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Abstract: In the present paper, we show the ill-posedness of the free boundary problem
of the incompressible ideal magnetohydrodynamics (MHD) equations in two spatial
dimensions for any positive vacuum permeability 11, in Sobolev spaces. The analysis
is uniform for any o > 0.

1. Introduction

This paper is concerned with the ill-posedness of the following free boundary problem
for the incompressible ideal MHD equations

1~ -

dv+v-Vu+Vg=—H-VH, in 2, (1.1a)
2]

&%H+v-VH=H - Vo, in £2;, (1.1b)

divv =0, divH =0, in £, (1.1¢)

ary=v-A4, H- ¥ =0 g=0, onl}, (1.1d)

v(0, x) = vo(x), H(O,x) = Hy(x), X € 2 := £, (1.1e)

where v is the velocity field, H is the magnetic field, g is the total pressure and o > 0
is the vacuum permeability; .4 is the unit outward normal vector on the boundary I7,
g is the initial bounded domain.

Without the magnetic field, i.e. H = 0 in (1.1), the problem (1.1) reduces to the
free boundary problem of incompressible Euler equations, for which the local-in-time
well-posedness in Sobolev spaces was obtained first in [27,28] for the irrotational case.
Extensions including the case without irrotationality assumption have been made in
[1,2,4,5,9,10,13-16,22,29]. The Taylor sign condition, V_yp < 0 on 982, plays a
crucial role in establishing the above well-posedness results for Euler equations, where
p is the fluid pressure for Euler equations. It was found by Ebin [6] that the free boundary
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problem for incompressible Euler equations is ill-posed when the Taylor sign condition
fails. A natural question for MHD free boundary problem is that if this is still the case or
the magnetic field has some stablizing effect, as discussed for the current-vortex sheet
problem of MHD in [3,23,25]. A stability condition,

V yq <0, onds (1.2)

was identified in [9] for the MHD free boundary problem (1.1) under which the a priori
estimates are derived. The present paper is concerned with what will happen if this
condition is violated.

In 2-spatial dimension case, there is a particular steady solution to (1.1) with pure
rotation: For ¢ > 0, £2; = {x € R? : |x| < 1} = By(0), the unit disk, v(r, x) =
(—x3, x1) = xt, H(t,x) = Bu(t, x) (for x = (x1, x2) and B € R). In this case, g is
solved by the following Dirichlet problem:

2
Ag =2 (1 - ﬁ—) . in B1(0); ¢ =0, on 3B, (0).
m

For this solution, it is easy to verify that, on d B1(0),

,32 ﬂZ
qu=<——1>(U-VU)-x=1——, (1.3)
o o
by noting that .4/~ = x on dB1(0). Therefore, the Taylor sign condition (1.2) fails in
this case when pg > /32. A natural question arises: For pog > ﬂz, is the free boundary
problem (1.1) still well-posed? We prove in this paper that this is not the case when
wo > B2 in the following sense:

we can construct a family of initial data for the problem (1.1) which converges to
the above particular steady rotation solution. However, as long as t > 0, the family of
solutions to (1.1) with those initial data diverges in some Sobolev H"-norm for u > 2.

It should be also noted that our analysis is uniform in pg > 0.

Our construction is strongly motivated by that of Ebin [6] for incompressible Euler
equations. This approch involves showing that the linearized problem about the particular
steady rotation solution has solutions which exhibit rapid exponential growth and the
actual nonlinear problem behaves like the linearized one.

There are few results for the posedness of the free boundary problem of incompress-
ible ideal MHD equations. A priori estimates for this problem were derived in [9] with a
bounded initial domain homeomorphic to a ball, provided that the size of the magnetic
field to be invariant on the free boundary. A local existence result was proved in [7] for
the initial flat domain. The plasma-vacuum system was investigated in [8] where the a
priori estimates were derived. For the special case where the magnetic field is zero on the
free boundary and in vacuum, the local existence and uniqueness of the free boundary
problem of incompressible viscous-diffusive MHD flow in three-dimensional space with
infinite depth setting was proved in [11] where also a local unique solution was obtained
for the free boundary MHD without kinetic viscosity and magnetic diffusivity via zero
kinetic viscosity-magnetic diffusivity limit. For the incompressible viscous MHD equa-
tions, a free boundary problem in a simply connected domain of R? was studied by a
linearization technique and the construction of a sequence of successive approximations
in [20] with an irrotational condition for magnetic fields in a part of the domain. The
well-posedness of the linearized plasma-vacuum interface problem in incompressible
ideal MHD was studied in [17] in an unbounded plasma domain. For other related results
of MHD equations with free boundaries or interfaces, one may refer to [3,12,21,24-26].
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2. Lagrangian Description

For simplicity, we denote H = 1, 2g. Then, the problem (1.1) reduces to the case
uwo = 1,1ie.,
sv+v-Vu+Vg=H- -VH, in £2;, (2.1a)
o4H+v-VH=H-Vu, in £2;, (2.1b)
divv=0, divH =0, in £2;, 2.1¢)
or¢)y=v-A4, H-A#/=0, ¢g=0, only, (2.1d)
v(0,x) = vo(x), H(O,x)= Ho(x), x € 2 := £2. (2.1e)

We transform the system (2.1) into Lagrangian variables (e.g. [18]). We denote n =
n(t,a) = (nl, nz) the position of a fluid element or parcel at time ¢ with a = (@', a?)
being the fluid element label, defined to be the position of the fluid element at the initial
time, a = 1(0, a), but this is not necessarily always the case. Denote §2; the domain
occupied by the fluid at time ¢, then  : £29 — £2; is assumed to be 1-1 and onto, at each
fixed time 7.

Let 9n'/da’ =: nf j be the deformation matrix , its Jacobian determinant J :=

det(nij) is given by

1 il k. J
J = Eskjsl n’in’]l,

where ¢;; = &'/ is the two-dimensional unit, purely antisymmetric, Levi-Civita tensor
density. In this notation,

dn = Jda, (2.2)
and components of an area form map according to
dSm)i = Ja,{»(dS(a))j, (2.3)
where J aﬁ is the transpose of the cofactor matrix of 17’/;., given by
Ja;’;. = e,-ksﬂnﬁ.
Clearly, 7n(t, a) = v(t, x), where 1(t, a) = W The label of the element will be
given by a = n~1(¢, x) =: a(t, x). Thus, the Eulerian velocity field is given by
u(t, x) =0t @)la=a,x)-
For an incompressible fluid, / = 1. Thus, we caninvertn = (¢, a) toobtaina = a(t, n),
mgaly =y =15, 24

where af‘j = 3a¥/dn’ (repeated indices are summed), and the components of the Eule-
rian gradient are given by
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Thus, for x = 5(¢, a) and any function f (¢, a) = f(t,x) = f(t, n(t, a)),

. af . af af -
fla:a(t,x) = a—{‘*ﬂ(l,a) a_){; = a—{+U-Vf(t,x).

a=a(t,x)

For ideal MHD, a magnetic field, Hy(a), can be attached to a fluid element, and then
the frozen flux condition yields H - dS(x) = Hy - dS(a), and from (2.3) we obtain

H = nf,-Hj, (2.5)
which can be also obtained from the equation (2.1b). In fact, we have by (2.1b)
H/ = Hkafkv’]; = Hka”'kﬁ’ji = —defknyji,
due to

ik ik
Nid; = —Ni4a ;>

from (2.4), and by (2.4) again
Hld; = —H'dllal; = —HYdl,

and then

d .

Z(Hld )= 0,

7 (H'a ;)
which yields the desired identity (2.5).

It follows from (2.1a), (2.1c) and ¢ = 0 on I; = n(I"), that

{ Aq = tr(DH)? —tr(Dv)?, in £2;, (2.6a)
g =0, on I3, (2.6b)

where tr(Dv)? := 3;v/9;v’ and tr(DH)? := 9; H/3; H' are the trace of the square of
the matrices of differentiations of v and H, respectively. This elliptic Dirichlet boundary
value problem admits a unique solution, so A~! is well-defined. Here A™!g = f in
a domain means Af = g in this domain and f = 0 on the boundary of this domain.
Hence,

g = A~ (w(DH)? — tr(Dv)?). (2.7)
Therefore, (2.1a) can be rewritten as
i = (VA (tr(Dv)?> — tr(DH)?)) o+ (H - VH) o . (2.8)
Note that v (¢, x) = (¢, a(t, x)) and (2.5), so (2.8) is of the form
n=2Zmnmn). (2.9)

Then we study the initial value problem for (2.9) with the initial data n(0) = 5o and
1(0).
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3. An Example

As in [6], we consider a disc of MHD fluid spinning at constant angular velocity. Let
£2 be the unit disc in R?. For convenience, we identify points in R? with the complex
numbers C. Then 7(0) = ng is the inclusion of £2 in C. We choose 7(0) to be a /2
rotation. Thus, for z € §2 being a complex variable, (0, z) = z and 17(0, z) = iz. Since
Hy - ./ = 0 on the boundary, we can take Hy(1(z)) = ibz for some constant b € R
(e, b = By '’* according to (1.3)) and || < 1.

As we will demonstrate, the solution to (2.8) with the above initial data is n(t, z) =
el'z and H(t, z) = ibz. We have n(t,z) = in(t,z) = ie' 'z,and a(r, 7) = e i'z. Thus,
v(t,z) = n(t,a(t,z) = iela(t,z) = iele 'z = iz. By using real variables, we
find that Dn = e’ where I is the 2 x 2 unit matrix (5 ). Thus, by (2.5), we have
H(t,z) = ibz. Moreover, v(x1, x3) = (—x2,x1) and H(x1 Xx2) = b(—x2, x1), both
satisfy the divergence-free condition, and we get the matrices

0 -1 0 —b
DU:(I O)’ andDH:(b 0).

Thus, tr(Dv)? = —2 and tr(DH)? = —2b2, and the Dirichlet problem is solved by
)
g=0-1HA"1(=2) = lxlsz(bz —1). Then, Vg = (1 —b*)(x1, x2) = (1 — b?)z.
It is easy to check that H - VH = —b?z by using real variables.
Since 7(, z) = in(t, z) and #j(z, z) = —n(t, z), we get
1(t,2) +Vq(t,n(t, 2)) = (H - VH)(n(t, 2)),

namely, n(¢, z) satisfies (2.8). In this example we note that, both the velocity v(t, z) = iz
and the magnetic field H (¢, z) = ibz are independent of the time ¢.

4. Reformulation in Lagrangian Variables

We first recall some operators defined in [6]. The operator 9, : C*(n(£2)) — C™(£2)
defined by 0, (f) = f on = f(n). Itis obvious that the inverse of i, is N, -1 given by

%,771(g) =go 17_1 = g(n_l) where n_l(t, x) =a(t, x).

For a differential operator P, we set P, =: i, PN, 1. For examples, the operator
Dy =Ry DR,-1 2 C ©(£2) - C*(£2), where D is the total derivative, and the operator
Vy =N, VR, -1 where V is the gradient. Define

K(p) = Ry A%,1 1 C§0(2) — C(82)

where C°(2) = {f € C°(£2) : flae = 0}. Namely, K() = A,. K(n) is invertible
because so does A. In fact,

K™ =%,A70, 1.

—1 we have

Sincev =107
Dvon=%,Dv="R,DGon"")=RDR, 17 = Dy.

Similarly, from (2.5), it follows
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0 H (1, x) = 9 (0, (1, a(t, ) HE (x)
= iy (1, a(e, x)al (0 ) HE (o) + (1. a(e, ) HE ;(0),
w(DH)? = (ny (1, a(t, ))a'y(t, X HE (0) + 1/ (¢, a(t, ) HE ()
(e (£ alt, X))@ (t, X)HE () + 0, (¢, ae, ) HY' (x))
= )y (t. a(t. x)a', (6. x) HE (', (¢ (e, x)a" (¢, x) HY' (x)
+ 20 (. a(e, ) HE o) S (x)
+ 0l (¢ ale, ) HE  0n', (1, ale, ) Y (x)
= tr((n)y 0 ™™D HE? + (ol o ™Y (HEHY )
+ tr((n{}c o n_l)H(])i,-)zv
and
(H - VH) =8 H'd'  HY) = Sl H'd (', HY) 1 = 8 HY (' HE)
= 8k Hi (1l 'y Hy + 11, HG,))
= 8t (0 01~ D™ YTHGHE + 85 (', 0 ™ Y HY! HY,.
Then, from (2.8), we get
Z(. ) = (VAR (D)) o
— (VAT (@l oYY HD?) o
— (VAT (o n” YHEHY ) o
— (VA w(h o n HHE DD o m
+ (.m0~ YTHEHE) 01
+ (1.0 00~ Y H H) 0
= VK ()~ tr(Dyi)? = Vy K ()~ e’ 9, (71 HE))?
= VoK ()~ Dy (HE H) ) = VK ()~ (o, 9, HE )
+ Ry (0™ )T HyHE) + 0.0y (HG, H).-
Hence, (2.9) can be written as
i = VK ()~ tr(Dyi)? — Vo K ()~ rGrly 9y (0~ HE))?
- VnK(n)fltr(n;’}(lmn(Hé‘H(l)),i) - VnK(ﬂ)fltf(ﬁ{}(mnHé{,i)z
+ 1Ry (0™ )T HyHE) + 0.0y (HE, H).- 4.1

5. Linearization of the Equation

We consider now a family of solutions to (4.1) parameterized by s, call it { (¢, s). Assume
that ¢ is differentiable in s and let

w(t) = 95¢ (1, 8)ls=0,
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the tangent of ¢ (¢, s) at s = 0. Denote ¢ (¢, 0) by ¢(¢). Then w(t) satisfies

W(t) = 5L (t, 8)]s=0 = dZ(L(t, 5), £ (2, 5))|s=0
= DZ(L(t,5), £(t,5) (D58 (2, ), 3L (2, 5))]s=0
= DZ(£(t), £(1))(w(t), w(r)). (5.1)

In order to compute (5.1) more explicitly, we set u = NR.—1w , w = u o . Clearly
K (¢)~!is inverse to K (¢) if the domain of K (¢) is C(°(£2). If this domain is enlarged
to C*®(£2), K(¢)~ ! is only a right inverse. That is K (¢)K (¢)~' = I, but

K@) 'K(@)=1—2(0),

where J7°(¢) is defined as follows. For ¢ = Id, the identity, 77°(¢) projects a function
onto its harmonic part. Thus, if 77 (Id)f = gthen f = g on 32 and Ag = 0 =
K (Id)g. For arbitrary ¢, 7(¢)f = gif f =gond$2 and K(¢)g = 0.

Next, we recall some identities on the commutators of operators, denoted by [-, -],
proved in [6].

Lemma 5.1. 1) 0,V¢(,5)ls=0 = Reylu -V, V]Eﬁm)q =[u-V,Vleq), whereu - V
means the derivative in direction u.

2) 05K (¢(t, 5))|s=0 = [u -V, Alz ).

3) 8Kt ) s=0 = ([u-V, A" = - V)A D).

Asin [6, (4.11)], we have
tr (D60 = 2t (—(Du 0 )((D) ™' DE + (D)™ Dib(DY) ™' DE ) . (52)
Since
8y (E Ty (€N HE))
= 0, Mo (¢ HE + 0, O HE© + ¢y (© 8 HE©)
= 0,8 Me (€L HE) — ¢y @™, 008, YT HE@) + £y (67D HE , (0)35¢™,
it follows that
05 (M (€N HE =0
= wly M (DL HE — ¢ @, @ YTHEE) + ¢y Y HE L (©w™,
and
(@R (€N HE ls=o
= 265, e (€N HE (w9 (D HE) = ¢y D, €T IHE©)
+ Q@D HE ™)
=280, e (€ HO w9t (Y HE) — 280,00 (@D HE @Yt HE)
+ 20k e (€N HE @Y HE u™).
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Due to
04 (M (HEHY) i) s=0 = 858 70 (HEHY) ilo=0 + £ Mg (HEHE) im 5™ 5=
= wigNe (S HY) i + &M (HG HY) v,
we get
Ot (C R (HEHY) D50 = wiy e (HEHY)  + ¢y Mo (HEH) jmu™).
Since
0 (C M HE =0 = 580 HE jlo=0 + L4 HE 1358 5=
= wi N HE, + 0 (HE ul),
it yields
Bt (Mg HE )P0 = 28w/ e (HE  HE ) + 208 049 (HE  HE jul).
Now considering (4.1) as an equation in ¢ (¢, s) and applying dy|s=0 to obtain
W = (0 Vi) A; (D) + Veds (K (£ (1, $) ™ (D £)?
Ve AT (D (r.0) 6 (1,9))? — 05 Vi) Af (e (6 H))?
— Ve (K (£ (t, )@y e (¢ HE))?
— Ve AT Dt (E (2, 8) e (1, ) ™D HE))?
— O Ve(r.5) A7 (e (HEHY) i) — Ve ds (K (E(1. )~ (0t (HEHY) )
— Ve A7 (C (1 ) Mooy (HEHD) ) — 0 Ve(.0) A7 te(& R HE )P
— Ve ds (K (£(, )& Re HE )P — Ve AT 5te(E (2, 9)) e o, HE )
+ Cam e (€T HOHY) + ¢ (HY  HY).
It yields from Lemma 5.1
W=1[u-V, V];A;ltr(D;é‘)z +Ve(u-V, A7 = 2w - V) AT ) (D £)?
+Ve A (2 (=(Du o (DT DH? + (D) Di(DE) ' DE) )
— [V, VI AT (8 0 (67N HE))?
— VeV, AT = - VYA tr(e e (7D HE))?
— Ve A7 ¢ R (@Y HE w9t (N HE)
+ Ve A ek e (N HE @ ul HE))
— Ve A Q@ e (€ HE @D HE )
—[u- V. VI A7 @R (HEHY) )
— Vo[-V, AT = - V) AT (¢ R (HEHY) )
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— Ve A Wiy (Hy H) i) — Ve A (@0 (Hg Hp) imu™))

—[u- V., V1A (R HE )P

— Vo[-V, AT = A V) AT (@) 9 HE )?

— Ve A7 Qe wl e (HE  HE D) — Ve A7 Q0 O (HE  HE )

+ CamMe (1T HOHE) + &% (HE, Hy)

=[u-V, VA N tr(D8)? = Ve (. (u - VYA Dt (D £)?

+ VoA (2 (= (Do (DO DH? + (D)™ DD T DE) )

— [V, VA et (&0 (¢ 7 HE)?

+ Ve (- V) AT ete (8 e (¢ HE))?

= Ve A Qe (@Y HE Y wh e (N HE))

+ Ve AL ek e (TN HY 7Y HE))

= Ve AT QN R (@ HE @ HE 1)

— - V. VAT N (R (HEH). ) + Ve (- V) AT (R (HEHD) )

— Ve A Wiy (Hy H) i) — Ve A (@0 (Hg Hp) imu™))

— - V. VAT N tr ()R HE ) + Ve (A (- V) AT etr ()0 HE )P

— Ve A7 Qe wl e (HE  HE ) — Ve AT Q2 040 (HE  HE )

+ CamNe (T HGHG) + £ ne (HY  H). (5.3)

For our choice of n(¢) in place of {(¢) we can compute explicitly some terms in

the linearized equation. To do so, let us return to complex variables for convenience.

We know that Dn(r,z) = €' for p given in section 3 so that (Dn)~!'Dn = i and
tr(—(Du o n)(—1)) = divu = 0. Also, tr(D,7)? = tr((Dv)?) o n = —2. Due to n'; =

ei’(S;, (n—l)fj = e—i’8; and Hy, = (I —n)b (I, n € {1, 2}). Therefore, any second-order
spatial derivatives of both 1, ! and Hy are zeros. Hence tr(n’jki)i,7 H(])f ,.)2 = —2b%e?i
and n,ni}in(Hg’lH(l)) = b2el'y. Therefore, it turns out from (5.3)

W= (1—b")([u-V,VA,(=2) = V(- V)A™"),(-2)) (5.4a)
£V, 4, (Ztr (Du on+ ie_i’Du')>) (5.4b)
— VAN wl Ry (HG HE) ) (5.4¢)
— &'V, A Qu ot (H  HE ) (5.4d)
+b%ey. (5.4¢)

Now we restrict our attention to special solutions of (5.4). Assume thatw = V f(t)on
where f(¢) is a harmonic function on 2. Thus, # = V f a harmonic gradient. Then
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Dw = Dn(DV f) o n and tr(ie Dw) = 0 as similar as in [6, Eq. (4.16)], so (5.4b)
vanishes. We also have

wh = 38, (e, (e, )0’ (1. x) = €98, £ (2, 12, X)),
w'y = €0 did; f (8, (e, )0 = 29 d; £ (¢, 02, x)),

and then
2
wh Ry (HE HY) i = 267" " 3y f (2. n(t, x))(( — b)in')
i,k=1
2
= 2p%eM Y " x99k 0; £ (¢, n(t, X)) — k)
i,k=1
=0, (5.5)
and
) 2
wl I, (HY jHE ) = b > 0d; f(t. 0t x))(j — )i — k)
i,j.k=1

2
=—b2" Y R f 0t )i — k)

i, k=1
= b2 (3 f(t, n(t, x)) + 3P £ (2, (L, x)))
= —b*"Af o =0. (5.6)

Thus, both (5.4¢) and (5.4d) vanish. Hence, similar to the discussion in [6],
(Vfom =1 =b)x-V(Vfon) +be, (5.7)

where x - V is the radial derivative and commutes with composition with the rotation 7.
Now, we recall a useful lemma.

Lemma 5.2 ([6, Lemma 4.19]). If f is harmonic, andwith pagn n(t,z) = 'z, then
there exists a harmonic function g such that Vf on = Vg.

Since f is harmonic, by Lemma 5.2, there exists a harmonic function g such that
V f on = Vg. Thus, (5.7) can be written as

(Vg) = (1 —bP)x - V(Vg) + b2z (5.8)

Define & by @/Vg = (x - V)Vg. Let g(z) = Rez" (n > 1), Vg = nz"~!. Then
@Vg = nz V" ! = n(n — D"' = (n — 1)Vg. Similarly, if g(z) = Reiz”
(n >1),Vg = —inz"~!. Then /Vg = (n— 1)Vg. Note that E := {nz"~!,inz"~1}>°,
form a basis of the set of Harmonic gradients on £2. So <7 has this set as a complete
set of eigenfunctions and has double eigenvalues 0, 1, 2, - - - . We seek the solutions by
separated variables of the form Vg(¢,z) = o(t)h(z) for h € E, so that (5.8) can be
written as

@) =1 =b)n— Do) +b*e™z/h(z). (5.9)
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Let B, = +/(1 — b%)(n — 1). The usual solution to (5.9) can be written as

t Bys p—But _ pBut

_ e e e
o(t) = CleB”t + Cre But
0 _Bneane—an _ BneB,,se—B,,s

—By,s .
b2621sz/h(z)ds

3 bZZ t 3 3 .
— CleBnt + Cze Bpt _ (eBnSe Bt _ eBnte BnS)eZISdS
2B,h(z) Jo

= CleB"t + CzeiB"t

b2z G2l _ p=But  Q2it _ Bt
— +
2Buh(2) ( B, +2i B, — 2i )

2 —Dn n
_ CleB”t + Cze_B”t _ b Z 2Bn eZil‘ B e B, t. B eB t | .
2B,h(z) \ B2 +4 B,+2i B,—2i

Hence, we get the solution of (5.8) of the form

o 3 o bZZ 2B . €_B"t eB"’
wn(t, Z) — C]eBnthn 1 + Cze B,Ltnzn 1 _ - n 621t _ - . .
2B, \ B} +4 B,+21 B, —2i

L .. . 14 _
If we assume the initial conditions w, (0) = 0 and w, (0) = e¢™" ! Z", then

1/4 _,,

)

Ci1+Cy =0, and (C; — C2)Byn7" ' =™

ie., Cl =—Cy=e""7/(2Bun). Hence, forn > 2,
1 14, _
wn(t) = e sinh(v/(1 — b2)(n — D))"
A=b)n—-1

2
bz (cosh(\/(l “ 0 — D) — e2i’)

+
(1—b)(n—1)+4

. 2b%iz sinh(yv/ (1 — b2)(n — 1)1)
VA=) m— (1 —b)(n—1)+4)

is a sequence of solutions to (5.4) with initial conditions w,(0) = 0 and w,(0) =
_al/4
e n

(5.10)

7". When b? < 1, this sequence is as useful as for the Euler equation, discussed
in [6], because the initial data go to zero in C*°(£2), but for any ¢ > 0, in view of the
exponential growth of sinh and cosh, {w, (¢)}7° , is an unbounded sequence in C*°(£2).

6. Discontinuous Dependence on Initial Data

In this section, we will show that the problem (2.8) is ill-posed.

6.1. Construction of the sequences of initial data and solutions. Let n(t, z) = €'z, the
solution to (2.8) given in section 3, and set ¢,(0,z) = 1n(0,z) = z and én(O, 7) =
70, 2) +e" 2" Then, (£,(0, 2), £,(0, 2)) = (3(0, 2), 71(0, 2)) in CX(2) x C®(2)
as n — 00. Assuming that there exists some positive 7' such that for all n, ¢, (¢) is the
unique solution of (2.8) for 0 < ¢ < T, the goal is to show that ¢, () does not converge
to 1(t), not in C°°(£2) for any positive t < 7.
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For this, we define
() = Eu(t) — ().
We will show that y, (f) grows like w, (t) of (5.10) and thus, lim,,_, o (¢, (t) — n(t)) is

not zero for ¢t > 0.
Since both 7(¢) and ¢, () satisfy (2.9), we have

l .
o= 2(c.6) - 2, ﬁ)=/0 Z5((5), E6)(@ — . & —ii)ids
1
—. /0 DZ(t(s). ()& — 1. & — ii)ds,

where ¢(s) = ¢ +s(n — ¢). Hereafter we suppress the subscript “n” in ¢ for simplicity.
Thus, by the mean value theorem of integrals,

1 .
() = /O Z,i(£(s), E(s)(y, ¥) ds
) 1 . . .
=Z im0,y + /O (Z,;(), ENO, 3 = Z, i, )y, 9))ds
) 1 K . )
=Z;®n, r))(y,y')ufo (1—5) <f0 z,jk@(a),;(o))(y,y)"da> (v, y)/ds

1 K
=:DZ(m, 7y, y) +/0 (I—s) (/0 D*Z(¢(0), £(@)((y, ), (v, )"))dU) ds,
6.1)
since ¢(s) —n=¢+sm—¢) —n=0-=s5)¢—n) =({A—s)yfors € [0, 1] and
(1=0")¢)+o'n = 1= ) (A =5)¢+sm+o'n = (1=s)(1 =0 ) +(s+(1—s)o")n =
(1—0)+0on=1C¢(0),whereoc =s+(1—s)c’and 1 — o = (1 —s)(1 — o) for
o’ €[0,1]and o € [0, s].

Denote H*®(£2) the Sobolev spaces for any real number s with inner product (-, -)s
and corresponding norm || - ||;. For a nonnegative integer s,

(fre)s=) / (D" f, D' g)dx,
k=0"%

with the usual extensions to other s.
Proposition 6.1. Let s > 1 and Hy € H**?. Then,
. . . . 2s—1)/2 . 2s+1)/2
ID>Z (2, E)((y, ), (s 9D s < Clly, IEV 2D+ (y, 3y 07>
+Cll, DDy, 3) o + C Iy lls+2,

where C is uniform for all (¢, ) in a H**3 neighborhood of the curve (3(t), 7(t)).
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Proof. We compute DZ (1, 7)(y, y) first. Let y = 8,¢(f, 8)|s—0 and u = y o ! for
convenience. Since (D)™ = D¢ Y o¢, so

(DO)™'DE =D 0t Dje =R (DE™HY (DjEo¢™ ) =R D& o¢™h) =Dl
and similarly (D¢)~'Dy = D¢ y. Moreover,
-V, D1l =Nelu-V, DI ot~ =e(u-VDE 0¢™1) = Re (D - V(& 0™ )
= —Ng(Du-V( 0¢™)) = =R (DuR,-1 D {)
= —(Duol)D;t.
Thus, similar to (5.3), one has
DZ(t. 83 5) = (- V. VA1 = V(A w-)A™) w(Deb)?
+2V ALt (D Dey + D ([u -V, D))
— [+ V., VAT Jetr( ] e (7 HE))?
+ Ve (A - VYAt (e R (67D HE)?
— Ve AT @R (€Y HE ) Yt (N HE))
F VAT Qe e (@ HE @ ul HE))
— Ve A @ e (D HE @Y HE )
— [V, VAT (R (HEHY )
+ Ve (A - VYA (& e (HEHY). )
— Ve AL (ViR (Hy HY) i) — Ve A7 (R ((H HE) imte™)
— -V, VA e (R HE )P
+ Ve (A - VYA )t ()0 HE )P
= Ve A @8y (HG  HE )
— VA, Qe (HE B yuh))
+ CamMe (T HSHY) + ¢ n R (H  HY). (6.2)
For any function f on £2, vg'f = N3 (fEC™H) = Redi fe™Ha ¢ H =

(Dot V) and 555 f = 555 f (€71 ©) = 8 f 551 (€)' = (DE otV f)/,
ie.Vif= 72 f. Thus,
. ; . d .
D*Z(. H)((2.3). (0 30 = V¢ DZ(&. DG 3)ys + 575 DZE DG )3
Clearly,

3 L
@DZ@’ O,y =0
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due to the form of DZ(¢, é)( v, ¥) in (6.2) where all é’s appear in the form of derivatives
like D;¢. So only the first term needs to be considered.

ViVIDZ(. ) (y. ) = DyDZ(&. E)(y. 3)

- D, ([u V.VAT = V(A - V)A‘l))c tr(De¢)? (6.32)
+ ([u V.VAT = V(A - V)A_l))g Dytr(D;¢)? (6.3b)
+2Dy (Ve A7 (DeE Dy + D ([u -V, D1g0) (6.3¢)
+2V A Dytr (D D+ D ([u -V, D1 )) (6.3d)
— D, ([u VYA - V(A V)A—l))Z (e (¢, HE)?

(6.3¢)
- ([u VL VAT - V(- V)A_l))z Dy tr(& 9 (¢~ HE)?

(6.3f)
— Dy(Ve AT QLM (€N, HE ) Y9t (N HE)) (6.3g)
— Ve AL Dyl e (€ HEO Y R (6D HE)) (6.3h)
+ Dy (Ve AT Y@L e (N, HE 7N HE)) (6.3i)
+ Ve AL Dy Qe SRR (N HE (N ul HE)) (6.3))
— Dy(Ve A7) QL e (@D HE €Y HE ™) (6.3k)
— Ve AT Dy QL e (@Y HE €Y HE ) (6.31)

— D, ([u V,VATY - V(A - V)A_1)>§ &R (HEH ) (6.3m)

- ([u VLVAT = V(A - V)A’1)>{ Dy (& (HEHY ) (6.3n)

— Dy (Ve A7) (M (Hg Hp) i) (6.30)
— Ve AL Dy (e (Hy Hp) i) (6.3p)
— Dy (Ve AL D&y Re (Hy Hp) imu™)) (6.3q)
— Ve AL Dy (¢ N ((H Hp) imu™)) (6.3r)
— D, ([u VL, VAT = V(A - V)A*‘))Z (R, HE )2 (6.35)
- ([u VL VAT = V(A - V)A’U){ Dy (g0, HE ) (6.31)
— Dy(Ve A7 QL YR (HE, HE ) (6.3u)
— Ve A7 Dy 8yt (HE, HE ) (6.3v)
— Dy(Ve A7 QL LR (HE, HE u')) (6.3w)

— Ve A Dyl R (HE,, HE i) (6.3x)
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+ Dy (CamNe (] HEHE) + ¢.a%p (HY  HY). (6.3y)
Since y = u o ¢, it follows that y = u o £ = 95¢(, §)|s=0 and
8K (1. 9)s=0 = VK (1, )81, $)s=0 = y;VIK(©) = DyAr,  (6.4)
which yields from s = I — A;l A and the identity 2) in Lemma 5.1, that
Dy = Dy(I — A Ar)
= —(DyAC_l)A; - A;l(DyAC)
= A (DyANA; A — A7 (DyAY)
= —Azl(DyA;)%”;
Similarly, we have from the identity 1) in Lemma 5.1

Dy(u - Ve = yjVi - V)e = Vi V)edstj(t,$)ls=0 = ds( - V)e(r.5)ls=0
= 05 (ur (¢ (1, )V (y o) ]s=0
= 1 ((6,))0587 (1, )V g ls=0 + u(E (1, 9)) - 05 Ve(r.s) ls=0
=/ (Q)ur j(O)VE +u(@)  [u-V, Vi
= ! (Qur j () VE +ur (O (£)VIVE
—uF (Ouj k(Y] — w (©u; () VEV]
=0. (6.6)
Hence, it follows from the identity 3) in Lemma 5.1 that,
Dylu-V,vA~l,
=Dy -VVA™Y —D,(VAT (u- V),
= -V, ((Dyvg)A;‘ + v;(DyAgl))
— ((D},V;)A;I + v;(DyA;I)) (- V),
- [(u Ve -V VI AT 4 V(- VAT = A - V)A‘l){]
=[w-V,[u-V,VA e = [u-V, V- V)A™ . (6.7)
Therefore, we obtain, from (6.4)—(6.7), that

(6.32) = ([u V- V.VA M = 4V VA V) AT,
—([u-V, V1A W- VYA ) + (VA [u -V, Al (u- V) A,
+ (VA (u- VYA u -V, A]A*‘)g)tr(Dgg')z.
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The other terms in (6.3) including the operator Dy ([u -V, VA~ = V.2 (u - V)A_l){,
namely (6.3e), (6.3m) and (6.3s), have similar identities.
We have, from (5.2) and the analogue of (6.4), that

(6.3b) =2 ([u V,VAT - VA - V)A’l)c
tr (D¢ D¢y + Dl ([u -V, D1 L)) (6.8)
By Lemma 5.1, one has

(6.3¢) =2([u -V, VAT = VA (u-V)A™Y,
tr (D¢l Dy + D ([u -V, D1:E)) = (6.8).
The other terms in (6.3) including the operator Dy (VA™!) o

(6.3k), (6.30), (6.3q), (6.3u) and (_6.3w), have similar identities.
Since Dy = ijggk = ijIi = yk, Dy¢ =y and

namely (6.3g), (6.31),

(6.3d) = 2V;A;ltr((D§y)2 +[u-V,D1 Dy + De¢lu-V, D)y
+([u- V. DIc&)([u - V. DI¢é) + Dey([u - V. D))
+ D& (- Vglu -V, DI — -V, Dl (- V)eé = De(u- V) )
= 2V;A;1tr((1);y')2 +2[u-V,D1iDey +2Dci[u -V, D]y
+([u-V, DO+ Dellu-V, [u-V, Dl — Del(u- V)ngj}).
Due to
Dy e~ e 0)) = yiVieh . e o) = v e e e o) ot
= (e e o)D),
we have
D,D¢ = D*¢(Dy)” 1y,
and in general
DyD*¢ = D¢ (Do)~ y, Vk e NU{0).
Thus, we get for (6.3f)
Dytr(g e (¢ HEN? = Dy (Do) HE ), (DO HE (0))
=207, (D)"Y (D) O HE @8k, (DO DL HE (©)
= 203(D) ™, (DO ™HE Y (D)™ H ()85, (D)™}, H (©)
+2¢7 (DO OEHE @)y ¢l (D) L HE ).

Generally, the derivative Dy makes the target to increase one derivative with respect to
¢ for ¢, y, u or Hy. So we omit the detailed derivation of Dy terms in (6.3h), (6.3j),
(6.31), (6.3n), (6.3p), (6.31), (6.3t), (6.3v), (6.3x) and (6.3y).
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For any s, AL HS(2) > H2(2) and thus .57 - H*(§2) — H*($2) is bounded.
Therefore D2Z (¢, ¢) is a bilinear operator in (y, y) due to y = u o ¢ with coefficients
depending on at most three derivatives of (¢, {). Moreover, those terms excluding Hy
are the first order in (y, y) times zeroth order in (y, ¥), while the orders of derivatives
of y or Hy in each term is at most 2 for those terms including Hyp. Thus, by Sobolev’s
embedding theorem (cf. [19]),

ID>Z (£, £)((y, $). . 91t
< NCE. Oy, $)(Dy, DY)l +b*[C(&. £, Ho)(y, Dy, D*y)|;
<ICE, O, y)(Dy, D)o+ IDC (&, ) (v, 3)(Dy, Dy) o
+1C(. $)D(y, $)(Dy, D)o + I1C (&, £)(y, $)D(Dy, D¥)llo
+b%|C (5, £)(y. Dy, D*y)[lo +b* | DC (&, £)(y, Dy, D*y) o
+b%|C(¢.$)D(y, Dy, D*y)|o
< CIDY2(y, Mol D (v, H)llo + CID (v, 9l

3
+Cll o, 321D (3, 3o+ CH* Y lIyllx
k=0

< Cll G, MNP, Dol D, )y > + CID G, Mol Dy, o

3
1/2 3/2
+CIDG. Nl 21D (. ) +Cb22||y||k

3/2

< CI, DD, o+ Cll(y, y)||”2||DZ<y D +Chyls,

where C (- - -) is a smooth function of (¢, ;) and their first three derivatives.
The image of n(t) is a circle in H s+3(2; R?) which is compact and since H* (R?) is
an algebra for s > 1, it then follows
ID*Z (. O, $), s 9Dls
<NCE, Oy, 3Dy, DY)ls +b*ICE, ¢, Ho)(y, Dy, D*y)lis
< UG DI . 9)llo + Clly. 2D v, )16

Thus, the desired estimates follow for all (¢, £) near (7(z), (7)) in H¥*3(§2; R?) with
fixed C. O

Lemma 6.1. Let m > [ > 1 be an integer satisfying | D"*'y|lo < Cp||Dyllo. Then, it
holds

+Cb||yllss2-

Iylier < Cliylh

Proof. From Sobolev’s embedding theorem (cf. [19]), we have forany 0 < j < m,
1—
D7 yllo < Cinl D™ 31 ™ 1Dy Iy < Cjmll DYl

Therefore, for any [ < m

1

I
1Dyl =Y _ID™* yllo < Y CimliDyllo < CllDyllo,
j=0 j=0

the desired estimate follows then. 0O
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Corollary 6.1. Let m > s be an integer satisfying || D" (y, y)lo < Cn | (v, ¥) llo. Then,
it holds

ID*Z(Z, E)((y, 3), s DN < ClG I 1D s Y™ + CH [y l542-

Proof. From Sobolev’s embedding theorem (cf. [19]), it follows that

ID*Z (&, O)((y, $)s (s 9D

max(s,2)
1—-k
<c| Y "ol 1.l "
k=0
1 1 1-1 1
(ZIID’"(y L 1 oTe o | i ))+Cb2||y||s+2
=0
2)+1 N 5,2)+1
< Cln o LR O DG Gy gyl

—1
1= 1Dy, ™ 1 )1l ™

1/(m—1 1—1/m\ ! ~/m=D
(Z 10" Gy D (1™ 0 1 o) +CByllss2

2)+1 - 2)+1
— 10" (v, D™, g

—1
1= 1D, 1™ 1 )l ™

D" (v )™ (Z D™ (v, )lIg ™ 1. y)n"/m) + CH2|[yllse2

<Cly, My~ t/m!

=0

2—1/m 1/m

1 1
< Cll, NI ID™ s )1y ™ A = 1D G Y™ 1, )l ™2
2)+1 2)+1
(L= 112" (v )™ v )l T
1 — 1
A= 10", IS ™M1, 1 ™) + CP 52
2—1
< Cl MG ID™ G, )1y ™ + CH [y ls42,

provided that [| D" (y, y)llo < Cull(y, Y)llo- O

6.2. Decomposition of solutions. We decompose y = y, into three parts as that in [6],
each of which will be estimated separately.

Letq := y — VA~ !div y, the divergence free part of y, and & be a harmonic function
satisfying

(Vh,v) = {gq,v), ondS2.
Define

N =y—Vh. (6.9)
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Note that, &, as a harmonic function, is the real part of some holomorphic function
¢(2). Therefore, it can be written as h = Re Y_72a;z/. Set g = Re Z?;(l) a;z’ and
f=h—g=Re Z , aj z/. We then decompose y as

y=Vf+Vg+N. (6.10)

Denote P;, i = 1, 2, 3 the projection onto the i-th summand of (6.10).

It is shown in [6] that the summands of (6.10) are orthogonal with respect to the
L?(£2) inner product.

Following that in [6], the next step is to decompose equation (6.1). Denote, for
simplicity,

0=0(@.y):= /01(1 —5) </0S D*Z(g(0). £ (@) ((y. 9. (3. y'))do> ds,
and Q; = P;Q fori = 1, 2, 3. Whence,
Vy=DZm, 7.y + 0. (6.11)
From (5.4), it follows
DZ®, )y, 3) = (1 =b*)(lu-V, VAT ],(=2) = V(A (u - V) A1), (=2))
+2V, 47"t (Do n+ie ™ DY) = V, AT (6 (HEHY. i)
— &'V, AT QY Ry (HY HE D)) + 0%
=—(1=b)y+dy+(VA~),uM + by,
where ,Jy = (V) ({y, n)) which depends on n, and
=2D,N +2ie”" DN — N'y0y (H§ H)) i — 2e‘fN’ N, (Hy Hy ). (6.12)

In fact, by (6.9), we have y = Vi + N with Ah = 0. In view of Lemma 5.2, there exists

a harmonic function / such that Vi o n = Vh. Since =Nt z) = ez = ey, we

have 9;h(z) = d;h(e~*"(2)). Thus,
OB (2) = 8 0mh(e™ 2 e 2y = e 3k (e 2 ),
and
N dih(z) = e 2 dd;h(e M n).
Therefore, as in (5.5) and (5.6), it yields
Z dih My (HEHY) i = 0, and Z a./hakmn(Hé,jH&i) —0.
i j

Also, trD(Vh(n)) = trei’DVh(n) =0and tr(ie‘itDVh) = 0dueto Ah = 0.
Therefore,

== Dy+Ty+(VAH,uM + by + Q. (6.13)
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Applying P3 to (6.13), noticing thathggy =0,P3(Vi?), = 0and (]P’]+P2)(VA_1),,
= 0, we obtain, in view of (6.12),
N == DN+ (VA™YH,uM + b2+ Q3
= (b* — )N +2(VA~Y,div,N +2ie (VAT tr(DN) + b*el'n + Q3
— (VAT (Vi 9ty (HEHY) ) — 26" (VA7) (N 9% (H HE )
=: (B> = 1)N + BiN + BoN + b*e'n + O3 + B3N + B4N, (6.14)
where we have used P3n = 7 since
VA 'divy = 'VAT div (x1, x2) = €'VATIQ2) = € (x1, x2) = 1.
Applying P; + P, to (6.13) to obtain
Vi+Vg=0>—D)(Vf+Vg) +A(Vf+Vg) +dN+ Q)+ 0.

The terms (b2 — 1)(V f + Vg) and ;ai(Vf + Vg) were computed in (5.7) and (5.8),
where they were written as (1 — b2).a7 (V f + Vg) + b%e''n. Since @/7% = (k — 1)z, o/
commutes with P; for j = 1 or 2. Denote 42%; = IP’]-,Q%~ for j = 1 or 2. Thus, in view of
the fact Pjn = n for j = 1 or 2 due to P3n = n, we get

Vi=0=b)IVf+AN+ 0, (6.15)
Vg=(1—-b>)AIVg+ N + Qs (6.16)

Thus, (6.11) has been decomposed into the system (6.14), (6.15) and (6.16).

6.3. Estimates of Vf,Vgand N. Lety, =V f,+Vg,+ N, be the sequence of solutions

. e . 1/4 _ . .
with the initial data y,(0) = 0, y,(0) = ™" / z". For any harmonic function / and any
real s, we introduce the equivalent form of the usual H*-norm, i.e.,

IVh|s = (;z{SVh, ,Q{SVh)% , (6.17)
where o7* is defined by «7*7% = (k — 1)*zX. Then, it implies that for any s,
I/ Vgls < (n — DIVgls. (6.18)
For i, v > 1 and 0 > 2, denote

EE, = IVf V102V f|2 = "V f £3/1-02a/2V )3,
Eup=E;,+E,
Fo =n|N|Z+|N|Z.
Gy = IVgl? + .72 Vg2,
It follows from (6.17) the inequality

E,2n*"VES, forpu>v. (6.19)
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Proposition 6.2. Let . > 2. For sufficiently large n, the set E;’b > E >

71) E, b

wb Fu,

nF,1, and E;+1 b > 2(2—*{;2}’)2,,3/4GM is invariant under the evolution defined by
I

(6.14), (6.15) and (6.16). Of course E,; j, < 2E;7b.

Proof. From (6.15),

EE, =2V f£V1 -2tV £V1 -2V ),
=2((1 =) AVf+ AN+ Q1 V1 —B2A IV, Vf £1 - B2e/2Vf),
=2(/1 =2/ (V1= B2d IV f £V ), V1 -2V,
+2 AN+ 01 V£V — 21V ),
- isz;ﬂ +2 AN+ 01V £V — 21V ), (6.20)

Hence,

Ery— B, =2/1-p2 (E;%b + E;%h)
+2 AN+ Q1 Vf+V1— b1V ),
—2AN+Q1LVf —V1 -3V ]),
> 21 =B2E, 1, = 2V Eup(KINwet + 1Q1ll)
21 =02E 1y = 2B (K/Fuaa /n+11Q1ll,0)

szu%,b - 2Kn_5/4EM+%’b —2n E 1 pll Q1
6.21)

WV

WV

By Proposition 6.1 and Lemma 6.1,
2u+1)/2, . 2u—1)/2 .
Cest VP28, IV 4k Cey Nl )1+ CH2IIy I

<
< Cepp(Er+ Fy+ G DA 4 C (e + D) (B + B + Gp)?
< Cenu(Erp+n 2 EL HEH=D/0

1

1Q1llu

+Clen + b (Erp + n*3/4E§ D
3/2-2, 2u—1)/4
< Ceppn / ME;+%,17)( u—1)/4p

e

)

+Clenu+ bz)(n3/2_2“E;+%’ )

where ¢, ;, can be any sequence of positive constants such that lim,,_, , £, = 0. So,

Ef, - E;’b >2(/1 =02 — Kn* — C(ep, + b2)n1/2_“)E;+l’

b
1
- 2C8n,u”71/47(2/‘73/2)(2[‘71)/4"(E;Jr%’h)(d'“*l)/“”,

which is positive for n large. Then, one obtains easily that £, , < ZEZ’ b
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In view of (6.14), we have

Fy =2n(N,N)s +2(N,N),
=2(N,(n —1+b*)N + BIN + BN + b*¢"n+ Q3 + B3N + B4N),
=2(n—1+b>)(N,N)g +2(N, BiN)y +2(N, ByN)o +2(N, B3N),
+2(N, B4N)y +2(N, 03)g +2b*¢* (N, (x1, x2))0.

It holds that

. . ) 1 )
(N, N)g| = [(Z7N, &7 N)| < |7 Nl Nlo = E%/EIINIIGIINIIU

- a1
(INlG +2lINI5) = 5—F=Fo,

2y/n

1
< —

N
whereby

) —1+b2
201 — 1+ bD)|(N, N)o| < (”—ﬁ)Fg <vVn—1+b%F,.

Note that the operator VA~ ldiv is bounded in the HC -norm,
2|(N, BiN)o| = 4[(° N, &/ (VA ), div,N)| <AC|N|sINlls < Kn~'?F,.
Similarly, it holds that
2|(N, ByN)g| = 2|(N, 2ie™ " (VA tr(DN))o | < 4C|N|2 < K Fy,
and
2|(N, B4N)o| = 4|(N, (VAT (N9 (H  HE ))a| < CO*n™12F,,
since Hé’j = (j —i)bfori, j € {l,2}implies Hé,ng,i = (j —i)(i — k)b2. Also,
2|(N, BsN)g| = 2|(N, (VA (N %y (H H) ) |
=4b|(i — k)(N, (VAT (N Ry HD)o |
=4b°|(i — (N, (VAT ((—x2. x1) - VN}))o |
<Co*n~V2F,
Due to &7 (x1, x) = (x1, x2) and the boundedness of §2,
(N, (x1,x))0| < CINs < KF}?.
Thus,
Fy < (In— 1452+ K)Fy +2F, (103l + C) + CO>n ™ 2F, 1 (622)
It follows from (6.20), (6.22), (6.19) and (6.18), that

(E;:}, - \/EF;,L+1)
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>20/1-DE, L H2AN + 01V +4/1 —RAIVS),
47

281

—J/n ((m+ K)Fps1 + 2y Fuai (1103l s + Cbz)) - Cszu+3

> WT=0E =2 B (AN |+ Q1) +(6.23)
> =02E; = 2K\ JE P

(2u+1)/2u 5/4-2, 2u—1)/4
—2C E+bnu +n/ ME;+%b)(# ) /A

_2C E;,b(é‘n,u +b )(El,b +l’l5/4 2U.E;+1 b)1/2

i n—1+b2+ K)F,Hl — 23/ Funt | O3l s
— Ch*Q2/nFu +F,,
>2V1 - b2E" e 2Kn_3/4E;’b
2u+1)/2 — _ _
_se /7E;b e 200 |y S 2M-E;+%’b)(zﬂ 1)/4u
2 2(1— 5/4-2 1/2
—2C,[E (e + DY TE, 40 “E;%b) /
~ Wn—1+02+ K)E} , — 20" [EY 11031l
Cbz(zn‘/“\/ETm*‘/zE: )
>0/ 1-PEY | | — Wn—1+b2+K+ 2Kn*3/4)n*‘/2E;+] ,
E E
_C8£12M+1)/2Mn2(1—[L)(ZpL—])/4,LL(n—1/2E+ 1 )1—1/4u
ye +1.b

— st (2u+1)/2u n/8=n— 5/16;L(E+
;L+ N

= Clenyu + bR ET L — 20" JEY 10301

—Cb2(2Jr+n‘1/4((n D/mEL ).

Due to Proposition 6.1 and Lemma 6.1,

)(2u D)/4n

(6.23)

(6.24)

2u+3)/2 1 2u+1)/2 1 .
Q311,81 < CopteDPHD 1y 5y PHDRED L gy G DI+ C Iyl

< Cgr(z%ﬂ+3)/2(u+l)(El,b + P+ Gl)(2ﬂ+1)/4(ﬂ+l)

+C(eny+ b (E1p+ Fa+ G2

< CSy(,%ﬁH)/z(MH)(EI,b +n5/4—2uE; : b)(2M+1)/4(M+1)

+Clenu + D) (Eyp + 04 2“E++. D

Thus,

204 ES 11051l

(6.25)
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< Cgr(fl;:.+3)/2(u+1)n1/4 E;’b(El,b+n5/4_2ME+ 1 )(2M+1)/4(U—+1)

utz.b
+C(gn 0+ bHn'/ E}. S(E1p +n7/4 2“E++ b)1/2
2043)/2(u+1
< CSr(z,;If )/2(u+1) E+ (n3/2 ZM.E +n5/4 Z[LE+ ’b)(zu+1)/4(u+1)
+C(en,p +b?) E*., (n3/2 HE,, +n5/4 2“E;+1 PEe

< Cey, (2M+3)/2(M+1) (3 4u)(2u+1)/8(,u.+1)(E+

)1 1/4(u+1)
/L+ b

+Cen,p +bHnE—4AET

p+lb
Hence, for large n,
— \/EFNH > 0.
Since
Gy = ("Vg, #"Vg) + (" V2Vg, "2V ),
and (6.16),

G, =2"Vg, Z'Vg)+ 2"V, a2V g)
=22 = D) Vg + A DN + " 02, A" V).
By (6.18), one has
("Vg, "Vg) <N/ VglhIVelly < V=117 Vgl Vel
< %mﬂldmv@;u% +IVel}) = %mm

Noting that AN =Prd/ N = P> (V) (N, 1), one has for some constant K > 0,
ANy < KIIN[lus1-
This implies

Gy < 2 —b)Vn —1G, + 2K |[Nllw+1 Vgl + 211 Q2llu I Vel
< Q =)V —1G, +2y/G (K /For1/n+11021l). (6.26)
From (6.20), (6.26), we get

gt W=D 5

1 —— = n

g (2 - b?) g
>2\/@E;+lb+2(d}N+Q1,Vf+m%%Vf)M;
L,

44/
— 21— 0¥ — 16, — b2) 3 SG (K P+ 101

_ 2t _ +
>2/1-PE 2\/EM+%,,,(\/ Fus/n+1Q1l,1)
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— =V =TEL =2 B (K Fuiin +11Qa1)
>WI-PEL, =200 ME 4 B0,

-~ PVa—IE,,  — 2 BT (Kn—3/4\/ETb #1021,
>N -PE 20 E e Q1.1

_ ZW\/WE;%,,, —onl/8 E;+%’b(l(n—5/4 /E;+%,b +1102llu)
> V1= = =D/m) =207 2k MET |

_on,— A [+ _h 178 ¥
2n EW%,b”Ql"u% 2n Eu+%,b”Q2”“' (6.27)

Using Proposition 6.1 and Lemma 6.1 to obtain
2p+1)/2 _ B
1021, < Cel?h™ VP (Ey 40 3/4E1§;,b)(zﬂ 1)/4p

+C(enu + b (E1p+ n*3/4E;b)‘/2

< Cgr(fl/f+l)/2u(nl—2uE;+l , +n3/4—2uE+ 1 )(2#-1)/4u
2

2y (121 3/4— 2u + 1/2
+Cen,u+b7)(n Eu 1p*n E+ )

—Ou—1)2 _
< Ceppn Q2u—1) /4M(E+ 1 )(ZM D)/4u

+C(en,u +bHn'?~ “(E* )12, (6.28)

/,L+ b
Similarly,
” Q1 ||M+% < Csn,y,(El,b + n—3/4E‘§ b)(4ﬂ«-1)/2(4ﬂ+1)

+C (e, +bM)(Erp + ;1—3/415;]7)1/2

—Qu—1)@4u—1)/2(4u+1 4u—1)/2(4pu+1
< Ceppyn Cu—1(4pn )/(W)(E;%,b)(u )/2(4p+1)

+C(np + b0 P7HET | )12, (6.29)

p.+%,b
Thus, combining (6.27), (6.28) and (6.29),
E* 2V1 - b? 3/4G

wryb (2 —b?)

> 2V1 =621 —/(n—1)/n) =20/ — 21<n—9/8)E;+l )
25

—1/4—Q2pu—1)(4u—1)/2(4p+1 4/ (dp+l
— Cepyn /A= 2u=DEu )/(M+)(E;+%,b) 14/ (4p+1)

— Cenp + DB HEY |

_ P Y/ Ryp—
C(en,+b)n E/ ] jed b

u+ty,b
_ 1/8—Qu—1)2/4p ( o+ (4u—1)/4p
Cep un (Eu+%,b)



284 C. Hao, T. Luo

> LWT20 — a8 = a5 = Clon P E"
3
— Ce, . p3/4—Qu—Dn- 1)/2(4“+])(E+ )4u/(4u+1)
n,un ;L+ b

_ 9/8—Q2u—17?/4( p+ (4u—1)/4u
an,un (El/-+%»b) ]a

which is positive for large n provided u > 2.
Therefore, we have proved the desired results. O

Theorem 6.1. Let i > 2 and |b| < 1. For large n, E+ B0 = E;’b(O)eV 1=b*/nt for
E, F and G in the invariant set of Proposition 6.2.

Proof. Tt follows from (6.20) and similar arguments for (6.21), and (6.19) that
Ej > V1= bE" s> V1-b2n'?El .

which yields the desired estimates. O

6.4. Ill-posedness. The ill-posedness theorem is the following:

Theorem 6.2. Suppose |b| < 1. For the initial data 20 = {z € C, |z|] < 1}, £,(0) = z,
én(O) = e_"1/4z +iz (n = 2)and Hy(z) = ibz for z € 20, £, (t) (n = 2) be the solution
to problem (4.1) in some time interval [0, T]. Then, for p = 2, |(y2(0), y,(0)||l, — O
as n — o090, but for any t > 0,

[ (Yn (@), Yn ()|l = 00, asn — oo,
where
Y (1) = &u (1) = (),
and n(t, z) = élzisa special solution to (4.1).

Proof. Decompose y, into V f + Vg + N, then we define E + b F,, and G, which are in

the invariant set of Proposition 6.2 at time r = 0. Hence, EJr »(1) = Ej + 5 (0)e 1=b*/nt
by Theorem 6.1. However,

ELp ) = [ 11 VT RV gl
2

=f I — Dyfe"* 2 2dx
22

2 1 1/4
:/ dG/ e (n = )P dr

2 (n — 1)+ opl/e
=" ¢ .
2n+1
Therefore,

Ef () > 2 (n — 1) /71 B2 it — 2n1/4
PRI n+d
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which tends to oo for any ¢ > 0 as n — oo. Therefore,

1n (), Y ()l — 00
fortr > 0. O

The above theorem shows the ill-posedness for that solutions ¢, (t) would exist and
converge to 7(¢) on some interval [0, T] if (4.1) were well posed.

The final remark is that the analysis of this paper is uniform in the vacuum perme-
ability o > 0 as long as we take ,32 < min(1, po) in the proofs.
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