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Abstract

For the free boundary problem of the plasma–vacuum interface to 3D ideal
incompressible magnetohydrodynamics, the a priori estimates of smooth solutions
are proved in Sobolev norms by adopting a geometrical point of view and some
quantities such as the second fundamental form and the velocity of the free inter-
face are estimated. In the vacuum region, the magnetic fields are described by the
div–curl system of pre-Maxwell dynamics, while at the interface the total pressure
is continuous and the magnetic fields are tangential to the interface, but we do not
need any restrictions on the size of the magnetic fields on the free interface. We
introduce the “fictitious particle” endowed with a fictitious velocity field in vacuum
to reformulate the problem to a fixed boundary problem under the Lagrangian coor-
dinates. The L2-norms of any order covariant derivatives of themagnetic fields both
in vacuum and on the boundaries are bounded in terms of initial data and the second
fundamental forms of the free interface and the rigid wall. The estimates of the curl
of the electric fields in vacuum are also obtained, which are also indispensable in
elliptic estimates.

1. Introduction

In the present paper, we are concerned with the free boundary problem of ideal
incompressible magnetohydrodynamics (MHD). It consists of finding a bounded
variable domain Ω+

t ⊂ R
3 filled with inviscid incompressible electrically con-

ducting homogeneous plasma (the density is a positive constant), together with
the vector field of velocity v(t, x) = (v1, v2, v3), the scalar pressure p(t, x) and
the magnetic field H(t, x) = (H1, H2, H3) satisfying the equations of MHD. The
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boundary Γt ofΩ
+
t is the free surface of the plasma. It is assumed that the plasma is

surrounded by a vacuum regionΩ−
t and that the whole domainΩ = Ω+

t ∪Γt ∪Ω−
t

is independent of time and bounded by a fixed perfectly conducting rigid wall W
such that W ∩ Γt = ∅. Both Ω+

t and Ω are simply connected. The magnetic fields
should be found not only in Ω+

t but also in Ω−
t .

In the plasma region Ω+
t , the ideal MHD equations apply, i.e., for t > 0

⎧
⎪⎪⎨

⎪⎪⎩

vt + v · ∇v + ∇ p = μ
(
H · ∇H − 1

2
∇|H|2), (1.1a)

Ht + v · ∇H = H · ∇v, (1.1b)

div v = 0, divH = 0. (1.1c)

Let Ĥ be the magnetic field in the vacuum Ω−
t . Since the vacuum has no

density, velocity, electric current (i.e., Êt = 0), except the magnetic field, we have
the pre-Maxwell equations in vacuum

∇ × Ĥ = 0, div Ĥ = 0, Ĥt = −∇ × Ê, div Ê = 0. (1.2)

At the wall W , the tangential component of the electric field and the normal com-
ponent of the magnetic field must vanish, i.e.,

n × Ê = 0, n · Ĥ = 0, on W, (1.3)

where n is the inward drawn unit normal to the boundary W of Ω−
t .

The plasma–vacuum interface is now free tomove since the plasma is surround-
ed by vacuum. Hence, v · n|Γt is unknown and arbitrary where n is the unit normal
toΓt pointing from the plasma to the vacuum. Thus, we need some non-trivial jump
conditions that must be satisfied to connect the fields across the interface. These
arise from the divergence H equation, Faraday’s law and the momentum equation.
A convenient way to obtain the desired relations is to assume that the plasma surface
Γt is moving with a normal velocity

Vnn = (v · n)n, (1.4)

where Vn is the velocity of evolution of Γt in the direction n. The jump conditions
are straightforward to derive in a reference frame moving with the fluid surface.
Once these conditions are obtained, all that is then required are to convert back
to the laboratory frame using the corresponding Galilean transformation (cf. [8]).
From Maxwell’s equations, we know that, at the interface Γt , the magnetic field
and the electric field must satisfy the conditions

�n · H� = 0, and �n × E − (n · v)H� = 0, (1.5)

where � f � ≡ f̂ − f is the jump in a quantity across the interface. We assume that
the plasma is a perfect conductor, i.e., E + v × H = 0. This implies that in the
plasma, [n ·H]Γt and [n×E− (n · v)H]Γt are both automatically zero. Therefore,
(1.5) reduces to

n · H = n · Ĥ = 0, n × Ê = (v · n)Ĥ, on Γt . (1.6)
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The first one also means that the magnetic fields are not pointing into the vacuum
on the interface.

We also have the following pressure balance condition (also cf. [8,19]) on the
interface Γt :

�
p + μ

2
|H|2

�
= 0, on Γt . (1.7)

For convenience, we denote

P = q+ − q−, q+ = p + μ

2
|H|2, and q− = μ

2
|Ĥ|2.

The system can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt + v · ∇v + ∇q+ = μH · ∇H, in Ω+
t , (1.8a)

Ht + v · ∇H = H · ∇v, in Ω+
t , (1.8b)

div v = 0, divH = 0, in Ω+
t , (1.8c)

∇ × Ĥ = 0, div Ĥ = 0, Ĥt = −∇ × Ê, div Ê = 0, in Ω−
t , (1.8d)

P = 0, H · n = Ĥ · n = 0, on Γt , (1.8e)

n × Ê = (v · n)Ĥ, on Γt , (1.8f)

n × Ê = 0, Ĥ · n = 0, on W, (1.8g)

v(0, x) = v0(x), H(0, x) = H0(x), in Ω+, (1.8h)

Ĥ(0, x) = Ĥ0(x), Ê(0, x) = Ê0(x), in Ω−, (1.8i)

Ω+
t |t=0 = Ω+, Ω−

t |t=0 = Ω−, Γt |t=0 = Γ, (1.8j)

where Ê0 satisfies the boundary condition (1.8f) and (1.8g), i.e., N × Ê0 = (v0 ·
N )Ĥ0 on Γ and n× Ê0 = 0 onW , where N denotes the unit normal to Γ pointing
from the plasma to the vacuum.

We will prove a priori bounds for the interface problem (1.8) in Sobolev s-
paces under the following generalized Rayleigh-Taylor sign condition for the total
pressure P

∇N P � −ε < 0 on Γ, (1.9)

where ∇N = Ni∂i indicates the normal derivative. In fact, if this condition holds
initially, then we can verify that it holds true within a period. For the free boundary
problem of incompressible fluids in vacuum, without magnetic fields, the natural
physical condition (cf. [2,4,6,7,14–16,22,26,27,29]) reads that ∇N p � −ε <

0 on Γ , which excludes the possibility of the Rayleigh–Taylor type instability (see
[7]). In [25], Trakhinin showed that the simultaneous failure of the non-collinearity
condition

|H × Ĥ| � δ > 0 on Γ (1.10)

with a fixed constant δ (see also [20,21,24]) and the Rayleigh–Taylor sign condition
(1.9) for those points on the interface where the unperturbed plasma and vacuum
non-zero magnetic fields are collinear leads to Rayleigh–Taylor instability for the
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free boundary problem of linearized full compressible MHD system in half spaces.
In some special cases, intuitively, (1.9) is a necessary condition for the plasmas on
the interface to accelerate. For instance, assumingH = Ĥ andH · N = 0 (initially)
on Γ , from (1.8a), and ∇ × Ĥ = 0, we can get on Γ

N · (vt + v · ∇v) + ∇Nq
+ = μ(Ni H j∂ j Hi ) = μ

(
Ni Ĥ j∂ j Ĥi

)

= μ(Ni Ĥ j∂i Ĥ
j ) = ∇Nq

−,

which implies that

−∇N P = N · (vt + v · ∇v) > 0,

where N ·(vt+v·∇v) is the normal component of the acceleration. This is analogous
to the fact that −∇N p = N · (vt + v · ∇v) > 0 for the free boundary problem of
incompressible Euler equations. Of course, the rigorous proof of the ill-posedness
of the nonlinear free boundary problem for the incompressible Euler equations in
vacuum under the violation of the Rayleigh–Taylor sign condition∇N p � −ε < 0
is a difficult mathematical problem (see [7,25]).

The condition (1.9) also provides some kind of possibility for solving the (local-
in-time)well-posedness of free interface problemof the nonlinear ideal incompress-
ible MHD system because under this initial assumption we can prove some a priori
estimates for the solutions of the nonlinear system instead of linearized equations.

Up until now, there was no well-posedness result for the free boundary problem
of the ideal incompressible MHD system except a few results about the linearized
equations. This is due to the difficulties caused by the strong coupling between the
velocity field and the magnetic field. Hao and Luo studied the a priori estimates
for the free boundary problem of ideal incompressible MHD flows in [11] with a
bounded initial domain homeomorphic to a ball, provided that the size of the mag-
netic field is invariant on the free boundary. For the special case where the magnetic
field is zero on the free boundary and in vacuum, Lee proved the local existence and
uniqueness of a plasma–vacuum free boundary problem of incompressible viscous-
diffusive MHD flow in three-dimensional space with infinite depth setting in [12],
and then got a local unique solution of free boundaryMHDwithout kinetic viscosi-
ty and magnetic diffusivity via a zero kinetic viscosity-magnetic diffusivity limit in
[13]. For the incompressible viscous MHD equations, a free boundary problem in
a simply connected domain of R3 was studied by a linearization technique and the
construction of a sequence of successive approximations in [18] with an irrotational
condition for magnetic fields in a part of the domain. The well-posedness of the
linearized plasma–vacuum interface problem in an ideal incompressible MHDwas
studied in [17] in an unbounded plasma domain. The linearized plasma–vacuum
problem in an ideal full compressible MHD was investigated in [20,24], and the
well-posedness of the nonlinear free boundary problem of this was proved in [21]
using the Nash-Moser iteration method. A stationary problem was studied in [9].
In [5], the a priori estimates for smooth solutions of the free boundary problem
for current-vortex sheets in an ideal incompressible two-fluid MHD was proved in
the domain T

2 × (−1, 1) under some linearized stability conditions on the jump
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function of the velocity field and the magnetic fields. The problem of the existence
of current-vortex sheets in full compressible MHD was studied in [3,23].

Regarding the cases without magnetic fields, the free surface problem of the
incompressible Euler equations of fluids has attracted much attention in recent
decades and important progress has been made for flows with or without vorticity
or surface tension.We refer readers to [1,4,6,7,10,14–16,22,26–29] and references
therein.

In this paper, we prove a priori estimates for the free interface problem (1.8)
and take into account the magnetic field not only in plasma but also in a vacuum.
We do not need the restricted boundary condition |H| ≡ const � 0 on the free
interface assumed in [11].What makes this problem difficult is that the regularity of
the boundary enters to the highest order and energies interchange between plasma
and vacuum. Roughly speaking, the energies of plasma and vacuum will exchange
via the pressure balance relation q+ = q− on the free interface. However, we
have to investigate the estimates of the magnetic field and the electric field in a
vacuum, although the electric field is only a secondary variable in order to obtain
the energy estimates. We also introduce the “fictitious particle” endowed with a
fictitious velocity field to reformulate the free boundary problem to a fixed boundary
problem. We can show that the norms of the magnetic field in a vacuum depend
only on the norms of initial data and the second fundamental forms of the interface
and the wall.

Our result is an important and necessary step towards the proof of the (local-in-
time)well-posedness of the free boundary problemof an ideal incompressibleMHD
system for which we have found a suitable initial condition [i.e., the generalized
Rayleigh–Taylor sign condition (1.9)] for the initial data and provided some a priori
properties of solutions of the present system under this condition.

Now, we derive the conserved energy. Letting Dt := ∂t + vk∂k be the material

derivative, it holds for any function F on Ω+
t

d

dt

∫

Ω+
t

Fdx =
∫

Ω+
t

Dt Fdx, (1.11)

since div v = 0, and then for any function F on Ω−
t (we can extend it to Ω by a

smooth cut-off function)

d

dt

∫

Ω−
t

Fdx = d

dt

∫

Ω

Fdx − d

dt

∫

Ω+
t

Fdx

=
∫

Ω

∂t Fdx −
∫

Ω+
t

Dt Fdx

=
∫

Ω−
t

∂t Fdx −
∫

Ω+
t

v · ∇Fdx

=
∫

Ω−
t

∂t Fdx −
∫

Γt

vnFdS, (1.12)

where n is the outward unit normal to Γt corresponding to Ω+
t .
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Throughout the paper, we use the Einstein summation convention, that is, when
an index variable appears twice in both the subscript and the superscript of a single
term it indicates summation of that term over all the values of the index.

From (1.11) and (1.12), we have, by using the boundary conditions (1.8e), (1.8f)
and (1.8g), that

d

dt

(∫

Ω+
t

(
1

2
|v|2 + μ

2
|H|2

)

dx + μ

2

∫

Ω−
t

|Ĥ|2dx
)

=
∫

Ω+
t

(
vi Dtvi + μHi Dt Hi

)
dx + μ

2

∫

Ω−
t

∂t |Ĥ|2dx − μ

2

∫

Γt

vn|Ĥ|2dS

=
∫

Ω+
t

[
vi (−∂i p + μHk∂k Hi − μ

2
∂i |H|2) + μHi Hk∂kvi

]
dx

+ μ

∫

Ω−
t

div (Ĥ × Ê)dx − μ

2

∫

Γt

vn|Ĥ|2dS

= −
∫

Γt

(
p + μ

2
|H|2

)
vndS + μ

∫

Γt

(H · n)(v · B)dS

+ μ

∫

Γt

Ĥ · (n × Ê)dS − μ

2

∫

Γt

vn|Ĥ|2dS + μ

∫

W
Ĥ · (Ê × n)dS

= −
∫

Γt

(
p + μ

2
|H|2 − μ

2
|Ĥ|2

)
vndS

= 0,

due to

1

2
∂t |Ĥ|2 = −Ĥ · (∇ × Ê)

= div (Ĥ × Ê) − Ê · (∇ × Ĥ)

= div (Ĥ × Ê),

in view of ∇ × Ĥ = 0 in Ω−
t . Thus, the conserved physical energy can be given by

E0(t) :=
∫

Ω+
t

(
1

2
|v(t)|2 + μ

2
|H(t)|2

)

dx

+
∫

Ω−
t

μ

2
|Ĥ(t)|2dx ≡ E0(0),

for any t > 0.
The higher order energy has an interface boundary part and some interior parts

in plasma since those of the magnetic field in vacuum can be bounded by E0(0) and
the bounds of the second fundamental form of both the interface and the wall as
shown in Propositions 3.1, 3.2 and 4.1. The boundary part controls the norms of the
second fundamental form of the free interface, the interior part in plasma controls
the norms of the velocity, magnetic fields and hence the pressure.Wewill prove that
the time derivatives of the energies are controlled by themselves. A crucial point in
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the construction of the higher order energy norms is that the time derivatives of the
interior parts will, after integrating by parts, contribute some boundary terms that
cancel the leading-order terms in the corresponding time derivatives of the boundary
integrals. To this end, we need to project the equations for the total pressure P to
the tangent space of the boundary.

The orthogonal projection Π to the tangent space of the boundary of a (0, r)
tensor α is defined to be the projection of each component along the normal:

(Πα)i1···ir = Π
j1
i1

· · ·Π jr
ir

α j1··· jr , where Π
j
i = δ

j
i − nin j ,

with n j = δi jni = n j .

Let ∂̄i = Π
j
i ∂ j be a tangential derivative. If q = const on Γt , it follows that

∂̄i q = 0 there and
(
Π∂2q

)

i j
= θi j∇nq,

where θi j = ∂̄in j is the second fundamental form of Γt .
The higher order energies are defined as follows: for r � 1

Er (t) =
∫

Ω+
t

δi j Q(∂rvi , ∂
rv j )dx + μ

∫

Ω+
t

δi j Q(∂r Hi , ∂
r Hj )dx

+
∫

Ω+
t

(
|∂r−1∇ × v|2 + μ|∂r−1∇ × B|2

)
dx

+ sgn(r − 1)
∫

Γt

Q(∂r P, ∂r P)ϑdS,

where sgn(s) is the sign function of the real number s (so we do not need the
boundary integral for r = 1) and ϑ = (−∇nP)−1 is a weight. Here Q is a positive
definite quadratic form which, when restricted to the boundary, is the inner prod-
uct of the tangential components, i.e., Q(α, β) = 〈Πα,Πβ〉, and in the interior
Q(α, α) increases to the norm |α|2. To be more specific, let

Q(α, β) = qi1 j1 · · · qir jr αi1···ir β j1··· jr ,

where

qi j = δi j − η(d)2nin j , d(x) = dist (x, Γt ), ni = −δi j∂ j d.

Here η is a smooth cutoff function satisfying 0 � η(d) � 1, η(d) = 1 when
d < d0/4 and η(d) = 0 when d > d0/2. d0 is a fixed number that is smaller
than the injectivity radius of the normal exponential map, defined to be the largest
number ι0 such that the map

Γt × (−ι0, ι0) →
{
x ∈ R

3 : dist (x, Γt ) < ι0

}
, (1.13)

given by

(x̄, ι) → x = x̄ + ιn (x̄) ,
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is an injection. We can also define ι0 for W similarly, such that it is independent of
t and denoted by ι′0. In fact, both the second fundamental form of W and 1/ι′0 are
invariant with respect to time and known quantities.

Now, we can state the main result as follows.

Theorem 1.1. Let

K (0) = max
(‖θ(0, ·)‖L∞(Γ ), 1/ι0(0)

)
, (1.14)

and

E (0) = ‖1/ (∇N P(0, ·)) ‖L∞(Γ ) = 1/ε > 0. (1.15)

Assume Es(0) < ∞ for s = 0, 1, . . . , 4 and ∇ × Ê0 ∈ L2(Ω−). Then there exists
a continuous function T > 0 such that if

T � T (K (0), E (0), E0(0), . . . , E4(0),VolΩ), (1.16)

then any smooth solution of the free boundary problem for MHD equations (1.8)
with (1.9) in [0, T ] satisfies the estimate

4∑

s=0

Es(t) � 2
4∑

s=0

Es(0), 0 � t � T . (1.17)

The rest of this paper is organized as follows. In Section 2, we use the La-
grangian coordinates to transform the free interface problem to a fixed boundary
problem. Sections 3 and 4 are devoted to the estimates of the magnetic field and
the electric field in vacuum, respectively. In Section 5, we prove the higher order
energy estimates. In the derivation of the higher order energy estimates in Section 5,
some a priori assumptions are made, which will be justified in Section 6. In order
to make this paper more readable, we give an appendix for some estimates from
[4] used in the previous sections.

2. Reformulation in Lagrangian Coordinates

We may think that the velocity field of the “fictitious particles” in a vacuum
is v on the boundary. Then, we can extend the velocity from the boundary to the
interior of vacuum by a cut-off function such that

v(t, x) =
⎧
⎨

⎩

v(t, x̄), near Γt ,

smooth, otherwise,
0, near W,

and div v = 0 for x ∈ Ω−
t as long as Γt ∩ W = ∅ in [0, T ], where x̄ ∈ Γt satisfies

dist (x, Γt ) = |x − x̄ |, and |v(t, x)| � ‖v(t)‖L∞(Γt ) for x ∈ Ω−
t by construction.

Assume that we are given a velocity vector field v(t, x) defined in a set D ⊂
[0, T ] × R

3 such that the interface of Ω+
t = {x : (t, x) ∈ D} and Ω−

t moves
with the velocity, i.e., (1, v) ∈ T (∂D) which denotes the tangent space of ∂D . We
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will now introduce Lagrangian or co-moving coordinates, that is, coordinates that
are constant along the integral curves of the velocity vector field so that the free
boundary becomes fixed in these coordinates (cf. [4]). Let x = x(t, y) = ft (y) be
the trajectory of the particles given by

{
dx
dt = v(t, x(t, y)), (t, y) ∈ [0, T ] × Ω,

x(0, y) = f0(y), y ∈ Ω,
(2.1)

where, when t = 0, we can start with either the Euclidean coordinates inΩ or some
other coordinates f0 : Ω → Ω where f0 is a diffeomorphism in which the domain
Ω becomes simple. For simplicity, we will assume f0(y) = y in this paper. Then,
the Jacobian determinant det(∂y/∂x) ≡ 1 due to the divergence-free property of
v. For each t , we will then have a change of coordinates ft : Ω → Ω , taking
y → x(t, y). The Euclidean metric δi j in Ω then induces a metric

gab(t, y) = δi j
∂xi

∂ya
∂x j

∂yb
(2.2)

in Ω for each fixed t .
We use the covariant differentiation in Ω with respect to the metric gab(t, y),

because it corresponds to differentiation in Ω under the change of coordinates
Ω � y → x(t, y) ∈ Ω , and we will work in both coordinates systems. This also
avoids possible singularities in the change of coordinates. We denote covariant
differentiation in the ya-coordinate by ∇a , a = 1, 2, 3, and differentiation in the
xi -coordinate by ∂i , i = 1, 2, 3. The covariant differentiation of a (0, r) tensor
k(t, y) is the (0, r + 1) tensor given by

∇aka1···ar = ∂ka1···ar
∂ya

− Γ d
aa1kd···ar − · · · − Γ d

aar ka1···d ,

where the Christoffel symbols Γ c
ab are given by

Γ c
ab = gcd

2

(
∂gbd
∂ya

+ ∂gad
∂yb

− ∂gab
∂yd

)

= ∂yc

∂xi
∂2xi

∂ya∂yb
,

where gcd is the inverse of gab. If w(t, x) is the (0, r) tensor expressed in the x-
coordinates, then the same tensor k(t, y) expressed in the y-coordinates is given
by

ka1···ar (t, y) = ∂xi1

∂ya1
· · · ∂xir

∂yar
wi1···ir (t, x), x = x(t, y),

and by the transformation properties for tensors,

∇aka1···ar = ∂xi

∂ya
∂xi1

∂ya1
· · · ∂xir

∂yar
∂wi1···ir

∂xi
. (2.3)

Covariant differentiation is constructed so that the norms of tensors are invariant
under changes of coordinates,

ga1b1 · · · gar br ka1···ar kb1···br = δi1 j1 · · · δir jr wi1···ir w j1··· jr . (2.4)
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Furthermore, we express in the y-coordinates,

∂i = ∂

∂xi
= ∂ya

∂xi
∂

∂ya
. (2.5)

Since the curvature vanishes in the x-coordinates, it must do so in the y-coordinates,
and hence

[∇a,∇b] = 0.

Let us introduce the notation ka···b ···c = gbdka···d···c, and recall that the covari-
ant differentiation commutes with lowering and rising indices: gce∇akb·e···d =
∇agcekb·e···d . We also introduce a notation for the material derivative:

Dt = ∂

∂t

∣
∣
∣
∣
y=const

= ∂

∂t

∣
∣
∣
∣
x=const

+ vk
∂

∂xk
.

Then we have, from [4, Lemma 2.2], that

Dtka1···ar = ∂xi1

∂ya1
· · · ∂xir

∂yar

(

Dtwi1···ir + ∂v�

∂xi1
w�···ir + · · · + ∂v�

∂xir
wi1···�

)

.

(2.6)

We recall a result concerning time derivatives of the change of coordinates and
commutators between time derivatives and space derivatives (cf. [4,11, Lemma
2.1]).

Lemma 2.1. Let x = ft (y) be the change of variables given by (2.1), and let gab
be the metric given by (2.2). Let vi = δi jv

j = vi , and set

ua(t, y) = vi (t, x)
∂xi

∂ya
, ua = gabub, (2.7)

hab = 1

2
Dtgab, hab = gachcdg

db. (2.8)

Then

Dt
∂xi

∂ya
= ∂xk

∂ya
∂vi

∂xk
, Dt

∂ya

∂xi
= −∂ya

∂xk
∂vk

∂xi
, (2.9)

Dtgab = ∇aub + ∇bua, Dtg
ab = −2hab, Dtdμg = tr hdμg, (2.10)

where dμg is the Riemannian volume element on Ω in the metric g.

We now recall the estimates of commutators between the material derivative
Dt and space derivatives ∂i or covariant derivatives ∇a .
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Lemma 2.2. (cf. [4]) Let ∂i be given by (2.5). Then

[Dt , ∂i ] = −(∂iv
k)∂k . (2.11)

Furthermore,

[Dt , ∂
r ] = −

r−1∑

s=0

�s+1
r (∂1+sv) · ∂r−s, (2.12)

where �sr denotes the binomial coefficient defined by r !
(r−s)!s! for 0 � s � r , the

symmetric dot product is defined to be in components

(
(∂1+sv) · ∂r−s

)

i1···ir
= 1

r !
∑

σ∈Σr

(
∂1+s
iσ1 ···iσ1+s

vk
)

∂r−s
kiσs+2 ···iσr ,

and Σr denotes the collection of all permutations of {1, 2, . . . , r}.

Lemma 2.3. (cf. [4,11]) Let Ta1···ar be a (0, r) tensor. We have

[Dt ,∇a]Ta1···ar = − (∇a1∇au
d)Tda2···ar

− · · · − (∇ar ∇au
d)Ta1···ar−1d . (2.13)

If � = gcd∇c∇d and q is a function, we have

[Dt , g
ab∇a]Tb = −2hab∇aTb − (�ue)Te, (2.14)

[Dt ,∇]q = 0, (2.15)

[Dt ,�]q = −2hab∇a∇bq − (�ue)∇eq. (2.16)

Furthermore, for r � 2,

[
Dt ,∇r ] q =

r−1∑

s=1

−�s+1
r

(
∇s+1u

)
· ∇r−sq, (2.17)

where the symmetric dot product is defined to be in components

(
(∇s+1u) · ∇r−sq

)

a1···ar
= 1

r !
∑

σ∈Σr

(
∇s+1
aσ1 ···aσs+1

ud
)

∇r−s
daσs+2 ···aσr

q.

Remark 2.1. It follows from (2.17) that for r � 2 and a function q,

Dt∇r q + ∇r u · ∇q = ∇r Dtq − sgn(r − 2)
r−2∑

s=1

�s+1
r

(
∇s+1u

)
· ∇r−sq.
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Denote

Hi = δi j H
j = Hi , βa = Hj

∂x j

∂ya
, βa = gabβb, |β|2 = βaβ

a,

Ĥi = δi j Ĥ
j = Ĥ i , �a = Ĥ j

∂x j

∂ya
, � a = gab�b, |� |2 = � a�a,

and

Êi = δi j Ê
j = Ê i , Ξa = Ê j

∂x j

∂ya
, Ξa = gabΞb, |Ξ |2 = ΞaΞa .

It follows from (2.4) that

|β| = |H|, |� | = |Ĥ|, |Ξ | = |Ê|, Hj = ∂ya

∂x j
βa, Ĥ j = ∂ya

∂x j
�a,

Ê j = ∂ya

∂x j
Ξa . (2.18)

From (2.9) and (2.3), we have

Dt�a = Dt

(

Ĥ j
∂x j

∂ya

)

= ∂x j

∂ya
Dt Ĥ j + Ĥ j Dt

∂x j

∂ya

= ∂x j

∂ya

(
−(∇ × Ê) j + vk∂k Ĥ j

)
+ Ĥ j

∂xk

∂ya
∂v j

∂xk

= −∂x j

∂ya
(∇ × Ê) j + ∂x j

∂ya
∂xk

∂yb
∂yb

∂xl
vl∂k Ĥ j

+ Ĥ j
∂xk

∂ya
∂vl

∂xk
∂x j

∂yb
∂yb

∂xl

= −∂x j

∂ya
(∇ × Ê) j + ub∇b�a + �b∇au

b.

Due to det(∂y/∂x) ≡ 1, we get

∂x j

∂ya

(
∇ × Ê

)

j
= ∂x1

∂ya

(
∂ Ê3

∂x2
− ∂ Ê2

∂x3

)

+ ∂x2

∂ya

(
∂ Ê1

∂x3
− ∂ Ê3

∂x1

)

+ ∂x3

∂ya

(
∂ Ê2

∂x1
− ∂ Ê1

∂x2

)

= ∂x1

∂ya
∂x1

∂yd
∂yd

∂x1

(
∂x2

∂yb
∂yb

∂x2
∂x3

∂yc
∂yc

∂x3
∂ Ê3

∂x2

− ∂x3

∂yb
∂yb

∂x3
∂x2

∂yc
∂yc

∂x2
∂ Ê2

∂x3

)

+ ∂x2

∂ya
∂x2

∂yd
∂yd

∂x2

(
∂x3

∂yb
∂yb

∂x3
∂x1

∂yc
∂yc

∂x1
∂ Ê1

∂x3
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− ∂x1

∂yb
∂yb

∂x1
∂x3

∂yc
∂yc

∂x3
∂ Ê3

∂x1

)

+ ∂x3

∂ya
∂x3

∂yd
∂yd

∂x3

(
∂x1

∂yb
∂yb

∂x1
∂x2

∂yc
∂yc

∂x2
∂ Ê2

∂x1

− ∂x2

∂yb
∂yb

∂x2
∂x1

∂yc
∂yc

∂x1
∂ Ê1

∂x2

)

= gad∇bΞc

[
∂yd

∂x1

(
∂yb

∂x2
∂yc

∂x3
− ∂yb

∂x3
∂yc

∂x2

)

+ ∂yd

∂x2

(
∂yb

∂x3
∂yc

∂x1
− ∂yb

∂x1
∂yc

∂x3

)

+ ∂yd

∂x3

(
∂yb

∂x1
∂yc

∂x2
− ∂yb

∂x2
∂yc

∂x1

)]

= gad∇bΞc det

(
∂(yd , yb, yc)

∂(x1, x2, x3)

)

= gad∇bΞcε
dbc det

(
∂y

∂x

)

= (∇ × Ξ)a,

where εi jk denotes the Levi-Civita symbol defined as follows:

εi jk =

⎧
⎪⎨

⎪⎩

+1 if (i, j, k) is (1, 2, 3), (3, 1, 2) or (2, 3, 1),

−1 if (i, j, k) is (1, 3, 2), (3, 2, 1) or (2, 1, 3),

0 if i = j or j = k or k = i,

which satisfies εi jk ≡ εi jk in bothEulerian coordinates andLagrangian coordinates,
and the i th component of the curl of the vector F reads

(∇ × F)i = εi jk∂ j Fk, and (∇ × F)i = εiab∇a Fb,

in Eulerian coordinates and Lagrangian coordinates, respectively.
Thus, we have obtained

Dt�a = − (∇ × Ξ)a + ub∇b�a + �b∇au
b.

Similarly, we get

∇ × � = 0.

We also have those equations for Dtua and Dtβa , one can see [11] for details.
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Thus, the system (1.8) can be written in the Lagrangian coordinates, for t > 0,
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dtua + ∇aq
+ = uc∇auc + μβd∇dβa, in Ω+, (2.19a)

Dtβa = βd∇dua + βc∇auc, in Ω+, (2.19b)

Dt�a = −(∇ × Ξ)a + ub∇b�a + �b∇au
b, in Ω−, (2.19c)

∇au
a = 0 and ∇aβ

a = 0, in Ω+, (2.19d)

∇au
a = 0, ∇ × � = 0, ∇a�

a = 0, and ∇aΞ
a = 0, in Ω−, (2.19e)

P = 0, βaN
a = �aN

a = 0, on Γ, (2.19f)

N × Ξ = uN�, on Γ, (2.19g)

u = 0, �aN
a = 0, Ξ × N = 0, on W, (2.19h)

where N is the unit normal vector pointing into the interior of Ω−.
Obviously, the energy defined by

E0(t) =
∫

Ω+

(
1

2
|u(t)|2 + μ

2
|β(t)|2

)

dμg +
∫

Ω−
μ

2
|�(t)|2dμg

is conserved. Of course, it is the equivalent one as in Eulerian coordinates. It can
be easily verified by using the Gauss formula:

∫

Ω+
∇a F

adμg =
∫

Γ

NaF
adμγ ,

∫

Ω−
∇a F

adμg = −
∫

Γ ∪W
NaF

adμγ , (2.20)

where F is a smooth vector-valued function, Na = gabNb denotes the unit conor-
mal, gabNaNb = 1, Na denotes the outward (or inward) unit normal to Γ (andW )
corresponding to Ω+ (or Ω−), dμγ is the volume element on boundaries, and the
induced metric γ on the tangent space to the boundary T (Γ ) (and T (W )) extended
to be 0 on the orthogonal complement in T (Ω+) (and T (Ω−)) is then given by

γab = gab − NaNb, γ ab = gab − NaNb.

The orthogonal projection of a (r, s) tensor S to the boundaries is given by

(Π S)
a1···ar
b1···bs = γ a1

c1 · · · γ ar
cr γ

d1
b1

· · · γ ds
bs
Sc1···crd1···ds ,

where

γ c
a = δca − NaN

c. (2.21)

Covariant differentiation on the boundary ∇ is given by

∇S = Π∇S,

and ∇ is invariantly defined since the projection and the covariant derivatives are.
The second fundamental form of the boundary is given by

θab = (∇N )ab = γ c
a ∇cNb.
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We need to extend the normal to a vector field defined and regular everywhere in
the interior of Ω+ and Ω− such that when the geodesic distance to the boundaries
d(t, y) � ι0/4, it is the normal to the set {y : d(t, y) = const}, and in the interior
it drops off to 0. We also denote the extension of the normal by Na which satisfies
|∇N | � 2‖θ‖L∞(Γ ∪W ). Then we extend γ to the pseudo-Riemannian metric γ

given by γab = gab −NaNb which satisfies∇γ |L∞(Ω) � C(‖θ‖L∞(Γ ∪W ) +1/ι0).
One can see [4] for more details about the derivation of the gradient estimates of
the extensions N and γ .

3. The Estimates of the Magnetic Field in Vacuum

SinceΩ+ andΩ are simply connected, the equations∇a�
a = 0 and∇ ×� =

0 imply �(t, y) = ∇ϕ(t, y), where ϕ is a solution of the Neumann problem
{

�ϕ = 0, in Ω−, (3.1)

∇Nϕ = 0, on Γ ∪ W. (3.2)

For the derivatives of � , we have the following L2-estimates.

Proposition 3.1. Let r � 0 be an integer. If |θ | + 1/ι0 � K on Γ , |∇N | � CK in
Ω−, then it holds

‖∇r+1�‖2L2(Ω−)
� CK2(r+1)E0(0), ‖∇r�‖2L2(Γ ∪W )

� CK2r+1E0(0).

Proof. We use the induction argument to show, for any integer s � 0, that

‖∇s+1�‖2L2(Ω−)
� CK2(s+1)E0(0), ‖∇s�‖2L2(Γ ∪W )

� CK2s+2E0(0).

We first prove the case s = 0. By (3.1)–(3.2) and the Hölder inequality, we
have

‖∇2ϕ‖2L2(Ω−)
=

∫

Ω−
gabgcd∇c∇aϕ∇d∇bϕdμg

=
∫

Ω−
gabgcd∇a(∇cϕ∇d∇bϕ)dμg

−
∫

Ω−
gcd∇cϕ∇d�ϕdμg

= −
∫

Γ ∪W
Nbgcd∇cϕ∇d∇bϕdμγ

= −
∫

Γ ∪W
gcd∇cϕ∇d(N

b∇bϕ)dμγ

+
∫

Γ ∪W
gcd∇cϕ∇d N

b∇bϕdμγ

= −
∫

Γ ∪W
∇Nϕ∇2

Nϕdμγ −
∫

Γ ∪W
γ cd∇cϕ∇d(∇Nϕ)dμγ

+
∫

Γ ∪W
gcd∇cϕ∇d N

b∇bϕdμγ
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=
∫

Γ ∪W
γ cd∇cϕ∇d N

b∇bϕdμγ

�C‖θ‖L∞(Γ ∪W )‖�‖2L2(Γ ∪W )
.

We get, from Gauss’ formula, Hölder’s inequalities and Cauchy’s inequality, that

‖�‖2L2(Γ ∪W )
=

∫

Γ ∪W
� c�cdμγ

=
∫

Γ ∪W
NaN

a� c�cdμγ

= −
∫

Ω−
∇a(N

a� c�c)dμg

= −
∫

Ω−
∇aN

a� c�cdμg

− 2
∫

Ω−
Na∇a�

c�cdμg

�C‖tr (∇N )‖L∞(Ω−)‖�‖2L2(Ω−)

+ C‖∇�‖L2(Ω−)‖�‖L2(Ω−)

�C‖tr (∇N )‖L∞(Ω−)‖�‖2L2(Ω−)

+ δ‖∇�‖2L2(Ω−)
+ (C/δ)‖�‖2L2(Ω−)

, (3.3)

for any δ > 0. Thus, it follows that

‖∇�‖2L2(Ω−)
�C‖θ‖L∞(Γ ∪W )‖∇N‖L∞(Ω−)‖�‖2L2(Ω−)

+ Cδ‖θ‖L∞(Γ ∪W )‖∇�‖2L2(Ω−)

+ (C/δ)‖θ‖L∞(Γ ∪W )‖�‖2L2(Ω−)
.

Taking δ so small that CδK = 1/2, we get

‖∇�‖2L2(Ω−)
�C‖θ‖L∞(Γ ∪W )‖∇N‖L∞(Ω−)‖�‖2L2(Ω−)

+ (C/δ)‖θ‖L∞(Γ ∪W )‖�‖2L2(Ω−)

�CK2‖�‖2L2(Ω−)
� CK2E0(0).

We also have, with the help of (3.3), that

‖�‖2L2(Γ ∪W )
�CK‖�‖2L2(Ω−)

� CK E0(0).

Now, we assume that the claims are true for the cases s = r − 1, then we prove
the case s = r .

From Gauss’ formula, Hölder’s inequality and Cauchy’s inequality, it follows

‖∇r�‖2L2(Γ ∪W )
=

∫

Γ ∪W
NaN

a |∇r� |2dμγ = −
∫

Ω−
∇a(N

a |∇r� |2)dμg

�CK‖∇r�‖2L2(Ω−)
+ C‖∇r�‖L2(Ω−)‖∇r+1�‖L2(Ω−). (3.4)
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Since div� = 0 and ∇ × � = 0, we have, from (A.7) and (A.8), that

|∇r+1� |2 �C1g
bcγ a f γ AF∇r

A∇a�b∇r
F∇ f �c,

∫

Ω−
|∇r+1� |2dμg �C2

∫

Ω−

(
gbcNaN f γ AF∇r

A∇b�a∇r
F∇c� f

+ K 2|∇r� |2
)
dμg.

Noticing that ∇ × � = 0, it follows from the Gauss formula that

(C−1
1 + C−1

2 )‖∇r+1�‖2L2(Ω−)
�

∫

Ω−
gbcγ a f γ AF∇r

A∇a�b∇r
F∇c� f dμg

+
∫

Ω−

(
gbcNaN f γ AF∇r

A∇a�b∇r
F∇c� f

+ K 2|∇r� |2
)
dμg

=
∫

Ω−
gbc∇c

(
ga f γ AF∇r

A∇a�b∇r
F� f

)
dμg

(3.5)

−
∫

Ω−
gbcga f ∇c

(
γ AF

)
∇r

A∇a�b∇r
F� f dμg

(3.6)

+
∫

Ω−
K 2|∇r� |2dμg. (3.7)

By the Hölder inequalities and the Cauchy inequality, we get

|(3.6)| �CK‖∇r�‖L2(Ω−)‖∇r+1�‖L2(Ω−).

We write

(3.5) = −
∫

Γ ∪W
Nbga f γ AF∇r

A∇a�b∇r
F� f dμγ

= −
∫

Γ ∪W
γ a f ∇a(N

bγ AF∇r
A�b∇r

F� f

− N f N
cNbγ AF∇r

A�b∇r
F�c)dμγ (3.8)

+
∫

Γ ∪W
γ a f ∇a(N

bγ AF )∇r
A�b∇r

F� f dμγ (3.9)

+
∫

Γ ∪W
γ a f Nbγ AF∇r

A�b∇r
F∇a� f dμγ (3.10)

+
∫

Γ ∪W
NaN f Nbγ AF∇r

A�b∇r
F∇a� f dμγ (3.11)

−
∫

Γ ∪W
γ a f ∇aN f N

cNbγ AF∇r
A�b∇r

F�cdμγ . (3.12)
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In view of the Gauss formula, (3.8) vanishes. Due to div� = 0, (3.10) + (3.11) =
0. From the Hölder inequality, we have

|(3.9) + (3.12)| � CK‖∇r�‖2L2(Γ ∪W )
.

Thus, from (3.4) and the Cauchy inequality, we get

‖∇r+1�‖2L2(Ω−)
�CK‖∇r�‖2L2(Γ ∪W )

+ CK‖∇r�‖L2(Ω−)‖∇r+1�‖L2(Ω−)

+ CK2‖∇r�‖2L2(Ω−)

�CK2‖∇r�‖2L2(Ω−)
+ CK‖∇r�‖L2(Ω−)‖∇r+1�‖L2(Ω−)

�CK2‖∇r�‖2L2(Ω−)
+ 1

2
‖∇r+1�‖2L2(Ω−)

,

namely,

‖∇r+1�‖2L2(Ω−)
� CK2‖∇r�‖2L2(Ω−)

, (3.13)

and then

‖∇r�‖2L2(Γ ∪W )
�CK‖∇r�‖2L2(Ω−)

. (3.14)

Therefore, by the induction argument, we have obtained the desired results. ��
Proposition 3.2. Suppose that for ι1 � 1/K1,

|N (x̄1) − N (x̄2)| � ε1, whenever |x̄1 − x̄2|
� ι1, x̄1, x̄2 ∈ Γ ∪ W,

and

C−1
0 γ 0

ab(y)Z
a Zb � γab(t, y)Z

a Zb � C0γ
0
ab(y)Z

a Zb, if Z ∈ T (Ω−),

where γ 0
ab(y) = γab(0, y). Then, it holds for any integer r � 0

‖∇r�‖L∞(Γ ∪W ) � C(r, K , K1,VolΩ
−)E1/2

0 (0),

and

‖Π∇r |� |2‖L2(Γ ∪W ) �C(r, K , K1,VolΩ
−)E0(0).

Proof. From (A.14) and (A.17), it follows

‖∇s�‖L∞(Γ ∪W ) �C‖∇s+1�‖L4(Γ ∪W ) + C(K1)‖∇s�‖L4(Γ ∪W )

�C
(
K , K1,VolΩ

−)
2∑

�=0

‖∇s+��‖L2(Ω−)

�C
(
K , K1,VolΩ

−)
2∑

�=0

Ks+�E1/2
0 (0)

�C
(
s, K , K1,VolΩ

−)
E1/2
0 (0).
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By the Hölder inequality, Proposition 3.1, (A.14), and the Cauchy inequality, we
have

‖Π∇r |� |2‖L2(Γ ∪W ) �C
[r/2]∑

m=0

‖∇m�‖L∞(Γ ∪W )‖∇r−m�‖L2(Γ ∪W )

�C
[r/2]∑

m=0

(
‖∇m+1�‖L4(Γ ∪W ) + C(K1)‖∇m�‖L4(Γ ∪W )

)

Kr−m+1/2E1/2(0)

�C(K1,VolΩ
−)E1/2(0)

[r/2]∑

m=0

2∑

�=0

‖∇m+��‖L2(Ω−)K
r−m+1/2

�C(K1,VolΩ
−)

[r/2]∑

m=0

2∑

�=0

Km+�Kr−m+1/2E0(0)

�C(r, K , K1,VolΩ
−)E0(0).

��

4. The Estimates of the Electric Field in Vacuum

Although the electric field can be regarded as a secondary variable due to

∇ × Ê = −Ĥt , and div Ê = 0,

we have to use the estimates of the electric field in vacuum in order to get the energy
estimates. In fact, we can prove the following estimates.

Proposition 4.1. If |θ | + 1/ι0 � K on Γ and ∇ ×Ξ0 ∈ L2(Ω−), then it holds for
any integer r � 0

‖∇r (∇ × Ξ)‖2L2(Ω−)
+ ‖∇r (∇ × Ξ)‖2L2(Γ ∪W )

� C(r, K )

[

‖∇ × Ξ0‖2L2(Ω−)
+ E0(0) sup

τ∈[0,t]

2∑

�=0

‖∇�u(τ )‖2L2(Γ )

]

× exp

(

C(K )

∫ t

0
‖uN (τ )‖L∞(Γ )dτ

)

,

where Ξ0 is the initial datum of Ξ at t = 0.

Proof. For convenience, we denote B = ∇×Ξ in this section. Then, in Lagrangian
coordinates, we have from (2.19c) that

Ba = −Dt�a + ub∇b�a + �b∇au
b.
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From (A.5), we have on boundaries Γ ∪ W

NaBa = − Dt (N
a�a) + Dt N

a�a + Naub∇b�a + Na�b∇au
b

= − 2had N
d�a − hNN N

a�a + Naub∇b�a + Na�b∇au
b

= − (∇aud + ∇dua) N
d� a + Naub∇b�a + Na�b∇au

b

= − ∇aud N
d� a + Ndua∇a�d .

By (2.14) and the fact ∇c�
c = 0, we also get in Ω−

∇a B
a = gac∇c Ba = −gac∇cDt�a + ∇c

(
ub∇b�

c
)

+ gac∇c

(
�b∇au

b
)

= [
Dt , g

ac∇c
]
�a − Dt

(∇c�
c) + ∇cu

b∇b�
c + gac∇c�b∇au

b + �b�ub

= − 2hac∇c�a − (
�ue

)
�e + 2hac∇c�a + �b�ub

= 0,

and by (2.13) and the fact ∇ × � = 0,

(∇ × B)c = εcea∇e Ba = −εcea∇eDt�a + εcea∇e

(
ub∇b�a

)
+ εcea∇e

(
�b∇au

b
)

= εcea [Dt ,∇e]�a − εcea Dt∇e�a + εcea∇eu
b∇b�a + εcea∇e�b∇au

b

= − εcea∇a∇eu
d�d + εcea∇eu

b∇b�a − εcea∇a�b∇eu
b

= 0.

Thus, we have ∇a Ba = 0 and ∇ × B = 0, which yields B(t, y) = ∇ψ(t, y), and
ψ is a solution of the following Neumann problem

⎧
⎪⎨

⎪⎩

�ψ = 0, in Ω−, (4.1)

∇Nψ = f, on Γ, (4.2)

∇Nψ = 0, on W, (4.3)

where f = Ndua∇a�d − ∇aud Nd� a .
From (4.1)–(4.3) and Hölder’s inequality, we get

‖∇B‖2L2(Ω−)
=

∫

Ω−
gabγ cd∇c∇aψ∇d∇bψdμg

=
∫

Ω−
gab∇a(γ

cd∇cψ∇d∇bψ)dμg

−
∫

Ω−
gab∇aγ

cd∇cψ∇d∇bψdμg

= −
∫

Γ ∪W
Nbγ cd∇cψ∇d∇bψdμγ

−
∫

Ω−
gab∇aγ

cd∇cψ∇d∇bψdμg

= −
∫

Γ ∪W
γ cd∇cψ∇d

(
Nb∇bψ

)
dμγ
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+
∫

Γ ∪W
γ cd∇cψ∇d N

b∇bψdμγ

−
∫

Ω−
gab∇aγ

cd∇cψ∇d∇bψdμg

�C‖ΠB‖L2(Γ )‖∇ f ‖L2(Γ )

+ C‖θ‖L∞(Γ ∪W )‖B‖2L2(Γ ∪W )

+ CK‖B‖L2(Ω−)‖∇B‖L2(Ω−).

Similar to (3.3), we have for any δ > 0

‖B‖2L2(Γ ∪W )
�C(K + 1/δ)‖B‖2L2(Ω−)

+ δ‖∇B‖2L2(Ω−)
. (4.4)

Thus, in view of (A.7) and Cauchy’s inequality, it follows that

‖∇B‖2L2(Ω−)
�C‖∇B‖2L2(Ω−)

�C‖∇ f ‖2L2(Γ )
+ C(K + 1)(K + 1/δ)‖B‖2L2(Ω−)

+ C(K + 1)δ‖∇B‖2L2(Ω−)
+ CK2‖B‖2L2(Ω−)

+ 1

4
‖∇B‖2L2(Ω−)

.

Taken δ so small that C(K + 1)δ < 1/4, it yields

‖∇B‖2L2(Ω−)
�C‖∇ f ‖2L2(Γ )

+ C(K )‖B‖2L2(Ω−)
. (4.5)

Similar to the derivation of (2.19c), we can get, due to Êt = 0, that

Dt Ba = ub∇bBa + ∇au
bBb. (4.6)

It follows that

d

dt

∫

Ω−
|B|2dμg = −

∫

Γ

uN |B|2dμγ ,

which yields

‖B(t)‖2L2(Ω−)
� ‖B0‖2L2(Ω−)

+
∫ t

0
‖uN (τ )‖L∞(Γ )‖B(τ )‖2L2(Γ )

dτ, (4.7)

where B0 = B(t)|t=0. From (4.5), (4.7) and (4.4), we obtain
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‖B(t)‖2L2(Ω−)
+ ‖∇B‖2L2(Ω−)

�C‖∇ f ‖2L2(Γ )
+ C(K )‖B0‖2L2(Ω−)

+ C(K )

∫ t

0
‖uN (τ )‖L∞(Γ )‖B(τ )‖2L2(Γ )

dτ

�C‖∇ f ‖2L2(Γ )
+ C(K )‖B0‖2L2(Ω−)

+ C(K )

∫ t

0
‖uN (τ )‖L∞(Γ )

(
‖B(τ )‖2L2(Ω−)

+‖∇B(τ )‖2L2(Ω−)

)
dτ,

which implies, by Grönwall’s inequality, that

‖B(t)‖2L2(Ω−)
+ ‖∇B‖2L2(Ω−)

�
[

C sup
τ∈[0,t]

‖∇ f (τ )‖2L2(Γ )
+ C(K )‖B0‖2L2(Ω−)

]

× exp

(

C(K )

∫ t

0
‖uN (τ )‖L∞(Γ )dτ

)

.

By the definition of f and Proposition 3.1, we have

‖∇ f ‖L2(Γ ) � ‖∇(Ndua∇a�d − ∇aud N
d� a)‖L2(Γ )

� ‖θ‖L∞(Γ )‖u‖L2(Γ )‖∇�‖L2(Γ ) + ‖∇u‖L2(Γ )‖∇�‖L2(Γ )

+ ‖u‖L2(Γ )‖∇2�‖L2(Γ ) + ‖∇2u‖L2(Γ )‖�‖L2(Γ )

+ ‖θ‖L∞(Γ )‖∇u‖L2(Γ )‖�‖L2(Γ )

�C(K )
[
‖u‖L2(Γ ) + ‖∇u‖L2(Γ ) + ‖∇2u‖L2(Γ )

]
E1/2(0)

�C(K )E1/2(0)
2∑

�=0

‖∇�u‖L2(Γ ).

Therefore, we obtain, combining with (4.4), that

‖B‖2L2(Ω−)
+ ‖∇B‖2L2(Ω−)

+ ‖B‖2L2(Γ ∪W )

� C(K )

[

‖B0‖2L2(Ω−)
+ E0(0) sup

τ∈[0,t]

2∑

�=0

‖∇�u(τ )‖2L2(Γ )

]

× exp

(

C(K )

∫ t

0
‖uN (τ )‖L∞(Γ )dτ

)

.

Since ∇a Ba = 0 and ∇ × B = 0, it is similar to � . One can verify that the
lines between (3.4) and (3.14) also hold if � is replaced by B everywhere in those
lines. Thus, we can obtain for any r � 1

‖∇r+1B‖2L2(Ω−)
� CK2‖∇r B‖2L2(Ω−)

, (4.8)
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and

‖∇r B‖2L2(Γ ∪W )
�CK‖∇r B‖2L2(Ω−)

. (4.9)

Hence, we get for any r � 0

‖∇r B‖2L2(Ω−)
+ ‖∇r B‖2L2(Γ ∪W )

� C(K ,VolΩ+)

[

‖B0‖2L2(Ω−)
+ E0(0) sup

τ∈[0,t]

3∑

�=0

‖∇�u(τ )‖2L2(Ω+)

]

× exp

(

C(K )

∫ t

0
‖uN (τ )‖L∞(Γ )dτ

)

.

Changing B back to ∇ × Ξ , we obtain the desired results. ��

5. The General r -th Order Energy Estimates

We can get that for r � 1 (cf. [11])

Dt∇r ua + ∇r∇aq
+

= (∇auc − sgn(r − 1)∇cua) ∇r uc + μβc∇c∇rβa + rμ∇β · ∇rβa

+ sgn(r − 1)μ∇rβc∇cβa + sgn ((r − 1)(r − 2))Pa(β), (5.1)

and

Dt∇rβa = (∇auc + sgn(r − 1)∇cua)∇rβc − sgn(r − 1)∇r uc∇cβa

+ βc∇c∇r ua + r∇β · ∇r ua + sgn ((r − 1)(r − 2))Qa, (5.2)

where

Pa(β) := −
r−1∑

s=2

�sr∇suc∇r−s∇cua + μ

r−1∑

s=2

�sr∇sβc∇r−s∇cβa,

and

Qa := −
r−1∑

s=2

�sr∇suc∇r−s∇cβa +
r−1∑

s=2

�sr∇sβc∇r−s∇cua .

Define the r -th order energy as

Er (t) =
∫

Ω+
gbdγ a f γ AF∇r−1

A ∇aub∇r−1
F ∇ f uddμg

+ μ

∫

Ω+
gbdγ a f γ AF∇r−1

A ∇aβb∇r−1
F ∇ f βddμg

+
∫

Ω+
|∇r−1∇ × u|2dμg + μ

∫

Ω+
|∇r−1∇ × β|2dμg

+
∫

Γ

γ a f γ AF∇r−1
A ∇a P∇r−1

F ∇ f P ϑdμγ ,

where the weight ϑ = −1/∇N P as before.
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Theorem 5.1. Let 1 � r � 4 be an integer, then there exists a T > 0 such that
the following holds: For any smooth solution of MHD (2.19) satisfying

|β| � M1 for r = 2, in [0, T ] × Ω+, (5.3)

|∇P| + |∇u| + |∇β| � M, in [0, T ] × Ω, (5.4)

|θ | + 1/ι0 � K , on [0, T ] × Γ, (5.5)

−∇N P � ε >0, on [0, T ] × Γ, (5.6)

|u| + |∇2P| + |∇N Dt P| � L , on [0, T ] × Γ, (5.7)

we have, for t ∈ [0, T ],
Er (t) � eC1t Er (0) + C2e

C3t
(
eC4t − 1

)
, (5.8)

where the constant Ci > 0 depends on K , K1, M, M1, L, 1/ε,VolΩ , E0(0), E1(0),
. . ., and Er−1(0); bothC2 andC3 also depend on ‖∇×Ξ0‖L2(Ω−) if r � 3; C3 = 0
for r = 1, 2.

Proof. Since tr h = 0, we have

d

dt
Er (t) =

∫

Ω+
Dt

(
gbdγ a f γ AF∇r−1

A ∇aub∇r−1
F ∇ f ud

)
dμg (5.9)

+ μ

∫

Ω+
Dt

(
gbdγ a f γ AF∇r−1

A ∇aβb∇r−1
F ∇ f βd

)
dμg (5.10)

+
∫

Ω+
Dt |∇r−1∇ × u|2dμg + μ

∫

Ω+
Dt |∇r−1∇ × β|2dμg (5.11)

+
∫

Γ

Dt

(
γ a f γ AF∇r−1

A ∇a P∇r−1
F ∇ f P

)
ϑdμγ (5.12)

+
∫

Γ

γ a f γ AF∇r−1
A ∇a P∇r−1

F ∇ f P

(
ϑt

ϑ
− hNN

)

ϑdμγ . (5.13)

Since the boundary integrals disappear for the case r = 1, it is easy to obtain
the desired estimate and we omit the details. So we assume r � 2 from now on in
the proofs.

We first estimate (5.9)–(5.10) and (5.12). From Lemmas 2.1 and A.1, we have
in Ω+,

Dt

(
gbdγ a f γ AF∇r−1

A ∇aub∇r−1
F ∇ f ud

)

= − 2∇cueγ
a f γ AF∇r−1

A ∇au
c∇r−1

F ∇ f u
e

− 4r∇cueγ
acγ e f γ AF∇r−1

A ∇au
d∇r−1

F ∇ f ud

− 2γ a f γ AF∇r−1
F ∇ f u

b∇r−1
A ∇a∇bq

+

+ 2γ a f γ AF∇r−1
F ∇ f u

b(∇buc − sgn(r − 1)∇cub)∇r−1
A ∇au

c

+ 2μγ a f γ AF∇r−1
F ∇ f ud

(
βc∇c∇r

Aaβ
d
)

+ 2rμγ a f γ AF∇r−1
F ∇ f ud(∇βc∇r−1∇cβ

d)Aa
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+ 2sgn(r − 1)μγ a f γ AF∇r−1
F ∇ f ud∇r

Aaβ
c∇cβb

+ 2sgn((r − 1)(r − 2))γ a f γ AF∇r−1
F ∇ f ud(Pb(β))Aa,

and

Dt

(
gbdγ a f γ AF∇r−1

A ∇aβb∇r−1
F ∇ f βd

)

= −2∇cueγ
a f γ AF∇r−1

A ∇aβ
c∇r−1

F ∇ f β
e

− 2r∇cueγ
acγ e f γ AF∇r−1

A ∇aβ
d∇r−1

F ∇ f βd

+ 2γ a f γ AF∇r−1
F ∇ f β

b(∇buc + sgn(r − 1)∇cub)∇r−1
A ∇aβ

c

− 2sgn(r − 1)γ a f γ AF∇r−1
F ∇ f β

b∇cβb∇r−1
A ∇au

c

+ 2γ a f γ AF∇r−1
F ∇ f β

dβc∇c∇r
Aaud

+ 2rγ a f γ AF∇r−1
F ∇ f β

d(∇β · ∇r ub)Aa

+ 2sgn((r − 1)(r − 2))γ a f γ AF∇r−1
F ∇ f β

d(Qb)Aa,

and in the interface Γ ,

Dt

(
γ a f γ AF∇r

Aa P∇r
F f P

)
= − 2r∇cueγ

acγ e f γ AF∇r
Aa P∇r

F f P

+ 2γ a f γ AF∇r
Aa PDt∇r

F f P.

Thus, we get

(5.9) + (5.10) + (5.12) �C
(‖∇u‖L∞(Ω) + ‖∇β‖L∞(Ω+)

)
Er (t)

+ CE1/2
r (t)

r−1∑

s=2

(‖∇su‖L4(Ω+) + ‖∇sβ‖L4(Ω+)

)

× (‖∇r−s+1u‖L4(Ω+) + ‖∇r−s+1β‖L4(Ω+)

)
(5.14)

+ 2
∫

Γ

γ a f γ AF∇r
Aa P

(

Dt∇r
F f P − 1

ϑ
Nb∇r

F f u
b
)

ϑdμγ

(5.15)

− μ

∫

Γ

γ a f γ AF∇r
Aa |� |2Nb∇r

F f u
bdμγ (5.16)

+ 2
∫

Ω+
∇b

(
γ a f γ AF

)
∇r
F f u

b∇r
Aaq

+dμg (5.17)

+ 2μ
∫

Γ

Ncγ
a f γ AF∇r−1

F ∇ f udβ
c∇r

Aaβ
ddμγ (5.18)

− 2μ
∫

Ω+
∇c

(
γ a f γ AF

)
∇r−1
F ∇ f udβ

c∇r
Aaβ

ddμg.

(5.19)

From Lemma A.7, it follows that

|(5.14)| � C (K , K1, M,VolΩ, 1/ε)

(

1 +
r−1∑

s=0

Es(t)

)

Er (t).
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By Gauss’ formula, Proposition 3.2 and (A.17), we get

(5.16) = − μ

∫

Γ

γ a f ∇ f

[
γ AF∇r

Aa |� |2Nb∇r−1
F ub

−NaN
cγ AF∇r

Ac|� |2Nb∇r−1
F ub

]
dμγ

+ μ

∫

Γ

γ a f ∇ f

[
γ AF∇r

Aa |� |2Nb

]
∇r−1
F ubdμγ

− μ

∫

Γ

γ a f ∇ f NaN
cγ AF∇r

Ac|� |2Nb∇r−1
F ubdμγ

� μC
(
r, K , K1,VolΩ

−)
E0(0)‖∇r−1u‖L2(Γ )

� μC
(
r, K , K1,VolΩ

−,VolΩ+)
E0(0)(‖∇r u‖L2(Ω+) + ‖∇r−1u‖L2(Ω+))

� μC(r, K , K1,VolΩ)E0(0)
(
E1/2
r (t) + E1/2

r−1(t)
)

.

Due to β · N = 0 on Γ , (5.18) vanishes. From (A.14) and (A.17), it follows

‖u‖L∞(Γ ) � C(K1)

2∑

s=0

‖∇su‖L2(Ω+) � C(K1)

2∑

s=0

E1/2
s (t).

From Lemma A.8, it follows, for ι1 � 1/K1, that

‖β‖L∞(Ω+) � C
∑

0� s� 2

Kn/2−s
1 ‖∇sβ‖L2(Ω+)

� C(K1)

2∑

s=0

E1/2
s (t). (5.20)

Thus, with the help of the Hölder inequality, we have for any r � 3

(5.19) �CK‖β‖L∞(Ω+)Er (t) � C(K , K1)

(
2∑

s=0

E1/2
s (t)

)

Er (t).

For r = 1, it is easy to verify that there exists a T > 0 such that E1(t) can be
controlled by the initial energy E1(0) for t ∈ [0, T ], e.g., E1(t) � 2E1(0). For
r = 2, we have to assume the a priori bound |β| � M1 on [0, T ] × Ω+, i.e., (5.3),
in order to get a bound that is linear in the highest-order derivative or energy. Then,
we have from (5.3) for r = 2

(5.19) �CK‖β‖L∞(Ω+)Er (t) � C(K , M1)Er (t).

From the Hölder inequality, we get

(5.17) � CK E1/2
r (t)‖∇r q+‖L2(Ω+). (5.21)

From (1.8), it follows that

∂ j (Dtv
j ) + �q+ = μ∂ j (H

k∂k H
j ),
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which yields from (2.11)

�q+ = −∂ jv
k∂kv

j + μ∂ j H
k∂k H

j .

Since the Laplacian operator � is invariant, it yields

�q+ = −∇au
b∇bu

a + μ∇aβ
b∇bβ

a . (5.22)

We have a simple estimate from the assumption (5.4) and Hölder’s inequality, i.e.,

‖�q+‖L2(Ω+) �C‖∇u‖L2(Ω+)‖∇u‖L∞(Ω+)

+ C‖∇β‖L2(Ω+)‖∇β‖L∞(Ω+)

�CME1/2
1 (t), (5.23)

which is a lower energy term.
For m � 0, it follows that

∇m�q+ = −
m∑

s=0

�sm∇s∇au
b∇m−s∇bu

a

+ μ

m∑

s=0

�sm∇s∇aβ
b∇m−s∇bβ

a .

From (5.20), we get for s � 0

‖∇sβ‖L∞(Ω+) �C
2∑

�=0

Kn/2−�
1 ‖∇�+sβ‖L2(Ω+)

�C(K1)

2∑

�=0

E1/2
s+�(t), (5.24)

and, similarly,

‖∇su‖L∞(Ω+) � C(K1)

2∑

�=0

E1/2
s+�(t). (5.25)

From Hölder’s inequality, (5.24), Lemma A.7 and (5.25), we get,

‖∇�q+‖L2(Ω+) �C‖∇u‖L∞(Ω+)‖∇2u‖L2(Ω+)

+ C‖∇β‖L∞(Ω+)‖∇2β‖L2(Ω+) (5.26)

�CME1/2
2 (t), ‖∇2�q+‖L2(Ω+)

�C‖∇u‖L∞(Ω+)‖∇3u‖L2(Ω+) + C‖∇2u‖2L4(Ω+)

+ C‖∇β‖L∞(Ω+)‖∇3β‖L2(Ω+) + C‖∇2β‖2L4(Ω+)

�CME1/2
3 (t) + C‖∇u‖L∞(Ω+)

2∑

s=0

‖∇s+1u‖L2(Ω+)K
2−s
1
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+ C‖∇β‖L∞(Ω+)

2∑

s=0

‖∇s+1β‖L2(Ω+)K
2−s
1

�CME1/2
3 (t) + C(K1)

(
E1/2
1 (t) + E1/2

2 (t) + E1/2
3 (t)

)
,

(5.27)

and

‖∇3�q+‖L2(Ω+) �C‖∇u‖L∞(Ω+)‖∇4u‖L2(Ω+)

+ C‖∇2u‖L3(Ω+)‖∇3u‖L6(Ω+)

+ C‖∇β‖L∞(Ω+)‖∇4β‖L2(Ω+)

+ C‖∇2β‖L3(Ω+)‖∇3β‖L6(Ω+)

�CME1/2
4 (t) + C(VolΩ+)E1/2

3 (t)E1/2
4 (t). (5.28)

From the definition of the projection and the fact that the measure in the energy is
(−∇N P)−1dμγ , we have

‖Π∇r P‖L2(Γ ) � ‖∇P‖1/2L∞(Γ )E
1/2
r (t).

Thus, by (A.9), (5.26), (5.23) and Proposition 3.2, we obtain for any 2 � r � 4

‖∇r q+‖L2(Γ ) + ‖∇r q+‖L2(Ω+)

� C‖Π∇r q+‖L2(Γ ) + C(K̃ ,VolΩ+)
∑

s� r−1

‖∇s�q+‖L2(Ω+)

� C‖∇P‖1/2L∞(Γ )E
1/2
r (t) + C(r, K , K1,VolΩ

−)E0(0)

+ C(K , K1,VolΩ
+)

[

M + (r − 2)
r−1∑

s=1

E1/2
s (t)

]

E1/2
r (t). (5.29)

Therefore,

(5.17) �C(r, K , K1,VolΩ
−)E2

0(0)

+
[

C‖∇P‖1/2L∞(Γ ) + C(K , K1,VolΩ
+)

×
[

M + (r − 2)
r−1∑

s=1

E1/2
s (t)

]]

Er (t). (5.30)

Now,we turn to the estimates of (5.15). Due to P = 0 onΓ implying γ a
b ∇a P =

0 on Γ , we have from (2.21), by noticing ϑ = −1/∇N P , that

−ϑ−1Nb = ∇N PNb = Na∇a PNb = δab∇a P − γ a
b ∇a P = ∇b P. (5.31)

By Hölder’s inequality and (5.31), we get

|(5.15)| � C‖ϑ‖1/2L∞(Γ )E
1/2
r (t)‖Π (

Dt
(∇r P

) + ∇r u · ∇P
) ‖L2(Γ ).
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It follows from (2.17) that

Dt∇r P + ∇r u · ∇P = sgn(2 − r)
r−2∑

s=1

�s+1
r (∇s+1u) · ∇r−s P + ∇r Dt P. (5.32)

We first consider the estimates of the last term in (5.32). By (A.11), (A.12) and
(A.17), we have, for 2 � r � 4

‖Π∇r Dt P‖L2(Γ )

� 2‖∇r−2
θ‖L2(Γ )‖∇N Dt P‖L∞(Γ ) + C

r−1∑

k=1

Kk‖∇r−k Dt P‖L2(Γ )

� C(1/ε)L

(

‖Π∇r P‖L2(Γ ) +
r−1∑

k=1

Kk‖∇r−k P‖L2(Γ )

)

+ C
r−1∑

k=1

Kk‖∇r−k Dt P‖L2(Γ ). (5.33)

By (A.10), this yields

‖∇k Dtq
+‖L2(Γ )

� δ‖Π∇k+1Dtq
+‖L2(Γ ) + C(1/δ, K ,VolΩ+)

×
∑

s� k−1

‖∇s�Dtq
+‖L2(Ω+). (5.34)

From (2.16), (5.22) and Lemma 2.1, it follows that

�Dtq
+ = 4gac∇cu

b∇a∇bq
+ + (�ue)∇eq

+ + 2∇eu
b∇bu

a∇au
e

− 2μ∇bu
a∇aβ

c∇cβ
b − 2μ∇bu

aβc∇a∇cβ
b

+ 2μ∇bβ
aβe∇e∇au

b.

By (5.24), (5.29) and Lemma A.8, we get, for s � 2,

‖∇s�Dtq
+‖L2(Ω+) �C‖∇u‖L∞(Ω+)‖∇s+2q+‖L2(Ω+)

+ s(s − 1)C‖∇3u‖L2(Ω+)‖∇2q+‖L∞(Ω+)

+ sC‖∇2u‖L4(Ω+)‖∇s+1q+‖L4(Ω+)

+ C‖∇s+2u‖L2(Ω+)‖∇q+‖L∞(Ω+)

+ C
(‖∇u‖L∞(Ω+)‖∇u‖L∞(Ω+)

+‖∇β‖L∞(Ω+)‖∇β‖L∞(Ω+)

) ‖∇s+1u‖L2(Ω+)

+ s(s − 1)C‖∇u‖L∞(Ω+)‖∇2u‖L4(Ω+)‖∇2u‖L4(Ω+)

+ C‖∇u‖L∞(Ω+)‖∇β‖L∞(Ω+)‖∇s+1β‖L2(Ω+)

+ sC‖∇2u‖L4(Ω+)‖∇2β‖L4(Ω+)
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× (
(s − 1)‖∇β‖L∞(Ω+) + ‖β‖L∞(Ω+)

)

+ s(s − 1)C‖∇u‖L∞(Ω+)‖∇2β‖L4(Ω+)‖∇2β‖L4(Ω+)

+ C‖∇u‖L∞(Ω+)‖β‖L∞(Ω+)‖∇s+2β‖L2(Ω+)

+ sC‖∇3u‖L2(Ω+)‖β‖L∞(Ω+)

×
(
(s − 1)‖∇2β‖L∞(Ω+) + ‖∇β‖L∞(Ω+)

)

+ s(s − 1)C‖∇3β‖L2(Ω+)‖β‖L∞(Ω+)‖∇2u‖L∞(Ω+)

+ s(s − 1)C‖∇β‖L∞(Ω+)‖∇2β‖L4(Ω+)‖∇2u‖L4(Ω+)

+ s(s − 1)C‖∇β‖L∞(Ω+)‖β‖L∞(Ω+)‖∇4u‖L2(Ω+)

+ s(s − 1)C‖∇2β‖L∞(Ω+)‖β‖L∞(Ω+)‖∇3u‖L2(Ω+).

From Lemma A.7 and (5.25), it follows for s � 2 that

‖∇s+1u‖L4(Ω+) �C‖∇su‖1/2L∞(Ω+)

(
2∑

�=0

‖∇s+�u‖L2(Ω+)K
2−�
1

)1/2

�C(K1)

2∑

�=0

E1/2
s+�(t).

All the terms with L4(Ω+) norms can be estimated in the same way with the help
of (5.24), (5.25), the similar estimates of q+ and the assumptions. Then, we obtain
the bound which is linear about the highest-order derivative or the highest-order
energy E1/2

r (t), i.e.,

‖∇s�Dtq
+‖L2(Ω+) �C

(
K , K1, M, M1, L , 1/ε,VolΩ+, E0(0)

)

×
(

1 +
r−1∑

�=0

E�(t)

)
(
1 + E1/2

r (t)
)

. (5.35)

Because of

Dtq
− = μ

2
Dt |� |2 = −μ� a(∇ × Ξ)a + μuc� a∇c�a,

it follows from Propositions 3.1 and 4.1 that

‖∇k Dtq
−‖L2(Γ ) � μC(K )E0(0)

k+1∑

s=0

E1/2
s (t)

+ μC(r, K ,VolΩ+)E0(0)‖∇ × Ξ0‖L2(Ω−)e
C(K ,L)t .

Then, from (5.29), (5.33), (5.34), (5.35) and taking some small δ’s which are inde-
pendent of Er (t), we obtain, by the induction argument for r , that

‖Π∇r Dtq
+‖L2(Γ ) � μC(r, K )E0(0)‖∇ × Ξ0‖L2(Ω−)e

C(K ,L)t

+ (1 + μ)C (K , K1, M, M1, L , 1/ε,VolΩ, E0(0))
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×
(

1 +
r−1∑

�=0

E�(t)

)
(
1 + E1/2

r (t)
)

. (5.36)

Then, we have the similar bound for ‖Π∇r Dt P‖L2(Γ ).
For (5.32), it only remains to estimate

‖Π
(
(∇s+1u) · ∇r−s P

)
‖L2(Γ ) for 1 � s � r − 2.

For the cases r = 3, 4 and s = r − 2, we get, from (5.7) and Lemma A.10, that

‖Π
(
∇r−1u · ∇2P

)
‖L2(Γ ) � ‖∇r−1u‖L2(Γ )‖∇2P‖L∞(Γ )

� C(K ,VolΩ+)L(VolΩ+)1/6
(
‖∇r u‖L2(Ω) + ‖∇r−1u‖L2(Ω)

)

� C(K , L ,VolΩ+)
(
E1/2
r−1(t) + E1/2

r (t)
)

.

For the case r = 4 and s = 1, by (A.1), Lemma A.10, (5.29) and Proposition 3.1,
we have

‖Π (∇2u · ∇3P
) ‖L2(Γ ) =‖Π∇2u · Π∇3P

+ Π(∇2u · N )⊗̃Π(N · ∇3P)‖L2(Γ )

�C‖Π∇2u‖L4(Γ )‖Π∇3P‖L4(Γ )

+ C‖Π(Na∇2ua)‖L4(Γ )‖Π(∇N∇2P)‖L4(Γ )

�C‖∇2u‖L4(Γ )‖∇3P‖L4(Γ )

�C(K ,VolΩ+)
(‖∇3u‖L2(Ω+) + ‖∇2u‖L2(Ω+)

)

× (‖∇4q+‖L2(Ω+) + ‖∇3q+‖L2(Ω+) + ‖∇3q−‖L4(Γ )

)

�C(K , K1,VolΩ
+)(E1/2

3 (t) + E1/2
2 (t))

×
(

3∑

s=0

Es(t) +
(

2∑

�=0

E1/2
� (t)

)

E1/2
4 (t)

+C(K ,VolΩ−)E0(0)
)

�C(K , K1,VolΩ)

3∑

s=0

Es(t)
4∑

�=0

E1/2
� (t).

Thus, we get

|(5.15)| �C(K , K1, M, M1, L , 1/ε,VolΩ, E0(0))

×
(

1 +
r−1∑

s=0

Es(t)

)
(
1 + Er (t)

)

+ μC(r, K ,VolΩ+)E0(0)‖∇ × Ξ0‖L2(Ω−)e
C(K ,L)t E1/2

r (t).

Therefore, we have obtained

|(5.9) + (5.10) + (5.12)|
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� C(K , K1, M, M1, L , 1/ε,VolΩ, E0(0))
(
1 +

r−1∑

s=0

Es(t)
)(
1 + Er (t)

)

+ μC(r, K )E0(0)‖∇ × Ξ0‖L2(Ω−)e
C(K ,L)t E1/2

r (t).

By a similar argument in [11, (5.65)], we get

|(5.11)| � C(K , K1, M,VolΩ, 1/ε)

(

1 +
r−1∑

s=0

Es(t)

)

Er (t).

From (A.5) and (2.15), we have

Dt (∇N P) = −2had N
d∇a P + hNN∇N P + ∇N Dt P,

which yields

ϑt

ϑ
= − Dt∇N P

∇N P
= 2had N

d∇a P

∇N P
− hNN

− ∇N Dt P

∇N P
= hNN − ∇N Dt P

∇N P
.

Thus, we can easily obtain that (5.13) can be controlled by C(K , M, L , 1/ε)Er (t).
Note that there always exists a constant C > 0 such that ‖∇ × Ξ0‖2L2(Ω−)

�
CE0(0) at initial time. Therefore, we obtain

d

dt
Er (t) �C(K , K1, M, M1, L , 1/ε,VolΩ, E0(0))

×
(

1 +
r−1∑

s=0

Es(t)

)
(
1 + Er (t)

)

+ sgn((r − 1)(r − 2))μ2C(r, K )E0(0)e
C(K ,L)t ,

which implies, by Grönwall’s inequality, that

Er (t) � Er (0) exp (C (K , K1, M, M1, L , 1/ε,VolΩ, E0(0))

×
∫ t

0

(
1 +

r−1∑

s=0

Es(τ )
)
dτ

)

+
{
C(K , K1, M, M1, L , 1/ε,VolΩ, E0(0))

+ sgn((r − 1)(r − 2))μ2eC(K ,L)t
}

×
∫ t

0

(

1 +
r−1∑

s=0

Es(τ )

)

exp

(

C(K , K1, M, M1, L , 1/ε,VolΩ, E0(0))

×
∫ t

τ

(
1 +

r−1∑

s=0

Es(s)
)
ds

)

dτ.

By using induction for r = 1, 2, 3, 4 in turn, we obtain the desired estimates. ��
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6. Justification of A Priori Assumptions

Let K (t) and ε(t) be the maximum and minimum values, respectively, such
that (5.5) and (5.6) hold at time t :

K (t) = max
(‖θ(t, ·)‖L∞(Γ ), 1/ι0(t)

)
, (6.1)

and

E (t) = ‖1/(∇Nq(t, ·))‖L∞(Γ ) = 1/ε(t). (6.2)

Lemma 6.1. Let K1 � 1/ι1 be as in Definition A.2, E (t) as in (6.2). Then there
are continuous functions G j , j = 1, 2, 3, 4, 5, such that

‖∇u‖L∞(Ω) + ‖∇β‖L∞(Ω) + ‖β‖L∞(Ω) � G1(K1, E0, . . . , E4), (6.3)

‖∇P‖L∞(Ω) + ‖∇2P‖L∞(Γ ) � G2(K1,E , E0, . . . , E4,VolΩ), (6.4)

‖θ‖L∞(Γ ) � G3(K1,E , E0, . . . , E4,VolΩ), (6.5)

‖u‖L∞(Γ ) + ‖∇Dt P‖L∞(Γ ) � G4(K1,E , E0, . . . , E4,VolΩ), (6.6)

and

‖u‖L∞(Γ ) +
2∑

�=0

‖∇u‖L2(Γ ) �G5(K1,E , E0, . . . , E4,VolΩ). (6.7)

Proof. (6.3) follows from (5.25), (5.24) and (5.20). (6.4) follows fromLemmasA.8
and A.6, Lemmas A.9–A.10, and (5.23). Since, from (A.2),

|∇2P| � |Π∇2P| = |∇N P||θ | � E −1|θ |, (6.8)

(6.5) follows from (6.4). (6.6) follows from Lemma A.6, (5.34), (5.35) and (5.36).
(6.7) follows from Lemmas A.6 and A.10. ��
Lemma 6.2. Let K1 � 1/ι1 and ε1 be as in Definition A.2. Then

∣
∣
∣
∣
d

dt
Er

∣
∣
∣
∣ � Cr (K1,E , E0, . . . , E4,VolΩ)

r∑

s=0

Es, (6.9)

and
∣
∣
∣
∣
d

dt
E

∣
∣
∣
∣ � Cr (K1,E , E0, . . . , E4,VolΩ) . (6.10)

Proof. (6.9) is a consequence of Lemma 6.1 and the estimates in the proof of
Theorems 5.1. (6.10) follows from (6.6) and

∣
∣
∣
∣
∣

d

dt

∥
∥
∥
∥

1

−∇N P(t, ·)
∥
∥
∥
∥
L∞(Γ )

∣
∣
∣
∣
∣
� C

∥
∥
∥
∥

1

−∇N P(t, ·)
∥
∥
∥
∥

2

L∞(Γ )

‖∇N Dt P(t, ·)‖L∞(Γ ).

��
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As a consequence of Lemma 6.2, we have the following:

Lemma 6.3. There exists a continuous function T > 0 depending on K1, E (0),
E0(0), . . ., En+1(0), VolΩ such that for

0 � t � T (K1,E (0), E0(0), . . . , E4(0),VolΩ),

the following statements hold: we have

Es(t) � 2Es(0), 0 � s � 4; E (t) � 2E (0). (6.11)

Furthermore,

gab(0, y)YaY b

2
� gab(t, y)Y

aY b � 2gab(0, y)Y
aY b, (6.12)

and with ε1 as in Definition A.2,

|n(x(t, ȳ)) − n(x(0, ȳ))| � ε1

16
, ȳ ∈ Γ, (6.13)

|x(t, y) − x(t, y)| � ι1

16
, y ∈ Ω, (6.14)

∣
∣
∣
∣
∂x(t, ȳ)

∂y
− ∂(0, ȳ)

∂y

∣
∣
∣
∣ � ε1

16
, ȳ ∈ Γ. (6.15)

Proof. Since the proof is similar to [11, Lemma 6.3], we omit the details. ��
Nowwe use (6.12)–(6.15) to pick a K1, i.e., ι1, which depends only on its value

at t = 0,

ι1(t) � ι1(0)/2.

Lemma 6.4. Let T be as in Lemma 6.2. Pick ι1 > 0 such that

|n(x(0, y1)) − n(x(0, y2))| � ε1

2
, whenever |x(0, y1) − x(0, y2)| � 2ι1.

(6.16)

Then if t � T , we have

|n(x(t, y1)) − n(x(t, y2))| � ε1, whenever |x(t, y1) − x(t, y2)| � 2ι1. (6.17)

Proof. (6.17) follows from (6.16), (6.13) and (6.14) in view of triangle inequa-
lities. ��

Finally, Lemma 6.4 allows us to pick a K1 depending only on initial conditions,
while Lemma 6.3 gives us T > 0 that depends only on the initial conditions and
K1 such that, by Lemma 6.4, 1/ι1 � K1 for t � T . Thus, we immediately obtain
Theorem 1.1.
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Appendix A. Preliminaries and Some Estimates

Let us now recall some properties of the projection. Since gab = γ ab + NaNb,
we have

Π(S · R) = Π(S) · Π(R) + Π(S · N )⊗̃Π(N · R), (A.1)

where S⊗̃R denotes some partial symmetrization of the tensor product S ⊗ R, i.e.,
a sum over some subset of the permutations of the indices divided by the number of
permutations in that subset. Similarly, we let S ·̃R denote a partial symmetrization
of the dot product S · R. Now we recall some identities:

Π∇2q = ∇2
q + θ∇Nq, (A.2)

Π∇3q = ∇3
q − 2θ⊗̃(θ ·̃∇q) + (∇θ)∇Nq + 3θ⊗̃∇∇Nq, (A.3)

and

Π∇4q =∇4
q − θ⊗̃

(
5(∇θ)·̃∇q + 8θ ·̃∇2

q
)

− 2(∇θ)⊗̃(θ ·̃∇q) + (∇2
θ)∇Nq

+ 4(∇θ)⊗̃∇∇Nq + 6θ⊗̃∇2∇Nq − 3θ⊗̃(θ ·̃θ)∇Nq + 3θ⊗̃θ∇2
Nq.

(A.4)

Definition A.1. Letn(x̄)be theoutwardunit normal toΓt at x̄ ∈ Γt . Let dist (x1, x2)
= |x1 − x2| denote the Euclidean distance in R

n , and for x̄1, x̄2 ∈ Γt , let
dist Γt (x̄1, x̄2) denote the geodesic distance on the boundary.

Definition A.2. Let 0 < ε1 < 2 be a fixed number, and let ι1 = ι1(ε1) the largest
number such that

|n(x̄1) − n(x̄2)| � ε1 whenever |x̄1 − x̄2| � ι1, x̄1, x̄2 ∈ Γt .

Lemma A.1. (cf. [4, Lemma 3.9]) Let N be the unit normal to Γ , and let hab =
1
2Dtgab. On [0, T ] × Γ , we have

Dt Na = hNN Na, Dt N
c = −2hcd N

d + hNN N
c, Dtγ

ab = −2γ achcdγ
db,

(A.5)

where hNN = habNaNb. The volume element on Γ satisfies

Dtdμγ = (tr h − hNN )dμγ . (A.6)

Lemma A.2. (cf. [4, Lemma 5.5]) Let wa = wAa = ∇r
A fa, ∇r

A = ∇a1 · · · ∇ar ,
f be a (0, 1) tensor, and [∇a,∇b] = 0. Let divw = ∇aw

a = ∇rdiv f , and let
(∇ × w)ab = ∇awb − ∇bwa = ∇r (∇ × f )ab. Then,

|∇w|2 �C(gabγ cdγ AB∇cwAa∇dwBb + |divw|2 + |∇ × w|2), (A.7)

and
∫

Ω

|∇w|2dμg �C
∫

Ω

(NaN f gcdγ AF∇cwAa∇dwF f

+ |divw|2 + |∇ × w|2 + K 2|w|2)dμg. (A.8)
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Lemma A.3. (cf. [4, Proposition 5.8]) Let ι0 and ι1 be as in (1.13) and Definition
A.2, and suppose that |θ |+1/ι0 � K and 1/ι1 � K1. Then with K̃ = min(K , K1)

we have, for any r � 2 and δ > 0,

‖∇r q‖L2(Γ ) + ‖∇r q‖L2(Ω)

� C‖Π∇r q‖L2(Γ ) + C(K̃ ,VolΩ)
∑

s� r−1

‖∇s�q‖L2(Ω), (A.9)

and

‖∇r−1q‖L2(Γ ) + ‖∇r q‖L2(Ω)

� δ‖Π∇r q‖L2(Γ ) + C(1/δ, K ,VolΩ)
∑

s� r−2

‖∇s�q‖L2(Ω). (A.10)

Lemma A.4. (cf. [4, Proposition 5.9]) Assume that 2 � r � 4. Suppose that
|θ | � K and ι1 � 1/K1, where ι1 is as in Definition A.2. If q = 0 on Γ , then

‖Π∇r q‖L2(Γ ) � 2‖∇r−2
θ‖L2(Γ )‖∇Nq‖L∞(Γ ) + C

r−1∑

k=1

Kk‖∇r−kq‖L2(Γ ).

(A.11)

If, in addition, |∇Nq| � ε > 0 and |∇Nq| � 2ε‖∇Nq‖L∞(Γ ), then

‖∇r−2
θ‖L2(Γ ) � C(1/ε)

(

‖Π∇r q‖L2(Γ ) +
r−1∑

k=1

Kk‖∇r−kq‖L2(Γ )

)

. (A.12)

Lemma A.5. ([4, Lemma A.1]) If α is a (0, r) tensor, then with a = k/m and a
constant C that only depends on m and n, such that

‖∇k
α‖Ls (Γ ) � C‖α‖1−a

Lq (Γ )‖∇
m
α‖aL p(Γ ),

if

m

s
= k

p
+ m − k

q
, 2 � p � s � q � ∞.

Lemma A.6. ([4, Lemma A.2]) Suppose that for ι1 � 1/K1

|n(x̄1) − n(x̄2)| � ε1, whenever |x̄1 − x̄2| � ι1, x̄1, x̄2 ∈ Γt ,

and

C−1
0 γ 0

ab(y)Z
a Zb � γab(t, y)Z

a Zb � C0γ
0
ab(y)Z

a Zb, if Z ∈ T (Ω+),

where γ 0
ab(y) = γab(0, y). Then if α is a (0, r) tensor,

‖α‖L(n−1)p/(n−1−kp)(Γ ) � C(K1)

k∑

�=0

‖∇�α‖L p(Γ ), 1 � p <
n − 1

k
, (A.13)
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and

‖α‖L∞(Γ ) � δ‖∇kα‖L p(Γ ) + Cδ(K1)

k−1∑

�=0

‖∇�α‖L p(Γ ), k >
n − 1

p
, (A.14)

for any δ > 0.

Lemma A.7. ([4, Lemma A.3])With notation as in Lemmas A.5 and A.6, we have

k∑

j=0

‖∇ jα‖Ls (Ω) � C‖α‖1−a
Lq (Ω)

(
m∑

i=0

‖∇ iα‖L p(Ω)K
m−i
1

)a

.

Lemma A.8. ([4, Lemma A.4]) Suppose that ι1 � 1/K1 and α is a (0, r) tensor.
Then

‖α‖Lnp/(n−kp)(Ω) �C
k∑

�=0

Kk−�
1 ‖∇�α‖L p(Ω), 1 � p <

n

k
, (A.15)

and

‖α‖L∞(Ω) �C
k∑

�=0

Kn/p−�
1 ‖∇�α‖L p(Ω), k >

n

p
. (A.16)

Lemma A.9. ([4, Lemma A.5]) Suppose that q = 0 on Γ . Then

‖q‖L2(Ω) �C(VolΩ)1/n‖∇q‖L2(Ω), ‖∇q‖L2(Ω) � C(VolΩ)1/2n‖�q‖L2(Ω).

Lemma A.10. ([4, Lemma A.7]) Let α be a (0, r) tensor. Assume that

VolΩ � V and ‖θ‖L∞(Γ ) + 1/ι0 � K ,

then there is a C = C(K , V, r, n) such that

‖α‖L(n−1)p/(n−p)(Γ ) � C‖∇α‖L p(Ω) + C‖α‖L p(Ω), 1 � p < n, (A.17)

and

‖∇2α‖L2(Ω) � C
(
‖Π∇2α‖L2(n−1)/n(Γ ) + ‖�α‖L2(Ω) + ‖∇α‖L2(Ω)

)
. (A.18)
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