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1. Introduction

Magnetohydrodynamic (MHD) studies the interaction between the flow of an electrically conducting fluid and magnetic
fields. The dynamic motion of the fluid and the magnetic field interact strongly on each other, so the hydrodynamic and
electrodynamic effects are coupled. It involves such diverse topics as the evolution and dynamics of astrophysical objects,
thermonuclear fusion, metallurgy and semiconductor crystal growth.

In the present paper, we study the Cauchy problem to the isentropic compressible viscous MHD system of the form (see,
eg.,[1-4])

0 p + div(pu) = 0,
- oo - ~ -~ 1 .
0;(pu) + div(pu @ u) + VP(p) = H- VH — 5V(|H|2) + nAu + (4 A)Vdivu,

9H+ (divipH +u-VA—H-Vu = vAH,  divl =0, (-
(P, u, H)le=o = (fo, o, Ho), divHy = 0,
where p = p(t, x) denotes the density,x € R%,d > 2,t > 0,u = (uj, Uy, ..., ug) € RY (0; = w;(t,x),j = 1,...,d)is the
velocity of the flow, and H= (1:11, H,, ..., l:ld) e R? (ﬁj = l:lj(t, x)) stands for the magnetic field. The constants © and X are

the shear and bulk viscosity coefficients of the flow, respectively, satisfying 4 > 0 and 2u + dA > 0, the constant v > 0 is
the magnetic diffusivity acting as a magnetic diffusion coefficient of the magnetic field, and all these kinetic coefficients and
the magnetic diffusivity are independent of the magnitude and direction of the magnetic field. P(p) is the scalar pressure
function satisfying P’(p) > 0.

Due to the physical importance and mathematical challenges, the study on MHD has attracted many physicists and
mathematicians. Many results concerning the existence and uniqueness of (weak, strong or smooth) solutions in one
dimension can be found in [5-8] and the references cited therein. But in this paper, we focus on the well-posedness of
the Cauchy problem in the multi-dimensional cases (i.e., d > 3). The MHD problem, in contrast, presents serious difficulties
due to the presence of the magnetic field and its interaction with the hydrodynamic motion in the MHD flow. When there is
no electromagnetic field, system (1.1) reduces to the compressible Navier-Stokes equations. See [9-11] and their references
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for studies on the multi-dimensional Navier-Stokes equations. Motivated by [9,12-14], we can obtain, the global existence
and uniqueness of the smooth solutions in multi-dimensional space under the assumption that the initial data are close to
a constant equilibrium state in the sense of the norm of hybrid Besov spaces with lower regularities.

In the present paper, we use the div—curl decomposition to decompose the velocity vector field and magnetic field into
three new unknowns. With the help of the Littlewood-Paley analysis technique, we can derive an a priori estimates for
the linearized system in hybrid Besov spaces. It is crucial for the proof of the main result. Then, by the classical Friedrichs’
regularization method, we are able to construct the approximate solutions sequence, and prove the global existence of the
unique strong solution by the compactness arguments (see, e.g., [12]).

Now, we state the main result as follows.

Theorem 1.1. Letd > 3,p > O, > 0,2u +dr > 0,v > 0, P’(-) > 0 and I be an arbitrary nonzero constant vector.
Assume that py — p € BY2~ 142 qnd uy, Hy — I € B4/~ with the condition divHy = 0. Then, there exist a small number ¢ and
a constant M such that if ||po — pllgd2-1.a2 + ||Wgllga2—1 + ||ﬁ0 — I|lga/2—1 < ¢, then the system (1.1) yields a unique global
solution (p, u, H) such that (p — p, u, H — I) belongs to

E := G(R+, Bd/z—l,d/z X (Bd/ZA)CH-d) mL] (R+, Bd/2+1,d/2+2 X (Bd/2+])d+d),

and satisfies || (p — p, u, H-— Dl < M(||po — pllgarz-1.4/2 + |[Wg||gasz—1 + ||ﬁ0 — I||ga/2—1). Here M is independent of the initial
data and B*1-*2 = B%1 N B*2 for s| < S, a hybrid Besov space where B* denotes the usual homogeneous Besov space (defined in the
next section).

2. Hybrid Besov spaces and Besov—-Chemin-Lerner type spaces

Let ¢ : RY — [0, 1] be a radial smooth cut-off function valued in [0, 1] such that ¥+(§) = 1 for |£] < 3/4, ¥(£§) = 0
for || > 4/3 and ¥ (&) is smooth otherwise. Let ¢(£) be the function (&) = ¥ (£/2) — ¥ (&). Thus, i is supported
in the ball {¢ € RY : |£| < 4/3}, and ¢ is also a smooth cut-off function valued in [0, 1] and supported in the annulus
(¢ € RY : 3/4 < |£] < 8/3). By construction, we have D ke ©(27%€) = 1, V£ # 0. One can define the dyadic blocks as

follows. For k € Z, let A, f = .7 'p(27%&).Zf.
The formal decomposition

F=Y N 2.1)
keZ

is called homogeneous Littlewood-Paley decomposition. Actually, this decomposition works for just about any locally
integrable function which has some decay at infinity, and one usually has all the convergence properties of the summation
that one needs. Thus, the r.h.s. of (2.1) does not necessarily converge in .’ (R%). Even if it does, the equality is not always
true in .’ (R%). For instance, if f = 1, then all the projections A, f vanish. Nevertheless, (2.1) is true modulo polynomials,
in other words (cf. [15]), if f € .7/ (RY), then Y, A f converges modulo #[R?] and (2.1) holds in ./ (R?)/ 2[RY].

Definition 2.1. Let s € R. For f € .#/(R?), we write
Ifllss =Y 251 AeS -

keZ

A difficulty comes from the choice of homogeneous spaces at this point. Indeed, || - ||gs cannot be a norm on {f € ./ (R%) :
IIf llss < oo} because ||f|lss = 0 means that f is a polynomial. This enforces us to adopt the following definition for
homogeneous Besov spaces (cf. [12]).

Definition 2.2. Lets ¢ Rand m = —[d/2 + 1 — s]. If m < 0, then we define B*(R?) as
B={fes®RY:|fllps <oocandu= Z A, f in y’(Rd)} .

keZ

If m > 0, we denote by &7, the set of polynomials of degree less than or equal to m and define

keZ

B = {fe 7 RY /[P0 Iflls <ooandu = ZAkf in.#' (RY) /i@m} .

For the composition of functions, we have the following estimates.

Lemma 2.3 ([12, Lemma 2.7]). Let s > 0 and u € B° N L*°. Then, it holds
(i) Let F € W,[SHZ’OO(R") with F(0) = 0. Then F(u) € B°. Moreover, there exists a function of one variable Cy depending only

oc
on s and F, and such that

IF@)llss < Colllullzee) lullps-


cchao
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(i) If u, v € BY2, v —u € B for s € (—d/2,d/2] and G € W\/*"*>>°(RY) satisfies G'(0) = 0, then G(v) — G(u) € B and
there exists a function of two variables C depending only on s, N and G, and such that

1G(v) — G llgs < Cl[ullee, NIvlloe) (llullparz + [V lipar2) [V — ullgs.

We also need hybrid Besov spaces for which regularity assumptions are different in low frequencies and high
frequencies [12]. We are going to recall the definition of these new spaces and some of their main properties.

Definition 2.4. Lets, t € R. We define
Wfllgse = Y250 Aflliz + ) 250 Al

k<0 k>0
Letm = —[d/2 + 1 — s], we then define
B[R = {f € &' (RY) : |Ifllpc < 00}, ifm <0,
B'RY ={fe S RY) /2, : |flpt < oo}, ifm>0.

Lemma 2.5. We have the following inclusions for hybrid Besov spaces.

(i) We have B** = B°.

(i) If s < t then B> = B* N B'. Otherwise, B! = B® + B-.
(iii) The space B%* coincides with the usual inhomogeneous Besov space B .
(iv) If s1 < sy and t; > ty, then BS1°Y1 < B2:&2,

Let us now recall some useful estimates for the product in hybrid Besov spaces.
Lemma 2.6 ([12, Proposition 2.10]). Let s1, S, > 0and f, g € L°° N B1"%2, Then fg € B°1*2 and

I1fgllgsis2 < If oo g llgsisa + (I llgsios2 1 Ml oo
Let s1, Sy, t1, t < d/2 such that min(s; + Sy, t; + ) > 0,f € BV and g € B2, Then fg € B2~ Lta+=1 gpq

||fg||BS1+52*d/2,f1+f2*d/2 N ||f||351vf1 ||g||332»f2-

For o, B € R, let us define the following characteristic function on Z:

- o, ifr <0,
i) = {ﬁ, ifr> 1

Then, we can recall the following lemma.

Lemma 2.7 ([12, Lemma 6.2]). Let F be a homogeneous smooth function of degree m. Suppose that —N/2 < sq,t1,S2,t; <
1+ N/2. The following two estimates hold:

|(F(D) A (v - Va), F(D) A )| 5 &2 K@ 207 vl a1 [allsr 52 | F (D) Ay all 2,
[(F(D) A (v - Va), Agb) + (A (V- VD), F(D) Ay )| S exllVllgarst x @7 ®IED) Apallpl1blig e
+27 KO g gy | A b 2),
where (-, -) denotes the L?>-inner product, the operator F (D) is defined by F(D)f := .# ~'F(£).Zf and Y okezfk < 1.

In the context of this paper, we also need to use the interpolation spaces of hybrid Besov spaces together with a time
space such as I? (0, T; B%"). Thus, we have to introduce the Besov-Chemin-Lerner type space (cf. [16]) which is a refinement
of the space [P (0, T; B%Y).

Definition 2.8. Letp € [1, 0], T € (0, oo] and s1, S, € R. Then we define

k ki
||f||i1;(35~f) = § 2<S|| A/<f||z,v(o,T;L2) + E 2 t|| A/<f||z,v(o,T;L2)-
k<0 k>0

Noting that Minkowski’s inequality yields ”f”Lf;(Bs,t) < ||f||zg (sty» We define the space Z’; (B>Y) as
LB = {f € 7B : Ifllpgee) < 00)-

If T = oo, then we omit the subscript T from the notation Z’; (B>Y), that is, r (B%Y) for simplicity. We will denote by
C([0, T]; B>!) the subset of functions of L°(B>") which are continuous on [0, T] with values in B*'. Let us observe that
LL(B>) = L1(B*"), but the embedding L. (B>) C LP(B*") is strict if p > 1.
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We will use the following interpolation property which can be verified easily (cf. [17]).

Lemma 2.9. Let 6 € [0, 1], s, t,S1, t1, Sy, t, € Rand p, p1, p» € [1, oo]. We have

y ) 1-0
I Wiz ey < I s g

O 4 120 g —@s;+(1—0)syand t = 0t; + (1 — O)t,.

where 1 =
p pP1 p2

3. Reformulation and a priori estimates

2965

Since we study the case where the initial data are close to a constant equilibrium state, it is convenient to change unknown

variables. Let p = p(p + 1) foraconstant p > 0, ji = u/p, > = A/p and H = H + I for a nonzero constant vector L.

atp +u-Vp +divu = —pdivu,

_ 1 1
ou— Au— (1 + A)Vdivu + P (p)Vp — =V(A-H) — =1- VH
P P
1 1 1
=———V(H») + _LV(I -H) — _? |.VH+-—H.
2p(p+1) p(p+1) p(p+1) p(p+1)

P'(p(p+1) , _ > _ P
+|——+——=-P Vo —
( p+1 ) Ve Mot
otH— vAH 4+ (divu)l = I- Vu = —u - VH — (divu)H+ H - Vu, divH = 0.

VH

Au+ (i + 1) —L—Vdiva —u - Vu,
p+1

For simplicity, we use the div-curl decomposition to decompose the velocity vector field and magnetic field into three new
unknowns. Let ASf = Z71|§*.Zf, w = A 'divu, 2 = A 'curluand E = A~ 'curlH where curlu = (9;u; — du);isad x d

matrix.

dp+u-Vp+ Aw =F,

dw+u-Vo— 2+ NAw —P (p)Ap — p~'(I-divE) = G,
02 — A2 —p~1-VE =],

otE — VAE + curl(wl) —1- V2 =K,
u=-A"'"Vo—-A"div2, H=-A"'divE, divH=0,

where divE = Zle 0;E;; with entries Ej; of the matrix E, and

F = —pdivu,
~13: 1 1 2 1% o
G = Aldiv|[]-—=——V(H*)+ ———V(I-H)— ———I-VH+ ——H-
/ 2p(p+1) plp+1) plp+1) plp+1)
P'(p(p + 1)) ,_) _ P = . )
+ = P Vo — Au + +A—Vd1vu—u-Vu
( . (p) | Vp up+1 (n )p+1
1 1
] = A curl (——_—V(|H|2)+_LV(1.H)—_L1. H+ ——H-
2p(p+1) plp+1) pp+1) plp+1)
P'(p(p+ 1)) ,_> _ P _ = . >
+(————-—-P Vp — Au + +A)——Vdivu —u- Vu
( o1 (P) ) Vp up+1 (1 )erl

K = A "curl (—u- VH — (divu)H + H - Vu) .
Next, we shall study the following linearized system with convection terms

op+v-Vo+ Aw =F,

dw+V-Vo— 2+ 1)Aw —P (p)Ap — p~ (- divE) = G,
32 — AR —p '1-VE =],

OE — vVAE + curl(wl) —1- V2 =K,

(p, w, $2,E)|t=0 = (0o, wo, §20, Ep),

to get the following proposition for describing their regularities precisely.

VH

VH
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Proposition 3.1. Let (p, w, 2, E) be a solution of (3.3) on [0,T) for T > 0,1 —d/2 < s < 14+ d/2and V(t) =
fot [lv(t)||g1+a2dz. Then the following estimate holds on [0, T):

”p”ZCT’C(BS—LS) + ”w”ZCT’O(BS—l) + ”Q”Z;O(BS—U + ”EHZ%O(BS—U + ”/OHL%(BHLS-%—Z) + ”w”L}(BS-H) + ”Q”L}(BSH) + ”E”L%(BSH)

< CeVOlp(0) =15 + (Ol gs-1) + 120 30 gs-1) + IEO) e gs-1,)

t
+CeV® / e YO UF@)llgs-15 + 16D Igs—1 + W (D) llps—1 + 1K (@) llg-1)d,
0

where the constant C > 0 depends only on s, p and the coefficients of the system.

Proof. Let (p, w, £2, E) be a solution of the system (3.3)and f := e "Y©f for f = p, w, §2, E. Thus, the system (3.3) can be
transformed into -

dp+Vv-Vp+Aw=F—yV'(t)p,
dw+v-Vo— 2 +MAw—P(p)Ap —p~'(I-divE) =G — yV' (Do,

34
02— AR — p - VE =] — V(DL B4)
&E — vAE + curl(wl) —1- V2 =K — yV'(t)E.
Applying the operator A to the system (3.4), we get the following system with the notation fi :== A f,
pr + LAV - Vp) + Awg = Fe — yV'(0) pr,
B + A (V- Vo) — 2 + M Awy — P'(B)Apy — p~' (- divEx) = G — yV' (D, 35)

02 — A2 — p'1- VE = Ju — y V' (0) 2,
otEx — vAE, + curl(ayl) —1- V2, = K, — )/V/(f)Ek,

Taking the L? scalar product of the first equation of (3.5) with py, of the second equation with wy, the third one with £2;
and the fourth one with E;, we get the following four identities

1d
2de

2de

lokll3 + (Awk, pr) = Fe, o) — ¥V O llpiell3 = (L(V - V), o),
d - _ . .

ol + 2t + Ml Aaxll5 — P'(p)(Apk, o) — p~ ' (1 - divEy, )
(G, @) — YV (O) a3 — (Ap(v - Vo), ay),

d _ __
Enfzkné + il AS2]lZ — o1 - VE, $20) = (b 26) — ¥V (0) 18213,

1d
5E||Ek||§ + V| AE|l5 + (curl(wid), Ex) — (- V2, Ex) = (K, Ex) — v V' (©) | Ex I3

Noticing that

(Awy, pr) = (W, Apr),

d d
(- VE, ) = (Z 19iEr, m) =- <Ek, me) = —(Ei. 1- V£2)).
i=1

i=1

d d
(curl(ayD), Ex) = Z / [0j(wili) — 3;(wilj) [Ey;dx = Z / 0i (i) Eyji — 0;(wil;) Edx
R4 R4

ij=1 i.j=1

d d
=-2) /R i) Exgdx = —2 > /R [ odjiEigdx = —2(1- divE, ),

= ij=1

since Ek,‘j = _Ekji-
Combining these identities, we have

L o ool + o2 + 12602 + —= 1B | + @i+ D)l Aeol2 + 1A + A2
2dt 2 20 2 20

_ 1 1
= P'(p)(Fk, pr) + (Gy, o) + EUk, ) + 5(ch» Ev)

- 1 1 -
—yV'(®) |:P/(P)||;0k||§ + llexll + EHQk”% + ﬁllEkllﬁ] = P'(P) (L (V- V), p) — (A (V- Vo), @). (3.6
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In order to get an L/ -estimate of py, we consider the L2 scalar product of the first equation of (3.5) with Awy, the second

one with A p; and the first one with A2y to obtain

(0 o> Awn) + [ Awxll; = (Fe. Awx) — YV () (o1 Aww) — (Ap(V- V), Aay),

(Bewr, Apk) + (i1 + A) (A%wy, Apx) — P (D) Apkll; — p~ ' (- divE, Apy)
= (G, Apr) — YV () (prs Awx) — (A (V- Vo), Apy),

1d
EEnApku% + (Awx, A’p) = (AFi, Ap) — YV O Apell; — (A(v- V), A%py).

From these three equalities, we have

1d _ - . _ .
S lCR+ MIAPENE = 2(pk, Aw)] + P (D) | Apklls — | Awll3 + p~ (1 - divEx, Apy)

= 2/t + M (AFe, Ap) = y V(O QA+ W Apill; — Qi+ 2)(L (V- V), A% py)

— (Fx, Aw) + 2y V' (O (ks Awx) + (8 (V- V), Awx) — (G, Apr) + (A (V- V), Apr).

Since
a 2 1 2 . b 2, 1 2
[(oks Awy)| < 5||wk||2 + %”A,Ok”z’ |(I- divEx, App)| < 1| §||A5k||2 + E”Aplc“z ,

we expect to find some a, b and 8 such that
B <2+ A, 1/a < 2ji + A, Ba <1, bB|l| <v, I1|/(2bp) < P'(p).
In fact, we can choose
a=3/(4p+2%), b=[1/(pP'(p)),  0< B <min(2 +1)/2,vpP'(D)/IIP).

Denote
2 /r= 2 2 1 2 1 2 = Y 2
aj =P (p)lloxlly + llewxll; + EHQRHZ + ﬁ”EkHZ + BQ2u+ M Apkll; — 2B(ok, Awy),

then
g ~ okl + 1Apl3 + lloxll3 + 11212 + I1Eel3.
Thus, from (3.6) and (3.7), there exists a constant § > 0 such that
1d _ _ -
5 Eaﬁ + (827 + yV' () < P'(5) (Fr, pi) + B + M (AFy, Apr) — B(Fi, Awy)
1 1
+ (Gk, wi) — B(Gy, Apy) + 5(]10 ) + E(Kks Ey)
—P'(D)(A(V- V), pr) — (A (V- V), ) — BRIt + M) (A (V- V), Apr)
+ B(L(V- V), Awy) + B(A(V- V), Apy)
< a(IFell2 + 1 AFellz + 1Gell2 + Will2 + 1Kl + 277V |l grearz [l pll g1
+ &2 OV V| ga2 @l g1 + €27V V] grearz| ol
+ elVlgi+a22 D (ol + olls))
< a(IFellz + I AFcll2 + 1Gellz + Wkll2 + IKell2 + &2 PV (Ol (p, @) llgs—1.5ps-1)-

where we have used Lemma 2.7 with ), &y < 1ands € (1 —d/2,1+d/2].
Dividing (3.8) by «, we get

d
Eak(t) + (02 + yVar < IFill2 + I AFll2 + 1Gillz + Wkll2 + 1Kl + &2 OV (01 (0, @) 1.5 st

(3.8)
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Integrating over [0, t], we have

w(6) + 822 f e (t)dt < a(0) + C / UF@lz + ARl + 162 + (@)l + [1Ke()ll2)de
0 0

t
+C/ V'(D)[er()27 V() @) llp-1.5,p-1 — yor(r)1de
0

t
< ok(0) + C/ (IFe(@) N2 + 1 AF(D)l2 + 1Gk (D) ll2 + k(D)2 + [IKe(T)]2)d7, (3.9)
0
by taking y so large that

Y a2V (o, @)llgs-rs g1 — yar(t)] < 0.
keZ

Changing the functions p, . .. into the original ones p, ... and multiplying both side of (3.9) by 2X¢=1, we conclude, after
summation on k in Z, that

”/OHZ?C(BS—LS) + (o, £2, E)”Z?O(BS—I) + ”p”]_}(BSH,erZ) + (o, £2, E)”L%(BHI)

t
s eV (||p(0>||gs1,s + (@, 2, E)(0)l|p—1 + / e O (F @) llg-1s + G, ], I<><f)llssl>df) :
0
Thus, we complete the proof of the proposition. O
4. Construction of the approximate solutions sequence

The following sections are devoted to the proof of the main theorem. We use the classical Friedrichs’ regularization
method to construct the approximate solutions.

Let us define the sequence of operators (J,),en by restricting the frequency of the function within the annuli A(1/n, n),
i.e. B(O, n) \ B(O, 1/n) where B(O, r) denotes the ball centered at the origin point O with the radius r,

Inf = F ' Aaqiynny E)Ff ().
Formally, we see that J,f — f asn — 400 in the sense of L>-norms.
With the help of this operator, we consider the following approximate system
atpn + «Hn(a]]nun : anpn) + A,,]]na)" = Fn,
d@" + Jp(Jpu" - VI,0") — 2t + M) AJp@" — P'(p) AJnp" — p~ (- divI,E") = G",
02" — AATR2" — p7 - VILE" =", (@1)
0;E" — vAJLE" + curl(J,o"l) —1- V], 2" = K", )
u' = —A"'Vo" — A71div2", H'= —A"'divE",  divH" =0,
(", ", 2", E")|t=o = (pon, A”"divuy, A curlu,, A" curlHy),
where
Pn = Jn(ﬂ_)ilbo - 1), u, = Jylp, H, = Jﬂﬁ()v F' = _Jn(JnPndiVJn“n),
G" = J,(Jpu" - VI0") + J,A”divG?, J" = J, A" TeurlG,

=1L v — T vagay - g
2T+ 1" ,a;(ann(Jr 1() ) " ) P Tnp™ + 1) !
P'(pg(Jnp" + 1 _
NRN — JH”~VJH"+J[ _p }VJ n
IS R T T (PY| Vinp
A TP e @t —2"" Gdivi — . VI,
@+ 1 CJnp" + 1) " " o

K" = J, A 'curl(=J,u" - VI, H" — (div],u™)J,H" + J,H" - VJ,u").
Here ¢ (+) is a smooth function satisfying
1/4, If| < 1/4,
_ )5 1/2 < If] < 3/2,
CO=177a  1f1>7/4

smooth, otherwise.

Now, we show that (4.1) is only an ordinary differential equation in (L?)!*1dxd+dxd \y 1t the time variable t. First, we
can observe easily that all the source terms in (4.1) turn out to be continuous in (L?)+1+4xd+dxd for each fixed n. For instance,



C. Hao / Nonlinear Analysis: Real World Applications 12 (2011) 2962-2972 2969

we show the term JnA”div(mJnV(wnH” |2)) and the other terms can be dealt with in similar ways. By Plancherel’s

theorem, Holder’s inequality and Hausdorff-Young’s inequality, we have

JnA_]diV< Jnv(wnﬂnlz))

Ta/nm (§)IE17'E - 37( JnV(IJnH"I2)>

C@np™ + 1)

I, V(J.H"*)

CJap™+ 1) 2 2

1
SNl7a0o+ 1D < TP +1 7. V(J,H"
H;(ann+1) , (q@ry Moo I7n V(1T H ) |2

40 a1 /. (E)EZ|TH" P12 < 4n| |T,H" 1?12 < 40| JH" |oo | T H" |12

41| a1 /nny () ZH |1 [ |2 < 40 Laca/man () 12 H3
n 2 H.

N

NN

Thus, the usual Cauchy-Lipschitz theorem implies the existence of a strictly positive maximal time T;, such that there is a
unique solution which is continuous in time with value in (L?)'*+1+4xd+dxd Moreover, due to the fact Jﬁ = J,, we obtain
that J,(p", o™, £2", E™) is also a solution, thus the uniqueness implies that J,(o", o", 2", E") = (p", »", 2", E™). Hence,
(p", w", 2™, E™) is also a solution of the following system

dp" + Jn(u" - Vp") + Aw" = F],

d" + I,(0" - V') — 2fi + M) Aw" — P'(p)Ap™ — p~ (I divE") = G,
32" — pAQ" —p - VE" =],

O:E" — vAE" + curl(@"l) — 1- V2" = K7,

u" = —A"Vo" — A7 dive2", H' = —A~'divE", divH" = 0,

(P", 0", 2", E")|i—0 = (pn, A~ 'divu,, A curlu,, A~ curlH,),

(4.2)

where
FI' = —J,(p"divu"),  G'=J,(u"- V") +J,A7'divG",  J' = J, A 'curlG,
~n 1 1 n2 IO” n pn n
Gl = —————IL,.V(H'") + ——V{I-H") = ——1- VH
2p5("+ 1) p;“(p"(+ 1() i) pc(p™+ 1)
1 P'(p +1 L
+ TJn(Hn : VHn) + Iy |:p§+) —P (,0):| Vpn
pE(p n+1) ng“(p +1)
_p - Jo .
—g——— AU+ (i + 1) ———— Vdivu" —u" - Vu",
"+ 1) C(p"+1)

K!' = J,A™ 'curl(—u" - VH" — (divu")H" + H" - Vu").
The system (4.2) appears to be an ordinary differential equation in the space
12 :={f e *(RY) : supp.Zf C A(1/n, n)}.

Due to the Cauchy-Lipschitz theorem again, there is a unique maximal solution on an interval [0, T;’) which is continuous
in time with value in ([2)!F1+dxd+dxd

5. Uniform bounds

In this section, we prove uniform estimates which is independent of T < T, in the space E2 for (p", u™, H"). We will
show that T,j = 4-oco by the Cauchy-Lipschitz theorem. Firstly, we define the functional space for 1 —d/2 <s <14 d/2

ES — @(R+; BS—l,S X (BS—])d"rd) m L] (R+; B$+1,S+2 X (BS+1)d+d),
||(,0, ua H)”ES = ||p||Zoo(3s—1,s)m1(Bs+1,s+2) + ||u||i00(33—1)m[_1(35+1) + ||H||i°°(BS_])ﬁL1(BS+1)'

For the case of a finite interval [0, T], we denote by E} and || - || S the corresponding spaces and norms. Now, we denote

E0) := p~ "I po — 1llpa/2-1.472 + [[Wollgar2—1 + [[Holpasz-1.,
E(p,u, H, 1) := [[(p, w, H)[| a2,
T, := sup{t € [0, T}) : E(p", u", H", t) < abE(0)},
where b corresponds to the constant in Proposition 3.1 and a > max(2, 1/b) is a constant. Thus, by the continuity we get
T, > 0. _
We are going to prove that T, = T, for all n € N and we will conclude that T, = 4-oo forany n € N.
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According to Proposition 3.1 and to the definition of (p,, u,, H,), we have

bl 1 p14ds2y  — 1, ~
(0", ", HY) a2 < be 10 1 po = Tlga-14/2 + 1ol 21 + [Hollgo2-1
n n n ~n n
FIE L garz-1.a2) + 07 - Vol llpy gaa—1y + Gy 1 garz—1) + IKT N2 ga2-1y)-

Thus, we only need to prove the appropriate estimates for F}', @’} and the convection term. Denote the continuity modulus
of the embedding relation B/?(RY) < L°°(RY) by the constant ¢, then we assume that E(0) satisfies the condition

2abcE(0) < 1. (5.1)
IfT < T,, it implies

10" Ny 0,11ty < ClO™ igegarzy < €llp" lise parz-rar2) < abeE(0) < 1/2. (5.2)
Thus, p" + 1 € [1/2,3/2] and then ¢ (p" + 1) = p" + 1. By Lemma 2.6, we get

||Ff||L;(Bd/2—1.d/2) = ||,0"diV“"||L1(Bd/2 142y S llo" llzeo ar2- 1472, || divu” L1 (gar2)
< " 700 (per2- 1472, 0" ll1 garz+1,) SEXp", u", H", T), (5.3)
and
“u Vo' ||L1(3d/2 DY ||ll ||L°°(Bd/2 1)||V(U ”1_1(3!1/2)
S ”u ||i?°(3d/2*1)“u ||L}(3d/2+1) SEZ(pn’un’Hn’ T), (5.4)

which also yields, at the same way, the estimates |u" - Vu”IILl(Bd/z 1y S E?(p",u", H", T) and ||p{(p +1)Jn(H”
VH" )||L1(Bd/2 1y, S E*(p", u", H", T) for the last term and ,l(p,,H)Jn(H” VH") in G", and ||1<"||L1(Bd/2 1y S EX(p" u", HY, T)

for K. By Lemma 2.6 and Sobolev’s embedding theorem, we have

< I L garzy S ="
L}(Bd/Zfl)

“1; V(H'P)
2p8(p"+ 1)

12(B4/2)

”Hn”LOO(Bd/Z 1)||H ”1_1 (BY/2+1) 3 < E? (/0 u" Hn 7). (5.5)

From Lemma 2.6, we get

n

v({-H") < 10" e parz—1) 11 H' [l 1 g1,

L} (Bd/Zfl)

‘ o
pL(p™ + 1)

< 10" I a2y I 1 gy < E2(0", ", WY, T, (5.6)

In a similar way, we can also obtain ||
Sobolev embedding theorem, we have

P'(BE (p" + 1
Jn[ (S (p" + 1)) —P/(ﬁ)] v

g(pnﬂ)l VH"[|1 o1y < E?(p", u", H", T). With the help of Lemma 2.3, 2.6 and the

2
S ”/0”1%@(1/2) s ”p”Z?O(Bd/Z—l)||p||1_}(3d/2+1)

cp"+ 1) 1 (Be/2-1)
S ||,0||i?<>(3d/271,d/2)||P||L%(Bd/2+1,d/2+2) S E*(p",u", H", T). (5.7)
Due to Lemma 2.6, it yields
H—ﬁp—nAun +(n+ X)p—aniVU" S ||,0"||zoo(3d/2)||u”||L1(Bd/2+1) SE*(p",u" H".T). (58)
¢+ 1) ¢+ 1) L(Bé/2-1) T
Thus, we have obtained
I u' Bz < be” "D (14 CEO)EO). (59)

If we choose E(0) small enough such that

14+ CPV’EQO) < d®/(a+2), e®E® <14 1/a,  2abcE(0) < 1, (5.10)
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then ||(p", u", Hn)”Ed/Z <ab(a+ 1)E©)/(a+2) forany T < T,.. It follows that T, = T Indeed, if T, < T, we have shown
T
that E(p",u", H", T,) < ab(a 4+ 1)E(0)/(a + 2). Thus, by the continuity, for a sufficiently small constant ¢ > 0, we can

obtain E(p", u", H", T, + o) < abE(0). It yields a contradiction with the definition of T,.
Now, we show the solution (p", u", H"),cy of the approximate system is global in time. In fact, if T, < oo, then we

have E(p", u", H", T)) < abE(0) as derived above. Thus, it implies || 0"||;0¢ (pa/2-1.4/2) < 00 and ||(u", H")||;0 (paj2-1y < 00
Ty T
and then |[(o", u", H")|| @2y < 0o.Hence, we can extend the solution beyond T by the Cauchy-Lipschitz theorem. This
T

contradicts the definition of T;;. Therefore, we conclude that T} = +o0.

6. Existence and uniqueness of the solution

In this section, we shall show the existence part of the main theorem. In other words, we prove that the sequence
(p", u™, H") ey coOnverges, up to an extraction, in 2’ (Rt x RY) to a solution (p, u, H) of (3.2) which has the desired regularity
properties.

Roughly speaking, the proofis based on the standard compactness arguments (e.g., [9,12,14]), but we have to show some
subtle and lengthy details. Firstly, we need to show that the first order derivative of (p", u", H") w.r.t. the time variable is
uniformly bounded in appropriate spaces. It enables us to apply Arzela-Ascoli’s theorem and get the existence of a limit
(p, u, H) for a subsequence. Secondly, the uniform bounds proved in the previous section provides us with additional
regularity and convergence properties such that we can pass to the limit in the system.

We first split the approximate solutions sequence (p", u", H") into the solutions sequence of the corresponding linear
system with initial data (p;, u,, H,), and the discrepancy to that solutions sequence. More precisely, we denote by
(o', u}, H}') the solution to the linear system

dp +divuf =0,
dul — AU — (i + A)Vdiva] +P'(p)Vo! —p 'V(I-H]) — p~'1- VH =0,

B H' — VAH! + (divu)l —1-Vu! =0,  divH! =0, (6.1)
(pll7 u?’ HZ)|!':0 = (pm un, Hn)a
and (1037 uga Hg) = (pﬂ - 10[’_13 u" — qu H" — H?)
Obviously, the definition od (po,, u,, H,) entails
on— p Py —1)inBY?7 192w, - uy, and H, — HyinBY*7!, asn— oco.
Proposition 3.1 insure us that
(of', ul, H}) — (pr, u, Hp) inEY2, asn — oo, (6.2)
where (o, u;, H;) satisfies the following linear system
Bt,oL + diVll]_ =0, _
deuy — Auy — (L + A)Vdiva, +P'(5)Vp, — p~'V(I-H) — p~'I- VH, =0, (6.3)
atHL — vAH; + (divuL)l -1 VllL =0, diVHL =0, ’
(IOLa u, HL)|[=O = (12)_1(150 - 1)a Up, HO)
Now, we have to prove the convergence of the discrepancy sequence (pp, up, Hp)).
Lemma 6.1. Let d > 3, then (o, uf, H})nen is uniformly bounded in
CV2(R*: BY2-1) x (@V/S(RT: BY/27/5))d+d
Proof. Since 9, o = —J,(u" - Vp") — J,(p"divu") — div(u" — u}'), we can obtain 3, pj} is uniformly bounded in [*(B%/>~")

by the fact p" € L°(B%?) and u", u € [*(BY?).

Let o] = A~ 'divu}, 2] = A~ 'curlul and E! = A~ 'curlH], then 3,0} = (2fi + A)A(w" — @) + P'(p)A(p" —
o + (I - divE" — EM)) + J,ATdIVED, 82" = RA(R" — 2 + 51 - V(E" — EM) + J" and §E" = vA(E" —
E" — curl((w" — o)D) +1- V(2" — £2}') 4+ K{. By interpolation arguments and Lemma 2.6, we have d;wj), 9;§2] and 9;E},
uniformly bounded in (L>/4 + L'%/%)(B%?~7/3) via a tedious and lengthy computation. So is ,u}, and 8,E! in view of the
relations uf, = — A~ 'V} — A~'dive2}}, and H}, = — A~ 'divE}.

Thus, it is easy to obtain the desired results. O

Next, we can turn to the proof of the existence of a solution and use Arzela-Ascoli theorem to get strong convergence.
We need to localize the spatial space because we have some results of compactness for the local Sobolev spaces. Let (xp)pen

be a sequence of C° (R%) cut-off functions supported in the ball B(O, p+ 1) of R? and equal to 1 in a neighborhood of B(O, p).
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From Lemma 6.1, it implies that (x,op, xpul, x,Hb)nen is uniformly equicontinuous in G(R*; B9/2~1 x (BY/277/5)d+d)
for any p € N. It is easy to see that the mapping f +> x,f is compact from B/2~1:9/2 into B¥?>~! and from B%?~! into
BY2~7/5_ 0n applying Arzela-Ascoli theorem to the family (Xppp, xpup, xpHp)nen on the time interval [0, p] and using
Cantor’s diagonal process, it yields that a subsequence (which we still denote by (x5, xpup, xpH})nen) converges to a
distribution (xppp, Xpup, xp,Hp) in C(RT; BY/2~1 x (BY/277/5)4+d) for all p € N. It infers that (op, u}}, H) converges to
(pp, up, Hp) in the sense of 2/(R* x RY).

Going back to the uniform estimates of the previous sections, we can get that (op, up, Hp) belongs to [ (R™; B4/2-1.4/2 »
(Bd/Z—])d+d) NI (R+; B4/2+1,d/2+2 (Bd/2+1)d+d) and also to 61/2(R+§ Bd/2—1) X (@]/S(RJ’_; Bd/2—7/5))d+d' In a standard way
(cf.[9,13,14]), we can show that (o, u, H) := (p, u;, H;) 4+ (op, up, Hp) solves the system (3.1). The continuities of p, u and
H in B/?>~1 are straightforward from (3.1) with the help of the interpolation theory of homogeneous Besov spaces.

There remains to prove the uniqueness of the solution. By the standard method, we can prove the uniqueness over a small
time interval [0, T]. Since || 0|l 00 g+ xrd) < 1/2 and || o ljoc (g +.pa/2-1.4/2) < abE(0) are uniform for all time, we can prove the
uniqueness in [T, 2T], [2T, 3T], ..., and so on. Then, the solution is unique in [0, 00).

Therefore, we complete the proof of the main theorem.
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