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when the Taylor sign condition is violated given [1], and the well-posedness of a linearized problem
given in [2] in general n-dimensions (n ⩾ 2) when the Taylor sign condition is satisfied and the free
boundaries are closed.

Keywords: free boundary problems; incompressible ideal magnetohydrodynamics equations;
ill-posedness; linearized problem; well-posedness

1. Introduction

The free boundary problem for the incompressible ideal magnetohydrodynamics (MHD) equations
can be described by 

vt + v · ∇v + ∇p = µH · ∇H, inD, (1.1)
Ht + v · ∇H = H · ∇v, inD, (1.2)
div v = 0, div H = 0, inD, (1.3)

where v is the velocity field, H is the magnetic field, p is the total pressure including the fluid pressure
and the magnetic pressure, and µ > 0 is the vacuum permeability,D = ∪0⩽t⩽T ({t}×Ωt),Ωt ⊂ R

n (n ⩾ 2)
is the domain occupied by the fluid at time t.
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The conditions on the free boundary ∂D are

H · N = 0, p = 0, on ∂D, (1.4)
(∂t + vk∂k)|∂D ∈ T (∂D), (1.5)

where N is the exterior unit normal to Γt := ∂Ωt. The condition p = 0 indicates that the total pressure
vanishes outside the domain. Roughly speaking, the motion of the free boundary which is the level
set of the total pressure is determined by the fluid velocity, the acceleration of the free boundary is
determined by the total pressure and the magnetic tension. With the assumption that the boundary Γt

is a perfect conductor, one has that H · N = 0, which holds true for all t ∈ [0,T ] if it holds initially as
showed in [3]. Therefore, it is a constraint on the initial data.

Given a domain Ω ⊂ Rn, and initial data (v0,H0) satisfying the constraint (1.3), the free bound-
ary problem is to seek a set D ⊂ [0,T ] × Rn and vector fields (v,H) solving (1.1)–(1.5) with initial
conditions

{x : (0, x) ∈ D} = Ω; v = v0, H = H0, on {0} ×Ω. (1.6)

Set Ωt = {x : (t, x) ∈ D}. Motivated by the Taylor sign condition on the fluid pressure for the Euler
equations, the following condition for the total pressure was raised in [3]:

∇N p ⩽ −c0 < 0 on ∂D, (1.7)

where ∇N = N i∂xi . Here the summation convection over repeated upper and lower indices has been
used. In [3], a priori estimates of Sobolev norms for υ and H and geometric quantities of the evolving
free boundary ∂D for the problem (1.1)–(1.6) were derived under the condition (1.7). We also showed
in [1] that the above free boundary problem (1.1)–(1.6) under consideration would be ill-posed at least
for the case n = 2 if the condition (1.7) was violated. Thus, it will be much reasonable and necessary to
require this condition (1.7) in the studies of well-posedness of the considering free boundary problem
of incompressible ideal MHD equations.

Due to their importance both in practice and nonlinear PDE theory, fluids free boundary problems
arising from physical, engineering and medical models have received extensive attention. Typical ex-
amples include water waves, evolution of boundaries of stars, vortex sheets, multi-phase flow, reacting
flow, shock waves, biomedical modeling such as tumor growth, cell deformation, etc. In the most fun-
damental and simplest setting, important progress has been made on the free boundary problem of the
incompressible Euler equations. For this problem, with the gravity modeling water waves, the local
well-posedness in Sobolev spaces for inviscid irrotational flow was obtained first by Wu in [4, 5] for
2D and 3D, respectively. For the cases without the irrotational assumption, finite depth water waves,
lower regularity, uniform estimates with respect to surface tension, etc., substantial progresses have
been made, one may refer to [6–19] for these results. For the compressible inviscid flow, the local-
in-time well-posedness of smooth solutions was established for liquids in [20, 21] (see also [22] for
higher order energy estimates and large sound speed limit and [23] for the zero surface tension limits),
the effects of heat-conductivity to fluid free surface of highly subsonic flow which is in between the
compressible and the incompressible are studied in [24].

In many important physical situations, magnetic fields are essential (cf. [25–27]). Examples include
solar flares in astrophysics [27]. In the study of the ideal MHD free boundary problems with a bounded
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initial domain homeomorphic to a ball, under the condition (1.7), the authors derived a priori estimates
in [3] for the case when the size of the magnetic field is invariant on the free boundary. Luo and
Zhang [28] obtained a priori estimates for the low regularity solution in the case when the domain
has small volume. For the two-dimensional case, if the condition (1.7) is violated, we showed the
ill-posedness in [1]. For the problem (1.1)–(1.6) in three dimensions, a local existence result was
established in [29], for which the detailed proof is given in an initial flat domain of the form T2× (0, 1),
for a two-dimensional period box T2 in x1 and x2. With the same set-up of the initial domain, the local
well-posedness is obtained in [30] by Gu, Luo and Zhang for the case with the surface tension. For a
general free boundary not restricted to the case of a graph, it might be feasible to reduce the problem to
solving several free boundary problems of free boundaries being graphs simultaneously to use several
coordinate charts, which should be quite technically involved, however, and this approach seems very
difficult to be applied to study the long time evolution problem for general free domains. With the
motivation of contributing to the study of the ideal MHD free surface problem with free closed curved
surface with large curvature, the well-posedness of a linearized problem was proved by the authors
in [2], via geometric approaches motivated by [11], [31] and [21] for the Euler equations of fluids, and
developed in [3] for MHD equations and [28] for an inviscid highly subsonic heat-conductive fluid.

We survey here some related results of MHD free boundary problems. For the case where the
magnetic field is zero on the free boundary and in vacuum, in the three-dimensional space with infinite
and finite depth settings, Lee proved the local existence and uniqueness of the free boundary problem of
incompressible viscous-diffusive MHD flow in [32], he also proved in [33] a local unique solution for
the free boundary MHD without kinetic viscosity and magnetic diffusivity via zero kinetic viscosity-
magnetic diffusivity limit. For the case when the magnetic field is constant on the free surface and
outside an unbounded domain, the convergence rates of inviscid limits for the free boundary problems
of the three-dimensional incompressible MHD with or without surface tension were studied in [34].
For the free boundary problems of compressible invisicd MHD, please refer to the recent results of
Trakhinin and Wang in [35, 36].

The plasma-vacuum interface problem is a problem with an interface separating the plasma and
vacuum regions. In the plasma region, the motion is governed by MHD equations, and in the vacuum
region, the magnetic field satisfies the pre-Maxwell system that div H = curl H = 0. On the interface,
the normal component of the magnetic fields and the total pressure are continuous across the interface.
The a priori estimates were derived by Hao in [37] for the plasma-vacuum interface problem in a 3D
bounded domain under the Taylor sign condition.

For a linearized plasma-vacuum interface problem of compressible MHD in 3D, the stability
condition that the magnetic fields on two sides of the interface are noncollinear was proposed by
Trakhinin [38]. Under this condition, for the plasma-vacuum interface problem, the local-in-time well-
posedness was established by Secchi-Trakhinin [39] for compressible MHD, by Morando-Trakhinin-
Trebeschi [40] for a linearized problem of incompressible MHD, and finally by Sun-Wang-Zhang [18]
for the nonlinear problem.

The current-vortex sheet problem is a problem with an interface across which the tangential velocity
and the tangential magnetic fields may be discontinuous, but the normal velocity, normal magnetic
fields and the total pressure are continuous. In the regions separating by the interfaces, the motions are
governed by MHD equations. For the current-vortex sheet problem, the neutral stability condition of
planner compressible current-vortex sheets was identified by Trakhinin [41]. Using the Nash-Moser

Electronic Research Archive Volume 30, Issue 2, 404–424.



407

iteration, Chen-Wang [42] and Trakhinin [38] proved the existence of the compressible current-vortex
sheet. In the two-dimensional case, the linear stability of current-vortex sheet was analyzed by Wang
and Yu [43]. In 3D, the nonlinear stability of the current-vortex sheet to the incompressible MHD
equations was proved by Sun, Wang and Zhang [44] under the Syrovatskij stability condition, which
first justifies rigorously the stabilizing effect of the magnetic field on Kelvin-Helmholtz instability.
When the magnetic diffusion (resistivity) is taken into account, the global-in-time well-posedness of
a free interface problem for the incompressible inviscid resistive MHD was proved by Wang and Xin
in [45].

In the rest of the paper, we will present the main results and the key ideas of the proofs on the
ill-posedness of the free boundary problem of the ideal incompressible MHD in 2D when the Taylor
sign condition is violated [1] and the well-posedness for a linearized problem when the free boundary
is a closed hyper-surface in Rn and the Taylor sign condition holds [2].

2. Ill-posedness of free boundary problem of the incompressible ideal MHD

In this section, we present the main results and the key ideas of the proofs in [1] for the ill-posedness
of the free boundary problem of ideal incompressible MHD in 2D when the Taylor sign condition is
violated. Details for some derivations can be found in [1].

We rewrite the problem as the free boundary problem for the incompressible ideal MHD equations

∂tυ + υ · ∇υ + ∇q = 1
µ0

H̃ · ∇H̃, in Ωt, (2.1a)

∂tH̃ + υ · ∇H̃ = H̃ · ∇υ, in Ωt, (2.1b)
div υ = 0, div H̃ = 0, in Ωt, (2.1c)
∂tΓ(t) = υ · N , H̃ · N = 0, q = 0, on Γt, (2.1d)
υ(0, x) = υ0(x), H̃(0, x) = H̃0(x), x ∈ Ω := Ω0, (2.1e)

where υ is the velocity field, H̃ is the magnetic field, q is the total pressure and µ0 > 0 is the vacuum
permeability;N is the exterior unit normal vector on the boundary Γt,Ω0 is the bounded initial domain.
In [3], we identified a stability condition,

∇Nq < 0, on ∂Ωt (2.2)

under which the a priori estimates are derived.
In 2-spatial dimension case, there is a particular steady solution to (2.1) with rigid rotation: For

t ⩾ 0, Ωt = {x ∈ R2 : |x| ⩽ 1} = B1(0), the unit disk, υ(t, x) = (−x2, x1) = x⊥, H̃(t, x) = bυ(t, x) (for
x = (x1, x2) and b ∈ R). In this case, q is solved by the following Dirichlet problem:

∆q = 2
(
1 −

b2

µ0

)
, in B1(0); q = 0, on ∂B1(0).

For this solution, it is easy to verify that, on ∂B1(0),

∇Nq =
(
b2

µ0
− 1

)
(υ · ∇υ) · x = 1 −

b2

µ0
, (2.3)
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by noting that N = x on ∂B1(0). Therefore, the Taylor sign condition (2.2) fails in this case when
µ0 ⩾ b2. A natural question arises: For µ0 ⩾ b2, is the free boundary problem (2.1) still well-posed?
We prove in [1] that this is not the case when µ0 ≫ b2 in the following sense:

A family of initial data for the problem (2.1) can be constructed which converges to the above
particular steady rotation solution. However, as long as t > 0, the family of solutions to (2.1) with
those initial data diverges in some Sobolev Hµ-norm for µ ⩾ 2.

This construction is strongly motivated by that of Ebin [13] for incompressible Euler equations.

2.1. Lagrangian description

For simplicity, we denote H = µ−1/2
0 H̃. Then, the problem (2.1) reduces to the case µ0 = 1, i.e.,

∂tυ + υ · ∇υ + ∇q = H · ∇H, in Ωt, (2.4a)
∂tH + υ · ∇H = H · ∇υ, in Ωt, (2.4b)
div υ = 0, div H = 0, in Ωt, (2.4c)
∂tΓ(t) = υ · N , H · N = 0, q = 0, on Γt, (2.4d)
υ(0, x) = υ0(x), H(0, x) = H0(x), x ∈ Ω := Ω0. (2.4e)

Denote η = η(t, a) = (η1, η2) the position of a fluid element or parcel at time t with a = (a1, a2) being
the fluid element label, defined to be the position of the fluid element at the initial time, a = η(0, a).
Let Ωt be the domain occupied by the fluid at time t, then η : Ω0 → Ωt is assumed to be 1-1 and onto,
at each fixed time t.

Let ∂ηi/∂a j =: ηi
, j be the deformation matrix, and J := det(ηi

, j) be Jacobian determinant, i.e.,

J =
1
2
εk jε

ilηk
,iη

j
,l,

where εi j = ε
i j is the two-dimensional unit, purely antisymmetric, Levi-Civita tensor density (repeated

indices are summed). In this notation,

dη = Jda,

and components of an area form map according to

(dS (η))i = Ja j
,i(dS (a)) j, (2.5)

where Ja j
,i is the transpose of the cofactor matrix of η j

,i, given by

Ja j
,i = εikε

jlηk
,l.

Clearly, η̇(t, a) = υ(t, x), where η̇(t, a) = ∂η(t,a)
∂t . The label of the element will be given by a =

η−1(t, x) =: a(t, x). For an incompressible fluid, J = 1, so that η = η(t, a) can be inverted to obtain
a = a(t, η),

ηi
,ka

k
, j = ai

,kη
k
, j = δ

i
j,
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where ak
, j = ∂a

k/∂η j. Moreover,

∂

∂xk = ai
,k
∂

∂ai

∣∣∣∣∣
a=a(t,x)

.

Hence, for f (t, a) = f̃ (t, x) = f̃ (t, η(t, a)) and for x = η(t, a),

ḟ |a=a(t,x) =
∂ f̃
∂t
+ η̇(t, a)

∂ f̃
∂xi

∣∣∣∣∣∣
a=a(t,x)

=
∂ f̃
∂t
+ υ · ∇ f̃ (t, x).

Then, the magnetic field reduces to

Hi = ηi
, jH

j
0, (2.6)

which can be also obtained from the equation (2.4b). The details of the above derivation can be found
in [1].

2.2. The equation of pressure and position

In view of (2.4a), (2.4c) and q = 0 on Γt = η(Γ), one has{
∆q = tr(DH)2 − tr(Dυ)2, in Ωt, (2.7a)
q = 0, on Γt, (2.7b)

where tr(Dυ)2 := ∂iυ
j∂ jυ

i and tr(DH)2 := ∂iH j∂ jHi are the trace of the square of the matrices of
differentiations of υ and H, respectively. This elliptic Dirichlet boundary value problem admits a
unique solution, so ∆−1 is well-defined. Here ∆−1g = f in a domain means ∆ f = g in this domain and
f = 0 on the boundary of this domain. Hence,

q = ∆−1(tr(DH)2 − tr(Dυ)2).

With this, we rewrite (2.4a) as

η̈ = (∇(∆−1(tr(Dυ)2 − tr(DH)2))) ◦ η + (H · ∇H) ◦ η. (2.8)

Since υ(t, x) = η̇(t, a(t, x)) and (2.6), (2.8) is of the form

η̈ = Z(η, η̇). (2.9)

The initial value problem for (2.9) with the initial data η(0) = η0 and η̇(0) will then be studied.

2.3. A steady state solution of MHD flow spinning at constant angular velocity

Let Ω be the unit disc in R2. We identify the points in Ω with the complex numbers C. Then
η(0) = η0 is the inclusion of Ω in C. η̇(0) is chosen to be a π/2 rotation. For z ∈ Ω being a complex
variable, η(0, z) = z and η̇(0, z) = iz. We set H0(η(z)) = ibz, in view of the fact H0 · N = 0 on the
boundary.

Therefore, (η(t, z) = eitz, H(t, z) = ibz) is the solution to (2.8) with these initial data, and η̇(t, z) =
iη(t, z) = ieitz, , a(t, z) = e−itz, υ(t, z) = iz. Moreover, Dη = eitI where I is the 2 × 2 unit matrix (δi

j).
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By virtue of (2.6), one has H(t, z) = ibz. The vector fieldsυ = (−x2, x1) and H = b(−x2, x1) are both

divergence-free, and Dυ =
(
0 −1
1 0

)
and DH =

(
0 −b
b 0

)
. Thus, q = (b2 − 1)∆−1(−2) = 1−x2

1−x2
2

2 (b2 − 1)

is the solution to Dirichlet problem (2.7), and ∇q = (1 − b2)z. Moreover, H · ∇H = −b2z.
Since η̇(t, z) = iη(t, z) and η̈(t, z) = −η(t, z),

η̈(t, z) + ∇q(t, η(t, z)) = (H · ∇H)(η(t, z)),

i.e., η(t, z) satisfies (2.8).

2.4. Reformulation in Lagrangian variables

The following operators are defined in [13]: ℜη : C∞(η(Ω))→ C∞(Ω) defined byℜη( f ) = f ◦ η =
f (η). The inverse ofℜη isℜη−1 is given byℜη−1(g) = g ◦ η−1 = g(η−1) where η−1(t, x) = a(t, x).

For a differential operator P, we set Pη =: ℜηPℜη−1 , e.g., Dη = ℜηDℜη−1 : C∞(Ω)→ C∞(Ω), with
D being the total derivative, and the operator ∇η = ℜη∇ℜη−1 where ∇ is the gradient. Let

K(η) = ℜη∆ℜη−1 : C∞0 (Ω)→ C∞(Ω).

Namely, K(η) = ∆η, and

K(η)−1 = ℜη∆
−1ℜη−1 .

Hence, (2.9) can be written as

η̈ =∇ηK(η)−1tr(Dηη̇)2 − ∇ηK(η)−1tr(η j
,klℜη((η

−1)l
,iH

k
0))2

− ∇ηK(η)−1tr(η j
,klℜη(H

k
0Hl

0),i) − ∇ηK(η)−1tr(η j
,kℜηH

k
0,i)

2

+ η,nmℜη((η−1)m
,l Hl

0Hn
0) + η,nℜη(Hn

0,lH
l
0).

(2.10)

The details of derivation of (2.10) can be found in [1].

2.5. Linearization

Consider a family of solutions to (2.10) parameterized by s, call it ζ(t, s). Suppose that ζ is differ-
entiable in s and set

w(t) = ∂sζ(t, s)|s=0,

the tangent of ζ(t, s) at s = 0. Denote ζ(t, 0) by ζ(t). Then one has

ẅ(t) =DZ(ζ(t), ζ̇(t))(w(t), ẇ(t)). (2.11)

Set u = ℜζ−1w , w = u ◦ ζ. Clearly K(ζ)−1 is inverse to K(ζ) if the domain of K(ζ) is C∞0 (Ω).
If this domain is enlarged to C∞(Ω), K(ζ)−1 is only a right inverse. That is K(ζ)K(ζ)−1 = I, but
K(ζ)−1K(ζ) = I − H(ζ), where H(ζ) is defined as follows. For ζ = Id, the identity, H(ζ) projects a
function onto its harmonic part. Thus, if H(Id) f = g then f = g on ∂Ω and ∆g = 0 = K(Id)g. For
arbitrary ζ,H(ζ) f = g if f = g on ∂Ω and K(ζ)g = 0. It yields

ẅ =[u · ∇,∇∆−1]ζtr(Dζ ζ̇)2 − ∇ζ(H(u · ∇)∆−1)ζtr(Dζ ζ̇)2
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+ ∇ζ∆
−1
ζ

(
2tr

(
−(Du ◦ ζ)((Dζ)−1Dζ̇)2 + (Dζ)−1Dẇ(Dζ)−1Dζ̇

))
− [u · ∇,∇∆−1]ζtr(ζ

j
,klℜζ((ζ

−1)l
,iH

k
0))2

+ ∇ζ(H(u · ∇)∆−1)ζtr(ζ
j
,klℜζ((ζ

−1)l
,iH

k
0))2

− ∇ζ∆
−1
ζ (2ζ i

,k′l′ℜζ((ζ
−1)l′
, jH

k′
0 )w j

,klℜζ((ζ
−1)l
,iH

k
0))

+ ∇ζ∆
−1
ζ (2ζ i

,k′l′ζ
j
,klℜζ((ζ

−1)l′
, jH

k′
0 (ζ−1)l

,nun
,iH

k
0))

− ∇ζ∆
−1
ζ (2ζ i

,k′l′ζ
j
,klℜζ((ζ

−1)l′
, jH

k′
0 (ζ−1)l

,iH
k
0,mum))

− [u · ∇,∇∆−1]ζ(ζ
j
,klℜζ(H

k
0Hl

0), j) + ∇ζ(H(u · ∇)∆−1)ζ(ζ
j
,klℜζ(H

k
0Hl

0), j)

− ∇ζ∆
−1
ζ (wi

,klℜζ(H
k
0Hl

0),i) − ∇ζ∆−1
ζ (ζ i

,klℜζ((H
k
0Hl

0),imum))

− [u · ∇,∇∆−1]ζtr(ζ
j
,kℜζH

k
0,i)

2 + ∇ζ(H(u · ∇)∆−1)ζtr(ζ
j
,kℜζH

k
0,i)

2

− ∇ζ∆
−1
ζ (2ζ i

,k′w
j
,kℜζ(H

k′
0, jH

k
0,i)) − ∇ζ∆

−1
ζ (2ζ i

,k′ζ
j
,kℜζ(H

k′
0, jH

k
0,ilu

l))

+ ζ,nmℜζ((ζ−1)m
,l Hl

0Hn
0) + ζ,nℜζ(Hn

0,lH
l
0).

Therefore, it turns out

ẅ =(1 − b2)
(
[u · ∇,∇∆−1]η(−2) − ∇η(H(u · ∇)∆−1)η(−2)

)
(2.12a)

+ ∇η∆
−1
η

(
2tr

(
Du ◦ η + ie−itDẇ

))
(2.12b)

− ∇η∆
−1
η (wi

,klℜη(H
k
0Hl

0),i) (2.12c)

− eit∇η∆
−1
η (2w j

,kℜη(H
i
0, jH

k
0,i)) (2.12d)

+ b2eitη. (2.12e)

2.6. Special solutions of (2.12).

Assume that w = ∇ f (t) ◦ η for a harmonic function f (t) on Ω so that u = ∇ f a harmonic gradient.
Thus, Dw = Dη(D∇ f ) ◦ η and tr(ie−itDẇ) = 0, so (2.12b) , (2.12c) and (2.12d) vanish. Thus,

(∇ f ◦ η)·· =(1 − b2)x · ∇(∇ f ◦ η) + b2eitη, (2.13)

where x · ∇ is the radial derivative. The following lemma in [13] is crucial.

Lemma 2.1 ( [13]). If f is harmonic, and η(t, z) = eitz, then there exists a harmonic function g such
that ∇ f ◦ η = ∇g.

In view of this, we may rewrite (2.13) as

(∇g)·· = (1 − b2)x · ∇(∇g) + b2e2itz. (2.14)

SetA byA∇g = (x · ∇)∇g. Let g(z) = Re zn (n ⩾ 1), ∇g = nz̄n−1. One then hasA∇g = nz · ∇z̄n−1 =

n(n−1)z̄n−1 = (n−1)∇g. Similarly,A∇g = (n−1)∇g if g(z) = Re izn (n ⩾ 1), ∇g = −inz̄n−1. It is worth
noting that E := {nz̄n−1, inz̄n−1}∞n=1 forms a basis of the set of Harmonic gradients on Ω . Therefore, A
has this set as a complete set of eigenfunctions and has double eigenvalues 0, 1, 2, · · · . By separating
variables of the form ∇g(t, z) = σ(t)h(z) for h ∈ E, we write (2.14) as

σ̈(t) = (1 − b2)(n − 1)σ(t) + b2e2itz/h(z). (2.15)
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Let B =
√

(1 − b2)(n − 1). The usual solution to (2.15) is of the form

σ(t) =C1eBt +C2e−Bt −
b2z

2Bh(z)

(
2B

B2 + 4
e2it −

e−Bt

B + 2i
−

eBt

B − 2i

)
,

so that the solution of (2.14) is of

wn(t, z) = C1eBtnz̄n−1 +C2e−Btnz̄n−1 −
b2z
2B

(
2B

B2 + 4
e2it −

e−Bt

B + 2i
−

eBt

B − 2i

)
.

Assuming the initial conditions wn(0) = 0 and ẇn(0) = e−n1/4
z̄n, then for n ⩾ 2,

wn(t) =
1
B

e−n1/4
sinh(Bt)z̄n +

b2z
B2 + 4

(
cosh(Bt) +

2i
B

sinh(Bt) − e2it
)

is a sequence of solutions to (2.12). When b2 < 1, this sequence is as useful as for the Euler equation,
discussed in [13], the initial data go to zero in C∞(Ω), but for any t > 0, {wn(t)}∞n=2 is unbounded in
C∞(Ω).

2.7. Construction of the sequences of initial data and solutions

Let η(t, z) = eitz, the solution to (2.8) given above, and set ζn(0, z) = η(0, z) = z and ζ̇n(0, z) =
η̇(0, z)+ e−n1/4

z̄n. Then, (ζn(0, z), ζ̇n(0, z))→ (η(0, z), η̇(0, z)) in C∞(Ω)×C∞(Ω) as n→ ∞. suppose that
there exists some positive T such that for all n, ζn(t) is the unique solution of (2.8) for 0 ⩽ t ⩽ T , the
goal is to show that ζn(t) does not converge to η(t), not in C∞(Ω) for any positive t ⩽ T . Set

yn(t) = ζn(t) − η(t). (2.16)

In view of (2.9), one has

ÿ(t) =Z, j(η, η̇)(y, ẏ) j +

∫ 1

0
(1 − s)

(∫ s

0
Z, jk(ζ(σ), ζ̇(σ))(y, ẏ)kdσ

)
(y, ẏ) jds

=:DZ(η, η̇)(y, ẏ) +
∫ 1

0
(1 − s)

(∫ s

0
D2Z(ζ(σ), ζ̇(σ))((y, ẏ), (y, ẏ))dσ

)
ds, (2.17)

where ζ(σ) = ζ + σ(η − ζ), and we suppress the subscript “n” in ζ for simplicity.

2.8. The estimates of the integrand in (2.17)

The following Proposition and Lemmas are proved in [1].

Proposition 2.2. Let s ⩾ 1 and H0 ∈ H s+2. Then,

∥D2Z(ζ, ζ̇)((y, ẏ), (y, ẏ))∥s ⩽C∥(y, ẏ)∥(2s−1)/2s
1 ∥Ds+1(y, ẏ)∥(2s+1)/2s

0

+C∥(y, ẏ)∥s∥Ds+1(y, ẏ)∥0 +Cb2∥y∥s+2,

where C is uniform for all (ζ, ζ̇) in a H s+3 neighborhood of the curve (η(t), η̇(t)).

Lemma 2.3. [1] Let m > l ⩾ 1 be an integer satisfying ∥Dm+1y∥0 ⩽ Cm∥Dy∥0. Then, it holds

∥y∥l+1 ⩽ C∥y∥1.

Corollary 2.4. Let m > s be an integer satisfying ∥Dm(y, ẏ)∥0 ⩽ Cm∥(y, ẏ)∥0. Then, it holds

∥D2Z(ζ, ζ̇)((y, ẏ), (y, ẏ))∥s ⩽ C∥(y, ẏ)∥2−1/m
0 ∥Dm(y, ẏ)∥1/m0 +Cb2∥y∥s+2.
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2.9. Decomposition of solutions

In [1], we decompose y = yn into three parts as follows. Let q := y − ∇∆−1div y, the divergence free
part of y, and h be a harmonic function satisfying

⟨∇h, ν⟩ = ⟨q, ν⟩, on ∂Ω.

Define

N = y − ∇h.

Since h is a harmonic function, there exists a holomorphic function φ(z) such that h is the real part of
φ(z). Hence, h = Re

∑∞
j=0 a jz j. Set g = Re

∑n−1
j=0 a jz j and f = h − g = Re

∑∞
j=n a jz j. Then y can be

decomposed as

y = ∇ f + ∇g + N. (2.18)

The projection onto the i-th summand of (2.18) is denoted by Pi, i = 1, 2, 3.
Set

Q = Q(y, ẏ) :=
∫ 1

0
(1 − s)

(∫ s

0
D2Z(ζ(σ), ζ̇(σ))((y, ẏ), (y, ẏ))dσ

)
ds,

and Qi = PiQ for i = 1, 2, 3. Then (2.17) can be written as

ÿ = DZ(η, η̇)(y, ẏ) + Q. (2.19)

It follows from (2.12),

DZ(η, η̇)(y, ẏ) = − (1 − b2)y + Ãy + (∇∆−1)ηtrM + b2eitη,

where Ãy = (∇H)η(⟨y, η⟩) which depends on η, and

M = 2DηN + 2ie−itDṄ − N i
,klℜη(H

k
0Hl

0),i′ − 2eitN j
,kℜη(H

i
0, j′H

k
0,i). (2.20)

Hence,

ÿ = (b2 − 1)y + Ãy + (∇∆−1)ηtrM + b2eitη + Q. (2.21)

Apply P3 to (2.21) to obtain, by noticing that P3Ãy = 0, P3(∇H)η = 0, (P1 + P2)(∇∆−1)η = 0 and
P3η = η, in view of (2.20),

N̈ =(b2 − 1)N + 2(∇∆−1)ηdiv ηN + 2ie−it(∇∆−1)ηtr(DṄ) + b2eitη + Q3

− (∇∆−1)η(N i
,klℜη(H

k
0Hl

0),i) − 2eit(∇∆−1)η(N
j
,kℜη(H

i
0, jH

k
0,i))

=:(b2 − 1)N + B1N + B2Ṅ + b2eitη + Q3 + B3N + B4N, (2.22)

Applying P1 + P2 to (2.21) yields

∇̈ f + ∇̈g =(b2 − 1)(∇ f + ∇g) + Ã(∇ f + ∇g) + ÃN + Q1 + Q2.

Set Ã j = P jÃ for j = 1 or 2. The fact P jη = η for j = 1 or 2 due to P3η = η yields

∇̈ f =(1 − b2)A∇ f + Ã1N + Q1, (2.23)
∇̈g =(1 − b2)A∇g + Ã2N + Q2. (2.24)

In this way, we have decomposed (2.19) into (2.22), (2.23) and (2.24).
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2.10. Estimates of ∇ f , ∇g and N

Let yn = ∇ fn +∇gn +Nn be the sequence of solutions with the initial data yn(0) = 0, ẏn(0) = e−n1/4
z̄n.

For any harmonic function h and any real s, let

∥∇h∥s = (As∇h,As∇h)
1
2 , (2.25)

whereAs is defined byAsz̄k = (k − 1)sz̄k. Then, for any s,

∥A∇g∥s ⩽ (n − 1)∥∇g∥s. (2.26)

For µ, ν ⩾ 1 and σ ⩾ 2, set

E±µ,b =∥∇̇ f ±
√

1 − b2A
1
2∇ f ∥2µ = ∥A

µ(∇̇ f ±
√

1 − b2A
1
2∇ f )∥20,

Eµ,b =E+µ,b + E−µ,b,

Fσ =n∥N∥2σ + ∥Ṅ∥
2
σ,

Gν =∥∇̇g∥2ν + ∥A
1
2∇g∥2ν.

(2.27)

Then we have

E±µ,b ⩾ n2(µ−ν)E±ν,b, for µ ⩾ ν. (2.28)

The following results which lead to the ill-posedness was proved in [1].

Proposition 2.5. Let µ ⩾ 2. For sufficiently large n, the set E+µ,b ⩾ E−µ,b, E+µ,b ⩾
√

nFµ+1, and E+
µ+ 1

4 ,b
⩾

2
√

1−b2

(2−b2) n3/4Gµ is invariant under the evolution defined by (2.22), (2.23) and (2.24). Of course Eµ,b ⩽
2E+µ,b.

Theorem 2.6 ( [1]). Let µ ⩾ 2 and |b| ≪ 1. For large n, E+µ,b(t) ⩾ E+µ,b(0)e
√

1−b2 √nt for E, F and G in
the invariant set of Proposition 2.5.

2.11. Ill-posedness

Theorem 2.7 ( [1]). Suppose |b| ≪ 1. For the initial data Ω0 = {z ∈ C, |z| ⩽ 1}, ζn(0) = z , ζ̇n(0) =
e−n1/4

z̄n + iz (n ⩾ 2) and H0(z) = ibz for z ∈ Ω0, ζn(t) (n ⩾ 2) be the solution to problem (2.10) in some
time interval [0,T ]. Then, for µ ⩾ 2, ∥(yn(0), ẏn(0))∥µ → 0 as n→ ∞, but for any t > 0,

∥(yn(t), ẏn(t))∥µ → ∞, as n→ ∞,

where yn(t) = ζn(t) − η(t) and η(t, z) = eitz is a special solution to (2.10).

Main idea of the proof in [1]: Decompose yn into ∇ f + ∇g + N, then we define E±µ,b, Fµ and Gµ
which are in the invariant set of Proposition 2.5 at time t = 0. Hence, E+µ,b(t) ⩾ E+µ,b(0)e

√
1−b2 √nt, by

Theorem 2.6. However,

E+µ,b(0) =
2π(n − 1)2µ

2n + 1
e−2n1/4

.
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Thus,

E+µ,b(t) ⩾
2π(n − 1)2µ

2n + 1
e
√

1−b2 √nt−2n1/4
,

which tends to∞ for any t > 0 as n→ ∞. Therefore,

∥(yn(t), ẏn(t))∥µ → ∞

for t > 0.

3. Well-posedness for the linearized problem with Taylor sign condition

In this section, we present the main results and the key ideas of the proofs in [2] for the well-
posedness of the free boundary problem of ideal incompressible MHD in general n-dimensions (n ≥ 2)
when the Taylor sign condition is satisfied. Details for some derivations can be found in [2].

3.1. Lagrangian coordinates

For the velocity field v, Lagrangian coordinates x = x(t, y) = ft(y) are given by

dx
dt
= v(t, x(t, y)), x(0, y) = f0(y), y ∈ Ω. (3.1)

In this setting, ft : Ω → Ωt is a volume-preserving diffeomorphism because of div v = 0, and the
free boundary becomes fixed in the new y-coordinates. For simplicity, we take f0 the identity operator,
that is, x(0, y) = y and Ω is just the unit ball. For convenience, the letters a, b, c, d, e, and f will refer
to quantities in the Lagrangian frame, whereas the letters i, j, k, l,m, and n will refer to ones in the
Eulerian frame, e.g., ∂a = ∂/∂ya and ∂i = ∂/∂xi.

Let

Dt =∂t + vk∂k, ∂k =
∂

∂xk =
∂ya

∂xk

∂

∂ya . (3.2)

Similar to (2.6), we have

H j(t, x(t, y)) = H̄a
0(y)
∂x j(t, y)
∂ya , (3.3)

where H̄a
0(y) = Ha

0(x(0, y)). Therefore,

Hk∂kHi = H̄a
0
∂xk

∂ya

∂yc

∂xk∂c(H̄b
0
∂xi

∂yb ) = H̄a
0∂a(H̄b

0∂bxi),

For convenience, we set

B := Ba(y)
∂

∂ya , with Ba(y) :=
√
µH̄a

0(y),

then we may write (1.1)–(1.5) as
D2

t xi + ∂iP = B2xi, in [0,T ] ×Ω,
κ := det

(
∂x
∂y

)
= 1, in [0,T ] ×Ω,

P = 0, on Γ,

(3.4)
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where P = P(t, y) = p(t, x(t, y)), ∂i is thought of as the differential operator in y given in (3.2) and Dt is
the time derivative. The initial conditions become

x|t=0 = y, Dtx|t=0 = v0, (3.5)

satisfying the constraint div v0 = 0. Taking the divergence of (3.4) to obtain

∆P = −(∂iDtxk)(∂kDtxi) + ∂i(B2xi). (3.6)

Condition (1.7) becomes

∇N P ⩽ −c0 < 0, on Γ, (3.7)

where N is the exterior unit normal to Γt parameterized by x(t, y).

3.2. Linearization

Denote δ the variation w.r.t. certain parameter r in the Lagrangian coordinates:

δ =
∂

∂r

∣∣∣∣∣
(t,y)=const

. (3.8)

Think of x(t, y) and P(t, y) as depending on r and differentiating with respect to r, say, x̄(t, y, r) and
P̄(t, y, r) respectively. Namely, (x̄, P̄)|r=0 = (x, P). Differentiating (3.2) and using the formula for the
derivative of the inverse of a matrix, δM−1 = −M−1(δM)M−1, one has the commutator

[δ, ∂i] = −(∂iδxk)∂k. (3.9)

Let

(δx, δP) =
(
∂x̄
∂r
,
∂P̄
∂r

)∣∣∣∣∣∣
r=0

, (3.10)

satisfying div δx = 0 and δP|Γ = 0.
Thus,

D2
t δx

i + ∂iδP − ∂i(δxk∂kP) − δxk(∂kDtvi − ∂k(B2xi)) − B2δxi = 0. (3.11)

Set

Wa =δxi∂y
a

∂xi , δx
i = Wb ∂x

i

∂yb , q = δP. (3.12)

Let g be the metric δi j expressed in the Lagrangian coordinates, i.e.,

gab = δi j
∂xi

∂ya

∂x j

∂yb , (3.13)
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and gab be the inverse of gab. Then the time derivatives of the metric and the vorticity in the Lagrangian
coordinates, respectively, are given by

ġab = Dtgab =
∂xi

∂ya

∂xk

∂yb (∂kvi + ∂ivk), and ωab =
∂xi

∂ya

∂xk

∂yb (∂ivk − ∂kvi). (3.14)

One therefore has

D2
t Wd + gda(ġab − ωab)DtWb − gda∂a(Wc∂cP) + gda∂aq

+ gdaδil∂axl[Wc∂c(B2xi) − B2(Wc∂cxi)] = 0. (3.15)

The vector field B can be regarded as a tangential derivative since B = Ba∂a is time independent and
∂aBa = 0. Thus, there is an advantage to use the Lie derivative corresponding to B given by

LBWa = BWa − ∂bBaWb, (3.16)

which is divergence-free since divLBW = ∂a(Bb∂bWa − ∂bBaWb) = 0 if div W = 0. One also has

LB∂cxi = B∂cxi + ∂cBd∂d xi. (3.17)

Denote

Ẇa(t, y) := DtWa(t, y), Ẅa := D2
t Wa. (3.18)

Since q = δP, one has q|Γ = 0. One thus has the following system, in view of (3.15) and (1.3),

Ẅd − L2
BWd + gda∂aq − gda∂a(Wc∂cP) + gda(ġab − ωab)Ẇb

− 2gdaδil∂axlLB∂cxiLBWc = 0,
div W = κ−1∂a(κWa) = 0,
q|Γ = 0,
W |t=0 = W0, Ẇ |t=0 = W1,

(3.19)

where div W0 = div W1 = 0.

3.3. The equation of ∆q

(3.19) can be expressed in one equation, because q = δP is determined as a functional of W and Ẇ.
In this setting, one can have an elliptic equation for q. For this, one has to derive div Ẅ first. Denote

ua :=
∂ya

∂xi vi, and ua = gabub.

From div W = 0, one has that div Ẅ = 0. Take the divergence of (3.19) to obtain∆q = ∂d
(
gda∂a(Wc∂cP) − gda(ġab − ωab)Ẇb + 2gdaδil∂axlLB∂cxiLBWc),

q|Γ = 0,
(3.20)
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since divL2
BW = 0. We separate q into four parts:

q =
4∑

i=1

qi,

where qi’s satisfy the following Dirichlet problems of Poisson equations:
∆q1 = ∆(Wc∂cP), q1|Γ = 0,
∆q2 = −∂d(gdaġabẆb), q2|Γ = 0,
∆q3 = ∂d(gdaωabẆb), q3|Γ = 0,
∆q4 = 2∂d(gdaδil∂axlLB∂cxiLBWc), q4|Γ = 0.

In this setting, (3.19) becomes

L1W := Ẅ − L2
BW +AW + ĠẆ − CẆ + XLBW = 0,

where

AWd := −gda∂a(∂cPWc − q1),
ĠẆd := gda(ġabẆb + ∂aq2),
CẆd := gda(ωabẆb − ∂aq3),
XLBWd := −2gdaδil∂axlLB∂cxiLBWc + gda∂aq4.

3.4. Lie derivatives

Lie derivative of the vector field W with respect to the vector field T is given by

LT Wa = TWa − (∂cT a)Wc. (3.21)

For those vector fields, it holds div T = 0, so div W = 0 implies that

divLT W = Tdiv W −Wdiv T = 0.

The Lie derivative of a 1-form:

LTαa = Tαa + (∂aT c)αc.

An advantage to use Lie derivatives is that they also commute with the exterior differentiation,
[LT , d] = 0, and

LT∂aq = ∂aTq, (3.22)

for any function q.
For a 2-form β, the Lie derivative is given by

LTβab = Tβab + (∂aT c)βcb + (∂bT c)βac. (3.23)
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In local coordinate notation, the Lie derivative of a (r, s) tensor field β along T is given by

LTβ
a1...ar

b1...bs =Tβa1...ar
b1...bs

− (∂cT a1)βca2...ar
b1...bs − . . . − (∂cT ar )βa1...ar−1c

b1...bs

+ (∂b1T
c)βa1...ar

cb2...bs + . . . + (∂bsT
c)βa1...ar

b1...bs−1c. (3.24)

If w is a 1-form and curl wab = dwab = ∂awb − ∂bwa, then

LT curl wab = curlLT wab. (3.25)

Relation on the commutator of two Lie derivatives is

[LT ,LB]Wa = L[T,B]Wa. (3.26)

Commutator of Lie derivative and ∂a satisfies

[LT , ∂a]Wb = Wd∂d∂aT b. (3.27)

Furthermore, we set

LDt = Dt. (3.28)

We also have

[LDt ,LT ] = 0. (3.29)

3.5. Tangential vector fields and the div-curl decomposition

Definition 3.1. Let c1 be a constant satisfying∑
a,b

(|gab| + |gab|) ⩽ c2
1,

∣∣∣∣∣∂x∂y
∣∣∣∣∣2 + ∣∣∣∣∣∂y∂x

∣∣∣∣∣2 ⩽ c2
1,

and let K1 denote a continuous function of c1.

Since Ω is the unit ball in Rn, we can express the vector fields explicitly. The rotation vector fields

ya∂b − yb∂a

span the tangent space of the boundary and are divergence-free in the interior. Clearly B = Ba∂a

belongs to this space. They also span the tangent space of the level sets of the distance function from
the boundary in the Lagrangian coordinates d(y) = dist (y,Γ) = 1 − |y| for y , 0 away from the origin.
This set of vector fields is denoted by S0. Thus, B ∈ S0. We define several Vector fields as follows:
S1: span the tangential space when d ⩾ d0 and are compactly supported in the set where d ⩾ d0/2.
S = S0 ∪ S1: the family of space tangential vector fields.
T = S ∪ {Dt}: the family of space-time tangential vector fields.
R = ya∂a: radial vector field.
R = S ∪ {R}: spans the full tangent space of the space everywhere.
U = S ∪ {R} ∪ {Dt} : the family of all vector fields.

Note that

[R, S ] = 0, S ∈ S0.

The following fact is important: the commutators of two vector fields in S0 is another vector field in
S0. For i = 0, 1, let Ri = Si ∪ {R}, Ti = Si ∪ {Dt} andUi = Ti ∪ {R}.
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3.6. Several important estimates

The following estimates derived in [31] play important roles:

Lemma 3.2 ( [31, Lemma 11.3]). In the Lagrangian frame, with Wa = gabWb, we have

|LUW | ⩽K1

|curl W | + |div W | +
∑
S∈S

|LS W | + [g]1|W |

 , U ∈ R, (3.30)

|LUW | ⩽K1

|curl W | + |div W | +
∑
T∈T

|LT W | + [g]1|W |

 , U ∈ U, (3.31)

where [g]1 = 1 + |∂g|. Furthermore,

|∂W | ⩽ K1

|LRW | +
∑
S∈S

|LS W | + |W |

 . (3.32)

When d(y) ⩽ d0, we may replace the sums over S by the sums over S0 and the sum over T by the sum
over T0.

One needs to apply the lemma to W replaced by LJ
UW, and the divergence term will vanish in

applications. This makes it possible to control the curl of (LJ
UW)a = L

J
U(gabWb).

Definition 3.3. Let β be a function, a 1- or 2-form, or vector field, and letV be any of our families of
vector fields. Set

|β|Vs =
∑

|J|⩽s,J∈V

∣∣∣LJ
Sβ

∣∣∣ ,
[β]Vµ =

∑
s1+···+sk⩽µ,si⩾1

|β|Vs1
· · · |β|Vsk

, [β]V0 = 1.

In particular, |β|Rr and |β|Ur are equivalent to
∑
|α|⩽r

∣∣∣∂αyβ∣∣∣ and
∑
|α|+k⩽r

∣∣∣Dk
t ∂
α
yβ

∣∣∣, respectively.

Lemma 3.4 ( [31, Lemma 11.5]). With the convention that |curl W |V
−1 = |div W |V

−1 = 0, we have

|W |Rr ⩽K1

|curl W |Rr−1 + |div W |Rr−1 + |W |
S
r +

r∑
s=1

|g|Rs |W |
R
r−s

 ,
|W |Rr ⩽K1

r∑
s=1

[g]Rs
(
|curl W |Rr−1−s + |div W |Rr−1−s + |W |

S
r−s

)
.

The same inequalities also hold with R replaced byU everywhere and S replaced by T :

|W |Ur ⩽K1

|curl W |Ur−1 + |div W |Ur−1 + |W |
T
r +

r∑
s=1

|g|Us |W |
U
r−s

 ,
|W |Ur ⩽K1

r∑
s=1

[g]Us
(
|curl W |Ur−1−s + |div W |Ur−1−s + |W |

T
r−s

)
.
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3.7. Main estimates and theorem

Proposition 3.5 ( [2]). Suppose that x, P ∈ Cr+2([0,T ] × Ω), B ∈ Cr+2(Ω), P|Γ = 0, ∇N P|Γ ⩽ −c0 < 0,
BaNa|Γ = 0 and div V = 0, where V = Dtx. Let W be the solution of the linearized problem with the
inhomogeneous term F divergence-free. Then, there is a constant C depending only on the norm of
(x, P, B), a lower bound for the constant c0, and an upper bound for T , such that, for s ⩽ r, we have

∥W(t)∥r + ∥Ẇ(t)∥r + ∥LBW(t)∥r + ⟨W(t)⟩A,r

⩽C
(
∥W(0)∥r + ∥Ẇ(0)∥r + ∥LBW(0)∥r + ⟨W(0)⟩A,r +

∫ t

0
∥F∥rdτ

)
,

where

∥W(t)∥r =
∑
|I|⩽r,I∈R

∥LI
UW(t)∥L2(Ω),

⟨W(t)⟩A,r =
∑
|I|⩽r,I∈S

⟨LI
S W(t),ALI

S W(t)⟩1/2.

Let Hr(Ω) be the completion of C∞(Ω) in the norm ∥W(t)∥r and Nr(Ω) be the completion of the
C∞(Ω) divergence-free vector fields in the norm ∥W∥Nr = ∥W(t)∥r + ⟨W(t)⟩A,r. Note that the projection
P is continuous in the Hr norm, which implies that Hr is also the completion of the C∞(Ω) divergence-
free vector fields in the Hr norm. The main result in [2] is as follows.

Theorem 3.6 ( [2]). Suppose that x, P ∈ Cr+2([0,T ] × Ω), B ∈ Cr+2(Ω), P|Γ = 0, ∇N P|Γ ⩽ −c0 < 0,
BaNa|Γ = 0 and div Dtx = 0. Then, if initial data and the inhomogeneous term are divergence-free and
satisfy

(W0,W1,LBW0) ∈ Nr(Ω) × Hr(Ω) × Hr(Ω), F ∈ L1 ([0,T ], Hr(Ω)) ,

the linearized problem has a solution

(W, Ẇ,LBW) ∈ C ([0,T ], Nr(Ω) × Hr(Ω) × Hr(Ω)) . (3.33)

The proof of the main estimates and this theorem involves: The projection onto divergence-free
vector field, the smoothed-out equation and existence of weak solutions, regularity estimates, etc.

Finally, we give some remarks. A key idea in [2] is to use the Lie derivative of the magnetic field,
taking the advantage that the magnetic field is tangential to the free boundary and divergence free,
which provides extensive advantages when one commutes the magnetic vector field with other vector
fields used in [31]. Due to the magnetic tension force, a term involving the coupling of the perturbation
of the velocity field and the initial magnetic field appears in the linearized equation.
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