is straightforward. From Lemma 2.3, we have

‖Fn
1 ‖L1(Ḃ0

2,1∩Ḃ1
2,1)

6 C‖ρn‖L∞(Ḃ0
2,1∩Ḃ1

2,1)
‖un‖L1(Ḃ2

2,1)
6 CE2(ρn,un, T ). (16)

With the help of Lemma 2.3 and interpolation arguments, we have

‖un · ∇cn‖L1(Ḃ0
2,1) 6C‖un‖L2(Ḃ1

2,1)‖∇cn‖L2(Ḃ0
2,1) 6 C‖un‖2

L2(Ḃ1
2,1)

6C‖un‖L∞(Ḃ0
2,1)‖un‖L1(Ḃ2

2,1)

6CE2(ρn,un, T ).

(17)

In the same way, we can get

‖un · ∇un‖L1(Ḃ0
2,1) 6 CE2(ρn,un, T ). (18)

To estimate other terms of Hn
1 , we make the following assumption on E(0):

2C1AC̃E(0) 6 1,

where C1 is the continuity modulus of Ḃ1
2,1 ⊂ L∞. If T < T̃n, it implies

‖ρn‖L∞ 6 C1‖ρn‖Ḃ1
2,1

6 C1‖ρn‖Ḃ0
2,1∩Ḃ1

2,1
6 C1AC̃E(0) 6

1

2
.

Thus, we have

‖ρn‖L∞([0,T ]×R2) 6
1

2
,

which yields

ρn + 1 ∈ [
1

2
,
3

2
] and ζ(ρn + 1) = ρn + 1.

From Lemma 2.3, Lemma 2.4 and interpolation arguments, we have

‖∇ρ
n · ∇un

1 + ρn
‖L1(Ḃ0

2,1)

6‖∇ρn · ∇un‖L1(Ḃ0
2,1) + ‖ρ

n∇ρn · ∇un

1 + ρn
‖L1(Ḃ0

2,1)

6C‖∇ρn‖L2(Ḃ1
2,1)‖∇un‖L2(Ḃ0

2,1) + C‖ρ
n∇ρn

1 + ρn
‖L2(Ḃ1

2,1)‖∇un‖L2(Ḃ0
2,1)

6C‖ρn‖L2(Ḃ2
2,1)‖un‖L2(Ḃ1

2,1)

(

1 + ‖ ρn

1 + ρn
‖L∞(Ḃ1

2,1)

)

6C‖ρn‖1/2

L∞(Ḃ1
2,1)

‖ρn‖1/2

L1(Ḃ3
2,1)

‖un‖1/2

L∞(Ḃ0
2,1)

‖un‖1/2

L1(Ḃ2
2,1)

(

1 + ‖ρn‖L∞(Ḃ1
2,1)

)

6CE2(ρn,un, T )(1 + E(ρn,un, T )).

(19)

Hence, from (17)-(19), we gather

‖un · ∇cn‖L1
T (Ḃ0

2,1) + ‖Hn
1 ‖L1

T (Ḃ0
2,1) 6 C(1 + E(ρn,un, T ))E2(ρn,un, T ), (20)
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whence

‖(ρn,un)‖E1
T

6 C̃eAC̃2E(0)[1 + CA2C̃2(1 +AC̃E(0))E(0)]E(0).

So we can choose E(0) so small that

1 + CA2C̃2(1 +AC̃E(0))E(0) 6
A2

A+ 2
,

eAC̃2E(0) 6
A+ 1

A
and 2C1AC̃E(0) 6 1,

(21)

which yields ‖(ρn,un)‖E1
T

6 A+1
A+2AC̃E(0) for any T < T̃n. It follows that T̃n =

T ∗
n . In fact, if T̃n < T ∗

n , we have seen that E(ρn,un, T̃n) 6 A+1
A+2AC̃E(0). So by

continuity, for a sufficiently small constant σ > 0 we can obtain E(ρn,un, T̃n +σ) 6

AC̃E(0). This yields a contradiction with the definition of T̃n.

Now, if T̃n = T ∗
n < ∞, then we have obtained F (ρn,un, T ∗

n) 6 AC̃E(0). As
‖ρn‖LT∗

n
(Ḃ0

2,1∩Ḃ1
2,1)

< ∞ and ‖un‖LT∗
n

(Ḃ0
2,1) < ∞, it implies that ‖ρn‖LT∗

n
(L2

n) < ∞
and ‖un‖LT∗

n
(L2

n) < ∞. Thus, we may continue the solution beyond T ∗
n by the

Cauchy-Lipschitz theorem. This contradicts the definition od T ∗
n . Therefore, the

approximate solution (ρn,un)n∈N is global in time.

4.3. Existence of a solution. In this part, we shall show that, up to an extraction,
the sequence (ρn,un)n∈N converges in D ′(R+×R

2) to a solution (ρ,u) of (3) which
has the desired regularity properties. The proof lies on compactness arguments. To
start with, we show that the time first derivative of (ρn,un) is uniformly bounded in
appropriate spaces. This enables us to apply Ascoli’s theorem and get the existence
of a limit (ρ,u) for a subsequence. Now, the uniform bounds of the previous part
provides us with additional regularity and convergence properties so that we may
pass to the limit in the system.

It is convenient to split (ρn,un) into the solution of a linear system with initial
data (ρn,un), and the discrepancy to that solution. More precisely, we denote by
(ρn

L,u
n
L) the solution to the linear system











∂tρ
n
L + divun

L = 0,

∂tu
n
L − ν∆un

L + ∇ρn
L −∇∆ρn

L = 0,

(ρn
L,u

n
L)t=0 = (ρn,un),

(22)

and (ρ̄n, ūn) = (ρn − ρn
L,u

n − un
L).

Obviously, the definition of (ρn,un) entails

ρn → ρ0 − 1 in Ḃ0
2,1 ∩ Ḃ1

2,1, un → u0 in Ḃ0
2,1.

The Propositions 2 and 1 insure us that

(ρn
L,u

n
L) → (ρL,uL) in E1, (23)

where (ρL,uL) is the solution of the linear system










∂tρL + divuL = 0,

∂tuL − ν∆uL + ∇ρL −∇∆ρL = 0,

(ρL,uL)t=0 = (ρ0 − 1,u0).

(24)

Now, we have to prove the convergence of (ρ̄n, ūn). This is of course a trifle more
difficult and requires compactness results. Let us first state the following lemma.
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Lemma 4.1. ((ρ̄n, ūn))n∈N is uniformly bounded in the space

C
1
2

loc(R
+; Ḃ0

2,1) × (C
1
4

loc(R
+; Ḃ

− 1
2

2,1 ))2.

Proof. Throughout the proof, we will note u.b. for uniformly bounded. We first
prove that ∂tρ̄

n is u.b. in L2(R+, Ḃ0
2,1), which yields the desired result for ρ̄. Let

us observe that ρ̄n verifies the following equation

∂tρ̄
n = −Jn(ρn divun) − Jn(un · ∇ρn) − divun + divun

L.

According to the previous part, (ρn)n∈N is u.b. in L∞(Ḃ1
2,1) and (un)n∈N is u.b. in

L2(Ḃ1
2,1) in view of interpolation arguments. Thus, −Jn(ρn divun)−Jn(un ·∇ρn)−

divun is u.b. in L2(Ḃ0
2,1). The definition of un

L obviously provides us with uniform

bounds for divun
L in L2(Ḃ0

2,1), so we can conclude that ∂tρ̄
n is u.b. in L2(Ḃ0

2,1).

Denote cnL = Λ−1 divun
L, c̄n = Λ−1 divūn, In

L = Λ−1 curlun
L and Īn = Λ−1 curlūn.

Let us prove now that ∂tc̄
n is u.b. in L

4
3 (Ḃ

− 1
2

2,1 ) + L4(Ḃ
− 1

2
2,1 ) and that ∂tĪ

n is u.b.

in L
4
3 (Ḃ

− 1
2

2,1 ) which give the required result for ūn by using the relation un =

−Λ−1∇cn − Λ−1 divIn.
Let us recall that

∂tc̄
n =ν∆(cn − cnL) + Λ(ρn − ρn

L) + Λ3(ρn − ρn
L)

− JnΛ−1 div

(

Jn(un · ∇un) − νJn
∇ρn · ∇un

1 + ρn

)

,

∂tĪ
n =ν∆(In − In

L) − JnΛ−1 curl

(

Jn(un · ∇un) − νJn
∇ρn · ∇un

1 + ρn

)

.

Results of the previous part and an interpolation argument yield uniform bounds for

un in L∞(Ḃ0
2,1)∩L

4
3 (Ḃ

3
2
2,1). Since ρn is u.b. in L∞(Ḃ1

2,1) and cnL is u.b. in L
4
3 (Ḃ

3
2
2,1),

we easily verify that ν∆(cn − cnL) and JnΛ−1 divJn

(

un · ∇un − ν∇ρn·∇u
n

1+ρn

)

are u.b.

in L
4
3 (Ḃ

− 1
2

2,1 ). Because ρn is u.b. in L∞(Ḃ1
2,1) ∩ L1(Ḃ3

2,1), we have ρn is u.b. in

L
4
3 (Ḃ

5
2
2,1) in view of interpolation arguments. Thus, Λ3ρn is u.b. in L

4
3 (Ḃ

− 1
2

2,1 ). We

also have Λ3ρn
L u.b. in L

4
3 (Ḃ

− 1
2

2,1 ). Using the bounds for ρn in L1(Ḃ2
2,1)∩L∞(Ḃ0

2,1),

we get ρn u.b. in L4(Ḃ
1
2
2,1) and then Λρn is u.b. in L4(Ḃ

− 1
2

2,1 ). So we finally get

∂tc̄
n u.b. in L

4
3 (Ḃ

− 1
2

2,1 ) + L4(Ḃ
− 1

2
2,1 ). The case of ∂tĪ

n goes along the same lines. As

the terms corresponding to Λ(ρn − ρn
L) do not appear, we simply get ∂tĪ

n u.b. in

L
4
3 (Ḃ

− 1
2

2,1 ).

Now, we can turn to the proof of the existence of a solution and use Ascoli
theorem to get strong convergence. We need to localize the spatial space because
we have some results of compactness for the local Sobolev spaces. Let (χp)p∈N be
a sequence of C∞

0 (R2) cut-off functions supported in the ball B(0, p+ 1) of R
2 and

equal to 1 in a neighborhood of B(0, p).
For any p ∈ N, Lemma 4.1 tells us that ((χpρ̄

n, χpū
n))n∈N is uniformly equicon-

tinuous in C(R+; Ḃ0
2,1 × (Ḃ

− 1
2

2,1 )2).

Let us observe that the application f 7→ χpf is compact from Ḃ0
2,1 ∩ Ḃ1

2,1 into

L2, and from Ḃ0
2,1 ∩ Ḃ

− 1
2

2,1 into Ḣ− 1
2 . This can be proved by noting that f 7→ χpf

is compact from Ḣs ∩ Ḣs′

into Ḣs for s < s′ and that Ḃs
2,1 ⊂ Ḣs. After we apply
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Ascoli’s theorem to the family ((χpρ̄
n, χpū

n))n∈N on the time interval [0, p], we
use Cantor’s diagonal process. This finally provides us with a distribution (ρ̄, ū)

belonging to C(R+; Ḣ0 × (Ḣ− 1
2 )2) and a subsequence (which we still denote by

((ρ̄n, ūn)n∈N) such that, for all p ∈ N, we have

(χpρ̄
n, χpū

n) → (χpρ̄, χpū) as n→ +∞, in C([0, p]; Ḣ0 × (Ḣ− 1
2 )2). (25)

This obviously infers that (ρ̄n, ūn) tends to (ρ̄, ū) in D ′(R+ × R
2).

Coming back to the uniform estimates of the previous part, we moreover get that
(ρ̄, ū) belongs to

L∞
(

R
+; (Ḃ0

2,1 ∩ Ḃ2
2,1) × (Ḃ0

2,1)
2
)

∩ L1
(

R
+; (Ḃ2

2,1 ∩ Ḃ3
2,1) × (Ḃ2

2,1)
2
)

and to C1/2(R+; Ḃ0
2,1) × (C1/4(R+; Ḃ

− 1
2

2,1 ))2.

Let us now prove that (ρ,u) := (ρL,uL)+(ρ̄, ū) solves (3). We first observe that,
according to (14),







ρn
t + Jn(un · ∇ρn) + Λcn = −Jn(ρn divun),

un
t − ν∆un + ∇ρn −∇∆ρn + Jn(un · ∇un) = νJnΛ−1∇∇ρn · ∇un

1 + ρn
.

The only problem is to pass to the limit in D ′(R+×R
2) in the nonlinear terms. This

can be done by using the convergence results stemming from the uniform estimates
and the convergence results (23) and (25).

As it is just a matter of doing tedious verifications, we show, as an example, the

case of the term ∇ρn·∇u
n

1+ρn . Denote L(z) = z/(z + 1). Let θ ∈ C∞
0 (R+ × R

2) and

p ∈ N be such that supp θ ⊂ [0, p] ×B(0, p). We consider the decomposition

Jn
θ∇ρn · ∇un

1 + ρn
− θ∇ρ · ∇u

1 + ρ

=Jn[θ(1 − L(ρn))χp∇ρn · χp∇(un
L − uL) + θ(1 − L(ρn))χp∇ρn · χp∇(χp(ū

n − ū))

+ θ(1 − L(ρn))χp∇u · ∇(χp(ρ
n − ρ)) + θ∇ρχp∇u(L(χpρ) − L(χpρ

n))]

+ (Jn − I)
θ∇ρ · ∇u

1 + ρ
.

The last term tends to zero as n→ +∞ due to the property of Jn. As θL(ρn) and

ρn are u.b. in L∞(Ḃ1
2,1) and un

L tends to uL in L1(Ḃ2
2,1), the first term tends to 0

in L1(Ḃ0
2,1). According to (25), χp(ū

n − ū) tends to zero in L1([0, p]; Ḣ2) so that

the second term tends to 0 in L1([0, p];L2). Clearly, χpρ
n → χpρ in L∞(Ḣ1) and

L(χpρ
n) → L(χpρ) in L∞(L∞ ∩ Ḣ1), so that the third and the last terms also tend

to 0 in L1(L2). The other nonlinear terms can be treated in the same way.

We still have to prove that ρ is continuous in Ḃ0
2,1 ∩ Ḃ1

2,1 and that u belongs to

C(R+; Ḃ0
2,1). The continuity of u is straightforward. Indeed, u satisfies

∂tu = −u · ∇u + ν∆u −∇ρ+ ∇∆ρ+ ν
∇ρ · ∇u

1 + ρ

and the r.h.s. belongs to L1(Ḃ0
2,1) by noting that we also have ρ ∈ L1(Ḃ1

2,1) ∩
L2(Ḃ2

2,1) in view of the interpolation argument. We have already got that ρ ∈
C(R+; Ḃ0

2,1). Indeed, ρ0 − 1 ∈ Ḃ0
2,1, u ∈ L2(R+; Ḃ1

2,1), ρ ∈ L∞(R+; Ḃ1
2,1) and then

∂tρ ∈ L2(R+; Ḃ0
2,1) from the equation ∂tρ = −divu− div(ρu). Thus, there remains

to prove the continuity of ρ in Ḃ1
2,1.
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Let us apply the operator △k to the first equation of (3) to get

∂t△kρ = −△k(u · ∇ρ) −△k divu−△k(ρ divu). (26)

Obviously, for fixed k the r.h.s belongs to L1
loc(R

+;L2) so that each △kρ is contin-
uous in time with values in L2.

Now, we apply an energy method to (26) to obtain, with the help of Lemma 5.1
in [5], that

1

2

d

dt
‖△kρ‖2

L2 6 C‖△kρ‖L2

(

αk2−k‖ρ‖Ḃ1
2,1
‖u‖Ḃ2

2,1
+ ‖△k divu‖L2

+‖△k(ρ divu)‖L2

)

,

where
∑

k αk 6 1. Integrating in time and multiplying 2k, we get

2k‖△kρ(t)‖L2 6 2k‖△k(ρ0 − 1)‖L2 + C

∫ t

0

(

αk‖ρ(τ)‖Ḃ1
2,1

‖u(τ)‖Ḃ2
2,1

+22k‖△ku(τ)‖L2 + 2k‖△k(ρ divu)(τ)‖L2

)

dτ.

Since ρ ∈ L∞(Ḃ1
2,1), u ∈ L1(Ḃ2

2,1) and ρ divu ∈ L1(Ḃ1
2,1), we can get

∑

k∈Z

sup
t>0

2k‖△kρ(t)‖L2

.‖ρ0 − 1‖Ḃ1
2,1

+
(

1 + ‖ρ‖L∞(Ḃ1
2,1)

)

‖u‖L1(Ḃ2
2,1) + ‖ρdivu‖L1(Ḃ1

2,1) <∞.

Thus,
∑

|k|6N △kρ converges uniformly in L∞(R+; Ḃ1
2,1) and we can conclude that

ρ ∈ C(R+; Ḃ1
2,1).

4.4. Uniqueness. Let (ρ1,u1) and (ρ2,u2) be solutions of (3) in E1
T with the same

data (ρ0−1,u0) constructed in the previous parts on the time interval [0, T ]. Denote
(δρ, δu) = (ρ2 − ρ1,u2 − u1). From the (3), we can get











∂tδρ+ u2 · ∇δρ+ divδu = F2,

∂tδu + u2 · ∇δu − ν∆δu + ∇δρ−∇∆δρ = G2,

(δρ, δu) = (0,0),

(27)

where

F2 = − δu · ∇ρ1 − δρ divu2 − ρ1 divδu,

G2 = − δu · ∇u1 + ν
∇δρ · ∇u2

1 + ρ2
+ ν

∇ρ1 · ∇δu
1 + ρ2

+ ν

(

1

1 + ρ2
− 1

1 + ρ1

)

∇ρ1 · ∇u1.

Similar to (3), we can get

‖(δρ, δu)‖E1
T

6 Ce
C‖u2‖L1

T
(Ḃ2

2,1
)

(

‖F2‖L1
T (Ḃ0

2,1∩Ḃ1
2,1)

+ ‖G2‖L1
T (Ḃ0

2,1)

)

.

Noticing that ρ1 ∈ L∞
T (Ḃ0

2,1) ∩ L1
T (Ḃ2

2,1) and u2 ∈ L1
T (Ḃ2

2,1), we can get

‖F2‖L1
T (Ḃ0

2,1) .‖δu‖L∞

T (Ḃ0
2,1)‖ρ1‖L1

T (Ḃ2
2,1) + ‖δρ‖L∞

T (Ḃ0
2,1)‖u2‖L1

T (Ḃ2
2,1)

+ ‖ρ1‖L∞

T (Ḃ0
2,1)‖δu‖L1

T (Ḃ2
2,1).
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Moreover, from ρ1 ∈ L2
T (Ḃ2

2,1) ∩ L∞
T (Ḃ1

2,1) by interpolation, we have

‖F2‖L1
T (Ḃ1

2,1)
.‖δu‖

1
2

L∞

T (Ḃ0
2,1)

‖δu‖
1
2

L1
T (Ḃ2

2,1)
‖ρ1‖L2

T (Ḃ1
2,1)

+ ‖δρ‖L∞

T (Ḃ1
2,1)‖u2‖L1

T (Ḃ2
2,1)

+ ‖ρ1‖L∞

T (Ḃ1
2,1)‖δu‖L1

T (Ḃ2
2,1)

.

Noting that ρ1, ρ2 ∈ L∞
T (Ḃ1

2,1), u1, u2 ∈ L1
T (Ḃ2

2,1) and ‖ρ1‖L∞([0,T ]×R2) 6 1
2 ,

‖ρ2‖L∞([0,T ]×R2) 6 1
2 by the construction of solutions, we have

‖G2‖L1
T (Ḃ0

2,1)

.‖δu‖L∞

T (Ḃ0
2,1)‖u1‖L1

T (Ḃ2
2,1) + ν(1 + ‖ρ2‖L∞

T (Ḃ1
2,1))‖δρ‖L∞

T (Ḃ1
2,1)‖u2‖L1

T (Ḃ2
2,1)

+ ν(1 + ‖ρ2‖L∞

T (Ḃ1
2,1))‖ρ1‖L∞

T (Ḃ1
2,1)‖δu‖L1

T (Ḃ2
2,1)

+ ν‖δρ‖L∞

T (Ḃ1
2,1)‖ρ1‖L∞

T (Ḃ1
2,1)‖u1‖L1

T (Ḃ2
2,1)

× (1 + ‖ρ1‖L∞

T (Ḃ1
2,1) + ‖ρ2‖L∞

T (Ḃ1
2,1) + ‖ρ1‖L∞

T (Ḃ1
2,1)‖ρ2‖L∞

T (Ḃ1
2,1)).

Thus, we obtain

‖(δρ, δu)‖E1
T

6 Ce
C‖u2‖L1

T
(Ḃ2

2,1
)

{(

1 + ν + ν‖ρ2‖L∞

T (Ḃ0
2,1∩Ḃ1

2,1)

)

‖ρ1‖L∞

T (Ḃ0
2,1∩Ḃ1

2,1)

+ Z(T )
}

‖(δρ, δu)‖E1
T
,

where lim supT→0+ Z(T ) = 0.

Supposing that C(1 + ν(1 + (2C1)
−1))AC̃E(0) < 1

4 besides (21) for E(0) and

taking 0 < T 6 1 so small that C‖u2‖L1
T (Ḃ2

2,1) 6 ln 2 and Z(T ) < 1
2 , we obtain

‖(δρ, δu)‖E1
T
≡ 0. Hence, (ρ1,u1) ≡ (ρ2,u2) on [0, T ].

Let Tm (supposedly finite) be the largest time such that the two solutions coincide
on [0, Tm]. If we denote

(ρ̃i(t), ũi(t)) := (ρi(t+ Tm),ui(t+ Tm)), i = 1, 2,

we can use the above arguments and the fact that

‖ρ̃i‖L∞(R+×R2) 6
1

2
and ‖ρ̃i‖L∞(R+;Ḃ0

2,1∩Ḃ1
2,1)

6 AC̃E(0)

to prove that (ρ̃1, ũ1) = (ρ̃2, ũ2) on the interval [0, Tm] with the same Tm as in the
previous. Therefore, we complete the proofs.
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