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Abstract

For the free boundary problem of the plasma—vacuum interface to 3D ideal
incompressible magnetohydrodynamics, the a priori estimates of smooth solutions
are proved in Sobolev norms by adopting a geometrical point of view and some
quantities such as the second fundamental form and the velocity of the free inter-
face are estimated. In the vacuum region, the magnetic fields are described by the
div—curl system of pre-Maxwell dynamics, while at the interface the total pressure
is continuous and the magnetic fields are tangential to the interface, but we do not
need any restrictions on the size of the magnetic fields on the free interface. We
introduce the “fictitious particle”” endowed with a fictitious velocity field in vacuum
to reformulate the problem to a fixed boundary problem under the Lagrangian coor-
dinates. The L?-norms of any order covariant derivatives of the magnetic fields both
in vacuum and on the boundaries are bounded in terms of initial data and the second
fundamental forms of the free interface and the rigid wall. The estimates of the curl
of the electric fields in vacuum are also obtained, which are also indispensable in
elliptic estimates.

1. Introduction

In the present paper, we are concerned with the free boundary problem of ideal
incompressible magnetohydrodynamics (MHD). It consists of finding a bounded
variable domain 2,7 ¢ R? filled with inviscid incompressible electrically con-
ducting homogeneous plasma (the density is a positive constant), together with
the vector field of velocity v(z, x) = (vy, va, v3), the scalar pressure p(¢, x) and
the magnetic field H(z, x) = (H;, Ha, H3) satisfying the equations of MHD. The
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boundary I; of .Q,+ is the free surface of the plasma. It is assumed that the plasma is
surrounded by a vacuum region £2,” and that the whole domain 2 = ;" U, U2,
is independent of time and bounded by a fixed perfectly conducting rigid wall W
such that W N I} = . Both £2;" and £2 are simply connected. The magnetic fields
should be found not only in £2;" but also in £2;".

In the plasma region £2;", the ideal MHD equations apply, i.e., for r > 0

1
Vt+V~VV+Vp=M(H-VH—§V|H|2), (1.1a)
H, +v-VH=H- Vv, (1.1b)
divv =0, divH=0. (1.1c)

Let H be the magnetic field in the vacuum £2;. Since the vacuum has no
density, velocity, electric current (i.e., E; = 0), except the magnetic field, we have
the pre-Maxwell equations in vacuum

VxH=0, dvH=0, H,=-VxE, divE=0. (1.2)

At the wall W, the tangential component of the electric field and the normal com-
ponent of the magnetic field must vanish, i.e.,

nxE=0, n-H=0, onW, (1.3)

where n is the inward drawn unit normal to the boundary W of £2,.

The plasma—vacuum interface is now free to move since the plasma is surround-
ed by vacuum. Hence, v - n|r; is unknown and arbitrary where n is the unit normal
to I'; pointing from the plasma to the vacuum. Thus, we need some non-trivial jump
conditions that must be satisfied to connect the fields across the interface. These
arise from the divergence H equation, Faraday’s law and the momentum equation.
A convenient way to obtain the desired relations is to assume that the plasma surface
I'; is moving with a normal velocity

Van = (v - n)n, (1.4)

where V;, is the velocity of evolution of I} in the direction n. The jump conditions
are straightforward to derive in a reference frame moving with the fluid surface.
Once these conditions are obtained, all that is then required are to convert back
to the laboratory frame using the corresponding Galilean transformation (cf. [8]).
From Maxwell’s equations, we know that, at the interface I}, the magnetic field
and the electric field must satisfy the conditions

[n-H] =0, and [nxE—(n-v)H] =0, (1.5)

where [ ] = f — f is the jump in a quantity across the interface. We assume that
the plasma is a perfect conductor, i.e., E + v x H = 0. This implies that in the
plasma, [n - H]r, and [n x E — (n - v)H], are both automatically zero. Therefore,
(1.5) reduces to

n-H=n -H=0, an:(V~n)ﬁ, on I;. (1.6)
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The first one also means that the magnetic fields are not pointing into the vacuum
on the interface.

We also have the following pressure balance condition (also cf. [8,19]) on the
interface I5:

[[p+%|H|2]] =0, onTl,. (1.7)
For convenience, we denote
P=qgt—q~, q"=p+ %IHIQ, and ¢~ = %Iﬁlz.
The system can be written as

Vi +Vv-Vv+ Vgt =pH- VH, in 2,7, (1.8a)
H +v-VH=H- Vv, in 2,7, (1.8b)
divv=0, divH=0, in 2,5, (1.8¢c)
VxH=0,dvH=0, H; = -V xE, dvE=0, in, (1.8d)
P=0, Hn=H-n=0, onTl}, (1.8e)
nxE= nl, onrl;, (1.8f)
nxE=0, H-n=0, onW, (1.8g)
v(0,x) = vo(x), H(O,x) =Hpx), in 2%, (1.8h)
H(0,x) = Hy(x), E(0,x) = Eo(x), in 27, (1.8i)
QFi—o=82" 27 li=0=2", Lli=o="T. (1.8))

where Eo satisfies the boundary condition (1.8f) and (1.8g), i.e., N X Eo = (vo -
N )Ho on I" and n x Eg = 0 on W, where N denotes the unit normal to I pointing
from the plasma to the vacuum.

We will prove a priori bounds for the interface problem (1.8) in Sobolev s-
paces under the following generalized Rayleigh-Taylor sign condition for the total
pressure P

VNP < —e<0 onl, (1.9)

where Vy = N! 0; indicates the normal derivative. In fact, if this condition holds
initially, then we can verify that it holds true within a period. For the free boundary
problem of incompressible fluids in vacuum, without magnetic fields, the natural
physical condition (cf. [2,4,6,7,14-16,22,26,27,29]) reads that Vyp < —¢ <
0 on I', which excludes the possibility of the Rayleigh—Taylor type instability (see
[7D). In [25], Trakhinin showed that the simultaneous failure of the non-collinearity
condition

HxH >8>0 onrl (1.10)

with a fixed constant § (see also [20,21,24]) and the Rayleigh—Taylor sign condition
(1.9) for those points on the interface where the unperturbed plasma and vacuum
non-zero magnetic fields are collinear leads to Rayleigh—Taylor instability for the
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free boundary problem of linearized full compressible MHD system in half spaces.
In some special cases, intuitively, (1.9) is a necessary condition for the plasmas on
the interface to accelerate. For instance, assuming H = HandH-N =0 (initially)
on I, from (1.8a), and V x H= 0, we can get on I”

N -V +v-VV)+ VygT = w(N'HId; Hy) = (N"ﬁfa,-ﬁi)
= u(N'H;j3;H') = Vng~,
which implies that
—VNP =N:-(vi+v-Vv) >0,

where N - (v;4v-Vv) is the normal component of the acceleration. This is analogous
to the fact that —Vyp = N - (v; + v - Vv) > 0 for the free boundary problem of
incompressible Euler equations. Of course, the rigorous proof of the ill-posedness
of the nonlinear free boundary problem for the incompressible Euler equations in
vacuum under the violation of the Rayleigh—Taylor sign condition Vyp < —e& < 0
is a difficult mathematical problem (see [7,25]).

The condition (1.9) also provides some kind of possibility for solving the (local-
in-time) well-posedness of free interface problem of the nonlinear ideal incompress-
ible MHD system because under this initial assumption we can prove some a priori
estimates for the solutions of the nonlinear system instead of linearized equations.

Up until now, there was no well-posedness result for the free boundary problem
of the ideal incompressible MHD system except a few results about the linearized
equations. This is due to the difficulties caused by the strong coupling between the
velocity field and the magnetic field. Hao and Luo studied the a priori estimates
for the free boundary problem of ideal incompressible MHD flows in [11] with a
bounded initial domain homeomorphic to a ball, provided that the size of the mag-
netic field is invariant on the free boundary. For the special case where the magnetic
field is zero on the free boundary and in vacuum, Lee proved the local existence and
uniqueness of a plasma—vacuum free boundary problem of incompressible viscous-
diffusive MHD flow in three-dimensional space with infinite depth setting in [12],
and then got a local unique solution of free boundary MHD without kinetic viscosi-
ty and magnetic diffusivity via a zero kinetic viscosity-magnetic diffusivity limit in
[13]. For the incompressible viscous MHD equations, a free boundary problem in
a simply connected domain of R? was studied by a linearization technique and the
construction of a sequence of successive approximations in [18] with an irrotational
condition for magnetic fields in a part of the domain. The well-posedness of the
linearized plasma—vacuum interface problem in an ideal incompressible MHD was
studied in [17] in an unbounded plasma domain. The linearized plasma—vacuum
problem in an ideal full compressible MHD was investigated in [20,24], and the
well-posedness of the nonlinear free boundary problem of this was proved in [21]
using the Nash-Moser iteration method. A stationary problem was studied in [9].
In [5], the a priori estimates for smooth solutions of the free boundary problem
for current-vortex sheets in an ideal incompressible two-fluid MHD was proved in
the domain T? x (—1, 1) under some linearized stability conditions on the jump
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function of the velocity field and the magnetic fields. The problem of the existence
of current-vortex sheets in full compressible MHD was studied in [3,23].

Regarding the cases without magnetic fields, the free surface problem of the
incompressible Euler equations of fluids has attracted much attention in recent
decades and important progress has been made for flows with or without vorticity
or surface tension. We refer readersto [1,4,6,7,10,14-16,22,26-29] and references
therein.

In this paper, we prove a priori estimates for the free interface problem (1.8)
and take into account the magnetic field not only in plasma but also in a vacuum.
We do not need the restricted boundary condition |H| = const > 0 on the free
interface assumed in [11]. What makes this problem difficult is that the regularity of
the boundary enters to the highest order and energies interchange between plasma
and vacuum. Roughly speaking, the energies of plasma and vacuum will exchange
via the pressure balance relation g* = g~ on the free interface. However, we
have to investigate the estimates of the magnetic field and the electric field in a
vacuum, although the electric field is only a secondary variable in order to obtain
the energy estimates. We also introduce the “fictitious particle” endowed with a
fictitious velocity field to reformulate the free boundary problem to a fixed boundary
problem. We can show that the norms of the magnetic field in a vacuum depend
only on the norms of initial data and the second fundamental forms of the interface
and the wall.

Our result is an important and necessary step towards the proof of the (local-in-
time) well-posedness of the free boundary problem of an ideal incompressible MHD
system for which we have found a suitable initial condition [i.e., the generalized
Rayleigh—Taylor sign condition (1.9)] for the initial data and provided some a priori
properties of solutions of the present system under this condition.

Now, we derive the conserved energy. Letting D; := d; + v¥9; be the material

derivative, it holds for any function F on SZ,J“

d
hl Fdx:/ D, Fdx, (1.11)
dt oF oF

t

since divv = 0, and then for any function F on £2, (we can extend it to £2 by a
smooth cut-off function)

d d d
— Fdx:—/ Fdx——/ Fdx
dr o7 dr Jo dt oF

:/ a,Fdx—/ D; Fdx
Q oF

t

=f Bthx—/ v-VFdx
27 oF

t

=/ d Fdx — | vaFdS, (1.12)
27 I

where n is the outward unit normal to I} corresponding to £2,.
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Throughout the paper, we use the Einstein summation convention, that is, when
an index variable appears twice in both the subscript and the superscript of a single
term it indicates summation of that term over all the values of the index.

From (1.11) and (1.12), we have, by using the boundary conditions (1.8e), (1.8f)
and (1.8g), that

d 1 .
< / P+ EEpP)ar + ﬁ/ A 2dx

=/ (v"Dtv,-JruH"D,Hi)derﬁ/ ol — & [ vaAPds
oA 2 Jor 2 Jn,

=/+ [vi(—aip—i—MHkBkHi — %8i|H|2)+MHin8kvi]dx
'Qt
+u/ div (A x B)dx — ﬁ/ v H2dS
ol 2Jn

=—f <p+E|H|2>VndS+M/ (H-n)(v-B)dS
I; 2 I

+u| A-mxBas— £ vn|ﬁ|2dS+M/ﬁ-(Exn)dS
n 2Jn W

. P e
/r,<p+2'H' 1) vads

1. . .

5a,|H|2 =-H - (VxE)
=divHxE)—E.-(V x H)
=div(H x E),

inviewof VxH = 0in §2; . Thus, the conserved physical energy can be given by
1 I
Eo) = | (—|v(r>|2 - |H(r>|2) dx
Q;r 2 2

+ / B0 Pdx = Eo0),
o7 2
for any r > 0.

The higher order energy has an interface boundary part and some interior parts
in plasma since those of the magnetic field in vacuum can be bounded by E((0) and
the bounds of the second fundamental form of both the interface and the wall as
shown in Propositions 3.1, 3.2 and 4.1. The boundary part controls the norms of the
second fundamental form of the free interface, the interior part in plasma controls
the norms of the velocity, magnetic fields and hence the pressure. We will prove that
the time derivatives of the energies are controlled by themselves. A crucial point in
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the construction of the higher order energy norms is that the time derivatives of the
interior parts will, after integrating by parts, contribute some boundary terms that
cancel the leading-order terms in the corresponding time derivatives of the boundary
integrals. To this end, we need to project the equations for the total pressure P to
the tangent space of the boundary.

The orthogonal projection /7 to the tangent space of the boundary of a (0, )
tensor « is defined to be the projection of each component along the normal:

g o J_ sl _ i
(Ta)j,...i, _Hi1 eI ag where I1; = §] —n;n’,

withn/ = §"n; = n;.
Let E_),- = I'[l.] d; be a tangential derivative. If g = const on I7, it follows that
d;qg = 0 there and
(173211),, = 0;;Vnq,
ij

where 6;; = 9;n ; is the second fundamental form of 5.
The higher order energies are defined as follows: for r > 1

E,(t):/ (SijQ(arvi,B’vj)dx+u/ 81.Q(d" H;, 9" H;)dx
oF oF

+/ <|ar—1v x v + w81V x B|2> dx
2

+ sgn(r — 1)/ 03" P, 3" P)vdsS,
I

where sgn(s) is the sign function of the real number s (so we do not need the
boundary integral for » = 1) and 9 = (—VpP)~! is a weight. Here Q is a positive
definite quadratic form which, when restricted to the boundary, is the inner prod-
uct of the tangential components, i.e., Q(«, ) = ([Ta, I18), and in the interior
Q(«a, ) increases to the norm |« |>. To be more specific, let

Q. B) =q" " -+ q" iy i, By
where
g =387 —n(d)*n'n/, d(x) =dist(x, [}), n'=-579;d.

Here 1 is a smooth cutoff function satisfying 0 < n(d) < 1, n(d) = 1 when
d < do/4 and n(d) = 0 when d > dy/2. dy is a fixed number that is smaller
than the injectivity radius of the normal exponential map, defined to be the largest
number (¢ such that the map

I X (=10, 1o) — {x eR3 :dist(x, I}) < Lo}, (1.13)
given by

(x,0) > x=x+wm(x),
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is an injection. We can also define ¢y for W similarly, such that it is independent of
t and denoted by L6. In fact, both the second fundamental form of W and 1/ L6 are
invariant with respect to time and known quantities.

Now, we can state the main result as follows.

Theorem 1.1. Let
H(0) = max (160, )l zoe(ry, 1/t0(0)) , (1.14)
and
&(0) =11/ (VN P(0, ) llzee(ry = 1/e > 0. (1.15)

Assume E;(0) < ocofors =0,1,...,4and V x Eo € L2(.Q_). Then there exists
a continuous function 7 > 0 such that if

T < J(x(0), &0), Ep),..., Es0), Vol 2), (1.16)

then any smooth solution of the free boundary problem for MHD equations (1.8)
with (1.9) in [0, T] satisfies the estimate

4

4
ZEs(t) < 221:}(0), 0<t<T. (1.17)
s=0 s=0

The rest of this paper is organized as follows. In Section 2, we use the La-
grangian coordinates to transform the free interface problem to a fixed boundary
problem. Sections 3 and 4 are devoted to the estimates of the magnetic field and
the electric field in vacuum, respectively. In Section 5, we prove the higher order
energy estimates. In the derivation of the higher order energy estimates in Section 5,
some a priori assumptions are made, which will be justified in Section 6. In order
to make this paper more readable, we give an appendix for some estimates from
[4] used in the previous sections.

2. Reformulation in Lagrangian Coordinates
We may think that the velocity field of the “fictitious particles” in a vacuum

is v on the boundary. Then, we can extend the velocity from the boundary to the
interior of vacuum by a cut-off function such that

v(t, x), near [7,
v(t,x) = { smooth, otherwise,
0, near W,

anddivv =0forx € 2, aslongas I; NW =@ in [0, T], where x € I} satisfies
dist (x, I3) = |x — x|, and |v(t, x)| < [[V(t)||Lo(r;) for x € §£2,” by construction.

Assume that we are given a velocity vector field v(z, x) defined in a set 2 C
[0, T] x R3 such that the interface of .Qﬁ = {x : (t,x) € Z} and 2, moves
with the velocity, i.e., (1, v) € T(d%) which denotes the tangent space of 9 7. We



Motion of Free Interface in Ideal Incompressible MHD 523

will now introduce Lagrangian or co-moving coordinates, that is, coordinates that
are constant along the integral curves of the velocity vector field so that the free
boundary becomes fixed in these coordinates (cf. [4]). Let x = x(¢, y) = f;(y) be
the trajectory of the particles given by

& = vy, @y el0.T]x £, o
x0,y) = foly), yeg,

where, when ¢ = 0, we can start with either the Euclidean coordinates in £2 or some
other coordinates fj : £2 — 2 where fj is a diffeomorphism in which the domain
£2 becomes simple. For simplicity, we will assume fo(y) = y in this paper. Then,
the Jacobian determinant det(dy/dx) = 1 due to the divergence-free property of
v. For each ¢, we will then have a change of coordinates f; : £2 — §2, taking
y — x(t, y). The Euclidean metric §;; in £2 then induces a metric

dxt ox/

oy oy 22

g(lb(tv )’) = 8

in £2 for each fixed 7.

We use the covariant differentiation in 2 with respect to the metric g, (%, y),
because it corresponds to differentiation in £2 under the change of coordinates
2 5y — x(t,y) € £2, and we will work in both coordinates systems. This also
avoids possible singularities in the change of coordinates. We denote covariant
differentiation in the y,-coordinate by V,, a = 1, 2, 3, and differentiation in the

x;-coordinate by 0;, i = 1,2, 3. The covariant differentiation of a (0, r) tensor
k(z, y) is the (0, r 4 1) tensor given by
kg, ...
Vikay.a, = T — I8 kg, — - — T2 kay.d

where the Christoffel symbols Iy, are given by

g (98ba  08aa  0gap) _ 0Y° 9%
2\ 9y ayl  dyd

c —_—
Tap = T 9xt 9yaayb’

where ng is the inverse of g4p. If w(t, x) is the (0, r) tensor expressed in the x-
coordinates, then the same tensor k(¢, y) expressed in the y-coordinates is given
by

9xi dxtr
yar Wwilmi,(f, x), x=ux(1,y),
and by the transformation properties for tensors,
ax’ axh X dwj, ...,
ya Jya gy gxi
Covariant differentiation is constructed so that the norms of tensors are invariant
under changes of coordinates,

ka|~-a, (t, }’) =

Vakaya, = (2.3)

b b ..
gal L gar rkalma,kblwbr = §'JL. g Wiy Wy - 2.4)
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Furthermore, we express in the y-coordinates,

0 ay* 9
= — =2 2 2.5)
dx! dx! dy4
Since the curvature vanishes in the x-coordinates, it must do so in the y-coordinates,
and hence

[Va, Vp] = 0.

Let us introduce the notation k,..." ... c = gbdka...d...c, and recall that the covari-
ant differentiation commutes with lowering and rising indices: gV kp.c..a =
Vagkp.c...q. We also introduce a notation for the material derivative:

d
k—
+v ok

at

y=const x=const

Then we have, from [4, Lemma 2.2], that

9xil dxir

D[kal...ar = W .. W

v’ v’
thil---ir + mwg...,‘r + -4+ ax—irwil...g .
(2.6)
We recall a result concerning time derivatives of the change of coordinates and

commutators between time derivatives and space derivatives (cf. [4,11, Lemma
2.1]).

Lemma 2.1. Let x = f;(y) be the change _ofva(iables given by (2.1), and let gqp
be the metric given by (2.2). Let v; = §;jv/ = v', and set

Ax!
ua(t,¥) = vi(t, ¥) 3. u = g"up, 2.7)
1
hab = 5 Digab, h = g%heqg™. (2.8)
Then

axi axk avl ay* Ay vk
9 = gy ank P ar = axk ax (2.9)

dy ay? dx ax dxk ox

Digab = Vautp + Vptta, D;g" = =20, Dydp, = tr hdp,, (2.10)
where djig is the Riemannian volume element on 2 in the metric g.

We now recall the estimates of commutators between the material derivative
D; and space derivatives 0; or covariant derivatives V.
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Lemma 2.2. (cf. [4]) Let 0; be given by (2.5). Then
[Dr. 9] = —(3;v") 0. (2.11)

Furthermore,

r—1
(D, 8" 1==) C'@ v 07, (2.12)
s=0

where G5 denotes the binomial coefficient defined by (r_r—s'),s, for0 < s < r, the
symmetric dot product is defined to be in components

1
N - I+s k\gr—=s
((3 v) -9 >i1~--ir r! (alal'"’alﬂ v ) ak’ffwz""ffr’
ocex,
and X, denotes the collection of all permutations of {1,2,...,r}.

Lemma 2.3. (cf. [4,11]) Let Ty, ...q, be a (0, r) tensor. We have

(Dt ValTuya, = — (Vay, Vatt) Taayoa,
— e = (Y, VoD Ty, oy - (2.13)

If A = g,V and q is a function, we have

[Dy, gV, T, = —2h°V, T}, — (Au®)T,, (2.14)
[D;, Vlg =0, (2.15)
(D, Alg = —2h*V, Vg — (Au®)V,q. (2.16)

Furthermore, forr > 2,

r—1
[0,V g = 30 G (V) - v, 2.17)

s=1

where the symmetric dot product is defined to be in components

1
+1 — +1 d —
<(VS u)- V' Sq)ay..u, - ; (V’ial'"a”ﬁ—l u ) V‘;a(:erz""/’Urq'
oex,

Remark 2.1. It follows from (2.17) that for » > 2 and a function ¢,

r—2
DV'q+V'u-Vqg=V"Dg—sgn(r—2))y CF (Vs+1”) V™.

s=1



526 C. Hao

Denote
j i axj a ab 2 a
Hl—ain =H, ﬂa_ jayav 13 =8 :3177 |ﬁ| :13&13 s
3 28 i 2 axj a ab 2 a
HlZSUH =H, w_aZHjayaa o = g%y, |o|" = Dy,
and
A A A A dx/ _ o
E; =8;E =E', EazEjaya, g¢=g%g, |8 =5G,.
It follows from (2.4) that
R _ N ayu R ayﬂl
8l =H|, |=|=[H|, |&|=IE| Hj—mﬂa, Hj = oy P
~ ay4
E; = azi z,. (2.18)

From (2.9) and (2.3), we have

. dx/ dx/ dx/
D,w, = D, Hjaya aal)[‘] +HD[aa

dx/ A ka o ~ 9xk 9v/
= 3 (—(v x By + ko) + By = Ty B
ok gub
yroy” ox
~ 9xk avt ax/ ayP

T aya 9xk gyb 9x!

ax/ A

ax/ A
= _W(V xE); + ubvbwa + waaub.

Due to det(dy/dx) = 1, we get

ax/ . ax! (0E; OE, ax2 (0E, 0E;
dy® i 9y* \ ax2  ox3 dye \ 9x3  9x

ax> (9E, OE,
toals a2
ay® \ ox ax
ax! 9x! ayd (8x ayb ax3 8y° 9E;

= 9y ayd ax! \ dyP 9x2 ay< ax3 dx2
9x3 9y? 9x? 9y° 8E2>

T 9yP ax3 ayc 9x2 ax?
9x2 9x2 9yd <8x ayb ax! 8y 9E

8y« ay? 9x2 \ ay? ax3 9y< xT ox3
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ax' 9yP ax3 3y 9E; )

ax3 ax3 ayd [ox! ay? 9x2 9y OE,
9y dy? 9x3

ax2 3yP 9x! 9yc aﬁl)

B V.5 ayd 8yb ayc ayb 8yc
~ 8ad VbS5 T\ 922003 T 93 022

N oy (Byb aye  ayb ByC>

ax2 \ax3 ax!  ax!' 9x3
Lo (ﬁai - ﬂai)]
Ax3 \ox! ox2  9x2 gx!
a(yd,yb,y"))
a(x!, x2, x3)

d
= gadVbEcsdbc det <_y)
ax

= gadVpE . det <

= (Vx &),,
where ¢; ;i denotes the Levi-Civita symbol defined as follows:

+1  if @, j,kis(1,2,3),(3,1,2)or (2,3, 1),
gijk =4—1 if(@@,j, k)is(1,3,2),(3,2,1)or (2,1, 3),
0 ifi=jorj=kork=i,

which satisfies e/ = ¢; ik inboth Eulerian coordinates and Lagrangian coordinates,

and the ith component of the curl of the vector F reads
(Vx F) =&/ F, and (Vx F) =%V, F,,

in Eulerian coordinates and Lagrangian coordinates, respectively.
Thus, we have obtained

Diw, =—(Vx &), + ubvbwa + wauub.
Similarly, we get
Vxw=0.

We also have those equations for D;u, and D;f,, one can see [11] for details.
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Thus, the system (1.8) can be written in the Lagrangian coordinates, for ¢ > 0,

as
Dyttg + Vg™ = uVaue + uBVipa, in2t,  (2.19)
D;Ba = BVaua + BV,uc, in2F, (2.19b)
Diwy = —(V x 8)q +ulVyw, + wpVaul, in2-, (2.19%)
V,u® = 0and V,8% =0, in2*t,  (2.19d)
Vou =0, Vxw =0, Vo =0, and V, B =0, inf2~, (2.19%)
P=0, ByN%=w N =0, onT, (2.19f)
N x E =uyw, on I, (2.19g)
u=0, o,N*=0, & xN =0, on W, (2.19h)

where N is the unit normal vector pointing into the interior of £27.
Obviously, the energy defined by

1
Eo(t)Z/ <§|u(t)|2+%lﬂ(t)l2> dug+/ %|w(t)|2dug
o+ 22—

is conserved. Of course, it is the equivalent one as in Eulerian coordinates. It can
be easily verified by using the Gauss formula:

f Vo Fdug =/ N Feduy,,

2+t r

/ Vo Fdu, = — / NoFed, . (2.20)
- ruw

where F is a smooth vector-valued function, N, = gu» N b denotes the unit conor-
mal, g?? N,N, = 1, N denotes the outward (or inward) unit normal to I" (and W)
corresponding to 27 (or £27), dpty is the volume element on boundaries, and the
induced metric y on the tangent space to the boundary 7' (I") (and 7' (W)) extended
to be 0 on the orthogonal complement in 7' (£271) (and T (£27)) is then given by

Vab = 8ab — NaNp, y*” = g*" — NN
The orthogonal projection of a (7, s) tensor S to the boundaries is given by
(TTS) 5 =y oyl ylsiia,
where
Ve =8 — NyN°. (2.21)
Covariant differentiation on the boundary V is given by

VS =1IVS,

and V is invariantly defined since the projection and the covariant derivatives are.
The second fundamental form of the boundary is given by

Oup = (gN)ab = V(fchb.



Motion of Free Interface in Ideal Incompressible MHD 529

We need to extend the normal to a vector field defined and regular everywhere in
the interior of £27 and £2~ such that when the geodesic distance to the boundaries
d(t,y) < 1p/4, itis the normal to the set {y : d(¢, y) = const}, and in the interior
it drops off to 0. We also denote the extension of the normal by N¢ which satisfies
IVN| < 2|0l ruw). Then we extend y to the pseudo-Riemannian metric y
given by yup = gab — NaNp, which satisfies Vy |2y < C([10ll L ruw) +1/10).
One can see [4] for more details about the derivation of the gradient estimates of
the extensions N and y.

3. The Estimates of the Magnetic Field in Vacuum

Since £2 and £2 are simply connected, the equations V,@% = 0and V x o =
0 imply @ (¢, y) = Ve(t, y), where ¢ is a solution of the Neumann problem

{A(p:O, in 27, 3.1
Ve =0, onI"UW. (3.2)

For the derivatives of @, we have the following L2 -estimates.

Proposition 3.1. Let r > 0 be an integer. If 10|+ 1/10 < Kon I, [VN| < CKin
§27, then it holds

IV |? < CKHVEN0), (Ve l3, < CK* 1 Ep(0).

L2(£27) (ruw)

Proof. We use the induction argument to show, for any integer s > 0, that

IV a2, ooy < CKXOTVEN0), IV @ (12, iy < CK*T2Eo(0).

(£27) (ruw)

We first prove the case s = 0. By (3.1)—(3.2) and the Hélder inequality, we
have

V201720 = /Q, 8" 8°IVe Va9 VaVppdig
= / 88" Va(VepVaVe)dug
o 8°IVepVApdyg
NPg“V.oVaVipdu,
gVepVa(N"Vip)dp,

VneViyedu, — f YN0 Va(Vye)du,
ruw

I,
I,
+ / §“IVepV N Vypdu,
r
I,
I,

8V pVaNP Vypdp,
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= f y“IVepVaN"Vypdu,
ruw
< ClNLcromy 1w 1172 o) -
We get, from Gauss’ formula, Holder’s inequalities and Cauchy’s inequality, that

2 c
;. =/ @ wedpny
L>(I"'UW) ruw

= / NoNw ‘w.du,,
ruw
=— / Vo(N@“@c)dpg
=— / VuNw ‘@ dug
-2 NV, w.dug
o
<Clle (V) e @132
+ ClIVa 2o ll@ iz e-)
<Clle (V) e 1@ 1720
+ IV 72 gy + (C/D T 1720, (3.3)
for any § > 0. Thus, it follows that
IVar 725, <ClOLerom IVNIlLe @ I 1720,
+C8110l L rom IVa 1726
+(C/DNONorom o 72 g--
Taking § so small that C§K = 1/2, we get

IV@ 172y <CIOlLerum IVN @) 1@ 172 o
+(C/)N0 N L2rum 1o 17

<CK?|@ |25, 0, < CK?Ep(0).
L2(27)

We also have, with the help of (3.3), that

<CK|@ I35, < CKEo(0).

2
”w”LZ(er) (27)
Now, we assume that the claims are true for the cases s = r — 1, then we prove
the case s = r.

From Gauss’ formula, Holder’s inequality and Cauchy’s inequality, it follows

IV iy = [ NNV Py = = [ Va1 g
r'uw 2~

SCKIV' @ [72g-, + CIV @120 IV T @l 1200-) (34)

£27)
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Since diver = 0 and V x @ = 0, we have, from (A.7) and (A.8), that
Vo P <Cig"y Ty MV Vamy ViV o,
/ IV g <G /9_ (gbe“nyAFvgv,,wav;vcwf
+ K2|V’w|2) dits.
Noticing that V x @ = 0, it follows from the Gauss formula that
€'+ DIV D] < /Q gy Iy MV Vamy Vi Vew pdpg

+ /{r (8" N“NTy AV, ViVt
+ K2|er|2) dug

= f 8"V (84 Y VRV Vi) dig

(3.5)
- / g Ve (VAF ) ViVaw Viw pdjg
(3.6)
+/ K|V @ |*du,. (3.7)
o
By the Holder inequalities and the Cauchy inequality, we get
3.6 <CKIV @ [ 20 IV H el 2,
‘We write
(35)=— f N’ g y AP VAN oy Vi pdp,
uw
= — / y“fVa(beAFVwabV?wf
ruw
— NyNNPy ATV, o Vo )d (3.8)
+ / Y VNP YAV, @ Vi pdpy, (3.9)
ruw
+ / Yy Ny AT w0, ViV pdpy, (3.10)
ruw
+/ NN Ny AP, o, ViV, pdpy, (3.11)
ruw

—/ Yy VN NNy AV oy Vi dpy, (3.12)
ruw
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In view of the Gauss formula, (3.8) vanishes. Due todiver = 0, (3.10) 4+ (3.11) =
0. From the Holder inequality, we have

13:9) + G12)| < CKIV @ 72 iyp-

Thus, from (3.4) and the Cauchy inequality, we get

IV 172 gy SCKIV @132y + CKIV @l 20 IV @ [l 120
+ CRNIV @ []2o-
SCR NIV @ 72 q- + CKIV @ 120 IV T @Il 1200
1
SCRIV @ 720, + S 1V T @l 20,
namely,
r+1 2 2 r 2
and then
V'@ 132wy < CKIV @ 172 (3.14)
Therefore, by the induction argument, we have obtained the desired results. O

Proposition 3.2. Suppose that for ij > 1/Ky,

IN(x1) — N(x2)| < &1, whenever |x; — X3|

<
<, X, xpel’'UW,
and
—1.0 a—-b a b 0 a b : —
Co YarWMZZ” < vap(t, ) 2927 < Coy,()ZYZ7, it Z € T(27),
where y‘?b (¥) = Yap (0, y). Then, it holds for any integerr > 0
a2

IV @ [l ruwy < C(r K. K1, Vol 27)Ey%(0),
and

LTV [ [l 2 rowy < C(r. K. K1, Vol 27) Eg(0).
Proof. From (A.14) and (A.17), it follows

Vi@ || oo (ruw) < C||VS+1CU||L4(FUW) + C(KDIVi@ || L4ruw)
2
<C (K. K1Vl 27) Y IV a2 go-y
=0

2
<C (K. K1, Vol 27) Y K*HE(*0)
=0

<C(s. K. K1, Vol 27) Ey/*(0).



Motion of Free Interface in Ideal Incompressible MHD 533

By the Holder inequality, Proposition 3.1, (A.14), and the Cauchy inequality, we
have
[r/2]
1TV @ Pl 2 rowy SC Y IV @ lisorom IV " @ 2 row)

m=0
[r/2]
<Y (19" @ s cromy + CEDIV"@ s row) )

m=0
Kr—m+l/2E1/2(0)

< C(Ky, Vol 27)E'%(0)
/2] 2

Z Z ||Vm+(w'||L2(97)Krim+l/2

m=0 ¢=0
[r/21 2
< C(Ky, Vol 27) Z Z KM R 2 B0 (0)
m=0 ¢=0
<C(r, K, K1, Vol 27)Eo(0).

4. The Estimates of the Electric Field in Vacuum

Although the electric field can be regarded as a secondary variable due to
VxE= —I:I,, and divE = 0,

we have to use the estimates of the electric field in vacuum in order to get the energy
estimates. In fact, we can prove the following estimates.

Proposition 4.1. If |0| + 1 /10 < K on I" and V x Ey € L*(§27), then it holds for
any integerr > 0

IV (V X 812y + IV (Y X D32 grim)

2
< C(r K) [nv X Eoll7 2y + Eo(0) sup )~ ||V‘u(r>||izm}
Tel0,1] y—

t
X exp <C(K)/o ||MN(T)||L°0(1")dT) ,

where & is the initial datum of E att = 0.

Proof. Forconvenience, we denote B = V x = in this section. Then, in Lagrangian
coordinates, we have from (2.19¢) that

B, =—-D,w, + uthzzra + waaub.
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From (A.5), we have on boundaries I" U W

N°B, = — D;(N*@,) + D;N°w, + N“u"Vyw, + Ny V,u”
=— ZhZNdwa — hynyN%@, + Nu’Vyw, + N, V,u”
= — (Yaug + Vaua) N4o® + N“u’Vyw, + N Vau®

= — VouyNew® + NV, w,.

By (2.14) and the fact V.w ¢ = 0, we also get in £2~

VB = g%V, B, = — gV, D,y + V. (ubvbw“) + g%V, (waaub )

= [Dt, g”CVC] w, — D; (Vcwc) + Ve’ V€ + g%V, Vau® + wp Aub

=—2h*V,.w, — (Aue) @, + 2h%V, w, + mpAu’
= 0’

and by (2.13) and the fact V x @ = 0,

(V x B)® =%V, B, = —9N, D,y + £°°V, (ubewa> 4 geeay, (wbvaub)

— £ [D,, V,] @, — D,V + 8ceaveuhvbw-a + gceavewbvauh

= — &V, V,ulw,; + £V u Vyw, — £V, w0, V,ub
=0.

Thus, we have V, B = 0and V x B = 0, which yields B(z, y) = V¥ (¢, y), and

Y is a solution of the following Neumann problem

Ay =0, in 27,
VY = f, onl,
Vi =0, onW,

where f = NAuV,wy — VyugNio?.
From (4.1)-(4.3) and Holder’s inequality, we get

IVBIZ2 o) = /Q 8y IV VaVprdug
= / 8V, (Y I YV V)i
o
- f §Vay N YV Vi prdug
.
- N2y v, Vyrd
=" Jrow YOV Ve Vpyrdu,
U
- f 8"y IV Va VP dug
o

=— /F . y IV Vg (Nbvbw) dpy
V]

“.1)
4.2)
4.3)
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- / YN VN Vyyrdp,
I'Uuw

— f PR VAR RVA A RV T8
o

SCIIB 2y IV fllz2ry
+ Cl8l = rum 1Bl 2 o)
+ CK|[Bll .22 IVBIl 1 2(2-)-

Similar to (3.3), we have for any § > 0
B2 pruwy SCK + /B2, +3IVBIT2 g (4.4)
Thus, in view of (A.7) and Cauchy’s inequality, it follows that

VB2, SCIVBIT2 o

CIV £ 1720y + CK + DK + 1/8)IBI1} 2 -,
+C(K + D3|IVBI}2 -, + CK* 1Bl

)

VASV/AN

(£27)

1 2
Taken ¢ so small that C(K + 1) < 1/4, it yields

IVBIT2 gy SCUV N2 + CEIBIT g 4.5)

Similar to the derivation of (2.19¢), we can get, due to I:Zt = 0, that
D;B, = u’V,B, + V,u’By,. (4.6)

It follows that

d
d—/ |B|2dug=—/ un|BIPduy,
tJe- r

which yields

t
IBOI 20, < 1Bollj2q- + / lun (@l 1B 2T, 47
0

where By = B(t)|;—o. From (4.5), (4.7) and (4.4), we obtain
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IBOI320- + IVBIG20-) SCIV 72y + CEKBoll2 g

t
2
+C(K) /0 it () 22w | B 2 oyl

<CIVSIGary + CEBol 2o

t
2
L C(K) /0 luw @ sy (180122 q-
2
+IVB@I2 g, ) dr.
which implies, by Gronwall’s inequality, that

IBOI2 -, + IVBI2 0

< [C sup Iﬁf(f)lliz(r)+C(K)||Bolliz(9_)}
t€[0,1]

t
X exp (C(K)/ ||MN(T)||L°°(1")dT> -
0
By the definition of f and Proposition 3.1, we have

IV 2

< ||§(Nduavawd - Vaudew“)HLz(p)
<

|9||L°°(F)||M||L2(r)||Vw||L2(1“) + ||VM||L2(F)||V?U||L2(F)
+ lull 2y V2@ 2y + IVl 20y 1o 1 2

+ 101 oy IVl 2yl ll L2

<CUO) [ Iullaqry + 190l 20y + 19Vl 20y | E'20)

2

SCE)E?©0) Y IV ull 2y
=0

Therefore, we obtain, combining with (4.4), that

1BI 20— + IVBI 20 + 1Bl 2o

2
< C(K>[||Bo||iz(9)+Eo<0) sup va@u(r)uizm}
Tel0,11

t
X exp <C(K)/0 ||MN(T)||L°°(1")dT> .

Since V,B? = 0and V x B = 0, it is similar to z. One can verify that the
lines between (3.4) and (3.14) also hold if & is replaced by B everywhere in those
lines. Thus, we can obtain for any r > 1

IV Bl 72 o) < CKIV Bl72 o) (4.8)
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and
V" BlIZ2rowy < CKIV Bl7a o). 4.9)
Hence, we get forany r > 0
IV" Bl 2oy + IV Bl 2w

3
< C(K, Vol 2) [||Bo||iz(9)+Eo<0) sup Zuvfu(r)niz(m)]

zel0.11 iy

t
X exp (C(K)fo ||MN(T)||L°°(1")dT> :

Changing B back to V x &, we obtain the desired results. O

5. The General r-th Order Energy Estimates

We can get that for r > 1 (cf. [11])
DV u, + V' Vg™t
= (Vaute —sgn(r — DVeug) V'u® + ppVeV' By +ruVp - V' gy
+ sgn(r — DV BVefy + sgn ((r — D)(r — 2)) Pa(B), (5.1
and
DV’ By = (Vaute + sgn(r — DVeu) V' — sgn(r — DV 4V B,
+ BV Vuy +rVp-Vu, +sgn((r — 1)(r —2)) Qq, (5.2)

where
r—1 r—1
Pa(B) ==Y BV UV " Veug + 1y BV BV VB,
s=2 s=2
and

r—1 r—1
Q, 1= — Z CSVSuV ™5V, By + Z CSVE BV ™5V,

s=2 s=2

Define the r-th order energy as

E (1) = /m Py y AT I uy VY pugdpg
+u /Q ANV padig
+ /m V"IV x ulPdpug +M/.;2+ V"IV x BPdug
+fry“fy”vg*‘vapv;*‘vfp ddu,,

where the weight ¥ = —1/Vy P as before.
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Theorem 5.1. Let 1 < r < 4 be an integer, then there exists a T > 0 such that
the following holds: For any smooth solution of MHD (2.19) satisfying

1Bl < My forr =2, in[0,T] x 27, (5.3)

[IVP| + |Vu| + |VB| <M, in [0, T] x £, 5.4

6] + 1/19 <K, on[0,T] x I, (5.5)

—VnNP > & >0, on [0, T] x I, (5.6)

lu| + |V>P|+ |VyD;P| <L, on[0, 7] x I, (5.7)

we have, fort € [0, T],
E (1) < ¢C1E, (0) + CyeC (ec4’ _ 1) , (5.8)

where the constant C; > Odependson K, K1, M, M1, L, 1/¢, Vol 2, Ey(0), E1(0),
..,and E._1(0); both C2 and C3 also depend on ||V x Eollr2(2-) ifr > 3,C3=0
forr =1,2.

Proof. Since tr i = 0, we have

d : _ _
G Er® :/m D, (gbdy“fy”vg 'Yaup V7 1Vfud) dug (5.9)

+u f D (8" TV BV VB ) dig (5.10)
2
+f DAV IV x ul*dpug +“f DV 7'V x B1Pdu, (5.11)
2+ 2+
+/ D, (y”fy“vgflvapv;*lvfp) odu, (5.12)
r

9
+/ vy AN, PV P (5’ —hNN> 9du,.  (5.13)
r

Since the boundary integrals disappear for the case r = 1, it is easy to obtain
the desired estimate and we omit the details. So we assume r > 2 from now on in
the proofs.

We first estimate (5.9)—(5.10) and (5.12). From Lemmas 2.1 and A.1, we have

in 27,
D; (gbd)/af)/AFV;(lVaubV}*]Vfud)
= —2Veu,y y AV IV VTV pu
— Ve yyy AV IV VTV puy
— 2y AP iV Y, Vg T
+ 2y Yy AT i (Vyue — sgn(r — 1)Veup) VY Vau®
+ 2uy y ATV puy (ﬁcvcvgaﬁd)
+ 2y y APV pug (VB TV



Motion of Free Interface in Ideal Incompressible MHD

+ 2sgn(r — Dy y VTV rug Vi BV e By
+ 2sgn((r — D = 2y y VIV pua (Py(B)) aa
and
Dy (8"y v ATV NGBV )
= —2Veu,y YAV IV, VTV B
= 2rVeuey“y y AV TV BV IV By
+ 2y Yy AT 8P (Viue 4 sen(r — 1) Veup) V1V, BC
—2sgn(r — Dy y AV, g0V, 8,V T Vi
+ 2y YAV BBV VY Jua
+2ry Ty VIV BV -V ) A
+ 2sgn((r — D =2y y A VIV BY(Qp) aas
and in the interface I,
D, (y“fyAFvgan;fP) = — 2rVeuy“y* y ATV PV P
+ 2y y APV PD V], P.
Thus, we get
(5.9) + (5.10) + (5.12) < C (I Vull (@) + VBl Lo(+) Er(0)

r—1
1/2
+CE0) Y (Il sy + 1V Bll s o))
s=2

—s+1 —s+1
x (IV" = ull pa oy + IV Bl ao+)
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(5.14)

1
+ 2/Fy“fy“vgap (DtV}fP - 5N;,V;fuh) ddu,

—u / Yo yAEVE (o N,V iy
r
+ zf_rﬁ Vb (y“fyAF) V}fubvguq+dug

2 [ Ney !y P a5y

—2u /m v, (y“fyAF> ViV g BV Bl

From Lemma A.7, it follows that

r—1
1(5.14)] < C (K, K1, M, Vol 2, 1/¢) (1 + Z Es(z)) E.(1).
s=0

(5.15)
(5.16)

(5.17)

(5.18)

(5.19)
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By Gauss’ formula, Proposition 3.2 and (A.17), we get
(5.16)=—M/ y“fvf[ AFG! | PNV Ul
r
—NaNCyAFvngFNbv;*‘u”] du,
_“/ YUV NNy AV oo PNy Vi il dpy,
r
<uC (r, K, K1, Vol 27) EoO)IV" " ull 2
<uC (r, K, K1, Vol 27, Vol 27) Eo(0) (V" ull 12+ + ||V’_1u||Lz(9+))
0 +EL0).

<RCE K, K1, Vol 2)Eo(0) (E/?

Dueto - N =0on I', (5.18) vanishes. From (A.14) and (A.17), it follows

2

lellzeqry < CKD Y IV ulli20) < C(K])ZEl/z(f)
5=0 s=0

From Lemma A.8, it follows, for ¢; > 1/K1, that

2—
1Bllcin < € Y K21V Bl 20
0<s<2

2
< C(KD) Y E 0. (5.20)

s=0

Thus, with the help of the Holder inequality, we have for any » > 3

2
(5.19) < CK|Bll oo () Er (1) < C(K,K1><ZEJ/2(r))Er<t>.

s=0

For r = 1, it is easy to verify that there exists a 77 > 0 such that E(¢) can be
controlled by the initial energy E1(0) for z € [0, T], e.g., E1(t) < 2E1(0). For
r = 2, we have to assume the a priori bound || < Mjon [0, T] x 271,1i.e.,(5.3),
in order to get a bound that is linear in the highest-order derivative or energy. Then,
we have from (5.3) forr =2

(5.19) < CK|[Bll L@+ Er(t) < C(K, M) E(1).
From the Holder inequality, we get

(5.17) < CKEY?

(t)||vrq+||L2(Q+)' (5.21)
From (1.8), it follows that

aj(DtUj) + AC]+ = ,uaj(Hkaka),
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which yields from (2.11)

Agt = =90 00! + pd; H o HY .
Since the Laplacian operator A is invariant, it yields

Agt = =V’ Vyut + nv, B0V, . (5.22)
We have a simple estimate from the assumption (5.4) and Hoélder’s inequality, i.e.,

I1AGT 1200+ < CIVull 2 I Vull oo+
+ ClIVBI 2@+ IVBI Lo @t

<CME*@), (5.23)

which is a lower energy term.
For m > 0, it follows that

m
ViAgt = — Z CS VS Vaub VS Vyput
s=0

m
+ Z Efnvs Vaﬂbvm_SVbﬂa.
s=0

From (5.20), we get fors > 0

2
. 20 ~
VBl o2+ <CZKI’/ IV Bl )

£=0

2 2

<C(KD Y E5 0, (5.24)
=0
and, similarly,
2 1/2

IV ull @iy < CKD Y EL (). (5.25)

£=0

From Holder’s inequality, (5.24), Lemma A.7 and (5.25), we get,

IVAG T 20y < ClIVUll oo IV ull 200+

+ ClIVBI o IV Bl 122+ (5.26)
1/2
CME,* ), 1IV*Aq " [l 204

<
202
SClIVul L@+ ||V3M||L2(_Q+) + ClIVoully4

(2271)
+ CIVBI L@t IV Bll2 ) + CIV Bl 4o

2
1/2 —
<CMES (1) + Cl|Vullpogary DNV ull 2o KT

s=0
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2

+ CIVBILes) I IV Bl 20 KT *
s=0

<eMEY 0 +ckn (E170 + B0 + B 0),

(5.27)
and
IV Ag il 20+ < ClIVUl oo I VAl 200+
+ ClIVull 300 1V ull Lo (o)
+ CIIVBI Lo IV B 22+
+ CIIV2Bll 3@ IV Bll Lo+
1/2 g2 12
<CME (1) + C(Vol 2 )E (t)E (1). (5.28)

From the definition of the projection and the fact that the measure in the energy is
(—Vy P)_lduy, we have

172 1 2
1TV Pl gy <IVPIY2 o EV ),

Thus, by (A.9), (5.26), (5.23) and Proposition 3.2, we obtain for any 2
IV gt 2y + IV g 1200+

< CIIV g F 2y + C(R, Vol 27F) Y IV AG T |20
s<r—1

<r<4

< CIVP fm iy E2(0) + Cr K. K1, Vol 27)Eo(0)

+ C(K, Ky, Vol 271) |:M +r -2 Esl/z(t)j| EV ). (5.29)

s=1
Therefore,

(5.17) <C(r, K, K}, Vol 2 ) E3(0)

+ [CIIVPII%(F) +C(K, Ky, Vol 2%)

r—1
x |:M +r -2 E}”(r)ﬂ E, (1) (5.30)

s=1

Now, we turn to the estimates of (5.15). Due to P = Oon I" implying vV, P =
0 on I, we have from (2.21), by noticing ¥ = —1/Vy P, that

~9"'N, =Vy PN, = N°V,PN, = 8¢V, P — y{V,P =V,P.  (531)
By Holder’s inequality and (5.31), we get

1/2 12
515 < ClID Ny B 2O (D (V7 P) + V7 - VP [l 12
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It follows from (2.17) that

r—2
D,V'P+V'u-VP =sgn(2—r) Z CsH (Vs lu) . V'SP + V' D, P. (532)

s=1
We first consider the estimates of the last term in (5.32). By (A.11), (A.12) and
(A.17), we have, for2 < r < 4

ITTV" D¢ Pl 2y
5 r—1
=" — —
< 20V 0N 2y IVN D Pll ooy + € Y KMV E D Pl oy
k=1

r—1
< C(l/e)L <||HV’P||Lz(p> +) K"IIV""Plle<r))
k=1
r—1

+C Y KMIVTED P 2y (5.33)
k=1

By (A.10), this yields

IV*Dig™ 12y
< STV Dig Tl 2y + C(1/8, K, Vol 27)

x> IVIADg 2. (5.34)
s<k—1

From (2.16), (5.22) and Lemma 2.1, it follows that

AD;qt =48 Vou"V, Vgt + (Au€)Vog T + 2V,uP Vou V,ut
= 2uVpu Vo BVep” — 2uVpu BV, Ve B
+ 21V B4 BV, V,ub.

By (5.24), (5.29) and Lemma A.8, we get, for s < 2,

IV*ADig ™t [l 200+ < ClIVull oo IV 2g Il 204
+5(s = DCIV3ull 2004 V2T | oo
+5CIVull s on IV g T a0
+ CIV 7 2ull 204 IV T | 2o (24
+ C (IIVull o2y I Vull oo 2+
+IVBIl 2 VBl Lo 20)) IV ull 20
+ 55 = DCVull ooy IV ull ) | Vel Loy
+ ClIVull oo @) IVBI Lo @) IV T Bl 2oy
+5CIV2ull sy IV Bll L3+
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X ((s = DIVBIlLo@t) + 1Blre@+)

+5(s = DCVull oo V2Bl s V2Bl 4o+
+ ClIVull g @)1 BllL=2+) ||VS+2:3”L2(Q+)
+5CIV3ull 2004 | Bll Lo+

X ((S - 1)||V2,3||LOO(Q+) + ||V,3||L°°(.rz+)>

+ 565 = DCIV?Bll 2@ 1Bl L@ i) IV ull Lo+
+5(s = DCIV Bl Lot IV Bl aan) I V2ull Lo
+5(s = DCIV B Lot IBllze@n I ViUl 20+
+5(s = DCIV?Bll (o0 1Bl oo IV ull 12 (o).

From Lemma A.7 and (5.25), it follows for s < 2 that

172
2
s s o 1/2 s 2—
IVl sy < CIVYull 2 g <§ NVl 2o K e)
=0

2
<CKD Y EL 0.
=0

All the terms with L*(£27) norms can be estimated in the same way with the help
of (5.24), (5.25), the similar estimates of g and the assumptions. Then, we obtain
the bound which is linear about the highest-order derivative or the highest-order

energy E,l/z(t), ie.,

IV*ADig " |l 2+ <C (K, K1, M, My, L, 1/e, Vol 2%, Eg(0))

r—1
x (1 +3 Eg(t)) (1 + E,l/z(t)> . (5.35)
=0

Because of
Dy~ = ED o = —pw (7 x &), + pu Ve,

it follows from Propositions 3.1 and 4.1 that

k+1
_ 1/2
IV Dig™ Il 2y < HC(K)Eo(0) Y Eg" (1)
s=0

+uC(r, K, Vol 2 Eg(0)|V x Eoll 2(-e“®H".

Then, from (5.29), (5.33), (5.34), (5.35) and taking some small §’s which are inde-
pendent of E,(t), we obtain, by the induction argument for r, that

1TV Dig ™|l 2y < RC(r K)Eg(0)|V X Boll 2K
+ (1 4+ 0)C (K, K1, M, My, L, 1/&, Vol 2, Eo(0))
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r—1
x (1 + ZE@(I)) (1 ”2(;)) (5.36)
=0

Then, we have the similar bound for [ITV" Dy P 2.
For (5.32), it only remains to estimate

s ((VSHM) : vHP) lary forl<s<r—2.
For the cases r = 3,4 and s = r — 2, we get, from (5.7) and Lemma A.10, that
1T (V7 V2P ) iy < IV gy 192 Pl
< C(K, Vol 2T)L(Vol 21)1/6 (||Vru||L2(_Q) + ||V’_1u||L2(Q))
< C(K,L,Vol 2F) ( E 0+ El/z(t)) .
For the case r =4 and s = 1, by (A.1), Lemma A.10, (5.29) and Proposition 3.1,
we have
1T (V?u - V2 P) |l 2y =ITTV?u - ITV? P
+ I (V2u - N)SIT(N - V> P) |l 12y
SCITVull oy 1TV Pl
+ CIT(N“V2ua) | sy 1T (YN V2 Pl 4y
<CIVull oy IV Pll sy
<CK Vol 21) (IVull 2o+ + IV ull 2(0+))
x (IV*q 20y + IV 2000y + IV 0 N pacr))
<C(K, K1, Vol @Y)(EY* () + E)* (1))

(Z Ey(1) + (Z E”%)) E}*(0)

+ C(K, Vol 27)Ey(0))
3

<C(K, Ky, Vol.Q)ZES(t)ZEl/Z(t).
s=0 =0

Thus, we get
[(5.15)] < C(K, Ky, M, My, L, 1/e, Vol 2, Ey(0))

r—1
x (1 + Z Es(t)) (1+E(0)

+ 1C(r, K, Vol 27 Eg(0) |V x Eoll2(0-e S P'E ().
Therefore, we have obtained

[(5.9) + (5.10) + (5.12)]
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r—1

< C(K, Ky, M, My, L,1/e, Vol 2, EO(O))<1 +3 Es(t)>(l + E (1))
s=0

+1C(r, K)EoO) |V x Zoll 20— * 1" E (1),
By a similar argument in [11, (5.65)], we get

r—1
I(5.11)] < C(K, K1, M, Vol 2, 1/¢) (1 +> Es(t)> E (7).
s=0

From (A.5) and (2.15), we have
D/(VyP) = —2h% N9V, P + hyyVy P + Vy D, P,

which yields
% D/VyP  2h4NV,P
9 VNP VyP NN
Vy D, P VyD; P
-~ 5 = NANN — .
VyP Vy P

Thus, we can easily obtain that (5.13) can be controlled by C(K, M, L, 1/e)E,(t).

Note that there always exists a constant C > 0 such that ||V x .’:','0||%2 @) <

C E((0) at initial time. Therefore, we obtain

d
_Er(t) <C(K1 K13M9 erL’ 1/87 VOle EO(O))

dr
r—1
X (1 + Z Es(t)) (1+E ()
s=0

+sen((r — D(r — 2)p2C(r, K)E(0)eC &KL
which implies, by Gronwall’s inequality, that

E (1) <E(0)exp(C (K, K1, M, My, L,1/¢, Vol £2, Ex(0))

t r—1
X 1+ Es(7))dt
[ Seow)
+{CK i, M, My, L, 176, Vol 2, Eo(0))

+sgn((r — 1)(r — 2))M26C(K,L)t}

t r—1
x / (1 + Z Es(r)> exp (C(K, Ki, M, My, L,1/e, Vol 2, Ey(0))
0

s=0
t r—1
x/r (1 +§E5(s))ds>dt.

By using induction for r = 1, 2, 3, 4 in turn, we obtain the desired estimates. O
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6. Justification of A Priori Assumptions

Let 27 (t) and &(t) be the maximum and minimum values, respectively, such
that (5.5) and (5.6) hold at time :

(1) = max ([0, )| ze(ry, 1/10(0)) , (6.1)

and
EW) =1/(Vng(t, NllLery = 1/e(2). (6.2)

Lemma 6.1. Let K| > 1/t1 be as in Definition A.2, &(t) as in (6.2). Then there
are continuous functions G, j = 1,2,3,4,5, such that

Vil o2y + IVBlILe2) + 1Bleew) < Gi1(Ki, Eo, ..., Eg), (6.3)
IVPlLo@) + V2Pl < Ga(K1, &, Eo, ..., E4, Vol 2),  (6.4)
10 Loery < G3(K,&, Eqy, ..., E4, Vol 2), (6.5)
lullLoory + IVD: PllLery < Ga4(K1, &, Ep, ..., E4, Vol 2),  (6.6)

and

2
lullzscry + 3 IVull 2y < Gs(K1, &, Eo, ..., Es, Vol 2). 6.7)
=0

Proof. (6.3)follows from (5.25), (5.24) and (5.20). (6.4) follows from Lemmas A.8
and A.6, Lemmas A.9-A.10, and (5.23). Since, from (A.2),

V2P| > |[TV?P| = |VyPlI6] > £7'16], (6.8)

(6.5) follows from (6.4). (6.6) follows from Lemma A.6, (5.34), (5.35) and (5.36).
(6.7) follows from Lemmas A.6 and A.10. O

Lemma 6.2. Let K| > 1/t1 and g be as in Definition A.2. Then

d r
‘—E, < Cr (K1, &, Eo, ... Ey, Vol ) ) Ey, (6.9)
de
s=0
and
d
‘5(5" < Cr (K1, &8, Ey, ..., E4, Vol 2). (6.10)

Proof. (6.9) is a consequence of Lemma 6.1 and the estimates in the proof of
Theorems 5.1. (6.10) follows from (6.6) and

1
<Cll———
H—VNP(I, )

1 2

VD P(t,)|Lor.
—VyNP(1,) IVND; P(t, )|l Loor)

Lee(I)

d
dt LI
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As a consequence of Lemma 6.2, we have the following:

Lemma 6.3. There exists a continuous function 7 > 0 depending on K1, &(0),
Eo(0), ..., E;+1(0), Vol £2 such that for

0< t< J(Ki, &), Eg(0), ..., E4(0), Vol £2),
the following statements hold: we have

Es(r) < 2Es(0), 0< s< 4, &) < 28(0). (6.11)
Furthermore,

gab(0, )YYP

> < gap(t, V)YYP < 2g4(0, y)YYP, (6.12)

and with €1 as in Definition A.2,

€1

InCx(r, $) = (. )| < 7. yer, (6.13)
L
lx(t, y) — x(t, )| <1—16, yeQ, (6.14)
ox(t,y 200, y _
X,y 30,9 e jer. (6.15)
ay dy 16

Proof. Since the proof is similar to [11, Lemma 6.3], we omit the details. O

Now we use (6.12)—(6.15) to pick a K1, i.e., t1, which depends only on its value
att =0,

1 () = u0)/2.

Lemma 6.4. Let 7 be as in Lemma 6.2. Pick 11 > 0 such that

&
n(x (0, y1)) —n(x(0, y2))| < 7] whenever [x (0, y1) — x(0, y2)| < 2.

(6.16)
Then ift < 7, we have
n(x(z, y1)) —n(x(t, y2))| < &1, whenever [x (¢, y1) — x(#, y2)| < 2t1. (6.17)

Proof. (6.17) follows from (6.16), (6.13) and (6.14) in view of triangle inequa-
lities. O

Finally, Lemma 6.4 allows us to pick a K| depending only on initial conditions,
while Lemma 6.3 gives us .7 > 0 that depends only on the initial conditions and
K such that, by Lemma 6.4, 1/1; < K fort < 7. Thus, we immediately obtain
Theorem 1.1.
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Appendix A. Preliminaries and Some Estimates

Let us now recall some properties of the projection. Since g%? = y® + N4 N?,
we have

(S R)=TI1(S) - IT(R) + IT(S - N)QII(N - R), (A.1)

where S® R denotes some partial symmetrization of the tensor product S® R, i.e.,
a sum over some subset of the permutations of the indices divided by the number of
permutations in that subset. Similarly, we let S*R denote a partial symmetrization
of the dot product S - R. Now we recall some identities:

IV2q =V'q +6Vyq. (A2)
Iv3q =V'q — 2086 Vq) + (V) Vg + 30&V Vg, (A3)
and
v =V'g - 6& (5(?9)7% + 89?$2q) _2(VO)®OVg) + (V0)Vng
+4(VO)BVVNg + 608V Vg — 308(0°0)Vng + 3080V3q.
(A.4)

Definition A.1. Letn(x) be the outward unitnormalto I'; atx € I;.Letdist (x1, x2)
= |x; — x2| denote the Euclidean distance in R”, and for x;,x, € Iy, let
dist , (x1, x2) denote the geodesic distance on the boundary.

Definition A.2. Let 0 < g; < 2 be a fixed number, and let (; = ¢{(e1) the largest
number such that

n(x1) —n(x2)| < &1 whenever |x; — Xx2| < 11, X1, % € I7.

Lemma A.1. (cf. [4, Lemma 3.9]) Let N be the unit normal to I', and let hyp, =
%Dtgab. Onl[0,T] x I, we have

DNy = hynNa, DiN® = 205N + hyyN¢, Diy*® = =2y “heay®,
(A.5)

where hyn = hapy NON®. The volume element on T’ satisfies
Didpy, = (trh — hyn)duy, . (A.6)

Lemma A.2. (cf. [4, Lemma 5.5]) Let w, = waq = VY fo, V)y = Vy -+ Vg,
f be a (0, 1) tensor, and [V, Vp] = 0. Let divw = Voaw? = V'div f, and let
(V x w)gp = Vawp — Vpwy, = V'(V X f)ap. Then,

IVw|? < C gy yABV . waqVawgpy + |divw]> + |V x w]?), (A7)
and
/ VwPdug <C / (NN gy APV w4y Vgw s
2 2

+divw]? + |V x w|* + K2 |w[*)du,. (A.8)



550 C. Hao

Lemma A.3. (cf. [4, Proposition 5.8]) Let 1o and (1 be as in (1.1 %) and Definition

A.2, and suppose that 10|+ 1/10 < K and1/11 < K1. Thenwith K = min(K, K1)
we have, foranyr > 2 and § > 0,
IV'gli2cry + 1V gl 122

< CIAV gl 2ry + CR, Vo1 2) Y VP Al 2, (A.9)

s<r—1

and

V"l 2y + 1V gl 22
<8IV qll 2y + C(1/8, K, Vol 2) Y IV Aqll 20y, (A.10)

s<r—2

Lemma A 4. (cf. [4, Proposition 5.9]) Assume that 2 < r < 4. Suppose that
0] < K and 11 > 1/Ky, where (1 is as in Definition A.2. If ¢ = 0 on I, then

r—1

=r—2 _
TV qll 2y <20V 0120 IVNG Loy + C Y KM IV qllp2 .
k=1
(A.1D)

If, in addition, |Vnq| = € > 0 and |Vngq| = 2¢e|IVNg|lLo(r), then

r—1

—r -2 —

IV "6l 2y < C(1/8) <||HV’q||Lz<r>+ZK"||V’ "anzm>. (A.12)
k=1

Lemma A.5. ([4, Lemma A.1]) If « is a (0, r) tensor, then with a = k/m and a

constant C that only depends on m and n, such that

=k 1— =m
IVieliLscry < Cllell oy IV @l Loy

=—+——, 2< p<s< g 00
p q

Lemma A.6. ([4, Lemma A.2]) Suppose that for¢; > 1/K;

m k m—k
— +
S

In(x1) —n(x2)| < &1, whenever |[x; — X2| < ¢, X1, X2 € Iy,
and
Co VarWMZZ” < yap(t, y) < Coygp(y) , ifZeT(R2),
where yfb(y) = ¥45(0, ¥). Then if « is a (0, r) tensor,

k ¢ n—1
lellpmvpromi-inry < CKD Y IV @llirary, 1< p<——, (Al
£=0
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and
k-1
n—1
leell ooy < 81V ellzrcry + Cs (K1) Y IV ellriry, k> > (A.14)
=0
for any § > 0.

Lemma A.7. ([4, Lemma A.3]) With notation as in Lemmas A.5 and A.6, we have

m a
Z IV el @) < Cllaljqla, (Z ||V’a||Lp(mK;"’> :
i=0
Lemma A.8. ([4, Lemma A.4]) Suppose that 11 > 1/K1 and « is a (0, r) tensor.
Then

k
||a||an/(n—kp)(Q) <CZK{<_K||V€‘X”LP(.Q), I<p<

n
-, A.15
p (A.15)

=0
and
k n
—L
lallze@) <C YK IVl ). k> > (A.16)
£=0

Lemma A.9. ([4, Lemma A.5]) Suppose that ¢ = 0 on I". Then
91l 22) S CVOL) " [IVgll 20) 1V4ll22) < CVOL2) [ Aq 120
Lemma A.10. ([4, Lemma A.7]) Let o be a (0, r) tensor. Assume that
Vol 2 < Vand ||€||reery + 1/10 < K,
then thereisa C = C(K, V, r, n) such that
lallpo-vpro-pry < ClIValLr@) + Cllellr@), 1< p<n,  (Al7)
and

V20l 122 < c<||nv2a||L2(n71>/n(F) +lAall20) + ||va||L2(m). (A.18)
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