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We consider the Cauchy problem for viscous rotating shallow water equations with
friction terms. The global existence of the solution in some hybrid spaces is shown
for the initial data close to a constant equilibrium state away from the vacuum.
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I. INTRODUCTION

The nonlinear shallow water equation is used to model the motion of a shallow layer of
homogeneous incompressible fluid in a three-dimensional rotating subdomain and, in particular,
to simulate the vertical average dynamics of the fluid in terms of the horizontal velocity and
depth variation. The shallow water system is extensively used in environmental studies to model
hydrodynamics in lakes, estuaries, coastal regions, and other applications. In general, it is modeled
by the three-dimensional incompressible Navier–Stokes–Coriolis system in a rotating subdomain of
R3 together with a (nonlinear) free moving surface boundary condition for which the stress tension
is evolved at the air–fluid interface from above and the Navier boundary condition of wall-law type
holds at the bottom. Under a large-scale assumption and hydrostatic approximation, the nonlinear
shallow water equation has been derived recently.11, 15, 17 When the viscosity is of order of the aspect
ratio, we cannot take an approximation of the Coriolis force at the first order, while the second order
can produce new terms depending on the cosine of the latitude in the two-dimensional Shallow
Water model. Thus it is necessary to go to the second order of the system, and then we must take
into account the cosine effect of the Coriolis terms. In this case, the viscous shallow water system15

reads⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t H + div(Hu) = 0,

∂t (Hu) + div(Hu ⊗ u) + g

2
∇H 2 = −α0(H )u − α1(H )H |u|u + aH∇�H

+ 2μ∇(Hdivu) + 2μdiv(H Du) + � cos θ∇(u1 H 2) + � cos θ H 2e1divu

− 2� sin θ Hu⊥ − 2� cos θ He1∇b · u + 2� cos θu1 H∇b + aH∇�b − gH∇b,

(1)

where H is the water height, u = (u1, u2)ᵀ denotes the mean velocity, g > 0 is the gravitational accel-
eration, and μ > 0 is the dynamical viscosity. The angular speed of the Earth is � > 0, θ ∈ (0, π/2)
represents the latitude and will be considered as a constant,15 α0(H ) = (1 + κl H/(3μ))−1κl ,
α1(H ) = κt (1 + κl H/(3μ))−2, κl > 0 and κt � 0 are the laminar and the turbulent friction coef-
ficients which are obtained from the friction condition on the bottom, Du = (∇u + (∇u)ᵀ)/2 is the
deformation tensor, and the constant a > 0 is the capillary coefficient. b(x) is the known bottom
topography.

The Coriolis force is due to the Earth’s rotation. On the Earth an object that moves along a
north–south path, or longitudinal line, will undergo apparent deflection to the right in the Northern
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Hemisphere and to the left in the Southern Hemisphere. Interest has recently grown in the effects of
the Coriolis terms that are neglected under a traditional approximation.

In the present paper, we consider the case with a constant latitude and a flat bottom, that is, θ

and b(x) are constants in the system (1). More precisely, we investigate the global existence of the
Cauchy problem to the following viscous rotating shallow water equations with friction terms⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t H + div(Hu) = 0, (2a)

∂t (Hu) + div(Hu ⊗ u) + g

2
∇H 2 = −α0(H )u − α1(H )H |u|u

+2μ∇(Hdivu) + 2μdiv(H Du) + � cos θ∇(u1 H 2) + � cos θ H 2e1divu

−2� sin θ Hu⊥ + aH∇�H, (2b)

H |t=0 = H0(x), u|t=0 = u0(x). (2c)

We note that the system with a smooth bottom topography b(x) can be treated in a similar way
without any other essential difficulties.

For the case of a viscosity of order one, the first order of the system is sufficient, and the Coriolis
terms reduce to the usual ones. That is, the nonlinear shallow water equations take the following
form of compressible Navier–Stokes equations⎧⎪⎪⎨

⎪⎪⎩
∂t H + div(Hu) = 0,

∂t (Hu) + div(Hu ⊗ u) + gH∇H + f (Hu)⊥ = div(2ξ (H )D(u)) + ∇(λ(H )divu),

H (0) = H0, u(0) = u0,

(3)

where f = 2� sin θ > 0 is the Coriolis frequency, ξ � 0 and λ are the dynamical viscosities satis-
fying λ + ξ � 0.

For the shallow water system with the form in (3), there is a mount of work to deal with the global
well-posedness of strong solutions subject to some small initial perturbation of a constant state or
the global existence of weak solutions for large initial data. When the viscosities satisfy ξ (H ) = H
and λ(H ) = 0, and the effect of the Coriolis force is omitted ( f = 0), the local existence and
uniqueness of classical solutions to the Cauchy–Dirichlet problem for the shallow water equations
with initial data in C2+α was studied by using Lagrangian coordinates and Hölder space estimates.4

Kloeden and Sundbye14, 21 proved the global existence and uniqueness of classical solutions to the
initial-boundary-value problem with Dirichlet boundary conditions using Sobolev space estimates
by following the energy method of Matsumura and Nishida.18 Sundbye22 proved also the existence
and uniqueness of classical solutions to the Cauchy problem using the similar method.18

Recently, Wang and Xu24 obtained local solutions for any initial data and global solutions for
small initial data H0 − H̄ , u0 ∈ H 2+s(R2) with s > 0. The result was improved by Haspot13 to get
global existence in time for small initial data H0 − H̄ ∈ Ḃ0 ∩ Ḃ1 and u0 ∈ Ḃ0 as a special case, and
by Chen et al.6 to prove the local existence in time for general initial data and the global existence
in time for small initial data where H0 − H̄ ∈ Ḃ0 ∩ Ḃ1 and u0 ∈ Ḃ0 with additional conditions that
H � H̄ and H̄ is a strictly positive constant. The related systems with a third-order term stemming
from the capillary tensor have also been considered by Danchin and Desjardins10 for a compressible
fluid model of Korteweg type with constant viscosity coefficients, and the global existence of strong
solution was shown.

For the shallow water model (3) including a rotational term, an existence theorem is developed
in a bounded domain.19 Cheng and Tadmor7 discussed the long time existence of approximate
periodic solutions for the rapidly rotating shallow water for initial data (H0, u0) ∈ H m(T 2) with
m > 5 where the viscous terms are absent (where f �= 0 and ξ = λ = 0 ). For the case when f �= 0,
λ(H ) = 2ξ (H ) = 2H and an additional third-order surface tension term involved, Hao et al.12

proved the global well-posedness of the Cauchy problem near a constant equilibrium with small
data where H0 − H̄ ∈ Ḃε ∩ Ḃ1+ε and u0 ∈ Ḃε for any ε ∈ (0, 1) where we did not deal with the
friction terms and the cosine effects of the Coriolis force. In this paper, we will use Banach’s fixed
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point theorem to prove the existence and uniqueness instead of the Friedrich’s regularization and
compactness arguments used by Hao et al.12

The existence of global weak solutions of a viscous shallow water model with the presence
of a friction term is demonstrated in a bounded two-dimensional domain with periodic boundary
conditions.2 It should also be mentioned that the global existence of weak solutions does not apply
here since the Bresch–Desjardins entropy3 is not satisfied for Eq. (2). In addition, the classical theory
does not cover the case with coriolis force, friction terms, and capillarity term involved.

We consider the global existence of strong solution in Besov spaces. We focus on the effects
of the Coriolis force and the friction. The Coriolis force terms cannot contribute to the energy, but
the friction terms will make the solution lose some regularities, especially for low frequencies. In
order to get better estimates, we consider the problem in the frame of hybrid Besov spaces. And
the Besov–Chemin–Lerner spaces are necessary for using the interpolation theory of time-spatial
spaces involving hybrid Besov spaces.

The main results of this paper reads as follows:

Theorem 1: Let p ∈ [1,+∞] and r ∈ [2,+∞]. Let g, μ, a,�, κl be positive constants, θ

∈ (0, π/2) and κt � 0 be constants. Assume that H0 − 1 ∈ B̃0,1 and H0u0 ∈ Ḃ0. Then, there exists
a suitable small constant ε > 0 such that the system (2) yields a unique global solution (H, u)
satisfying

‖H − 1‖L̃ p(0,∞;B̃2/p,1+2/p) + ‖Hu‖L̃ p(0,∞;Ḃ2/p)∩L̃r (0,∞;B̃0,1+2/r ) � C E,

if E := ‖H0 − 1‖B̃0,1 + ‖H0u0‖Ḃ0 � ε, where C is independent of the initial data.

Remark 1: For the variable latitude θ , it can also be treated in a similar way due to the
boundedness of sine and cosine functions.

The paper is organized as follows. We recall some Littlewood–Paley theories for homogeneous
Besov spaces and give the definitions and some properties of hybrid Besov spaces and Besov–
Chemin–Lerner spaces in the second section. In Sect. III, we are dedicated into deriving an a priori
estimate by investigating the linearized system. Finally, we construct a contraction map and use the
Banach fixed point theorem to obtain the existence and uniqueness of the solution.

II. LITTLEWOOD–PALEY THEORY AND BESOV SPACES

Let ψ : R2 → [0, 1] be a radial smooth cutoff function valued in [0, 1] such that

ψ(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

1, |ξ | � 3/4,

smooth, 3/4 < |ξ | < 4/3,

0, |ξ | � 4/3.

Let ϕ(ξ ) be the function

ϕ(ξ ) := ψ(ξ/2) − ψ(ξ ).

Thus, ψ is supported in the ball
{
ξ ∈ R2 : |ξ | � 4/3

}
, and ϕ is also a smooth cutoff function valued

in [0, 1] and supported in the annulus {ξ : 3/4 � |ξ | � 8/3}. By construction, we have∑
k∈Z

ϕ(2−kξ ) = 1, ∀ξ �= 0.

One can define the dyadic blocks as follows. For k ∈ Z, let

�k f := F−1ϕ(2−kξ )F f,

where F (F−1) stands for the Fourier (inverse) transform.
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The formal decomposition

f =
∑
k∈Z

�k f (4)

is called homogeneous Littlewood–Paley decomposition. Actually, this decomposition works for
just about any locally integrable function which yields some decay at infinity, and one usually has all
the convergence properties of the summation that one needs. Thus, the rhs of (4) does not necessarily
converge in S ′(R2). Even if it does, the equality is not always true in S ′(R2). For instance, if f ≡ 1,
then all the projections �k f vanish. Nevertheless, (4) is true modulo polynomials, in other words,9, 20

if f ∈ S ′(R2), then
∑

k∈Z �k f converges modulo P[R2] and (4) holds in S ′(R2)/P[R2].

Definition 1: Let s ∈ R, 1 � p, q � ∞. For f ∈ S ′(R2), we write

‖ f ‖Ḃs =
∑
k∈Z

2ks‖�k f ‖L2 .

A difficulty comes from the choice of homogeneous spaces at this point. Indeed, ‖ · ‖Ḃs cannot
be a norm on { f ∈ S ′(R2) : ‖ f ‖Ḃs < ∞} because ‖ f ‖Ḃs = 0 means that f is a polynomial. This
enforces us to adopt the following definition for homogeneous Besov spaces.8

Definition 2: Let s ∈ R and m = −[2 − s]. If m < 0, then we define Ḃs(R2) as

Ḃs =
{

f ∈ S ′(R2) : ‖ f ‖Ḃs < ∞ and f =
∑
k∈Z

�k f in S ′(R2)
}
.

If m � 0, we denote by Pm the set of two variables polynomials of degree less than or equal to m
and define

Ḃs =
{

f ∈ S ′(R2)/Pm : ‖ f ‖Ḃs < ∞ and f =
∑
k∈Z

�k f in S ′(R2)/Pm

}
.

We also need hybrid Besov spaces for which regularity assumptions are different in low fre-
quencies and high frequencies.8 We are going to recall the definition of these new spaces and some
of their main properties.

Definition 3: Let s, t ∈ R. We define

‖ f ‖B̃s,t =
∑
k�0

2ks‖�k f ‖L2 +
∑
k>0

2kt‖�k f ‖L2 .

Let m = −[2 − s], we then define

B̃s,t (R2) = {
f ∈ S ′(R2) : ‖ f ‖B̃s,t < ∞}

, i f m < 0,

B̃s,t (R2) = {
f ∈ S ′(R2)/Pm : ‖ f ‖B̃s,t < ∞}

, i f m � 0.

Lemma 1: We have the following inclusions.

(i) We have B̃s,s = Ḃs .
(ii) If s � t then B̃s,t = Ḃs ∩ Ḃt . Otherwise, B̃s,t = Ḃs + Ḃt .
(iii) The space B̃0,s coincides with the usual inhomogeneous Besov space Bs

2,1.
(iv) If s1 � s2 and t1 � t2, then B̃s1,t1 ↪→ B̃s2,t2 .

Let us now recall some useful estimates for the product in hybrid Besov spaces.

Lemma 2 (Proposition 2.10; Ref. 8): Let s1, s2 > 0 and f, g ∈ L∞ ∩ B̃s1,s2 . Then f g ∈ B̃s1,s2

and

‖ f g‖B̃s1 ,s2 � ‖ f ‖L∞‖g‖B̃s1 ,s2 + ‖ f ‖B̃s1 ,s2 ‖g‖L∞ .
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Let s1, s2, t1, t2 � 1 such that min(s1 + s2, t1 + t2) > 0, f ∈ B̃s1,t1 and g ∈ B̃s2,t2 . Then f g ∈
B̃s1+s2−1,t1+t2−1 and

‖ f g‖B̃s1+s2−1,t1+t2−1 � ‖ f ‖B̃s1 ,t1 ‖g‖B̃s2 ,t2 .

In the context of this paper, we also need to use the interpolation spaces of hybrid Besov spaces
together with a time space such as L p(0, T ; B̃s,t ). Thus, we have to introduce the Besov–Chemin–
Lerner space5 which is a refinement of the space L p(0, T ; B̃s,t ).

Definition 4: Let p ∈ [1,∞], T ∈ (0,∞], and s1, s2 ∈ R. Then we define

‖ f ‖L̃ p
T (B̃s,t ) =

∑
k�0

2ks‖�k f ‖L p(0,T ;L2) +
∑
k>0

2kt‖�k f ‖L p(0,T ;L2).

Noting that Minkowski’s inequality yields ‖ f ‖L p
T (B̃s,t ) � ‖ f ‖L̃ p

T (B̃s,t ), we define spaces L̃ p
T (B̃s,t )

as follows:

L̃ p
T (B̃s,t ) =

{
f ∈ L p

T (B̃s,t ) : ‖ f ‖L̃ p
T (B̃s,t ) < ∞

}
.

If T = ∞, then we omit the subscript T from the notation L̃ p
T (B̃s,t ), that is, L̃ p(B̃s,t ) for simplicity.

We will denote by C̃([0, T ]; B̃s,t ) the subset of functions of L̃∞
T (B̃s,t ) which are continuous on [0, T ]

with values in B̃s,t . Let us observe that L1
T (B̃s,t ) = L̃1

T (B̃s,t ), but the embedding L̃ p
T (B̃s,t ) ⊂ L p

T (B̃s,t )
is strict if p > 1.

For the composition of functions, we have the following estimates:

Lemma 3 (Lemma 1; Ref. 10): Let s > 0, p ∈ [1,+∞], and u ∈ L̃ p
T (Ḃs) ∩ L∞

T (L∞).

(i) Let F ∈ W [s]+2,∞
loc (R2) such that F(0) = 0. Then F(u) ∈ L̃ p

T (Ḃs). More precisely, there exists
a function C depending only on s and F such that

‖F(u)‖L̃ p
T (Ḃs ) � C(‖u‖L∞

T (L∞))‖u‖L̃ p
T (Ḃs ).

(ii) If v also belongs to L̃ p
T (Ḃs) ∩ L∞

T (L∞) and G ∈ W [s]+3,∞
loc (R2), then G(u) − G(v) belongs to

L̃ p
T (Ḃs) and there exists a function C depending only on s and G such that

‖G(u) − G(v)‖L̃ p
T (Ḃs )

�C(‖u‖L∞
T (L∞), ‖v‖L∞

T (L∞))
(
(1 + ‖u‖L∞

T (L∞) + ‖v‖L∞
T (L∞))‖u − v‖L̃ p

T (Ḃs )

+ (‖u‖L̃ p
T (Ḃs ) + ‖v‖L̃ p

T (Ḃs ))‖u − v‖L∞
T (L∞)

)
.

III. A PRIORI ESTIMATES

Let Hu = m and H = h + 1. Noticing that 2divD(m) = ∇divm + �m, we can rewrite the
system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h + divm = 0, (5a)

∂t m − μ�m − 3μ∇divm − � cos θ∇m1 − � cos θe1divm + α0(1)m

+2� sin θm⊥ + g∇h − a∇�h = −div

(
m ⊗ m
h + 1

)
− gh∇h + ah∇�h

−
(

α0(h + 1)

h + 1
− α0(1)

)
m − α1(h + 1)

h + 1
|m|m − 2μ∇

(
m · ∇h

h + 1

)

−μdiv

(
m ⊗ ∇h + (m ⊗ ∇h)ᵀ

h + 1

)

+� cos θ∇(hm1) + � cos θhe1divm − � cos θe1m · ∇h, (5b)

h|t=0 = h0(x) := H0(x) − 1, m|t=0 = m0(x) = H0(x)u0(x). (5c)
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In order to derive the a priori estimates, we consider the following linear system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t h + divm = 0, (6a)

∂t m − μ�m − 3μ∇divm − � cos θ∇m1 − � cos θe1divm + α0(1)m

+2� sin θm⊥ + g∇h − a∇�h = F, (6b)

h|t=0 = h0(x), m|t=0 = m0(x). (6c)

We have the following proposition:

Proposition 1: Let s ∈ R, 1 � q � p � +∞, max(q, 2) � r � +∞, and T ∈ (0,+∞]. If
(h0, m0) ∈ B̃s−1,s × (Ḃs−1)2 and F ∈ Lq

T ((Ḃs−3+2/q )2), then the linear system (6) has a unique
solution (h, m) ∈ C̃T (B̃s−1,s × (Ḃs−1)2) ∩ L̃T (B̃s−1+2/p,s+2/p × (Ḃs−1+2/p)2). Moreover, there ex-
ists a constant C depending only on p, q, μ, �, θ , κl , g, and a such that the following inequality
holds:

‖h‖L̃ p
T (B̃s−1+2/p,s+2/p) + ‖m‖L̃ p

T (Ḃs−1+2/p) + ‖m‖L̃r
T (B̃s−1,s−1+2/r )

� C
(
‖h0‖B̃s−1,s + ‖m0‖Ḃs−1 + ‖F‖L̃q

T (Ḃs−3+2/q )

)
. (7)

Proof: Denote fk = �k f . Applying the operator �k to (6), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t hk + divmk = 0, (8a)

∂t mk − μ�mk − 3μ∇divmk − � cos θ∇m1k − � cos θe1divmk + α0(1)mk

+2� sin θm⊥
k + g∇hk − a∇�hk = Fk, (8b)

hk |t=0 = h0(x), mk |t=0 = m0(x). (8c)

The L2 scalar product of (8a) with hk yields

1

2

d

dt
‖hk‖2

2 = −(divmk, hk) = (∇hk, mk). (9)

From (8a) and integration by parts, we have

1

2

d

dt
‖∇hk‖2

2 = (∇hk,∇∂t hk) = −(∇hk,∇divmk) = −(∇�hk, mk). (10)

Take the L2 scalar product of (8b) with mk , it implies

1

2

d

dt
(‖mk‖2

2 + g‖hk‖2
2 + a‖∇hk‖2

2)

+μ‖∇mk‖2
2 + 3μ‖divmk‖2

2 + α0(1)‖mk‖2
2 = (Fk, mk). (11)

Taking the L2 scalar product of (8b) with ∇hk , we can get

(∂t mk,∇hk) + 2μ
d

dt
‖∇hk‖2

2 + 1

2
α0(1)

d

dt
‖hk‖2

2 + g‖∇hk‖2
2 + a‖�hk‖2

2

=(Fk,∇hk) + � cos θ (∇m1k,∇hk) + � cos θ (e1divmk,∇hk) − 2� sin θ (m⊥
k ,∇hk).

Taking the L2 scalar product of (8a) with −divmk , we obtain

(∂t (∇hk), mk) = ‖divmk‖2
2.
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Summing up the above two equalities, we reach

d

dt
(mk,∇hk) + 2μ

d

dt
‖∇hk‖2

2 + 1

2
α0(1)

d

dt
‖hk‖2

2

+g‖∇hk‖2
2 + a‖�hk‖2

2 − ‖divmk‖2
2

= (Fk,∇hk) + � cos θ (∇m1k,∇hk) + � cos θ (e1divmk,∇hk)

−2� sin θ (m⊥
k ,∇hk). (12)

Let β > 0 be a constant to be chosen later and denote

f 2
k = ‖mk‖2

2 + (g + βα0(1))‖hk‖2
2 + (a + 4βμ)‖∇hk‖2

2 + 2β(mk,∇hk).

From (11) and (12), we have

1

2

d

dt
f 2
k + μ‖∇mk‖2

2 + (3μ − β)‖divmk‖2
2 + α0(1)‖mk‖2

2 + βg‖∇hk‖2
2 + βa‖�hk‖2

2

= (Fk, mk + β∇hk) + β� cos θ (∇m1k,∇hk)

+β� cos θ (e1divmk,∇hk) − 2β� sin θ (m⊥
k ,∇hk). (13)

Since we have for some Mi > 0

2|(mk,∇hk)| � 1

M1
‖mk‖2

2 + M1‖∇hk‖2
2,

|(∇m1k,∇hk)| � 1

2M2
‖∇mk‖2

2 + M2

2
‖∇hk‖2

2,

|(e1divmk,∇hk)| � 1

2M3
‖divmk‖2

2 + M3

2
‖∇hk‖2

2,

2|(m⊥
k ,∇hk)| � 1

M4
‖mk‖2

2 + M4‖∇hk‖2
2,

we have to choose β and Mi such that

β < M1 <
a

β
+ 4μ, μ − β� cos θ

2M2
> 0, 3μ − β − β� cos θ

2M3
> 0,

α0(1) − β� sin θ

M4
> 0, g − � cos θ

M2 + M3

2
− � sin θ M4 > 0.

We can verify that the above inequalities hold if we choose

β = μg

2�2
min

(
κl

3μ + κl
,

4�2

g + �2

)
,

M1 =4μ + a

8μ
, M2 = M3 = 3

� cos θ
, M4 = 3

� sin θ
.

Hence, we deduce that

1

δ
f 2
k � ‖mk‖2

2 + g‖hk‖2
2 + a‖∇hk‖2

2 � δ f 2
k ,

for some positive constant δ. Thus, there exists a constant γ > 0 such that

1

2

d

dt
f 2
k + γ 22k f 2

k � ‖Fk‖2(‖mk‖2 + ‖∇hk‖2).

Dividing the above inequality by fk , we get

d

dt
fk + γ 22k fk � C‖Fk‖2.
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By Gronwall inequality, we obtain

fk(t) � e−γ 22k t fk(0) + C
∫ t

0
e−γ 22k (t−τ )‖Fk(τ )‖2dτ.

By the definition of fk , it yields

‖mk(t)‖2 + ‖hk(t)‖2 + ‖∇hk(t)‖2

�Ce−γ 22k t (‖m0k‖2 + ‖h0k‖2 + ‖∇h0k‖2) + C
∫ t

0
e−γ 22k (t−τ )‖Fk(τ )‖2dτ.

Taking the L p-norm on [0, T ] with respect to the time, we have for 1 � q � p, from Young’s
inequality, that

‖mk(t)‖L p(0,T ;L2) + ‖hk(t)‖L p(0,T ;L2) + ‖∇hk(t)‖L p(0,T ;L2)

�C‖e−γ 22k t‖p(‖m0k‖2 + ‖h0k‖2 + ‖∇h0k‖2) + C‖e−γ 22k t ∗ ‖Fk(t)‖2‖L p(0,T )

�C(γ p)−1/p2−2k/p(‖m0k‖2 + ‖h0k‖2 + ‖∇h0k‖2)

+ C

(
1

γ
(

1

p
− 1

q
+ 1)

) 1
p − 1

q +1

2−2k( 1
p − 1

q +1)‖Fk(t)‖Lq (0,T ;L2).

Multiplying the above with 2(s−1+2/p)k and summing with respect to k ∈ Z, we obtain for any
1 � q � p � +∞∑

k�0

2k(s−1+2/p)‖hk‖L p
T L2

x
+

∑
k>0

2k(s+2/p)‖hk‖L p
T L2

x
+

∑
k∈Z

2k(s−1+2/p)‖mk‖L p
T L2

x

� ‖h0‖B̃s−1,s +
∑
k∈Z

2k(s−1)‖mk(0)‖2 +
∑
k∈Z

2k(s−3+2/q)‖F‖Lq
T L2

x
. (14)

Therefore, we have for any 1 � q � p � +∞
‖h‖L̃ p

T (B̃s−1+2/p,s+2/p) + ‖m‖L̃ p
T (Ḃs−1+2/p)

� ‖h0‖B̃s−1,s + ‖m0‖Ḃs−1 + ‖F‖L̃q
T (Ḃs−3+2/q ). (15)

But here it is not enough to consider the effect of the friction. In fact, the friction can make
regularities of the momentum m decrease, especially for low frequencies. Now, we suppose that
k � 0. From (11), (9) and (10) and by Bernstein’s inequality, we have

1

2

d

dt
‖mk‖2

2 + μ‖∇mk‖2
2 + 3μ‖divmk‖2

2 + α0(1)‖mk‖2
2

=(Fk, mk) − g(∇hk, mk) + a(∇�hk, mk)

�(‖Fk‖2 + g‖∇hk‖2 + a‖∇�hk‖2)‖mk‖2

�(‖Fk‖2 + (
8

3
2k g + 83

33
23ka)‖hk‖2)‖mk‖2

�(‖Fk‖2 + (
8

3
g + 83

33
a)2k‖hk‖2)‖mk‖2,

which yields

d

dt
‖mk‖2 + α0(1)‖mk‖2 � ‖Fk‖2 + 2k‖hk‖2.

From Gronwall’s inequality, we get

‖mk(t)‖2 � e−α0(1)t‖mk(0)‖2 + C
∫ t

0
e−α0(1)(t−τ )(‖Fk(τ )‖2 + 2k‖hk(τ )‖2)dτ.
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Taking the Lr -norm on [0, T ] with respect to the time, we have for 1 � q, q̃ � r , from Young’s
inequality, that

‖mk(t)‖Lr (0,T ;L2) �‖e−α0(1)t‖Lr (0,T )‖mk(0)‖2 + C‖e−α0(1)t ∗ ‖Fk(t)‖2‖Lr (0,T )

+ C2k‖e−α0(1)t ∗ ‖hk(t)‖2‖Lr (0,T )

�‖mk(0)‖2 + ‖Fk‖Lq (0,T ;L2) + 2k‖hk‖Lq̃ (0,T ;L2).

Multiplying the above with 2k(s−1) and summing with respect to k � 0, we obtain, from (14), that
for q � 1, q̃ = 2, and r � 2∑

k�0

2k(s−1)‖mk(t)‖Lr (0,T ;L2)

�
∑
k�0

2k(s−1)‖mk(0)‖2 +
∑
k�0

2k(s−1)‖Fk‖Lr (0,T ;L2) +
∑
k�0

2ks‖hk‖L2(0,T ;L2)

�
∑
k�0

2k(s−1)‖mk(0)‖2 +
∑
k�0

2k(s−1)‖Fk‖L p(0,T ;L2)

+‖h0‖B̃s−1,s +
∑
k∈Z

2k(s−1)‖mk(0)‖2 +
∑
k∈Z

2k(s−3+2/q)‖F‖Lq
T L2

x

� ‖h0‖B̃s−1,s + ‖m0‖Ḃs−1 +
∑
k∈Z

2k(s−3+2/q)‖F‖Lq
T L2

x
. (16)

Combining (16) with (14), we get for 1 � min(q, 2) � max(q, 2) � r � +∞

‖h‖L̃ p
T (B̃s−1+2/p,s+2/p) + ‖m‖L̃r

T (B̃s−1,s−1+2/r )

� ‖h0‖B̃s−1,s + ‖m0‖Ḃs−1 + ‖F‖L̃q
T (Ḃs−3+2/q ). (17)

From (15) and (17), we have the desired results. �

IV. GLOBAL EXISTENCE AND UNIQUENESS

In this section, we will construct a contraction mapping and use the Banach fixed point theorem
to obtain the existence and uniqueness of the solution. We first define the work space.

Denote

E : = ‖h0‖B̃0,1 + ‖m0‖Ḃ0 ,

‖(h, m)‖ET : = sup
p∈[1,∞]

‖h‖L̃ p
T (B̃2/p,1+2/p) + sup

p∈[1,∞]
r∈[2,∞]

‖m‖L̃ p
T (Ḃ2/p)∩L̃r

T (B̃0,2/r ),

D : = {
(h, m) ∈ (S ′)1+2 : ‖(h, m)‖ET � AE

}
,

where A is a constant determined later. It is easy to verify that{
(h, m) ∈ (S ′)1+2 : ‖(h, m)‖ET < ∞}

is a Banach space since Ḃs is a Banach space. Denote by S(t) the semigroup associated with (6).
According to Duhamel’s formula, (5) can be rewritten as the integral form(

h(t)

m(t)

)
= S(t)

(
h0

m0

)
+

∫ t

0
S(t − τ )

(
0

F(h(τ ), m(τ ))

)
dτ, (18)
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where F(h, m) = ∑10
i=1 Fi (h, m) with

F1 = − div

(
m ⊗ m
h + 1

)
, F2 = −gh∇h, F3 = ah∇�h,

F4 = −
(

α0(h + 1)

h + 1
− α0(1)

)
m, F5 = −α1(h + 1)

h + 1
|m|m,

F6 = − 2μ∇
(

m · ∇h

h + 1

)
, F7 = −μdiv

(
m ⊗ ∇h + (m ⊗ ∇h)ᵀ

h + 1

)
,

F8 =� cos θ∇(hm1), F9 = � cos θhe1divm, F10 = −� cos θe1m · ∇h.

We define the operator T in D by

T (h(t), m(t)) = S(t)

(
h0

m0

)
+

∫ t

0
S(t − τ )

(
0

F(h(τ ), m(τ ))

)
dτ. (19)

To prove the existence part of the theorem, we just have to show that T has a fixed point in D . First,
we need to prove that the space D is stable under the operator T for some constant A provided that
E is small enough.

Let (h, m) ∈ D . We prove that the nonlinearities can be controlled by the norms of (h, m). By
Lemma 3, we can get, in view of Bernstein’s inequalities, that

‖F1‖L1
T (Ḃ0) �‖m ⊗ m

h + 1
‖L1

T (Ḃ1) � ‖m ⊗ m‖L1
T (Ḃ1) + ‖ h

h + 1
m ⊗ m‖L1

T (Ḃ1)

�(1 + ‖h‖L̃∞
T (Ḃ1))‖m‖2

L̃2
T (Ḃ1) � (1 + ‖(h, m)‖ET )‖(h, m)‖2

ET
,

‖F2‖L1
T (Ḃ0) �‖h‖L̃∞

T (Ḃ0)‖∇h‖L1
T (Ḃ1) � ‖h‖L̃∞

T (Ḃ0)‖h‖L1
T (Ḃ2) � ‖(h, m)‖2

ET
,

‖F3‖L1
T (Ḃ0) �‖h‖L̃∞

T (Ḃ1)‖∇�h‖L1
T (Ḃ0) � ‖h‖L̃∞

T (Ḃ1)‖h‖L1
T (Ḃ3) � ‖(h, m)‖2

ET
,

‖F4‖L1
T (Ḃ0) = 3μκl

3μ + κl
‖ (3μ + 2κl)h + κl h2

3μ(h + 1) + κl(h + 1)2
m‖L1

T (Ḃ0) � ‖h‖L̃2
T (Ḃ1)‖m‖L̃2

T (Ḃ0)

�‖(h, m)‖2
ET

,

‖F5‖L1
T (Ḃ0) =9μ2κt‖ |m|m

(h + 1)(3μ + κl(h + 1))2
‖L1

T (Ḃ0)

�(1 + ‖h‖L̃∞
T (Ḃ1))‖m‖2

L̃2
T (B̃0,1) � (1 + ‖(h, m)‖ET )‖(h, m)‖2

ET
,

‖F6‖L1
T (Ḃ0) �‖m · ∇h

h + 1
‖L1

T (Ḃ1) � (1 + ‖h‖L̃∞
T (Ḃ1))‖h‖L̃2

T (Ḃ2)‖m‖L̃2
T (Ḃ1)

�(1 + ‖(h, m)‖ET )‖(h, m)‖2
ET

,

‖F7‖L1
T (Ḃ0) �‖m ⊗ ∇h + (m ⊗ ∇h)ᵀ

h + 1
‖L1

T (Ḃ1)

�(1 + ‖h‖L̃∞
T (Ḃ1))‖h‖L̃2

T (Ḃ2)‖m‖L̃2
T (Ḃ1) � (1 + ‖(h, m)‖ET )‖(h, m)‖2

ET
,

‖F8‖L1
T (Ḃ0) �‖hm1‖L1

T (Ḃ1) � ‖h‖L̃2
T (Ḃ1)‖m‖L̃2

T (Ḃ1) � ‖(h, m)‖2
ET

,

‖F9‖L1
T (Ḃ0) �‖h‖L̃2

T (Ḃ1)‖m‖L̃2
T (Ḃ1) � ‖(h, m)‖2

ET
,

‖F10‖L1
T (Ḃ0) �‖h‖L̃2

T (Ḃ1)‖m‖L̃2
T (Ḃ1) � ‖(h, m)‖2

ET
.
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From these estimates, by choosing A � 4C and sufficiently small E such that (1 + AE)A2 E � 3,
we can get

‖T (h, m)‖ET �C E + C(1 + ‖(h, m)‖ET )‖(h, m)‖2
ET

�C E + C(1 + AE)A2 E2 � AE .

Thus, we deduce that T (D) ⊂ D .
Next, we consider the contraction properties of the operator T . For two elements (h1, m1) and

(h2, m2) in D , according to (19) and to Proposition 1, we get

‖T (h2, m2) − T (h1, m1)‖ET � ‖F(h2, m2) − F(h1, m1)‖L1
T (Ḃ0).

Applying Proposition 1 and Lemma 3 to

F1(h2, m2) − F1(h1, m1)

= div

(
m1 ⊗ m1

(
h2

h2 + 1
− h1

h1 + 1

)
− m2 ⊗ (m2 − m1) + (m2 − m1) ⊗ m1

h2 + 1

)
,

F2(h2, m2) − F2(h1, m1) = −g(h2 − h1)∇h2 − gh1∇(h2 − h1),

F3(h2, m2) − F3(h1, m1) = a(h2 − h1)∇�h2 + ah1∇�(h2 − h1),

F4(h2, m2) − F4(h1, m1)

= −
(

α0(h2 + 1)

h2 + 1
− α0(1)

)
(m2 − m1) −

(
α0(h2 + 1)

h2 + 1
− α0(h1 + 1)

h1 + 1

)
m1,

F5(h2, m2) − F5(h1, m1) = −α1(h2 + 1)

h2 + 1
|m2|(m2 − m1)

−
(

α1(h2 + 1)

h2 + 1
− α1(h1 + 1)

h1 + 1

)
|m2|m1 − α1(h1 + 1)

h1 + 1
(|m2| − |m1|)m1,

F6(h2, m2) − F6(h1, m1)

= −2μ∇
(

m2 · ∇(h2 − h1)

h2 + 1
−

(
h2

h2 + 1
− h1

h1 + 1

)
m2 · ∇h1 + (m2 − m1) · ∇h1

h1 + 1

)
,

F7(h2, m2) − F7(h1, m1)

= −μdiv
( 1

h2 + 1
((m2 − m1) ⊗ ∇h2 + ((m2 − m1) ⊗ ∇h2)�)

+ 1

h2 + 1
(m1 ⊗ ∇(h2 − h1) + (m1 ⊗ ∇(h2 − h1))�)

−
( h2

h2 + 1
− h1

h1 + 1

)
(m1 ⊗ ∇h1 + (m1 ⊗ ∇h1)�)

)
,

F8(h2, m2) − F8(h1, m1) = � cos θ∇((h2 − h1)m21 + h1(m21 − m11)),

F9(h2, m2) − F9(h1, m1) = � cos θe1((h2 − h1)divm + h1div(m−m1)),

F10(h2, m2) − F10(h1, m1) = � cos θe1((m2 − m1) · ∇h2 + m1 · ∇(h2 − h1)),

we can get

‖T (h2, m2) − T (h1, m1)‖ET

�C(‖(h1, m1)‖ET + ‖(h2, m2)‖ET )‖(h2 − h1, m2 − m1)‖ET .

Now, we can choose E small enough and A (which may be greater than the previous one) such that

‖T (h2, m2) − T (h1, m1)‖ET � 1

2
‖(h2 − h1, m2 − m1)‖ET ,
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which implies the operator T is a contraction map in D . By the fixed point theorem, there exists a
unique fixed point (h, m) ∈ D for (19). Indeed, (h, m) is a global solution of (18) since all constants
are independent of T ∈ (0,+∞] (we can take T = +∞) in the above derivations.

ACKNOWLEDGMENTS

The author would like to thank the referee for correcting some misprints in the original
manuscript and making some helpful suggestions for improving the presentation of this article.
The author was partially supported by the National Natural Science Foundation of China (NSFC)
(Grant No. 10871134).
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