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ABSTRACT. In this paper, we establish a priori estimates for three-dimensional
compressible Euler equations with the moving physical vacuum boundary, the
~-gas law equation of state for v = 2 and the general initial density pg € H®.
Because of the degeneracy of the initial density, we investigate the estimates
of the horizontal spatial and time derivatives and then obtain the estimates of
the normal or full derivatives through the elliptic-type estimates. We derive a
mixed space-time interpolation inequality which plays a vital role in our energy
estimates and obtain some extra estimates for the space-time derivatives of the
velocity in L3.

1. Introduction. In recent years, the motion of physical vacuum in compressible
fluids has been received much attention due to its great physical importance and
mathematical challenges (cf. [14-18,21]). Some significant progresses have been
made particularly on the Euler equations (cf. [4,6,7,9,10]). Physical vacuum prob-
lems arise in many physical situations naturally, for example, in the study of the
evolution and structure of gaseous stars (cf. [1,8]) for which vacuum boundaries are
natural boundaries.
In the present paper, we consider the following compressible Euler equations

Op + div (pu) =0 in Q(t) x (0,77, (1.1a)
O(pu) +div(pu@u) + Vp =10 in Q(t) x (0,77, (1.1b)
p=0 on I'y(t) x (0,71, (1.1c)
uz =0 on Iy x (0,77, (1.14d)
o (t) =V(ITi(t) =u-N in (0,77, (1.1e)
(p,u) = (po,uo) in  x {t =0}, (1.1f)
Q(0) = Q, T5(0) = T, (1.1g)

2010 Mathematics Subject Classification. Primary: 35R35, 35B45; Secondary: 35Q35.
Key words and phrases. Compressible Euler equations, physical vacuum, free boundary, a priori

estimates, mixed interpolation inequality.
The author is partially supported by NSFC grants 1117132 and 11461161007, and the Youth
Innovation Promotion Association, Chinese Academy of Sciences.

2885


http://dx.doi.org/10.3934/dcdsb.2015.20.2885

2886 CHENGCHUN HAO

where p denotes the density, the vector field u = (uy,us2,u3) € R3 denotes the
Eulerian velocity field, and p denotes the pressure function. V = (9;,02,93) and
div are the usual gradient operator and spatial divergence in the three-dimensional
space where 9; = 0/0x;. The open, bounded domain Q(t) C R?® denotes the
changing volume occupied by the fluid, I'; (¢) denotes the moving vacuum boundary,
V(T'1(t)) denotes the normal velocity of I'y (), N denotes the outward unit normal
vector to the boundary T'y(t), and Ty is a fixed boundary. The equation of the
pressure p(p) is given by

p(ﬂj,t) = C’Y pW(I,t), (12)

where 7 is the adiabatic index, C, is the adiabatic constant which we set to unity,
ie., Cy =1; and

p>0 inQt) and p=0onT4(t). (1.3)

For simplicity, we will only consider the case v = 2 in this paper, which can supply
some helpful information and a better understanding for the discussion of general
cases of v > 1 (e.g. Remark 2).

Equation (1.1a) is the conservation of the mass, (1.1b) is the conservation of the
momentum. The boundary condition (1.1c¢) states that the pressure (and hence
the density) vanishes along the vacuum boundary, (1.1d) describes that the normal
component of the velocity vanishes on the fixed boundary I'g, (1.1e) indicates that
the vacuum boundary is moving with the normal component of the fluid velocity,
(1.1f) and (1.1g) are the initial conditions for the density, velocity, domain and
boundary.

To avoid the use of local coordinate charts necessary for arbitrary geometries,
for simplicity, we assume that the initial domain Q C R3 at time ¢ = 0 is given by

Q= {(.’El,l'g,.’l?g) eR?: (371,.%2) S TQ, X3 € (0,1)},

where T2 denotes the 2-torus, which can be thought of as the unit square with peri-
odic boundary conditions. This permits the use of one global Cartesian coordinate
system. At ¢ = 0, the reference vacuum boundary is the top boundary

Iy = {(z1, 72, 23) € R®: (x1,15) € T?, 23 = 1},
while the bottom boundary
FO = {(.’El,l'g,l'g) S RS :

(

is fixed with the boundary condition (1.1d)

We set the unit normal vectors N = (0,0,1) on I'; and N = (0,0,—1) on I'y.

We use the standard basis on R3: e; = (1,0,0), e = (0,1,0) and e3 = (0,0,1).
Similarly, the unit tangent vectors on I' = 'y UT'; are given by

T, = (1,0,0) and Ty = (0,1,0).

.’El,.’bg) S Tz, T3 = 0}

Throughout the paper, the repeated indices will stand for the summation with
respect to them in a monomial expression. The k*"-partial derivative of F' will be
denoted by F;, = g—Fk. Then we have

(div (pu @ u))? :(puiuj)ﬂ- = div (pu)uw? + pu - Vul,
which yields that (1.1b) can be rewritten, in view of (1.1a), as
p(Osu+u-Vu)+ Vp=0.
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Thus, the system (1.1) can be rewritten as

Op + div (pu) =0 in Q(¢) x (0,71, (1.4a)
p(Ou+u-Vu)+Vp=0 in Q(t) x (0,77, (1.4Db)
p=0 on I' (t) x (0,77, (1.4c)
uz =0 on I'y x (0,77, (1.44)
oT1(t) =u-N in (0,77, (1.4e)
(p,u) = (po,uo) in Q x {t =0}, (1.4f)
Q(0)=Q, I'1(0) =Ty. (1.4g)

With the sound speed given by ¢ := 1/9p/0p and N denoting the outward unit
normal to I'y, the satisfaction of the condition
2
—00 < % < —g <0 (1.5)
in a small neighborhood of the boundary defines a physical vacuum boundary (cf.
[16]), where ¢ = c|t—p denotes the initial sound speed of the gas and gy > 0 is
a constant. In other words, the pressure accelerates the boundary in the normal
direction. It is the physical vacuum that makes the study of free boundary problems
of compressible fluids challenging and very interesting, because standard methods
of symmetric hyperbolic systems (cf. [11]) can not be applied directly.
The physical vacuum condition (1.5) for v = 2 is equivalent to the requirement

dpo €0

v S = T. 1.

N 5 < 0 onIy (1.6)
Since pg > 0 in £, (1.6) implies that for some positive constant C' and x € ) near
the vacuum boundary Iy,

po(z) = Cdist (x,T'y), (1.7)

where dist (z,'1) denotes the distance of x away from T'y.

The moving boundary is characteristic because of the evolution law (1.1e), and
the system of conservation laws is degenerate because of the appearance of the
density function as a coeflicient in the nonlinear wave equation which governs the
dynamics of the divergence of the velocity of the gas. In turn, weighted estimates
show that this wave equation indeed loses derivatives with respect to the uniformly
hyperbolic non-degenerate case of a compressible liquid, wherein the density takes
the value of a strictly positive constant on the moving boundary [3]. The condi-
tion (1.7) violates the uniform Kreiss-Lopatinskii condition [11] because of resonant
wave speeds at the vacuum boundary for the linearized problem. The methods de-
veloped for symmetric hyperbolic conservation laws would be extremely difficult to
implement for this problem, wherein the degeneracy of the vacuum creates further
difficulties for the linearized estimates.

Now, we transform the system (1.4) in terms of Lagrangian variables. Let n(x, t)
denote the “position” of the gas particle x at time ¢. Thus,

on=uon fort>0, and n(z,0)=ux, (1.8)

where o denotes the composition, i.e., (uon)(z,t) := u(n(x,t),t).
We let

v=uon, f=pon, A=(Vn)', J=detVn, a=JA,
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where A is the inverse of the deformation tensor
) 771,1 771,2 771,3
Vn = (nl,j) = 772,1 772,2 772,3 )
773,1 773,2 n .3
J is the Jacobian determinant and « is the classical adjoint of V1, i.e., the transpose
of the cofactor matrix of V7, explicitly,
W2y = T = 2 N2y =
a= 772,3 772,1 - 772,1 772,3 n 77;3 ! 772,1 771,3 772,1 - 771,1 772,3 . (19)
i o =N 2N 1 771,277 1 *771,177 2 M a2 =N 2N 1
Since 7® = w3 = 0 on the fixed boundary T'y, according to (1.9), the components
a$ = a3 =0 on Iy, and v3 = 0 on Iy due to v - (0,0, —1) = 0 where (0,0, —1) is
the outward unit normal vector to I'g, then the Lagrangian version of (1.4) can be
written in the fixed reference domain 2 as

fi+ fAW ;=0 in Q x (0,7], (1.10a)
foi+Alf2 =0 in Q x (0,77, (1.10Db)
f=0 on I'y x (0,77, (1.10c)
ai=a3=0,v3=0 on Ty x (0,77, (1.10d)
(p,v,m) = (po, uo, €) in Q x {t =0}, (1.10e)

where e(z) = x denotes the identity map on .

From the derivative formula of determinants, we have
Ji :JA{UZJ = a{vlﬂ' . (1.11)
It follows from (1.10a) and (1.11) that

fo+ IV =0, or 9,(fJ) =0, ie., f=poJ ", (1.12)

thus, the initial density function pg can be viewed as a parameter in compressible
Euler equations. _ _
Using the identity A7 = J~'al, we write (1.10) as

povi +al (pgJ %) ; =0 in Q x (0,77, (1.13a)
po =10 on I'y, (1.13b)
at =a3=0, v3=0 on I'y x (0,77, (1.13c)
(v,m) = (uo,€) in Q x {t =0}, (1.13d)

with po(x) > Cdist (z,T) for z € Q near T';.

To understand the behavior of vacuum states is an important problem in gas
and fluid dynamics. In particular, the physical vacuum, in which the boundary
moves with a nontrivial finite normal acceleration, naturally arises in the study of
the motion of gaseous stars or shallow water [10]. Despite its importance, there are
only few mathematical results available near vacuum. The main difficulty lies in the
fact that the physical systems become degenerate along the vacuum boundary. The
existence and uniqueness for the three-dimensional compressible Euler equations
modeling a liquid rather than a gas was established in [13] where the density is
positive on the vacuum boundary. Trakhinin provided an alternative proof for the
existence of a compressible liquid, employing a solution strategy based on symmetric
hyperbolic systems combined with the Nash-Moser iteration in [20].



FREE-BOUNDARY COMPRESSIBLE EULER IN VACUUM 2889

The local existence for the physical vacuum singularity can be found in the
recent papers by Jang and Masmoudi [9,10] and by Coutand and Shkoller [6,7] for
the one-dimensional and three-dimensional compressible gases. Coutand, Lindblad
and Shkoller [4] established a priori estimates based on time differentiated energy
estimates and elliptic estimates for normal derivatives for v = 2 with py € H*(2)
where the energy function was given by

4 4
_ =4—4 —4—L
B0 =3 10+ Y [lood” ™ 923 + 1/aed 02 (o)1

=0 =0

3
— =4
+ 2 o0 T2 ()15 + leurly ()3 + [lpod curl, v(t)]I3,
£=0

where the claimed interpolation estimate (cf. [4, Eq.(6.12)])

0
ol Z2 073509y < CUlvllslnlla) |7 + Cllvellzzo,zsms o Inll 2o, rimacyy - (114)

had played a crucial role.

We will not attempt to address exhaustive references in this paper. For more
related references, we refer the interested reader to [7,10] and references therein for
a nice history of the analysis of compressible Euler equations.

In the present paper, we will use a similar argument as in [4] to consider the
cases of general initial densities. We will rigorously prove a new mixed space-time
interpolation inequality under the framework of Lebesgue spaces which will play a
vital role in our energy estimates, rather than the framework of Lebesgue spaces
for time but Sobolev spaces for spatial variables in bounded domain, namely (1.14),
used in [4], then we can obtain some extra estimates of space-time derivatives of
v(t) in L3(Q). In order to deal with some sub-higher order terms (e.g., (5.164)) in
the argument for the time derivatives, we have to investigate the fifth order energy
estimates which are closed with themselves.

We now derive the physical energy of the system (1.13). From (1.11), the Piola
identity (A.13) given in Section A.3, we get

1 , . B . B B
§at(P0|U|2) =povivy = —ajv' (p3J ) . = *(agv (037 2)) ;T Jipyd 2
= — POt = (alv'pgT )

Since pg = 0 on the boundary T’y and a3v® = 0 on 'y, integrating over € yields,
with the help of Gauss’ theorem, that

Ealt) = [ (Gt + ) w0 do

1 -
=5 lveovlls + llpo 2|5 = Eo(0)

conserves for all ¢ > 0.

Although the physical energy is a conserved quantity, it is far too weak for the
purposes of constructing solutions. Instead, we introduce the following r*" order
energy function

. —=r—{ —r—{
Ey(t) =3 1020012, + 1oy 2628 w3+ 10002 V)3
£=0
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r—1
+ 37 (100 g2 + Ip0dZ T 2(B)12 ]
£=0

+ [leurl, v(#)[7-, + [l pod curly v(t)||5-
Now, we state our main result as follows.

Theorem 1.1. Let v = 2. Suppose that (n(t),v(t)) is a smooth solution of the sys-
tem (1.8) and (1.13) on a time interval [0, T'] satisfying the initial bounds E5(0) <
oo and that the initial density po > 0 in Q and po € H>(SY) satisfies the physical
vacuum condition (1.7). Then there exists a T = T(E5(0)) > 0 so small that the
energy function Es5(t) constructed from the solution (n(t),v(t)) satisfies the a priori
estimate

sup E5(t) < C(E5(0)).

(0,77
Remark 1. The same arguments and the results hold true if the bottom boundary
T’y is also a moving vacuum boundary, i.e., by changing the boundary condition
(1.1d) into p = 0 on T'y(¢) x (0, 7], which will not cause any additional difficulties
except for the transformation of coordinates.

Remark 2. For the general cases v > 1 with general densities, we give some further
remarks. We think that they are much more different from the special case v = 2.
They need to reform the energy function in order to get a priori estimates. For the
cases 7 > 2, it seems to be similar to the case v = 2 due to y—1 > /2 in view of the

exponent of the weight pg/ % and paW1 and weighted Sobolev embedding relations

given in Section A.1l, but it is not easy to deal with the weight pg/ % in energy
estimates in view of the higher order Hardy inequality. For the cases 1 < v < 2,
one have to use the weight pgf1 instead of pg/ % in constructing the energy function
according to the physical vacuum condition, the higher order Hardy inequality and
weighted Sobolev embedding relations, especially for the cases 3/2 < v < 2, however
one must deal with many extra, important and difficult remainder integrals in the
estimates of every horizontal, time or mixed derivatives. For the cases 1 < vy < 3/2,
it might be different from and difficult than the above cases.

Throughout the paper, we will use the following notation: two-dimensional gra-
dient vector or horizontal derivative & = (81,82), the H3(€2) interior norm |- || H3(9)
the H*(Q) interior norm || - ||s when p = 2, and the H*(T") boundary norm | - |5.
The component of a matrix M at the i*" row and the j* column will be denoted
by M ; Sometimes, we will use “<” to stand for “< C” with a generic constant C.
For more notations, one can read the appendix.

The rest of this paper is organized as follows. We give a mixed space-time
interpolation inequality in Section 2, and derive the zero-th order energy estimates
in Section 3 and the curl estimates in Section 4. Since the standard energy method
is very problematic due to the degeneracy of pg, we first derive the estimates of the
horizontal and time derivatives in Sections 5.1-5.3 and then obtain the estimates of
normal or full derivatives through the elliptic-type estimates in Section 6. We will
complete the proof of the a priori estimates in Section 7. Finally, we will give some
preliminaries in Appendix A. Precisely, we introduce some notations and weighted
Sobolev spaces in Section A.1; we recall the higher-order Hardy-type inequality and
Hodge’s decomposition elliptic estimates in Section A.2; we give the properties of
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the determinant J, the inverse of the deformation tensor A and the transpose of
the cofactor matrix a in Section A.3.

2. A mixed space-time interpolation inequality. In this section, we prove a
useful mixed space-time interpolation inequality which will play a vital role in our
energy estimates.

Proposition 1 (Mixed interpolation inequality). Let F'(t,x) be a scalar or vector-
valued function fort € [0,T], T > 0 and z € Q C R®. Assume that F;(0,-) € L3(Q),
F e L*([0,T); L%(Q)) and Fy € L>([0,T); L?(2)), then we have

||Ft||L3 (0,7]xQ) S CT*/3||F,(0 )||2L3(Q) +[%u% IF ) el Fre( 2], (2-1)

where C' is a constant independent of T', ) and F.
Proof. Notice that
2|F (0 Fi|)Fy = 0u(|Fu)Fy = 2(Fy - Fio) Fy < 2|Fy[*| F

implies that |0:(|F¢|)F:| < |F¢||Fit|. Then, by the Fubini theorem, integration
by parts with respect to time, the fundamental theorem of calculus, the Holder
inequality and the Minkowski inequality, we have

T T
VF s o 21 = / / \Fy[fdedt = / / \Fy|F, - Fdtdz
T
QJO
T
=/</6MWWW0-HHM+/WWWM®</IWQM
Q 0
T
//WMQFM& //&MmEIMﬁ
T
< / (/ |Ftt||Ft|dt> [F(T)|dz + / (0 (/ |Ft|dt> d
Q 0

+2//\Ft||Ftt||F|dxdt
0Jo
T

T
<C\|F(T)||L5(Q)/O |||Ftt||Ft|||L5/5(Q)dt+C”Ft<0)”%3(ﬂ)/0 | F | L3 (o dt

+ CIFyll s o, myx o 1 Feell L2 0,71 1F Il s 0,7y x )

<CT*3|| Py s (po.11x

IF (0|75 (0 + [5;)1171% ||F|L6(Q)||Ftt|L2(Q)‘| ,

which implies the desired inequality by eliminating ||F}| s (j0,r)x) from both sides
of the inequality. O

3. A priori assumption and the zero-th order energy estimates. We assume
that we have smooth solutions 7 on a time interval [0,7], and that for all such
solutions, the time T' > 0 is taken sufficiently small so that for ¢ € [0, T,

1 3
— < < —. .
S <M< (3.1)
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Once we establish the a priori bounds, we can ensure that our solution verifies the
assumption (3.1) by means of the fundamental theorem of calculus. Then, by (1.9)
and Sobolev’s embedding H?(Q) C L>(Q), we have for t € [0,T],

()l 2=y <ClIn(®)ll2, (3.2)
la®)ll Lo (@) <SCIVHE)l[7 0y < Clln()]3- (3.3)

It follows from a = JA and (3.1) that
LA 2=y <IT(O)a(t) oy < Cll(®) 2 (3.4

Now, we prove the following zero-th order energy estimates.

Proposition 2. It holds for r > 4

sup [[lpy/*0l3 + 0T /28] < Mo + CTP(sup E,(1)).
[0,7] [0,7]

Proof. Since the proof is standard, we omit the details. O

4. The curl estimates. Taking the Lagrangian curl of (1.13a) yields that
EljiAj‘rUz,s =0, or curl,v=0. (4.1)
We can obtain the following proposition.

Proposition 3. For allt € (0,T], we have forr >4

r—1 T

—r—t
> leurl o7 n(®)[I12_, o+ > llpod  curloFn(t)|I3 < Mo + CTP([SUP] E.(t)).
£=0 £=0 0,T

(4.2)

Proof. Since the proof is similar to those in [4], we omit the details. O

5. The estimates for the horizontal and time derivatives.

5.1. The estimates for the horizontal derivatives. We have the following es-
timates.

Proposition 4. Letr € {4,5}. For small § > 0 and the constant My depending on
1/4, it holds

s 0620 v(t) 3 + 100" Tn(t) I3 + o div (I3 + 1n* 12 o]
<My + dsup E,.(t) + CTP(sup E,(t)),
[0,77 [0,T7]

where n® =n - Ty, fora=1,2.
Proof. Letting @ act on (1.13a), then we have

T T
wr—l =l -
Y Co ped i+ Y ' ald (pgT %) ; =0,
1=0 1=0

where CL is the binomial coefficient. Taking the L2(2)-inner product with 8 v’, we
obtain

6

3
0@ v|*dx + Z T = T (5.1)

m=0 m=4

1d
24t
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Here,

Jy:=[ 9d (p3J 8 vide, T ::/ag(grng*Q) 9 vida,
Q Q J

r—1
i =T . 7 ==l Sl ;57
T3 :z/ﬂag(pgaJ 2)7javdx, N :=—§C’ﬁ/ﬂ@ po0 v;d v'dx,
r—1
J5:=— ZC&/ grfla'zgl(pg‘]_g) jgrvidx
0 :
g 1= — Ol/ 7 28 g2) Fvid
6 Z (9 ) T va

Step 1. Analysis of the integral J;. We use the identity (A.13) to integrate by
parts with respect to z; to find that

/ 0 alptt 20 jde+ | 8 a0 Wi pRJ2dxydy
To
- / 8 ald' v j p2J 2,
Q
due to the boundary conditions (1.13b) and (1.13c).
It follows from (A.14) that

Jo=— [0 (57] J Y (alaf - a} al)>6v]po J2dx
Q
—/grnlvafgrviyj AgngfldJc (5.2)
/877 kA(?vjAlpO Jldx (5.3)

- Cf—1 /ﬂ gr_snl,k o’ (J_l(agafC — afa{)) ErviJ peJ 2dx. (5.4)
Since v = n;, we get

Q

+ f/ |div,75 n?p2dsJ tdx

1 =T U] j —
= 5%/ |div, @ n[?p3J da + 5/{)‘9 ' 00’ ;0 (AT A])pg T da

/ \div,, @ 7|2 padsJ " dax.
For the integral (5.3), since v = n, it holds
grﬂl,k Anggr“i’j
=0,(0 ', AFD' ' ; A]) — 0! AR Al =0 ' 9T 9 (AFA]).
It follows from (A.2) that
9 ATAD
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1 =T =T 1=r =" i i
=20 [ma nf? — |curl, @ nﬂ — 500 (O Or(AFA)). (5.5)

Thus, we have

5. —li 37,12 =r 2] 2 ,-1
(5:3) =3 dt/ (19,0702 = [eurl, " nf2] p3J " da
1 . _
+ 5/ [‘Vna nl? - |curl,, 0 77|2} p2J~Ldiv, vdz
1
5/877 ka 7] 6t(AkAJ)Po J N dx.

It follows that
T

1 — - _

| 3wt =5 [ (19900 = 1aiv, 30T  feurl, & ()] g~ (T
-l—%/o/Q |V775T77|2—|div775rn|2— |cur1,,5r77|2} paJ ' div, vdzdt

Y Y ; - T
75// In' 9 n' ;0 (AFA] ngAf)pSJ*dxdtJr/ (5.4)dt.
0JQ 0

It is clear that

T
//Q [\VngrnF — |div, 9> - |curl,, 5777|2} peJ~tdiv, vdxdt
0

<CT sup [|pod VEllolsllnls < CTP(sup Er(2)),
[0,7] [0,7]

and

T
/ / ' 0 O (AFA] — ALAF)pR T dadt
0JQ

<CT [Sup} (AR
0,T

<CTP(sup E.(1)).
[0,7]

Now, we analyze the integral fOT (5.4)dt. We will use integration by parts in time
for the cases s = 1 and s = 2, while we have to use integration by parts with respect
to spatial variables for the case s = r — 1.

Case 1. s = 1. From integration by parts with respect to time, we get

(r—1) //3 7' k@ JAZ Akq )5‘1} j pad 2dxdt (5.6)
(r—1) /[f ! L0 JAI —Aia{)g niyjng*deL:T (5.7)
r—1//a 1”6 al Af — Aba]) 3 5 03 Pdwdt (5.8)
(r—1) //8 ' 1010 jAk AFq )87) PR 2dxdt (5.9)

(r—1) //a nka JA’“ Akg )an 28, J " 2dzdt. (5.10)
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It is clear that, by Holder’s inequality and the fundamental theorem of calculus
twice,

T
—=r—1 / =T
I(5.7)] <C Po/o 9 0:Vmdt'|| 1lpod Vn(T)llolIn(T)|3
0
tfr—l —=r—1
<CT (sup Po/ 9 0pvndt'| +|lpd 8N?7(0)||o>
[0,7 0 0

[lpod Vi (T)llolIn(T)II3

2
—r—1 —=r—1
<CT? [SUTI}] <||P05 97Vnllo+ Y llpod 5iV77(0)||0>
0, =1
pod V(D) lolln(T)|3

<My + CT?P(sup E,(t)),
[0,7)

T
o / 7 92 vndt
0

|(5.8)] <CT sup (
[0,7]

—=r—1 =T
+ oo 8Nn(0)llo> lpod” Valollnl
0

2

—=r—1 —=r—1 =T

<CT? [8011713] (HPO8 7 Vnllo + E o0 8§V77(0)0> 1000 Vnllol|nl|
s =1

<My + CT?P(sup E,.(t)),
(0,77

and

—=r—1 =T
|(5.10)] <CTHP0H2[SOUTI;>] 10" ValoP(nlla)[Voll2llped Vallo

<My + CT?P(sup E,(t)).
[0.77]

We can rewrite (5.9) as, for 8 € {1,2}
-1 (348 B 3\ 727" i 2
9 =3[ [ 3 9,00 (aiAl — AL al) T2, pRdadt (5.11)
0/a

T
+ 3/0/95T_17717k 8165 (afAf — Afaf) J—QETniWB pgdxdt. (5.12)

Obviously, we have from the Holder inequality and Sobolev’s embedding theorem
that

|G- 1] <CT sup lod nlls P(nlla; 0lls, 119 0[11) 200" Vallo

<CT [SOUIP] (Hpo|\3||77||r + HPOETVUHO) P(|[nll, lv]ls, 10V]|1)]l00 Vallo

<My + CTP(sup E,(t)).
[0,7]

By integration by parts, it yields

T
(5.12) :73//5“7,1,% 8,0 (afAf—Afaf)grniJ*ngdxdt (5.13)
0JQ
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- 3// i lkat al AF — 6) ﬁgrniJ_Qp%dxdt (5.14)

—3//5“ nl,kaﬁ afAf—Afaf)a W(T7%p5) pdadt.  (5.15)
0/
It is easy to see that

(5.13)] <CT s 1p0d Vnllol@V ol P(Inlla)llpod nlly < Mo + CTP([SOH% E,(t)),

and

—=r—1 = =T =
(5.15) <CT [S()ujli)] 0 VnllolloVoullP(lnll4)lpod nllx (HPOHLOO(Q) + ||3P0||Loo(fz))
<My + CTP(sup E.(t)).
(0,7

In order to estimate (5.14), we first consider the estimate of || D"~ v| 13 (0, 77x0)
where D™~! denotes all the derivatives 9° for the multi-index 6 = (61,6, 03) and
0 < |0] < 7 — 1. By Proposition 1 with F = D"~y and the Sobolev embedding
theorem, we have

D" 0|75 0,0yx00) SCT>® [HDr_lU(O)HLB(Q) + [8011113] ||DT_1vt||L2(Q)||DT_177HLG(Q)}
<My + CT?? sup |[vg -1l
(0,77
<My + CT*3P(sup E,(t)).
(0,7
Thus, we obtain

ID" 0|75 0,7)x00) Mo + CT?/* P(sup E,(1)). (5.16)
[0,7]

By the Holder inequality, the Sobolev embedding theorem, the Cauchy inequality
and (5.16), we easily get

=2 =3 =4
|(5.14)] SCT*[lpo|210” Vv L3 to, 1<) sup 10"Vnllollpod nll1

=2 =3 —=4
<CTY30° Vol 750110 + CT ool [Soug] 10" Vnl[3llp0d nll?

<CTY/? (Mo + CT?/3 P(sup Er(t))> + My + CTP(sup E,(t))
[0,7] [0,7]

<My + CTP(sup E,(t)).
[0,T7]

Hence, we obtain

(5.6)] <My + CTP(sup E.(t)).
[0,T7

Case 2. s = 2. By integration by parts with respect to time, it yields
- C2 1//8 ka (Alak —akAj)a vt paJ " 2dadt (5.17)

=-C% 1/3T 2 Lo Ajal —akA])an PR 2dx (5.18)
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+C2_ 1//8T ? lka (Alaf —af A ' ; p3J 2dwdt
+C?_, // P nl’kg Oy(Alaf —af A ' ; p T 2dwdt
+C2_ 1//87 2 lka (Alaf —al A0’ ; 30y *dudt.

Applying the fundamental theorem of calculus yields for a small § > 0
—r—2 —
|(5.18)] <Cllpoll2 10" Vn(T) [ P(IIn(T) ) IV 0(T) 111l p0d V(T) o

T
<CpUHQP(Hn(T)'47||77(T)|r>(/0 Vodt

<My + dsup E,.(t) + CTP(sup E,(t)).
[0,77 [0,T7]

1

Similar to (5.14), we can get

[(5.19)] + [(5.20)| <Mo + 6 sup E,.(t) + CTP(sup E,(t)).
[0,7] [0,77]

2897
(5.19)
(5.20)

(5.21)

+ IIVn(0)||1> 1pod" Vn(T)lo

By an L8-L6-L5-L2? Holder inequality and the Sobolev embedding theorem, we

get

1(5.21)| <My + CTP(sup E,(t)).
[0.7]

Therefore, we have obtained

1(5.17)| <My + 8 sup E,(t) + CTP(sup B, (t)).
[0,7] [0,7]

Case 3. s =r — 1. We write the space-time integral as, for g € {1,2}
T _ L
- // gnlyk gr_l(afAf — A¥al)0 o' pdJ 2 dadt
// 877 " *BAk Afalﬁ)grvi,g peJ 2dxdt

// on' s " (aBA) — APa)D W 5 pR T 2dudt.
By integration by parts with respect to x5, we have
(5.23) //877 kB 9 1( 6Ak AFa )Erving_Qda:dt
+ // gnl?k 57»1(%5”8 A — Afaf”@ )grvingﬂdxdt
//an NalAf , — AF L al)d v p3 T 2dud
//an 9 (al A — Akal)8 v (p]) 5 J2dwdt

+//an, NP AF — ARGl Vi pR T2 5 dudt.
0JQ

(5.22)
(5.23)

(5.24)

(5.25)
(5.26)
(5.27)
(5.28)

(5.29)



2898 CHENGCHUN HAO
From (A.14), it follows that

(5.25) //an s [anp TAP (A% AL — AkAq)}av J2dzdt  (5.30)
T

—I—/ gnl,kﬁgr_ [577”7(1 JA?(A’;A?—AZA?)} ' v pRJ 2dxdt  (5.31)
0JQ

T
+ / / Ol 150 [P JAD(AFAT — ATAF)] B ' p3T Pdwdt.  (5.32)
0/9
We can write

T
(530) :/0 i 5771,1@8 57“—2 [gnp7a JA?(A;‘A;C _ A];A?):| arvng 20t
T
+ /O/Qéﬁl,ag 7 {577”,3 JA (A3 AR — AgAf’)} v 2T 2dudt

T
. / / Bl 4y 0 N AP(ADAE — AR AT i 2T ddt (5.33)
0JQ

r—3 T
= =m+1 =r—2—m
+ ZC,?*,Q/O/Qan{wa 1,0 [JAE(AgAf—A’;Af)
m=0
-8 v pRJ " 2dadt (5.34)

T
+ / / Il s @ P 5 AP(ABAY — AZAD)D VRS dwdt (5.35)

= —m—+ =r—2—m o @
+ Z / / o' 050 40 TAP (A3 A5 —ApA?)]

m=0
-9 v pRJ " 2dadt. (5.36)
It is easy to see that
) —
(5:33)] <CTlloolly™ sup (18" nlalod Pl *8 o
<My + CTP(sup E,.(1)),
[0,T]
and by an LS-LS-LS-L2 Holder inequality and the Sobolev embedding theorem,
1(5.34)] + (5.36)] <CT|lpol3’ sup P(lInlla, Il e vllo
<My + CTP(sup E,(t)).
[0,7]

By using integration by parts with respect to time, we have

(5.35) :/577[7%5_17;”73145(/1214? — AYADD ' pR T~ 1d:c (5.37)
// o' 0438 n 5 Af(AiA? ng‘A?)grningfldxdt (5.38)
/ / Tl 5@ 0P g AP(ABAY — AZAD)D i pR ] dudt (5.39)

T
- / / ' s @ P50, [Af(Af;Aa AS AN T O ' pRdxdt.  (5.40)
0J/Q
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Obviously, it yields by using the fundamental theorem of calculus twice

T3
Po / 0 0:Vndt
0

) P(ln(T) s [ln(T)llr) 1000 n(T)lx

)

By the Holder inequality, the Sobolev embedding theorem and the fundamental
theorem of calculus, we get
0)

(5.37) <C <||p0||377|3 +
0

T
0o / gsaandt
0

=3
<Cllpollslinlls + CT <||poc9 9 Vn(0)lo +

< P(ln(D), [In(T) 1) 1008 1(T) 1

<My + CTP(sup E,(t)).
(0,7]

=3 —=r—1 —=r
(5.38) <CT E)uql“)] lp0d 0|10~ Vnllollpod nll1P(||nll3)

T*3
Po/ 907V
0

—3
<CT [sup] (IIpolsllvlls + 0@ 3:Vn(0)lo +
0,T

0 il P(lInlls, [I71l)

<My + CTP(sup E.(1)).
[0,7]

Similarly, we have

=3 —=r—1 =T
(5.39) <CT sup 1001111000~V nllollpod nlli P([nll3)
<My + CTP(sup E.(t)),
[0,77]
and
=3 —r—1 —=r
(5.40) <CT||poll2 [SOUYIE}] 19 nll1llo"  Vallol[Vollillpod nllP(ln]ls)
<My + CTP(sup E.(t)).
[0,T]

We can deal with (5.31) and (5.32) as the same arguments as for (5.30). Thus, we
obtain

1(5.25)] < Mo + CTP([su% E,.(t)). (5.41)
0,
We write
Tr_ —=r—1 " i
(5.26):// ' w0 P g5 AL(ATAF — AFADYD v pR T dudt (5.42)
0/

T

+//95nl7k5“1np7a5 AB(AR AR — AP AF)D W PR Mdadt  (5.43)
0
Tr_ —=r—1 E =T

+/0/Qanl,aa 0 g5 AD(ATA} — ASA)O v pd g~ dudt (5.44)

r—2 T
m = =m =r—1-m
+5 c,._l/o/ﬂanﬂka W 50 JAyAD A} — Aba)]
m=0

-9 W PRI 2 dadt (5.45)
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LS / / Tty TP s T [TAD (AR AT — A2 AR)]

m=0

20 v pR g 2dadt (5.46)

FSen 1//677 T 0y 0 [TAB (AT A — A3AD)]

m=0
-0 v pRJ " 2dadt. (5.47)

It is easy to see that

|(5.42)| + |(5.43)] + |(5.44)| <CTllpoll5’ sup nllallpo® VnlloP(Inls) e’ vllo
<My + CTP(sup E,(t)).
[0,7]

By the Holder inequality and the Sobolev embedding theorem, we have

|(5.45)] + (5.46)| + |(5.47)| <CT ooy e ps"*0" vllo P(|[nlla, 17]l-)
<My + CTP(sup E,(t)).
[0,7]
Hence,

1(5.26)| <My + CTP(sup E,(t)). (5.48)
[0.7]

By (A.10), we have

T
(5.27) = / a0 (n{qﬁ JAR(ALA] - AfA;’)) 0" v' pg g *dxdt
0J0Q

T
://énl’kgrilnp,qﬂ A’;(A‘Z?Alﬁ—AfA?)grvingfldmdt (5.49)
0/a
r—2
+ Zc;n_l//an O 50 (AbALA] - A7 D)
m=0
L9 vl pRJ " 2dxdt. (5.50)

By the Holder inequality and the Sobolev embedding theorem, we have

(5.49)| <CT sup 71141000 Vllo P(|1nll) 16’ *8 vllo ]l poll3’>
<My + CTP(sup E.(t)),
(0,7]
and similar to (5.45)

1(5.50)| <My + CTP(sup E,(t)).
[0.7]

Thus,

[(5.27)] <My + CTP(sup E,(t)). (5.51)
[0,7]

For (5.28) and (5.29), it is easy to have
3/2 3/2 1/2H
1(5.28)] + [(5.29)] <CT([lpoll3” + llpolly’ >[soup 18 ollo P(1nll, 17ll-)
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<My + CTP(sup E.(1)).
(0,77
Hence,

[(5.23)] <My + CTP(sup E.(t)). (5.52)
[0,7]

By integration by parts with respect to time, it holds

(5.24) = 5 l7 gr_l( 3AB—Afa?)5rni,3 peJ 2dx . (5.53)
//81) 3AB fa?)grniﬁng*Qdmdt (5.54)
/ / Ot o0 " OB AP — APaRNT i 4 2T 2dudt (5.55)
T, o
+// ' 50 (@A) — AT} 4 pR0, T 2dxdt. (5.56)
0JQ

It is easy to see that by applying the fundamental theorem of calculus three times

|(5.53)] <CIn(T)l|4lpod” V(T)lloP(ln]3)

{

Tﬂfl
,00/ 0 0/Vndt
0

0 1

—=r—3
+leoll2ll” "Vl

T,
/ o Vudt
0

=3
+(1 =sgn(5=7))llpoll2ll0"Vnllx

L3(Q)

T
/ ET_4Vvdt
0

)

<My + CTP(sup E.(t)).
(0,77

v (A.14) and (A.10), we have
(5.54) / / Bl 50 (07 TAP(ALAG — A7) T 4 93 Pdadt (5.57)
// ol 30 (an o JAB(AFAY — AFa?)) 0" 5 p2J 2dwdt  (5.58)
/ / D 50 (P o TAP(ALAT — Aad)) T o ). (5.59)

We split (5.57) into two integrals, i.e.,

(5.57) *//5‘1} 50 P o JAN(ABAS — AYa3)D ) 5 p3 T duwdt (5.60)

+ Z 077‘_2/(/ ot gy 3T (JAf(Ang-Agag))
m=0

9 n' 5 p5J *dadt. (5.61)
Obviously, we see that

=2 —=r —=r
(5.60)] <CT sup 107 v([11lpo0 nll1 P(lInll3)llp0d Vnllo < Mo + CTP([SOU% En(t)),
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and

=2 —=r
|(5.61)] <CT'|pol|2 [S(')ujl% 10”1 P(Inll-)|lpad Vnllo < Mo + CTP([SOUT% E.(t)).

Both (5.58) and (5.59) can be dealt with as the same argument as for (5.57). Thus,
we obtain

[(5.54)] <My + CTP(sup E.(t)).
[0,7]

y (A.15) and (A.11), we have
(5.55) = / / ol 50 [u W JAP(ABAD — Agag)] 'y 20 2dadt (5.62)
// 0 1,387 ' P o JAg(AlgAf‘ — Afad)] 9 n' 3 p5J *dxdt  (5.63)

+ // gnlﬁ EP vp,a JAZ-B(A?,AZO‘ - Aga?)} 5’”771"3 paJ 2dxdt. (5.64)
0Jo
We write

(5.62) // It 50 WP o AV (AFAS — AT ) 4 pRJ " dudt (5.65)

m = =m =r—1-m o o
+ Z cr, /O/Qanl,ﬁa " 747 (4345 - Azal)]
m=0

-grr]i,g, peJ 2dxdt. (5.66)

Then, by the same arguments as for (5.44) and (5.47), we can estimate (5.65) and
(5.66), and then

1(5.55)] <Mp + CTP(sup E,(t)).
[0,T7]

It is easy to see that (5.56) has the same bounds. Thus, we obtain the estimates of
(5.24) and then of (5.22), i.e

[(5.22)] <My + CTP(sup E.(t)).
[0,7]

Case 4. s =r — 2 and r = 5. Integration by parts with respect to time gives
//877k8 (aal—aal))av]po J ™ 2dxdt
_ 52 l 5 —1/,d .k o, T
= Mk (aja) aal)aﬁ o dzo
// G ol “Yalaf — at al)> 3’ n' ; pod 2dadt
//877 k&g “Yalak — at al)>677' - paJ 2dadt

//377 ka YalaF — ab al))an RO 2dadl,

which can be controlled by My + CTP(supjy 77 £5(t)) from the Hélder inequality
and the fundamental theorem of calculus.
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Therefore, we obtain

/0 ey

Step 2. Analysis of the integral J;. Similar to those of J1, by (1.13b), (1.13c)
and 7; = v, we have

<My + d sup E,(t) + CTP(sup E,(t)).
0,7 0,7

32:—/aggrng_25TUi,j dm+/ a0 p2J 729 vidxday
Q To

=— / grp%AZJ_lérn;j dz.
Q
Integration by parts shows that

T T
/ jg(t)dt://grpg(AgJ_l)tgrniJ dxdt—/grpgAfJ_lgrni’j dx
0 0/Q Q t

=T

T
_ / 9 pR(ALT) 0 dudt
0JQ

T
—/57p3 (53 +/ (AZJ_l)tdt> 'y’ ; (T)da,
Q 0

which yields, by Hélder’s inequality and Sobolev’s embedding theorem, that

T ar 2
/ Iy (t)dt 9
0

Po
<My + 0 sup E,(t) + CTP(sup E,(t)),
where we require pg € H™*(47)(Q) because, for r < 5,
[(r=1)/2]

<C

=T =T ..
(T sup [|pod Vllolvlls|nll5 + [0 d1V77|0>
0

)

[0,7] [0,7]

m  =r—m

72 7" 7" oD
| Po < Z cm £o £0 <2 Z cm £0 Po
Po 0 m=0 Po 0 m=0 Po 0
= —2
_ 8 —r—1 8 —r—2
<Ol + ¢ || 22| 17 sl + €| 222 157 ol
0 |2 0

<Clipoll» + Cllpollallpollr—1 + Cllpollsllpoll-
<Cllpollmax(a,r), (5.67)
by the higher order Hardy inequality.
Step 3. Analysis of the integral J;. Similar to those of J;, by (1.13b), (1.13c¢),
(A.12) and n; = v, we have
J3=— / pggr(]*zaggrvi,j dx +/ pgng*Q(zfgrvidmlde
Q To

:2/ pggr_l((]f‘ga])azgrvi?j dx

Q

=2 / 9 JATD W pR g da (5.68)
Q

r—2
+23 00, [ @I a0 v pRde. (5.69)
g s Q ) 5J
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Due to v = n;, we get
(5.68) :2/527’“7[ AL v Al pR g N (5.70)
Q
r—2 1 1 o )
+2) s 1/ " T 0y AR (5.71)
d [ 5r & 1570 pi 271 x
:ﬁ Qa 77 ) Aka 77 J AiPOJ dif"‘ (071)
+ / o' n* 0 ALAldiv, vp S dw (5.72)
Q
—/Qgrnk,lgrni)j (AL AT, p2 T d. (5.73)
Noticing that @ div 7(0) = 0, integrating over [0,T] yields

/T (5.68)dt’:/ |div,,8r77(T)|2p3J_1(T)dx+/T[(5.72)+(5.73)+(5.71)]dt.

By Holder’s inequality and Sobolev’s embedding theorem, we obtain

T
/ (5.72) + (5.73)dt
0

<OT sup [|pod VnlllollslnllS < CTP(sup B, (¢)).
[0,7] [0,7]

By integration by parts we have

T
/ (5.71) = 1//8T e at.d 17 18 vt pad T2 Aldadt
0

:—22 1//8T *ald 7! kla v J-ng_zAgdxdt (5.74)
s=0
r—2 . )
-2y C; 1//8T bk 0 I Al dwdt (5.75)
s=0

r—2
23" cs 1//3“ kT R 0 D(p3 T2 A dwdt
s=0
(5.76)

We first consider (5.74) and split it into four cases.

Case 1. s = 0. By an L2-L>°-L? Holder inequality, the Sobolev embedding theorem

and the fundamental theorem of calculus for the norm ||pod V|, wWe can easily
get

< Mo+ CTP(sup E(t)).

T .
2 /ﬁa%gnk’lgrilviyj paJ 2 Aldxdt
0Jo [0,T)

Case 2. s = 1. Integration by parts yields

—2C}_ 1//5 ko k0T pR T Al dudt (5.77)

:207}_1//5Ta25 nngr_Qvi,j p%J72Angdt (5.78)
0JQ
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1 : ,
+2C 1// a9 18 n* l@ 2y jpad 2Aldxdt (5.79)

+20! 1// ka9 D(p3 T2 AD ) dwdt. (5.80)
By an L2-L5-L3 Hélder inequality, (5.16) and the Sobolev embedding theorem, we

get

1(5.78)] + |(5.80)| < My + CTP(sup E,(t)).
[0.7]

By using (A.14), it holds

T
(5.79) = 2C_, / / 8 [P, J(ALAL — ATALY &%k B pR T Al dudt
Q

=2C,_, / / TP 5 (ALAP — AP AN & pR T Al dudt (5.81)
420! / / T (ADAS — ABADD T R T Aldedt (5.82)
+2C 12@ 2//51"’+1 w0 (A Af - Al

-0 nkJ@ V' paJ T2 Al dadt (5.83)
+20)_ 12 /0 T/Qa’"“npﬁa”m (A - ajap)|
~5377k7ﬁ 5T_2vi7j paJ 2 Al dxdt. (5.84)

By using the L5-L2-L3 Hélder inequality for (5.81) and L2-LS-L3 Hélder inequality
for (5.82) on higher order terms, together with (5.16) and the Sobolev embedding
theorem, we get
(5.81)] +[(5.82)| < Mo + CTP(sup E,.(t)).
[0,T]

From the L>°-LS-L2-L3 Holder inequality for the case m = 0 and LS-L>-L2-L3
Holder inequality for the case 1 < m < r — 3 on higher order terms, together with
(5.16) and the Sobolev embedding theorem, we can get the same bounds for (5.83)
and (5.84). Then, we obtain

|(5.77)] < Mo + CTP(sup E,(t)).
(0,7]

Case 3. s = 2. By integration by parts, it yields

— 202 1//ar k@’ nk 0 p2 2 A dudt (5.85)
=202 1//8T Ll Tt L0 2y PRI T2 Al dxdt (5.86)
+202%. 1// &k k0 R Al dudt (5.87)

+202_ 1// ka0 D(p3 T2 AT dudt. (5.88)
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It is clear that C}_;(5.86) = C?_,(5.79) while the latter has been just estimated.
By an LS-L2-L? Holder inequality for higher order terms, (5.16) and the Sobolev
embedding theorem, we get
|(5.87)| + [(5.88)| < My + CTP(sup E,(t)).
0,7]
That is, (5.85) has the same bound Mo + CTP(sup 11 £,(t)).

Case 4. s =r — 2 with r = 5. It is easy to see that
Tr 9,4, -4, ;
// 9 a0 n* o' pg 2 Aldxdt (5.89)
0/

can be bounded by the desired bound in view of Holder’s inequality and the funda-
mental theorem of calculus.
Next, we consider (5.75). Since for the case s =0

1 , 1
—2//8r ' apd n*, J" lsz ng_QAgdxdtzﬁ(E).??),

and for the case s = 1
' a’”“a " 272 Al ot — C2=1 (5,85
-2C,_, n Ly g ped CAldxdt = o2 1(0.80),
we have the de31red bounds. For the case s = 2, we have, by Holder’s inequality
and the Sobolev embedding theorem and the fundamental theorem of calculus, that

—2C%_ 1//8T ° ald ’)lgr_lvi,j p2J 2 Al dadt

T
—4 —r—1
<CT[S()ujg>]HnHrP(Ilnlls)Hpo@ anlo( po/ 9 9}Vndt
5 0

+ ||poa”w<o>||o>

0
<My + CTP(sup E,(t)).
(0,T]

For the case s =r — 2 and r = 5,

T
20y [ [ B 7 g et
0JQ

T
— —r—1
SCTE)U%|774P(|77||3)||003TV77||0< po/ 9 9FVndt
5 0

+ ||poa’"‘1w<o>||o>

0
<My + CTP(sup E,(t)).
[0,7]

For (5.76), by the Hoélder inequality, the Sobolev embedding theorem and the
fundamental theorem of calculus, we can easily obtain the desired bounds. Thus,

/OT (5.71)

Now, we turn to the estimates of fOT (5.69)dt.

< Mo+ CTP(sup E.(1)).
[0,7]

Case 1. s =0. By (A.12) and integration by parts, we see that

T L
2 / / 7 89040 ' pRdadt (5.90)
0JQ
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T _r—2 = = =T
=— 6/0/98 (J720n'  A})OnP , ASAID V' ; pg TP ddt
T*’“*ll* k iaT i 2 7—1
=— 6/0/93 n' kO JATATA]O V' ppJ ~ dadt

r—3 T L
-6 c;”_2//Q5’”“nﬂkET‘Q‘m(J*SAf)EnPVQ ASATD v ppJPdudt
m=0 0

T
:6//577717]6577;;7(157—1”1'7]. pod TAFALAldxdt (5.91)
0/a
T .
+6//ér’lnl,ké%fﬁqé“lv{j 2T AF AY AT dudt (5.92)
oJo
T
+6//gr_lnl,kgnpﬂgr_lvidg(p%J_lAngAf) dxdt (5.93)
0/a

1 T
+6 Cy / / F T IR AR Iy 0 pRIPAS AT dadt (5.94)
m=0 070

r—3 T
+6) Cﬁiz// a T T I AR I 9 pRIP AL Al dadt
m=0 0/
(5.95)
=3 m T —m-+1 1 —r—2—m 3 41k =2 —=r—1 i 2 72 j
+6y_ Cry AN (J3ART P 0 W' pR AL Al dwdt
0JQ

m=0

(5.96)

r—3 T .
+6 Z cr, 5m+1nl7k 57"_2_7"((]*3145)57]% gr_lvi,j B) (ngQAgAf> dxdt.
0 0Ja
(5.97)

By the Holder inequality, the Sobolev embedding theorem and the fundamental
theorem of calculus, we can easily obtain the desired bound

Mo+ dsup E.(t) + CTP(sup E.(t)),
[0,T7] [0,77

for (5.91) and (5.93)-(5.97).
For (5.92), we use integration by parts with respect to time to get

(5.92) :6/95T_17717k 5277”7(1 5,«—1771-7]. p%JflAngAZ-.dx .~ (5.98)
T*T*11*2p*“1i2—1kqj

—6/0/98 v 0P 0 ' g AT ALA dzdl (5.99)
Tﬁ“—lzﬁp*?"—lizqkqj

—G/O/QB N R0V 0 ' ,pod AT ALA dxdt (5.100)

T
_6 / /Q 9 B 0 o (0T AR AAY) dadr. (5.101)
0
It is clear that (5.99) = —(5.92

((5.98) + (5.100) + (5.101)). (5.102)
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Moreover, integration by parts yields

(5.100) //a n ka P, 0 n pgJ T AF AL AL dadt (5.103)
+6 / / T 8w, pR g T AR AL Al duvdt (5.104)

+6 / / F e R R (pgrlAngAg) dodt.  (5.105)

Since (5.104) = (5.92), we have from (5.102)
(5.92) = (5.98) + (5.101) + (5.103) + (5.105). (5.106)

By integration by parts, we get for t =T

(5.98) = — 12/525’“7717,@57713’(15’“*1771‘7]. PRI AR AT Al dy
N L R W _5( 2J_1AkAqu> da
0 n k Ui q n \J £o [ )

which yields the desired bound for (5.98) by using the Holder inequality, the Sobolev
embedding theorem and the fundamental theorem of calculus.
Integration by parts implies

(5.101) // a- 0,00 (st AP ALAT) dadt (5.107)
+6 / / 9 nlﬁ%{ﬁ”nid o (pgflAngAg) dadt (5.108)

0o

T =r—2 =2 —=r—1 = i

+ 6// 0 & @ 00 (bR A ALAT) dadt. (5.109)

0Jo

Due to (5.107) = —(5.101), it follows that
1
(5.101) = 5((5.108) + (5.109)),

which implies the desired bound for (5.101) by using the Holder inequality and the
Sobolev embedding theorem. It is clear that both (5.103) and (5.101) have the same

bound in view of the Hélder inequality and the Sobolev embedding theorem. Thus,
we have obtained

[(5.90)] < My + 0 sup E,(t) + CTP(sup E,.(t)).
[0,7] [0,7]

Case 2. s = 1. From (A.12), it follows that

20} 1// U39 700 v pRdawdt (5.110)
=—6C}_ 1//5 3Aé€5nl7k)5(JAg5npvq)a{grvid pedxdt

=—6CL, Zc,“g// T (IsAR O, 0 (149)

NP 0 v piJ Aldxdt (5.111)



FREE-BOUNDARY COMPRESSIBLE EULER IN VACUUM 2909

~6C}_ Z // I (I AR) A O 0 pR IR AL Aldd.
(5.112)
By using integration by parts with respect to 0 for (5.111) and the cases m = 0,7—3
n (5.112), and integration by parts with respect to time for the case m = 1 in

(5.112), together with the Holder inequality, the Sobolev embedding theorem, (5.16)
and the fundamental theorem of calculus, we obtain

[(5.110)| < My + d sup E,.(t) + CTP(sup E.(t)).
[0,7] [0,7]

Case 3. s = 2. By (A.12) and integration by parts, it yields
202 1// 313959 ¢ pRJ Al dzdt (5.113)

=~ 607 1ZCT 4// 3n+1 L A S F ", v quAJAl pe T2 dxdt
— 602, ZC;L4 Z o / / T T e 91T (J49)
n=0 m=0 0/Q
9"t ATAFp2 T dadt
— Tr e, ——a =3 =
=6C2_, Y Cry / / 9" T TN 0 ALAL A pR TP dadt
n=0 070
(5.114)

r— T
+6C7 1Y Oy / / "8 T R 8 AS AT Al p2 T dwdt
n=0 0/

(5.115)
r—4 T
+6c2_, > cr R T i
1 r—4OQ nNeoN,4 Vg
n=0
9@ T T AYAT A p2 ) dadt (5.116)

07T (JAD) D T AT AF R Tdwdt (5.117)
r—4 1 Tr +1 e 2
+6C2 Y Cr Yoy / / 9" 0TI e,
n=0 m=0 0J/0
0T (JAD) D Ty AT AFpRTdwdt (5.118)

n+1 77"—4—TL _a—m-+1
+60§12 42(}2 //a . J7T P,

n=0 m=0

DT (JAL) T T AT AR g2 Tdadt (5.119)
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r—4

+602, o 4202 //a”“ LT T (TA) ST
n=0 m=0

r—4—n

-0(0 J 3 AL AR p2J)ddt. (5.120)

Due to the case n = 0 in (5.114) is equal to C2_;(5.92), we have obtained the desired
bound for this case of (5.114). For (5.115)-(5.120) and the case n = r—4 withr =5
of (5.114), we can easily use the Holder inequality, the Sobolev embedding theorem
and the fundamental theorem of calculus to get the desired bounds. Then, so does
(5.113).

Case 4. s =r — 2 with r = 5. Integration by parts with respect to time yields

//&] 85" Jajﬁv j padxdt
/aJ 359" Jald’ n podx //a 97343 JO° ' ; padadt

_ /O/Q 5(],38@4”%’55771'7], padxdt — /0/95']7354‘16‘?55771.4 podadt,

which can be easily controlled by the desired bound in view of the Holder inequality
and the fundamental theorem of calculus.
Therefore, combining with four cases, we obtain

/OT (5.69)dt

Step 4. Analysis of the remainder Jy.
For | = 0, we have from the integration by parts in time, the fundamental theorem
of calculus, the Holder inequality, the Sobolev embedding theorem and the Cauchy

inequality that
T =T =T 4 T =T R U =T =T 4 T
// 0 pov;0 v'dzdt| < // 0 povy, 0 n'dxdt| + ‘/ 0 povy0 nzdz‘ ‘
0/ 0/ Q 0

<CT9" pollo sup 0" nllovecl2
(0,7]

< Mo+ dsup E(t) + CTP(sup E.(1)). (5.121)
[0,7] [0,7]

<My + dsup E,(t) + CTP(sup E,(t)),
[0,7] [0,7]
where we need the condition py € H" ().
For [ = 1, we have, at a similar way, that

T
//8 po0vid vidxdt
0J9

—=r—1

9 po

<CTllpoll;2,

1/27"
2o sup [[p’ 0 v]lol|vels

o7
1/25
<llpol3llpolly + 5[81119] oo/ 8" vl[3 + CT* w3
0,7

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

For [ = 2, we get, by the Holder inequality and the Sobolev embedding theorem,

T =r—2
// a9 p08 0i0 vl dadt 9 ro
0Ja

1/2 1/2
2 sup [|pg/ 20" v[|o[[0"vel|x

o1

<CT||pol|
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<llpoll2llpolly + 6 sup lo"*0" Il + CT|v 1§

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,T7] [0,77]

For | = 3, we obtain, by the Holder inequality and the Sobolev embedding
theorem, that

T —=r—3
//a pod vid vidzdt 2 9 po
0JQ

Lo ()

<CT||pol

sup o528 v )10l velo

1/27
<llpoli3lloolly + 6 sup o8 w13 + CT*[lve I3
<My + 0 sup E,.( ) + CTP(sup E.(t)).
[0,7] [0,7]

For | = 4 with r = 5, we have, by the Holder inequality and the Sobolev embed-
ding theorem, that

T
// " 08 0i0 vl dxdt
0Jo

—=r—4

9 po
Po

1/2
Lo (Q)

1/2H
sup || g/ 20" v]lo]|9 v lo
5 [0.T

1/2=5
<llpol3lpoll 1+5[sup] s/ *8 0|12 + CT v |4

T

<CT||pol|

<My + d sup E,(t) + CTP(sup E,(t)).
[0,77] [0,7]

Step 5. Analysis of the remainders J; and Jg. By integration by parts,
(A.13), (1.13b) and (1.13¢) for I =1,--- ,7 — 1, we have

T r—1 T . .
/ Jsdt = ZCﬁ// 5Tﬁlagal(p(2)<]*2)8 v dxdt,
0 = 0/a

which can be written as, by integration by parts with respect to time,

r—1
Zcﬁ/5“%{5[(;7?)(]*2)5%@ da| (5.122)
1 0 t=T
r—1 T el o
—Zci// 9 al;0 (p3J I ' dxdt (5.123)
=1 0/
r—1 T | i ‘
—Zci//é’”’ ald (p0yJ )" ' ; dudt. (5.124)
=1 072

Case 1. | = 1. By using the fundamental theorem of calculus twice and (A.10),
we get for (5.122)

/a’ Ll (T)D(p3T~(T)D ', (T)de
— / ér’la{(T)éng—Q(T)érn{j (T)dx
Q
—2 [ TR DA, (17 o (T)ds
Q

T _ I
:/Q/O 3T_1agidtJ72(T)8pga n' ; (T)dx
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T
—2// 57_1a§idtJ_2A§577 ppoa n'; (T)dx
aJo
—=r—1 =T
<CT||P0||3P([SU})] E.(t)) (1 + llpo0 VUtHo) P00 Vnllo
0,

<My + 0 sup E,(t) + CTP(sup E,.(t)).
[0,T7] [0,77

Similarly, we have for (5.123)
// a9 1at18 (paJ )5T17i7j dxdt| < Mo+ d sup E,.(t) + CTP(sup E,(t)).
[0,7] [0,T]

For (5.124), it is harder to be controlled than (5.122) and (5.123). We write it as

//6 )817 s dadt

—2//87 ! aldpdJ~ 2 APy, 87'77"7]» dadt (5.125)
+2//a 1p30(J 2 AP , 8 ' dadt (5.126)
+2//8’ PRI APG O dadt (5.127)
+2//a Tl R AR, 0 )y dadt. (5.128)

It is easy to see that (5.125) and (5.126) are bounded by

My + ésup E,(t) + CTP(sup E,(t)).
[0,77] [0,7]

By integration by parts, Holder’s inequality, (5.16) and Sobolev’s embedding theo-
rem, it holds

T
(5.127):_2//8” Yol AVD L B R 2 dudt
0JQ
T —r—1 B = =T 2 2
72/0 /8 a; ALov? , 0 n'pyJ 7 pdxdt
T r—1 T
—2//5 ﬁAP 50070 ' p3J 2 dadt
—2/ /a al APv 5 0 ' pdJ ~2dwdt
a1 g pa,a A i 2 -2
—2// 9 a; AJov? , 0 n'(py) g J dadt
0JQ
T =T = =T
< [ hodalloll B2V ol o0
T —=r—1 4 — —=r
+/0 looll2ll0” “allollnlislnll-0Voll1llpod nll1dt

T
—=r—1 = =T
+A looll23alloll 213V o1 [108 1l dt
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T
=r—1 =2 |7
+/0 looll2l10" " allolInlI310"Vvll s e llpod nllrdt

T
—=r—1 = =T
+/0 lpollallo " allol|All2][0VY||1|lpo0 nl|1dt

<My + d sup E,.(t) + CTP(sup E,(t)).
[0,T7] [0,7]

For (5.128), we can easily get the desired bound by an L%-L3-L? Holder’s inequal-
ity and the Sobolev embedding theorem because each component of a3 is quadratic
in dn due to (1.9).

Case 2. [ = 2. By the fundamental theorem of calculus, Holder’s inequality and
the Sobolev embedding theorem, we can see that

/ gr—QaZEQ(ng—2)5T7}i i dm‘ ’ < Mo + dsup E.(t) + CTP(sup E,(t)).
Q ’ t=T [0,T] [0,T]

From (A.15), the Holder inequality, the Sobolev embedding theorem and (5.16), it
yields

T
—//gr_zagigz(ng_Q)grni)j dxdt
0/a
T
= /O /Q 0 (T, (gAY — ALAD)) B (oI 2)D" '  dadt
Tr o 4 ; =2 =4
:—2// JO v, (AJAY — AP AT p3 T2 AfO ', 0 n' j dedt + remainders
: QT =r—2 =T
<Clanlls [ 157 olls(o D Ve + remainders

<My + 0 sup E,(t) + CTP(sup E,(t)),
(0,77 [0,7]

since the remainders can be easily controlled by the desired bound.
Similarly, we can get the bound for the last integral

T . .
// 8 410 (p30,T )0 dwdt| < My + 8 sup E,(t) + CTP(sup E,(t)).
0JQ [0,7] [0,7]

Case 3. | = 3. By using the Holder inequality, the Sobolev embedding theorem and
the fundamental theorem of calculus, the spatial integral (5.122) can be bounded by
Mo + §supjg ) Er(t) + CTP(supjg 7y Er-(t)). Similarly, we can get the same bound
for the first space-time integral (5.123). Since the norm ||pgd?J ~2||3 is contained in
the energy function E,.(t), the last space-time integral (5.124) have the same bound
by the Holder inequality, the Sobolev embedding theorem and the fundamental
theorem of calculus.

Case 4. | =r —1 and r = 5. They can be easily controlled by the desired bound,
especially with the help of the fundamental theorem of calculus for (5.124).
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We can deal with the integrals in Jg by using a similar argument and we omit

the details for simplicity.

Step 6. Summing identities. Integrating (5.1) over [0, 7], by Holder’s inequality

and Cauchy’s inequality, we have, for sufficiently small T" such that

1
2

1 =r
:5/ pol0 uo|*dzx

Q
1 /T . . .

-3 //Q [Ivnﬁ n? + |div, & 5| — |curl, 9 WIQ} P27 div, vdadt

0

1T7Tl7ri kA7 _ Ad ARY 2 71

+ 2 8 n ’ka n 2J 815(147, Al - A»LAI )p()J dxdt

// pR(ATTY,8" n' ; dudt

/a p2div, & n(T)J 1d;v—/0 [(5.4) + (5.73) 4+ (5.71) + (5.69)]dt

T
+/ [J4 + T5 + Jgdt
0

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

By the fundamental theorem of calculus, we have
/ V0 nlp3 ]~ da = / (V0 )] (Vo )l pg ] dac

/87} LAZD pAppJ Lda

T 1 T e~ AT
7/9;)0\8 v|2dz + 5/9 [\v,,a n? + |div, 9 n|* — |curl, 0 77|2} peJ tda

:Apg</0 (A3 1) (t)dt + AL (0 )an p (/ AP (t)dt' + AP(0 ))arnj’pdx

=/Qp3|<9TV77I2d:r+/Qp3</(AS De(t) >5ﬂs</A )
+ /Q (V' )] < /O t Afi(t’)dt’> 9, da
+A)p3(Vﬁn)3 </Ot(AfJ1)t(t')dt'> 9w du

which yields
sup [[1p0V,8 I3 = llood V3
[0,7]
<OT? sup [lpod Vol llvlZ_yllnll? + CT sup [lpod" Vallg o]l lnll;-
0 T 0
(0,77 (0,77
Thus, taking T' so small that CT||v|,—1|n]|* < 1/6, we obtain

]. —_T —_T 3 -7
5 Sup P00 Vnllo < sup [lpoV,9 nllo < 5 Sup P00 Vllo.-
[0,T7] [0,T7] [0,T7]

7
» dx

(5.129)
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Similarly, we have
/ |div,,3rn\2pg[]71dx
Q
_r b~ ¢ T =r 4 ¢ ]
:/ 02 (6 divy+ 9 nk')l / (J_lAﬁe)tdt'> (8 divnp+9 1", / Agidt’> dx
Q 0 0
t .
:/ pﬁ|5rdiv77|2dx+/ p30 divnd ' (/ A{idt’> dz
Q Q 0
=T =r ¢
+/ pgd divnd n* </ (JlAfc)tdt’> da
Q 0

t t
+ / P, ( / Aikdt’> ' < / A{idt’) de,
Q 0 0
/|curlngrn|2pg,]71dx
Q

t
:/p% <8Tcurln+5_ijarnj’8 / (AfJ_l)tdt/>
Q 0

t
: <8rcur1n+s.klarnl,p / Afkdt’> dx
0

and

¢
:/ p(2)|5rcurln\2dz+€.ij/ p%grcurlngrnjﬁs (/ (Ale)tdt’> dz
Q Q 0
t
—|—€.kl/ p%grcurlngrnlvp (/ Afkdt’) dx
Q 0

t t
+ €456 i / p2o ( / (Af,]‘l)tdt’) ', ( / Afkdt’) dz,
Q 0 0

which yields for a sufficiently small T" that

1 —r .. . =r 3 —=r .

5 sup [|pod" divnllo < sup [|podivy 9 nljo < 7 sup [|pod" divnlo,

210,7) [0.7] 20,7

_r T 3 _r
= sup ||pod curln|lo < sup [|pocurl, 0 nllo < - sup ||pod curlnllo.
2 jo,7] [0,7] 2 jo,1]
Thus, we obtain the desired inner estimates with the help of curl estimates.

Step 7. Boundary estimates. By Lemma A.3, (A.5), the fundamental theorem
of calculus and Hoélder’s inequality, we obtain

7 =T —=r—1
10" 01212 SO 0llg + llewrld n]l§

—~ — —r1
<llpod 2 + 1oV llZ + [[curld” ™ nl|3
0

t 2
p()/ grvdt
0
1/2

—r —r—1
s\ ooVl + leurd @3
—=Tr —Tr —r—1
<llpoll2T? [SU-TP]HPO I v[[§ + [lpo VO nl|§ + [lcurld nl[3,
0,

which implies the desired estimates from curl estimates. O
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5.2. The estimates for the time derivatives. We have the following estimates.

Proposition 5. Let r € {4,5}. Then, for a small § > 0 and the constant M

depending on 1/6, we have
1/2 q2r r T 33
sup [/ 92wl + w0 Il + oo div

<My + d sup E5(t) + CTP(sup Es(t)).
[0,T] [0,7]

Proof. Acting 07" on (1.13a), and taking the L?(Q)-inner product with 97v!, we

obtain
1d
—— ?olPde 4+ 314+ TJo =7
57 onltv| x4+ J1 4+ T = T3,

where

J1 :—/ 07 al (p3J~ ) 0 v'd, Ty ::/Qa{(pgaf’"J—Q)yj O v'dr,

2r—1

Z CQT/ ;" al (p50I %) ; 07 v'da.

Step 1. Analysis of the integral J;. Noticing that 927a?9?"v’ = 0 on T,

integration by parts gives that
J,=— / 63Tag3t2Tvi7j ng_2d(E—‘r/ D2 aB o vt prJ 2 dayday
Q To
—/03T71(v17kJ 1(ajafC —a} al))82r ’]pOJ 2de
/627" 1 l aQr % AkAijJ ld.’E

/827" 1 l 827 i AkAlpO ldl'

2r—1

-y c;H/a?T Yl 07 (T alaf — afal))OFT'  pgd Pda,
s=1

Then, we have
(5.130) /|d1vn32’—1v| Jldx
/aZr Lyt j, 92 =Ly at(Ak:Aj)pJ .
+%/Q|diVn8t2T_1v|2p(2)8tJ*1dx.
It follows from (A.2) that
0F Mol AFA] 07" %at [1V,07" ol* — |eurl, 87" 0[]

1 r— r—1 14 j
—583 W07 0L(ATAY).

(5.130)

(5.131)

(5.132)
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Thus, we have

1d
(5.131) 25%/9 [|Vnat2r—lv|2 — |curl,, 8152T_1U|2} pgjfldx
1
- 5/ [|Vn3t2r_1v|2 — |curl, 8t2r_1v|2] pgatJfldx
Q

1 . .
75/3t2r_1vl,k5t%_11}17j O (AF AN p3 T d.
Q

Step 2. Analysis of the integral J;. Similar to those of J;, by noticing that
a30?" v’ = 0 on Ty, we get

Jog=— / al 9t p%@frJ_de+/ ai O v pa 02" J 2 dx dxs

Q Lo

:2/ Aot ; AR 1oty 2T e

Q
2r—2 ) )
+2> 05, / ATgFr ot 2 JOF IS (72 ARG, da (5.133)

s=0 Q

=—2.(5.130) + (5.133).

Thus, we obtain by integrating over [0, T
1 1
3 /Q pol0Z"v|*dx + 5/9 ([V,07" o]? + |div, 07" M of* — [eurl, 977 '|?] p§J ~'dz

1
—5 [ mlotr o)z
Q
1
+ 5/9 (Vo7 (0)|? + |div 07" 0(0)|* — |curl 07" M0(0)|?] pjda
1 /7
+ 3 // (V07" | + |div, 07" ]? — |ewrl, 07" 0|?] posJ ~ ' dadt
0Ja

I . ,

—1—5//afolvlyk3?”101’]-Bt(AfA{)ng_ldxdt
0Ja

1

T
+§//8t2r_1vl7k 071 0u(AY AD)poJ  dadt
0Jo

T T T
—/(mwm—/(mwm+/jmt
0 0 0

The first three space-time double integrals can be absorbed by the left hand side as
long as T is sufficiently small.

Step 3. Analysis of the remainder fOT (5.132)dt. Integration by parts with
respect to time gives

T
f/(mww
0

2r—1

T
= Z Cs._1 // Tl L OF(J(ATAY — AT AD)OF' | poJ P dadt
s=1 0/
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2r—1

. . . T
=3 Ch [ O AR ALAL - AL b (5134)
2r—1
- ZC% 1//62““1 n' w OF (J(ALA} — AFAD)OF™' ; pgJ 2dadt  (5.135)
2r—1
- Z Cs._ 1//6” 0w O THI(ALAY — AFADN O™ pg T Pdwdt (5.136)
2r—1

- Z Cs,_ 1//8” 0t 05 (J(ALAF — AFA] )07 ' ;PO 2dxdt. (5.137)

We first consider (5.135). For the cases s = 1,2, it is easy to get the desired
bounds by the Hélder inequality and the Sobolev embedding theorem. For the case
s =3,

T
| ot wapacaiar - axaiory s s e (5.138)
0
T
= /O /Q 0F 2t O (J(ALAF — AFAD)OF Y ;] 2 dedt (5.139)
T
+ / / 0F ' 4 OF(J(APA] — AT A0 4 phJ ~2dadt. (5.140)
0JQ

It is clear that (5.140) is easy to deal with by an L°-L3-L? Holder inequality. For
(5.139), integration by parts yields

(5.139) / / =2l L O3 J(ADAF — A AP OR R Pdndt (5.141)
/ / 072y OF(J (AT AF — AFAY)) ;07 o3 P dadt (5.142)

/ / 022 OX(T(APAS — ASAD) Py (02772 dudt,  (5.143)

which, then, can be controlled easily by the desired bound by an L2-L3-L5 Hélder
inequality, in addition for (5.142), with the help of
187 D" " e 133 10, 7 %)
<CT** [0 D"~ o0}y + sup 0™ D"~ 07 D71~
<CT 1G5 D" o0) sy + 5up 10l |OF™ -1
<My + CTP(sup E,.(t)), | (5.144)

(0,77

for the integer 0 < m < r — 1 due to (2.1).
For the case s = 4,

T
| [ oot ot aiat - ataorry o et (5.145)

T
= [ [ ot Bt AT A ALADNGE s (5.146)
0J/Q
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T
+ / /Q 07 5 ONJ(AA] — AT A0 4 phJ ~2dadt. (5.147)
0

It is clear that (5.147) is easy to be dealt with by an L5-L3-L? Hélder inequality.
For (5.146), integration by parts yields

5.146) aQT 0 s OF(J(ADAF — AFAD))OF ' p3 T2 dwdt (5.148)
kB l t 0
/ / 07" %'y OF(J(AJ A} — AFAY)) 077 p3J 2 ddt (5.149)

// 627" 3 lka4( (AﬁAl AkAB))32T ’(po ) dxdt.  (5.150)

By an L2-L3-L° Holder inequality, (5.148) and (5.150) can be easily estimated. We
can also use an L3-L?-L® Hélder inequality to control (5.149) since 97"~ *Vn, €
L3([0,T] x Q) due to (5.144).

For the case s = 5,

//a” ' OF(J(ALAY — AFAD)OF™' | pg T~ *dadt (5.151)
-/ / O OF(J(ALAY — AFAP) DR, pRT2dudt (5.152)
0J/Q
T
+ / / OF ' 5 0P (J(AA] — ATAT))OF ™ 4 phJ ~2dadt. (5.153)
0JQ

It is easy to see that (5.153) is well estimated by an L®-L3-L? Hélder inequality.
For (5.152), integration by parts implies

G152 = - | / O 4y OP(T(APAE — AEAD)OF o 2T 2ddt (5.154)
/ / 07y OF(J(AJ A} — AFAY)) 07 ' p3J 2 ddt (5.155)

/ / 02—l 0P (J(AP AL — AFAPY) O (pR?) , dudt.  (5.156)

By an L?-L?-L° Holder inequality, (5.154) and (5.156) can be easily estimated. We
can use an L3-L2-L% Hélder inequality to control (5.149) because of podfdVn €

L?(Q) in view of the fundamental theorem of calculus.
For the case s = 6, integration by parts gives

T _ _ _
//Qaf“”—%l,k O (al A} — AYa])O7™' ; pgJ *dadt (5.157)
0
T
—//Q(“)frfsnl,kjﬁf(afAf—Ak NOF 0 p2 T2 dwdt (5.158)
0
T
= [ [ oo ol Al = aka)op (72)  dea (5.159)
0

For (5.158), it can be controlled by the bound

My + 0 sup E,(t) + CTP(sup E,(t))
[0,T] [0,T]
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by an L3-L2-L5 Holder inequality with the help of (5.144). For (5.159), it is easily
to be controlled by the desired bound.

For the cases s = 7, and s = 8,9 with r = 5, they are easy to be controlled by
the desired bound via the Holder inequality.

Next, we consider (5.136). For the case s = 2r — 1, it is easy to get the desired
bounds by the Hoélder inequality and the Sobolev embedding theorem. For other
cases of s, it is the same as the cases of s — 1 in (5.135). Thus, we get the desired
bounds for (5.136).

The spatial integral (5.134) can be treated similarly as for (5.136) with the help
of the fundamental theorem of calculus for one lower order term in order to get
the factor T'. For the last integral (5.137), it is much easier to get the bound than
(5.136), thus we omit the details. Therefore, we have obtained

T
/ (5.132)dt| < My + & sup E5(t) + CTP(sup F5(t)).
0

[0,7] [0,7]

Step 4. Analysis of the remainder fOT (5.133)dt. By integration by parts with
respect to time, we get

T
- / (5.133)dt
0
2r—2

T .
=-2> C5,_, O2rvt ;92 (T2 ARV O, p2 T Al ddt
s=0 070

2r—2

. . T
=—2> Cs,_y | O ;07 (TR AN O g pf T Alda (5.160)
s=0 Q 0

2r—2

T .
+2)° C;r_l/o/ﬂaffnﬁj OF S (J 2 AR OV  paJ Aldadt (5.161)
s=0

2r—2 T )

+23 G5, / / OF ' 7T TS (T2 AR )9 Ty pR T Al dadt (5.162)
s=0 079
2r—2

T .
+23 G5, / / OF ' ;O T TS (T2 AR O ke RO (JAD)dadt.  (5.163)
s=0 070
We first consider the double integral (5.161). For the case s = 0, we write it as
T . .
// ' OF (J2ANW . paJ Al dadt
0Ja
2r T ‘ )
=> cp / / oF ' Oy I T2OF T A , pR T Al ddt.
m=0 079 7

For m = 0,3,2r — 1,2r, we can use the Holder inequality, (5.144) and the Sobolev
embedding theorem to get the desired bound. In particular, we have to use an L2-
L3-L5 Hélder inequality and (5.144) to deal with the integral involving the terms of
the form 8t2TV7733T73V7]6t3V77 in order to get the bound. Form =1,2,4,--- ,2r—2,
we can only apply the Holder inequality and the Sobolev embedding theorem to get
the desired bound by noticing that pgd?*J =2 € H"¢(Q) for 0 < £ < r — 1.



FREE-BOUNDARY COMPRESSIBLE EULER IN VACUUM 2921

For the case s = 1, since v, € H""1(Q), or Vv, € L>®(1), it is similar to and
easier than those of the case s = 0. We omit the details.
For the case s = 2, we have

T
//azrﬂi,jafr_Q(Jfga;c)afvlkpoa]dzdt
2r—2

= Z Cor_ 2// ' o I3 2 mak o2t ), pRal dadt.

For m =0, i.e.,
T .
/ oy’ 0F 2afoRv! i pial J P dwdt, (5.164)
0/

we must use E5(t) to control |07 V| pe(q) when r = 4; while it is easy to get the
desired bound for » = 5. For m = 1, we can use an L?-L3-L°% Holder inequality and
(5.144) to obtain the desired bound, i.e., Mo+6 supjo ) £y (t)+CT P(supyg 11 Er (1))
Form = 2,--- ,2r—2, they are controlled by the desired bounds by using the Holder
inequality and the Sobolev embedding theorem.

For the case s = 3, we get

T
/ / oyt OF P (JTPAD) O piJ Al ddt
0JQ
2r—3

T
=Y Cpy / / OFy’ ;O I T2OFT ST AR O i T Al ddt.
m=0 0/

For m = 0, we can use an L?-L3-L5 Hélder inequality and (5.144) to obtain the
desired bound. For m = 1,---,2r — 3, they are controlled by the desired bounds
by using the Holder inequality and the Sobolev embedding theorem.

For the case s = 4, we can use an L2-L5-L? Holder inequality, and (5.144) for
r = 4 additionally, to obtain the desired bound. For the cases s = 5,---,2r — 2,
we can use the Holder inequality and the Sobolev embedding theorem to get the
desired bounds.

Next, we consider the integral (5.162). For the case s = 0, we have

T .
//8?’“772'7]-3?7"_1((]72‘4?)&@[7;6ngAzdxdt
2r—1

=y, / / OFrn' ;O JRopT T AR Oty piJ Al ddt,

m=0

which can be controlled by the desired bound by using the Holder inequality and
the Sobolev embedding theorem.
For the case s = 1, it follows that

T
/ / oyt OF (I TPAN) O piJ Al ddt
2r—2

= Z cp / / OFy’ ;O I T2OFT 2T AR O p T Al ddt.
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For m = 0, we can have to use the fact v € H*(Q), which is contained in Ej(t), for
all cases r = 4,5 to obtain

T
/ / Oyt JTP0F TP AT OR g, phJ Al dadt
0JQ

<My + 0 sup E5(t) + CTP(sup Es(t)).
[0,7] [0,7]

For m = 1, we can use an L2-L3-L% Holder inequality, (5.144) and the Sobolev
embedding theorem to get the desired bound. For other cases of m, we can use
the Holder inequality and the Sobolev embedding theorem to get the desired bound
by noticing that ped?‘J=2 € H"*(Q) for 0 < ¢ < r — 1 with the help of the
fundamental theorem of calculus if necessary.

For the case s = 2, we get

T
/ / o’ OF 3 (J2AR) Oy pRJ Aldzdt
0JQ
2r—3 T ]
=y o / / O’ ;O 20 TP T A O g, pgJ Aldad,

m=0 070
which can be controlled by the desired bound by using the Holder inequality and
the Sobolev embedding theorem, in addition, with the help of (5.144) for m = 0.

For other cases of s, we can use similar argument to get the desired bounds and
omit the details.

For the spatial integral (5.160), we can use the same argument as for (5.162) to
get the desired bound with the help of the fundamental theorem of calculus. For the
double integral (5.163), it is easier to get the bound than either (5.161) or (5.162)
and thus we omit the details. Therefore, we obtain the estimates for fOT (5.133)dt,

ie.,
T
/ (5.133)dt| < My + ¢ sup E5(t) + CTP(sup E5(t)).
0

[0,7] [0,T7]

Step 5. Analysis of the remainder fOT Jsdt. By integration by parts with
respect to the spatial variables and the time variable, respectively, we obtain

T 2r—1 T
/ Jsdt = Ch, / / o talof 2o | phdadt
0 = 0Ja ’
2r—1 , ) T
= Z C’ér/ oFtal ol 202y’ ; poda (5.165)
=1 Q 7 0
2r—1 T ) .
— Z Cér// afrﬂflag@itf_za?nljpgdxdt (5.166)
1=1 0/Q 7
2r—1 T ) .
-y, / / oFtaloft IR0 | phdudt, (5.167)
1=1 070

due to 92" a9 v’ = 0 on T.
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We first consider (5.166). For the case [ = 1,

T . .
// 8,52Ta36tJ723t27’7]’7j padxdt
0JQ

T
= // 7 M OmP 4 I (alal — aga;))atJ—Zafrni’j pedxdt

2r—1

= Z Cs,._ 1//32r 0P Or (T (alag — al a)o;"n’ ;o0 *dedt  (5.168)

//8tzrnp O pAonT 2T (AL AL — AT AL dwdt. (5.169)

Since 9;J~2 € L*(Q2), we can use a similar argument as in (5.132) to get the
estimates of (5.168). For (5.169), we easily have

(5.169)] <CT [Sup} 007" Vnl[5lVolla P(Ea(t)) < CTP([SHP] E,.(t)).
0,T 0,7

For the case [ = 2, similar to the case [ = 1, we can get the bound easily since
02772 € L>(Q) and we omit the details. For the case [ = 3, we get

T
//6,52T_2af(‘3?(]_28t2r77i’j pedxdt

// 0730, . J” Ya] aq aj aj))a3 28?77"’3. pedxdt
_ T _
= CST_:),//QGET_Q_S?]”& 05 (J " (alal — alal))0} T 207" podadt (5.170)

// 82r 20 63 2827’ Z]po 1(agag—agai)d.%‘dt. (5.171)

In (5.170), we use an L3-L5-L? Holder inequality and (5.144) for the higher order
terms of the cases s = 1 and s = 2r — 3 and an L8-L6-L5-L? Holder inequality for
the other cases to get the desired bounds. For (5.171), since pgd}J 2 € H'=2(Q) C
L (), we can get the desired bound easily in view of the Holder inequality, the
Sobolev embedding theorem and the fundamental theorem of calculus. For the case
[ = 4, we have the desired bound as a similar argument as for the case [ = 3. For
the case [ = 2r — 3, we can use an L5-L3-L? Holder inequality and (5.144) to get the
desired bound. For the case [ = 2r — 2, we use an L3-L5-L? Hélder inequality and
the Sobolev embedding theorem to get the bound due to poﬁf(r_l)(]fz € HY(Q) C
L5(€2). For the case | = 2r — 1, it is similar to the case s = 1 in (5.161) and we omit
the details. For the other cases, we can easily get the desired bounds by using the
Holder inequality and the Sobolev embedding theorem.

Next, we consider (5.167). Since the cases 1 <1 < 2r—2 are identical to the cases
2 <1< 2r—1of (5.166) estimated just discussed up to some constant multipliers,
we only need to consider the remainder case | = 2r — 1. We can apply (1.11) to
split the integral of the case [ = 2r — 1 into two integrals. One of them can be used
an L2-L? Holder inequality to get the estimates, the other one can be dealt with
as the same arguments as for the case [ = 2r — 1 of (5.166) or the case s =1 in
(5.161). Thus, we omit the details.
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For the spatial integral (5.165), it can be estimated as the same arguments as
for (5.166) or (5.167) with the help of the fundamental theorem of calculus whose
details are omitted.

Step 6. Summing inequalities. As the same argument as in the estimates of the
horizontal derivatives, we can obtain the desired result by combining the previous
inequalities. O

5.3. The estimates for the mixed time-horizontal derivatives. We have the
following estimates.

Proposition 6. Letr € {4,5} and1 < m <r—1. Foré > 0 and the constant My
depend on 1/8, we have

0.0) oY/ 202m8 |2 + || poV 2D |2
0,

+ llpodiv 078" " nll3 + 107" 12—

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,77] [0,7]

Proof. Since the ideas is similiar to those in Propositions 4 and 5, we omit the
lenthy details. O

6. The elliptic-type estimates for the normal derivatives. Our energy es-
timates provide a priori control of horizontal and time derivatives of 7; it remains
to gain a priori control of the normal derivatives of 7. This is accomplished via a
bootstrapping procedure relying on the fact d?v(t) is bounded in L?().

Proposition 7. Fort € [0,T], it holds that

sup (67 (1) [ + o035 (0)]12] < Mo+ sup Bs(t) + CTP(sup Es(1)).
[0,T7] [0,7] [0,T7]

Proof. From (1.13a), we have for § =1,2
poaiJ 23 +2aipy 3 J 2 = —vf — poalJ 2 5 — 2afp07ﬁ J2 (6.1)
Acting 99 on (6.1), we get
poasdPJ % 5 + Qa?po)?) B J 2
== 00" — pod(a] T2 5) = 2p0 5 05 (a] T7)
—07a}lpod 5 +2p0 5T %) - i C405 ' adolpod 72 3 + 2p0 517 7.

1=1
By (A.5), the fundamental theorem of calculus and Hélder’s inequality, we have

108u(t)|2 <C /Q 22 (1000]? + [VOPol?) de

<C/p§
Q
t
<ct [ g [ 0ot +-C | phlofu(o)Pds + Cllod} Vil
Q 0 Q

1/2
<CH | poll L (a) ?&H?Hpo/ 3015 + llp0 117 (0 1870 (0) 1§ + Cllpod] V3.
it

2

t
/8§()vdt'—|—a§v(0) dx+C||p0V3?U||g
0




FREE-BOUNDARY COMPRESSIBLE EULER IN VACUUM 2925

By the fundamental inequality of algebra, the fundamental theorem of calculus,
the Holder inequality and the Sobolev embedding theorems, we see that

lpod (a7 T2 )15

4
<C Y lpod " al 07 T2 5 |13
=0
4 t 2
+CZ pod] ] </ T2 pdt’ + 071 T2 (0)>
1=1 0 0
4
Mo+ O sup S f 2B PUIOF - el I Il
=0
Similarly, we also have, that
0Fa?po] % 5 |5 < Mo + Ct? ?311? oo d 2P U051, -+, lImeellas Imellas [m]5),
it
and
o 2 !
oo 05 (al T2 <Mo + C1* | =2 sup > [lpod7 T 213,
Po Le=(Q) [0,t] 125
PI0F i1+ meellas mellas [1nlls)-

By the fundamental theorem of calculus, we get

105 a3 po 5 T 215 < Mo + Ct?[po 3 |70 ()

sup P[0l - [0Fnllsas - Imallas el o)
,t
Similarly, it follows that
7
_ _ _ 2
> [|0F a0k [poT % 5 + 2p0 5 T
=1
4
Mo+ Canp > o082 T =212 PGS 2 l1Zer. leellas el D)
=0
+ O N0 [y sup PO~ 10l s Illas el )
ot

Thus, we have obtained, for all ¢ € [0, 7], that

|poald} J 72 5 + 24 po 5 8?J‘2H§ < My + § sup E5(t) + CTP(sup E5(t)).
[0,T] [0,T]

It follows that
lp0a®d; =2 315 + 4lla®po 5 07T 2|3

<My + d sup E5(t) + CTP(sup Es5(t)) — 4/ popo 5 |a®|208 T2 307 T 2da.
[0,7] [0.7] Q ’

By Holder’s inequality and the fundamental theorem of calculus, we get
—4/ p()p(]’g |a?’|28fJ_273 8?J_2dx
Q

<Mo + 0[lpod5 I 72 5 |15 + 6llpo 5 05T 2|15 + CTP({sup} Es(t)),
0,T
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and then, by the fundamental theorem of calculus once again,

lpod? T2 3115 + llpo 5 OF T 2[5 < Mo +6 sup E5(t) + CTP([sup] E5(t))-
0,7 0,7

By integration by parts with respect to x3, the Holder inequality and noticing that
po =0 on I'y, it holds

10008 T 2(8)|2 = / D3 (po0S T 2)2d
Q

=— 2/ 23p00; J 2 (po 3 05 T2 + podp ]2 5 )da
Q

<2llpods T2 (®)llo [llpo.3 9 T2 llo + lpodF T2 5 o]
which implies that

o003 T2 (0)13 <8[llpo 2 03723 + 110082 4 3]

<My + § sup E5(t) + CTP(sup Es(t)). (6.2)
[0,7] [0,7]

Since we can get, by Proposition 6, that

1pod8; T~ < Mo + d sup Es(t) + CTP(sup Es(t)),
[0.7] [0.7]

we have

||p0('9§J72H% < My + é sup E5(t) + CTP(sup Es(t)).
[0,7] [0,7]

It follows from (A.5) and (6.2) that
105772115 <CllpodF T35 + Cllpo Vs T ~2|I5
<My + 0 sup E5(t) + CTP(sup Es5(t)).

[0,T] [0,7]
Due to (1.11), we see that
I =—20](J Al ;)
= —2J72AITvt ; — 207 (J 2 Al 722075% J72ANeT W

namely, in view of the fundamental theorem of calculus,

1 ) t ) o
div v = — §6fJ_2 — o' / (J72AD)dt' — Of (J72 A
0

6
=Y Cio(I Ao
=1
We can easily estimate last three terms by using the fundamental theorem of calculus
and the Holder inequality. Thus, we obtain

|div 87 v||2 < Mo + & sup Es(t) + CTP(sup Es(t)).
[0,7] [0,7]

According to Proposition 3, we have

[|curl 9] v||2 < My + C’TP([sup] E5(t)).
0,T
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With the boundary estimates on 9; v® or 9¢n® given by Proposition 6, we obtain,
from Lemma A.4, that

107v]12 < Mo + & sup Es(t) + CTP(sup Es(t)).
[0,7] [0,7]

Thus, we complete the proof. O
Having a good bound for d]v(t) in H'(2), we proceed with the bootstrapping.

We have the following estimates and omit the lengthy proofs since their ideas are
similar to Proposition 7.

Proposition 8. Fort € [0,T], it holds that
sup [[02(0)3 + 19008T (0] < Mo + & sup Ex(®) + CTP(sup Ex(1)).
[0,7] (0,71 (0,71
Proposition 9. Fort € [0,T], it holds that

sup [[vue (D113 + 1007 T 2(1) 3] < Mo+ sup Es () + CTP(sup Es(1)).
[0,T] [0,T] [0,7]

s

Proposition 10. Fort € [0,T], it holds that
sup [[w(0)3 + 0027 3(0) 2] < Mo+ sup Bs(t) + CTP(sup F (1)
[0,T7] 0,7] [0,T7]
Proposition 11. Fort € [0,T], it holds that

sup [[n(t)]12 + llpo T “2()I12] < Mo + 6 sup Es(t) + CTP(sup Bs ().
(0,7 [0,7] [0,7]

7. The a priori bound. For the estimates of |curl, v(¢)||3 and ||,0055curl77 v(t)]3,
it is similar to those in [4] so that we omit the repeated proofs. Combining the
inequalities provided by energy estimates, the additional elliptic estimates and the
curl estimates shows, with the help of Proposition 1, that

sup E5(t) < C(E5(0)) + CTP(sup E5(t)).
[0,7] [0,77]

According to the polynomial-type inequality (A.3), by taking 7" > 0 sufficiently
small, we obtain the a priori bound

sup E5(t) < 2C(E5(0)).
(0,77

Therefore, we complete the proof of the main theorem.
Appendix A. Preliminaries.

A.1. Notations and weighted Sobolev spaces. We make use of the Levi-Civita
permutation symbol

1 1, even permutation of {1,2,3},
Eijk = 5(2 — )G —k)k—1i) =4 —1, odd permutation of {1,2,3},
0, otherwise,

and the basic identity regarding the i*" component of the curl of a vector field u:

(curl ’LL)Z = &‘i]’kukJ y
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where it means that we have taken the sum with respect to the repeated scrlpts J
and k. Since v’ ; = du'/On* - Onk /027, it follows that du'/On* = Ox7 /on" -
e, uly = AJ’U - The chain rule shows that

(curlu(n)); = (curl, v); == Eijkvk75 A7,

where the right-hand side defines the Lagrangian curl operator curl,, . Similarly, we
have

divu(n) = div, v =07 A3,

and the right-hand side defines the Lagrangian divergence operator div;,. We also
use the notation for any vector field F’

(VoF): =F' AS. (A.1)
For any vector field F', we have
F3; Aé_ —F?; Aé
curl, F =curl (FA) = | F' j A} — F? ; A]
F? 5 A] - F1 ;A
and then
Vo F|? = |ewrl, FI* + (V,F) - (V, F)T, (A2)

where the superscript T denotes the transpose of the matrix.

As a generalization of the standard Gronwall inequality, we introduce a polyno-
mial type inequality. For a constant My > 0, suppose that f(t) > 0, t — f(¢) is
continuous, and

f(t) < Mo+ CtP(f(t)), (A.3)

where P denotes a polynomial function, and C' is a generic constant. Then for ¢
taken sufficiently small, we have the bound (cf. [4,5])

F(t) < 2M,.
For integers k£ > 0 and a smooth, open domain Q of R3, we define the Sobolev
space H*(Q) (H*(£;R?)) to be the completion of C*°() (C°°(£2;R3)) in the norm
1/2
= | X [ 10mut@Paz)
|| <k

for a multi-index o € Zi, with the standard convention |a| = a1 + as + a3. For

real numbers s > 0, the Sobolev spaces H*(2) and the norms || - |5 are defined by

interpolation. We will write H*(£2) instead of H*(€;R3) for vector-valued functions.

In the case that s > 3, the above definition also holds for domains €2 of class H*®.
Our analysis will often make use of the following subspace of H*(f2):

Hl={ue HY(Q) : u=0onT,(z1,22) — u(zy,zs) is periodic},

where, as usual, the vanishing of u on I' is understood in the sense of trace.
For functions u € H*¥(T), k > 0, we set
1/2

lu| = Z/|8u )|?dx )

la|<k
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for a multi-index a € Z%. For real s > 0, the Hilbert space H*(T') and the boundary
norm | - |5 is defined by interpolation. The negative-order Sobolev spaces H*(I)
are defined via duality: for real s > 0,

H=*(T) := [H*T)]'.

The derivative loss inherent to this degenerate problem is a consequence of the
weighted embedding we now describe.
Using d to denote the distance function to the boundary I'y, i.e.,

d(z) = dist (z,T'y),
and letting p = 1 or 2, the weighted Sobolev space H é,,(Q), with norm given by

/d 2)]* + |VF(z)|*)dx
for any F' € H},(Q), satisfies the following embedding:
H,(Q) — H'75(Q);
that is, there is a constant C' > 0 depending only on 2 and p, such that
IFIR 0y < C [ d@p(F@P + V@) (A4)

See, for example, Section 8.8 in Kufner [12]. From this embedding relation and
(1.7), we obtain

P2 <C / R(F@)? +VF()[?)dr. (A.5)

A.2. Higher-order Hardy-type inequality and Hodge-type elliptic esti-
mates. We will make fundamental use of the following generalization of the well-
known Hardy inequality to higher-order derivatives, see [7, Lemma 3.1]:

Lemma A.1 (Higher-order Hardy-type inequality). Let s > 1 be a given integer,
Q and d(x) be defined as above, and suppose that

ue H¥(Q) N HHQ),
then % € H*~1(Q) and

151, <l 46)

The normal trace theorem provides the existence of the normal trace w - N of a
velocity field w € L?(Q) with divw € L?(2) (see, e.g., [19]). For our purposes, the
following form is most useful (see, e.g., [2]):

Lemma A.2 (Normal trace theorem). Let w be a vector field defined on 0 such
that dw € L?(Q2) and divw € L?(Q), and let N denote the outward unit normal
vector to T'. Then the normal trace Ow - N exists in H='/2(T") with the estimate

[Bw - NP2 < C[l10wl3a() + divwl3a| (A7)

for some constant C independent of w.
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Lemma A.3 (Tangential trace theorem). Let dw € L?() so that curlw € L%(Q),
and let Ty, Ty denote the unit tangent vectors on I', so that any vector field u on T’
can be uniquely written as u*T,. Then

Bu - Tul2yp < C[ 100l + lewl ol a=12, (A8
for some constant C independent of w.

Combining (A.7) and (A.8), we have
|5w|,1/2 < C|:H5w|‘LQ(Q) + HdiVU}HLz(Q) + chrleLz(Q)] (A.9)

for some constant C' independent of w.
The construction of our higher-order energy function is based on the following
Hodge-type elliptic estimate (see, e.g., [4]):

Lemma A.4. For an H" domain Q, r > 3, if F € L*(Q;R3) with curl F €
H*71(Q), divF € H*"Y(Q), and F - N|p € H*"Y2() for 1 < s < r, then there
exists a constant C > 0 depending only on Q such that

Il <C (I1Fllo + lcurl Fl—y + [div Flla—y + [OF - N|y_s2) .
2
1Ells <C(IFllo + lleurl Flly—y + |div Flly—1 + > 0F - Tuls 2,
a=1

where N denotes the outward unit normal to T' and T, are tangent vectors for
a=1,2.

A.3. Properties of J, A and a. From the derivative formula of matrices and
determinants, we have

A?,s == A;Cnl,js Ag7 (AlO)
AR =9, AF = — AR AT (A.11)
Js =JA ;. =aln' .. (A.12)

It follows from a = JA, (A.10) and (A.12) that the columns of every adjoint matrix
are divergence-free, i.e., the Piola identity,

a; , =0, (A.13)

which will play a vital role in our energy estimates. We also have
af , =T ;o (AFA] — AJA}) = 7', (aFa] — alay), (A.14)
ay, =Ju' (AfA{ — AgAf) =J M (afa{ — azaf). (A.15)
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