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ABSTRACT. This paper is concerned with the local well-posedness of the Ober-
beck Boussinesq approximation for the unsteady motion of a drop in another
fluid separated by a closed interface with surface tension. We are devoted
to obtaining the linearized Oberbeck-Boussinesq approximation in the fixed
domain by using the Hanzawa transformation, and using maximal LP-L9 reg-
ularities for the two-phase fluid motion of the linearized system obtained by
the authors in [10] to establish the existence and uniqueness of the solutions
of nonlinear problem with the help of the contraction mapping principle, in
which the differences of nonlinear terms are estimated.

1. Introduction. We consider the following two-phase fluid motion in the Ober-
beck Boussinesq approximation in which the liquids are separated by a closed mov-
ing interface with surface tension:

p(0yv +v - Vv) — Div(uD(v) — pI) = a(z,t) — agh’  in

Ol + div (vl — kVO') =0 in Q,

divv =0 in Q,,

[(uD(v) —pI)ny] = cH (T}), [v]=0 on I'y, (1.1)
[kVO -0 =0, [0]=0 on I,

Vo=v-n on I'y,

v=0, V0 -n_+p0"_ =b(x,1) onI_,

Vo =Vo, o =16 in O,

where v = (v1(,t),...,vn(z,t)) " is the velocity vector field, p = p(z,t) is the
pressure, §' = 0'(z,t) is the deviation from the average temperature, a is a given
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vector function of mass forces, and g = g(0,---,0,1)" is a constant vector with the
gravity constant g. Let €2 be a bounded domain in the N-dimensional Euclidean
space RN (N > 2) with solid boundary I'_ , 2 be a subdomain of 2 with a closed
surface I', and Q_ = Q\Q . Throughout this paper, we assume that the interface
I" is a compact hypersurface of C? class, I'_ is a compact hypersurface of C? class
and dist(T',T'_) = inf{]x —y| : @ € T,y € T_} > 2d for some constant d > 0. Let
Q4 and I'y be the evolution of 24 and I', respectively, both of which depend on
the time ¢ > 0, and set Q;— = Q\ (Q UT}), with Qo+ = Q1 and Ty =T'. Let ng
be the unit normal to I'; oriented from ;4 into ;_, n = ng, and n_ be the unit
outward normal to I'_. Denote Qt = Uy and 0= QO for convenience. The
piecewise positive constants p, i, @ and & correspond to the mass density, kinematic
viscosity, temperature expansion coefficient and thermal conductivity, respectively.
Here, both the above functions v, p, ', a and the constants p, i, a, k are piecewise
defined, for instance, v =vyxa, +V_Xxa_, p = p+Xa, + p-Xa_, etc., where xq,
is the characteristic function of Q.. D(v) is the doubled deformation tensor with
the (i,5)"™ component d;v;+09;v;, and I is the N x N identity matrix. b(z,t) is a
given function on the fixed boundary I'_, and 8 > 0 is a constant. Q, vo and 0} are
the prescribed initial data for Qy, vand ¢ , respectively. V,, is the evolution velocity
of I'; along n;. ¢ is a positive constant describing the coefficient of the surface
tension and H (T';) is N — 1 times the mean curvature of T'; given by the relation
H (Ty)n; = Ar,z, with the Laplace-Beltrami operator Ap, on I't(more details in
Appendix A.2). Moreover, for any function f(x,t) = fi(z,t) forx € Q4 and t > 0,
we denote the jump of f across I'; by

[f] (vo) = lim fi(x)— lim f-(x)

T—To T—Xg
€N 4 TEN

for every point z¢ € I'y. Finally, for any matrix field K = (K;), the quantity Div K

h

is an N-vector whose i*® component is j=10;Kij, and for any vector function u =

h

(u1,...,un), diva = ijl dju;, and u- Vu is an N-vector whose i*® component

is Zjvzl uj(?jui.

The Oberbeck-Boussinesq approximation has implications for a wide variety of
flows within the context of astrophysical, geophysical and oceanographic fluid dy-
namics (e.g., see [12]). The approximate equations were first derived by Ober-
beck [15,16] and independently derived by Boussinesq [3], to describe the thermo-
mechanical response of linearly viscous fluids that are mechanically incompressible
but thermally compressible. Numerous attempts have been made to provide a rig-
orous justification for this approximation such as [11,20,21,31].

The free boundary problems of two-phase problems of two incompressible viscous
fluids have been studied by many mathematicians in recent decades. Shibata have
proved local and global well-posedness for incompressible-incompressible two-phase
problem in [26]. For the resolvent problems, Shibata and his collaborators have done
a lot of work, e.g., [13,22,23,25,28,30], with the help of the R-bounded solution
operators. Priiss and Simonett proved the existence of strong solutions of Navier-
Stokes equations with small initial data where RY is separated by a non-compact
free surface, in addition, Priiss and Simonett [17-19] contributed to the LP approach
for two-phase problems, especially for the case of the surface tension.

For the 2D Boussinesq equations, the global regularity or global well-posedness
was proved in [1,4] with partial viscosity and in [2] with variable kinematic viscosity.
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The global well-posedness for the 3D Boussinesq system with horizontal dissipation
was given in [14].

In fact, there are few results about two-phase fluid motion in the Oberbeck-
Boussinesq approximation. In the Holder spaces, the local existence for the problem
was established in [5]. Denisova and Solonnikov [6] proved the global existence of
classical solutions for capillary fluids in the framework of Holder spaces. Hao and
Zhang established the maximal LP-L? regularity for the two-phase fluid motion of
the linearized Oberbeck-Boussinesq approximation in [10].

Remark 1.1. Different from the free boundary problem for the Navier-Stokes equa-
tions, on the fixed boundary I'_, we consider a mixed boundary condition for 6’ in
(1.1) instead of the Neumann or Dirichlet boundary condition.

Remark 1.2. One of the difficulties of this paper is that we have to deal with the
estimates of those nonlinear terms in an anisotropic space H;/2 (R, L9)NLP (]R, H;)
given by Theorems 3.1 and 3.2. Thus, in order to prove the local well-posedness, we
have to find a suitable extension method to extend the function defined on (0,T)
to the whole time space R.

The rest of this paper is structured as follows. First, by using the Hanzawa
transformation, we transform equations (1.1) to the fixed domain in Section 2.
Then, in Section 3, we use the fact that the maximal LP-L? regularity theorem
for the Stokes equations with interface and non-slip boundary conditions and heat
equations with interface conditions that have been got in [13]. Section 4 is devoted
to estimating nonlinear terms. In Section 5, we need to estimate the difference of
nonlinear terms, then by the contraction mapping principle, we complete the proof
of the local well-posedness. Finally, we will recall some notations and useful results
in the Appendix.

2. Hanzawa transform and the main theorem. In this section, we shall trans-
form (1.1) to some problem formulated on a fixed domain by using the Hanzawa
transform, then we give a statement of the local well-posedness theorem.

2.1. Hanzawa transform. In order to transform the time dependent unknown
domain €, to the fixed domain €2, we introduce the Hanzawa transform. Let n be
the unit normal to I' oriented from €, into Q_. Since I is a hypersurface of C3
class, we may assume that n is defined on R with [|n|| g2 g~y < co. And I'_ is
hypersurface of C? class with ||n_|| m1 vy < 00. We assume that

dist (supp(w(y)n(y)),I'-) > d,
where w(y) is a C* function which equals one near I" and zero far from I'. Let
Ii={z=y+h(y,t)n|ycl}

with an unknown function h(y,t). Let Hj be a suitable extension of h(y,t) such
that Hy,(y,t) = h(y,t) for (y,t) € T' x (0,T) and it possesses the estimates

I )yt agey < WG ) gy < CallaC )y -
1Al 0y < IOHC ) ey < Co 0ROl 17,

for k =1,2,3 and £ = 1,2. Let ¥, (y,t) = w(y)Hp(y,t)n(y), we use the Hanzawa
transformation defined by

(2.1)

x=y+ U(y,t), (2.2)
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which was introduced by [19] to treat solutions of the Stokes problem. In the
following, we assume that

sSup H\I}h(Vt)HHéO(RN) <A, (23)
te(0,7T")

where )\ is a small positive number in such a way that several conditions stated below
will be satisfied. In fact, we choose A € (0,1), and then the Hanzawa transform
defined above is an injective mapping. For x; = y; + ¥y, (y;, 1) (i = 1,2),
|v1 — 22| = [y1 + Wn (y1,t) — (Y2 + Vn (y2,1))]
2 [y = g2l = IV (Wl )l oo mvy v = w2l = (1= A) |y — w2l ,

from which y; # yo implies z1 # x2. Let
0 = {z:y+\lfh(y,t) IyGQ},

the Hanzawa transform maps 2 onto €, injectively. Let v, p and ' be solutions of
(1.1), and we set

u(yat) = V(y+\llh(yvt)7t)a q(y,t) :p(y+\11h(yat)7t)a e(yvt) = 0/(y+q]h(y’t)at)'
Noting that x = y near I'_, we have
u=0, VO_-n_+p0_=5b(y,t) onT_x(0,7T),

o (2.4)
ul,_,=uy, 0bl,_o=06 inQ, Hpl,_o=hy onl.

2.2. Reformulation of equations and the divergence free condition. Now,
we reformulate the equations by using the Hanzawa transformation: = = y +
Uy (y,t). Let Ox/dy be the Jacobi matrix of the transformation, that is,

v, 0¥, ... OnUy
ox N¥y ¥y ... OnY,

ay + h(y7 )7 h

¥y 0¥y ... ONUpN
where Wy (y,t) = (\Ill(y7t)7...,\I/N(y,t))T and 0;V; = %\1;7. Since A is a small
positive number, then by (2.3) and the chain rule, we have

9y _
or

ox\ ! >
— ) =14 (V1) =T+ Vo (VTy), (2.5)
9 k=1

where Vi (k) is an N x N matrix of analytic functions defined on |k| < X such that
V(0) = 0. Hereafter, k = (k;;) and k;; are the variables corresponding to ;7.
Then we have

VooVt L= LS vl e
T — 0 Yo 656@ - 8y£ o 045 6yj’ .
where V, = (%, cee, 8ZBN)T for z = x, y. Vo is the (£,5)"™ component of the

N x N matrix Vg. Since

N
g Lo 5+ 00,00 = ) + Y T2 0 S )



LOCAL WELL-POSEDNESS FOR TWO-PHASE FLUID 2103

in view of (2.6), we can directly get

d N o N v ; d
B =t X (5= %) G+ Vi) 52

=1

(2.7)
Op dq dq
= + Voe; (0
dzy Oy Zl s (44) 3y, dy;-
Then, by (2.6), we can write
gai pé@j)
a 9 X dq
D ; k ) — ; )=— (2.
= 2 o o) gy (D@ + (Vi V), ) 3G+ 5, (9
with
Oug  Ouy N ou s
Du':—er—], Vi(k)Vu),. = <V-kZ+V k7>, 2.9
(W= G+ g V109V = 32 (Voo + o0 ) 29

where d;; is the Kronecker delta symbol such that §;; = 1 and d;; = 0 for ¢ # j.
Putting (2.7) and (2.8) together, we observe that

ZN: 7 +‘/(J£J)aa aw + Z (u] P ) )(Jk"'vbjk(k))gw
= Yj t Yk

7,k=1
ad )
— 32 e+ Vi) - (Dl + (Vak)Vu),)
J,k=1

—ay(x,t) — denvagh.
Since (I+ VU,) (I+ Vo) = (£ )(%) =1, we get

0q al 3u4 uyg
@:ZZ z@"‘a\I}Z +]J€Zl (Ug_Pa >(Jk+%]k(k))ayk
N

0
- lié jZ:k:1 (03¢ + 0:Ve) (051 + Vojx) aT,k (D(u)ﬁj + (Vl(k)vu)zg‘)
N

— Z (51-4 + 31\I/z) (ag + 5@Nage) .
=1

Thus, we define an N-vector of functions Ny (u,a, d, ¥}) by letting
Ni(u,a,0,¥y),

=3 (0% e Vi) 22

7,k=1

al ou
—28%( Y (u pat)uw%jk(k))ay:)

J,k=1
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N
8 0
[ D 5 (Vik)Vu); + Z Vojk(k)5— (D(u)i; + (Vi(k)Vu);s)
j=1 ayﬂ jk=1 O
0
+ D 0 (s + Voji(k)) oo (D(u)ej + (Vl(k)V“)Zj)>
7.k, :1 '
N N
=Y 0V, — > 0iWibnagh. (2.10)
(=1 (=1

Next, we consider the divergence free condition divv = 0. By (2.5), we have

N ov; N ou; N ou:
div, v = S =) (66 + Voij (k) aT; =divyu+ »_ %ij(k)a—zj,
: ; ;

ox;
i=1 ' =1 ij=1

Let J be the Jacobian of the transformation: x = y+ ¥, (y, t). For any test function
v € C§° (), we obtain

N N
_ 0
(divy v, p0)g, = — (v, Z Jui, Z (055 + Voij (k)) SO.
— Oy,
=1 Jj=1 I9)
= Z ( J (6ij + Voij(k)) u;) 790> i
i,7=1 Q

Choosing A > 0 small enough, we may assume that J = J(k) = 1 + Jy(k), where
Jo(k) is a C*° function defined for |k| < A such that Jy(0) = 0. We define Na(u, ¥},)
and N3(u, ¥y) by

Ng(u,\l’h)——.]odlvu—‘r 1—|—J0 (Z VQU ),

t,j=1
N N
N3 (u, ¥y)|, = Z Voik (k) u; + Jo (k) Z (it + Vour (k)) . (2.11)
1=1 i=1

Since Vi;5(0) = Jo(0) = 0, we may symbolically write as
No (U_, ‘Ifh) =V, (V\I/h) VU, ® Vu, Nj (u, \I’h) =V3 (V\I/h) VU, ®u, (2.12)

with some matrix of C'! functions Vo (V¥},) and V3 (V¥},) defined on [V¥,| < A
Finally, we consider the second equation in (1.1), by (2.6)

A=V.V= Z(Z (Gir + Vour (k >(Z 85 + Voij (k )8‘2)

k=1

N 32 N P
- D (05 ¢ 3wt

J,k=1

X

d d
— (8, i (K)) =— . 2.1
(0 + i 00) 5 ) | (2.13)
Thus, in view of (2.7) and (2.13), we have
910 — KAO = Ny (u,0,9;,)  inQx(0,7) (2.14)
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with
N
oV, 0 OWois (k) 00
Ny (u,0,¥) =— w; — — ) (6:5 + Voii(K)) — + kK IVoij \¥)
4 (u,0,9p) JZ_jl< at)( o+ Vo 10) 5 ; T
0% - 020
2 Vojik (k Voir (K) Voi; (k
+ z_:lazaj O]k()"’l‘ﬁ.%: oik (k) Vois ( )0yj8yk
%,J i,j,k=1
89 Vi (k)
+kK Voir( e 2.15
,§1 o (K ayj Oyx ( )

2.3. Reformulation of boundary conditions. Since I' is a hypersurface of class
C3 in RY, there exists a bijective mapping: RY >z +— ®,(x) € RY for £ € N and
®, € C3(RYN). To represent I' locally, we use the local coordinates near x, € I' such
that

QiﬂBd/ xg {y—CI)g )|Z€RN}ﬂBd/($g),

B (2.16)
T'N By (x0) {y—@g(z 0)|z = (zl,...,zN,l)eRN l}ﬂde(mg),

where By (z¢) = {x € RN | |z — 2, |< d'}. Let {C/}sen be a partition of unity such
that supp (¢ C Ba(x¢). In the following we use the formula

f=> Gf T,
=1

for any function f defined on I'. Recall that Wy, = h on I, so the derivatives of Hy
coincide with the derivatives of h on I'. We set h = h (y (2/,0),t) in the following,
by the chain rule, we have

Oh 0 Z vy, 0Py m (2.17)

W, (@ (2',0), ,
95~ 0y 0 (2e(20) Dy Dz
ZN:O
where we have set ®;, = (P q,. .., <I>¢,N) thus, 7@ is defined in By (x¢) by

N

Oh 8\I!h 3@z,m
=Y Ztog, .
(92’1'

5 2 o (2.18)

Next, we give a representation formula of n;. Since I'; is represented by = =
‘I)Z(Z/a 0) + h(‘I)E(Z/a O)a t)n(q)f(zl7 0)7 t); we set

n,=a <n + Z biTi> with 7; = a%y a%@g (2',0),

(2

where a and b; are unknown functions, and the vectors 7;(i = 1,..., N — 1) form a
basis of the tangent space of " at y = y (21,...,2n-1). Since % -n; = 0, we have

0 oh 0
v-a n+ZbT] ( y’ 8z'n+h8:>'

’L
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9y . On = 2 _ Oy Oy _
Moreover, n- 52 = n =0, g+ 'n =0 (because of [n[* =1 ) and 5~ 5 =

Ti - Tj = gij, we have
j 3
N-—

on
8Z +> (g” - h— TJ) b; = 0. (2.19)

=1

Since n is defined in RY as an N-vector of C? functions with ||n|| 2 g~y < 0o, we
can write

on On 8@@ m 8@;

= T = o®d . ——
Y 9z = Z 8ym ¢ 0z 0z’

where M is defined in RY and HMHHE; ®~) < C with some constant C' independent

of £ € N. By (2.19), we have

V'h=—(G+ Mh)b, (2.20)
where G is an (N — 1) x (N — 1) matrix with the (i,5)'" component g;;, b =
(by,...,by_1)" and V'h = (gzh 7"'7az?vh,1)T' Since |ng|2 =1, it follows that

1=a2|1 + Z gijbibj . (221)
ij=1

Putting (2.19) and (2.21) together gives

—(G+hM)"'V'h=—G (T+hMG )™

V'h,
and

a={(1+ @+rMG ) VG (T4 aMGT) T V) }_1/2 .
Then, by (2.18), V'h is extended to RY by letting V'h = V¥, 0 &, (V®)) =: Ly, 4,

then we get
N-1

n,=n-— Z g”ngl + V4 (h,V'h), (2.22)

1,0=1
where

YV (h,V'h)
- _ (G*l ((I+ \IthGfl)_l - I) Lh,éaT)

+ {(1 + ((I + \II;LMG*)_1 L, G (1+ \IthGfl)_l Lh,€)>_1/2 B 1}

x{n— (G @+ wMG™) " Lige )}

Thus, we may write V4 (h, V'h ) \74,4(1_{)?\1/;1 ® W/,E on By (z) with a matrix
of functions V4 ¢(k) = V4 4(y, k) defined on By (z¢) x {k||k |< A} with V,,(0) =0
possessing the estimate

(Vi 0Vae) R g, 0y < C5 (2.23)

for some constant C' independent of ¢ € N, here and in the following k is the
variable corresponding to VWj, = (¥}, V¥, ) and Ji denotes the partial derivative
with respect to variable k. Let V4 (k) = Ze 1 ¢ Vae(k), then

[(Va, 0Va) (5K ) < C- (2.24)
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In view of (2.18) and (2.22) the unit outer normal n, is also represented by

j a\If 0Dy _ _
nt_n_zz hO‘I)g 4 +V4e( )V\Dh®V\I/h

1,j=1m=1 a
on By (x¢), and we can also write
n, =n+ Vy, (V) VI, (2.25)

for some functions Vy o(k) = V4 ¢(y, k) defined on By (z¢) x {k | [k| < A} possessing
the estimate:

Vs, 0.Vao) (- k H <cC. 2.2
|VaoVanewl,, <o (2.26)
Let V4 k) = Yo 1QgVM( ), then

Vi, V) (- k H <C. 2.2

|V o], < (2.27)
Therefore, we obtain o B

ny =n+Vy (VP,) VI, (2.28)

We now consider the kinematic equation V,, = v - n;. Note that x = y + h(y,t)n
on I'y, by (2.22), we have

ox oh
Vn—a~nt—an-nt
00 N-1 oh
= ZC@ 6th+8th n, — Z g”TZai +V4 g(k)?\llh ®?‘I’h
_ ij—1

= Oh + Oh (0, V4(k)VIU;, @ VI},).
On the other hand, we get
vy =n-u—(ul Vh)+u Viyk)V¥, @ VI,

due to [v] = 0, where

(u L V'h) Zg Ti, U h‘.

ij=1 %
Thus, the kinematic equation is transformed to
Oh—n-u+(ulVh)=du¥,) onl x(0,7), (2.29)
with
d(u,¥;,) :=u-Vy(k)VU;, @ VU, — 9;h (n, V4(k) V), @ VI},). (2.30)
In fact, if we attempt to use the standard fixed point argument, we have to move
the term (u L V’h) to the right hand side, then we need to assume that both

initial data uy and hy are small enough. However, we are unwilling to make any
restriction on the size of the initial velocity ug. For this purpose, we approximate

u as follows. Let ug be an initial data belonging to Bi/ppl(Q) with 1/p+1/p’ =1
and set ug4 = uolq, . Notice that [ug] = 0 on I, which is one of the compatibility
conditions for the initial data. Let tig; be an extension of ugy to RY such that
Uo4 = ug4 in Q4. We approximate ug by u, defined by
1 L
u, = f/ T(s)upds, (2.31)
0

L
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where T'(s) is the heat semigroup on RY given by

TS = gy [, €5 T FNNO = [ e e

RN

Since T'(s) is a bounded analytic semigroup, we have
||T()ﬁOHLoo ((0700)7B§,/PIJ/(]RN)) + ||T(')1~10HLP((O,OO),Hg(RN))
FITCNi0 130,00y 208y < Cl10ll (2.32)
which yields

Hub”Bﬁ/ﬁ'(RM <C ”uOHBS,/é’/(QJr) ’

”u‘”HZ(RN) <OV ”uOHBg,/p”'(m) ) (2.33)
for 1 < p,q < co. Thus, as a kinematic condition, we use the following equation:
Oth—n-u+ <11L 1 V/h> = N5(11, \I/h), (234)
with
Ns(u,¥p) =d(u,¥p) + (u, —u L V'h). (2.35)

We next consider the boundary condition:
[(uD(v) —pD)n;] =cH (I't)n; on Ty,
for 0 < ¢t < T in equations (1.1). It is convenient to divide the formula into the
tangential part and normal part on I'; as follows:
[ D (v)ne] = 0,
[(uD(v)ny, ny) — p] = o(H (I't) ng, my),
where II; is defined by II;d = d — (d, n;)n; for any N-vector d. A similar result for

the Stokes equations with free boundary conditions is given in [27]. We omit the

details and get the following conclusions directly. We have
[uD(u)n], = [Ng (u,¥,)] on T x [0,7T], (2.36)
[(uD(u)n,n) — q] — o (Arh + Fh) = [N7 (u,¥3)] on T x [0,T], ’

where d; = d — (d,n)n for any N-vector d, Ar is the Laplace-Beltrami operator
on I', F is bounded C* function, and by (2.25), we get

N (w0, Up) = — i {Hovl(k)Vu + (\74(12)12, D(u) + Vl(k)Vu> n
+ (n,D(u) 4+ Vi (k)Vu) V4(k)k (2.37)

+ (Va(k D(w) + Vi (K) V) Vi (k)

N7 (0, ¥;,) = — (n,uD(u)Vs(k)k) — (n, u (Vi(k)Vu) (n + V;(k)k))
+ 0'V5 (R)f( ® l:{,

for k = (U, V) and k = (U, V¥, V2,). In view of (2.37) and (2.38), we
may symbolically write

(2.38)

N6 (u,¥,) = Vg (k) k ® Vu, (2.39)

and

N7 (u,¥;,) =V7 (k) k@ Vu+oVs(kk®k, (2.40)
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where for i = 5,6,7, V;(k) = V;(y, k) are some matrices of C'! functions consisting
of products of elements of n defined on 2 x {k | |k| < A} possessing the estimate

sup ||(Vi(-,12)76RV¢(~712)) C.

R[<H HH;O(Q) S

Finally, we see the interface condition [kV6'-n;] = 0. In view of (2.6) and (2.22),
we can write
[V -n] = Ns(0,¥,,),
with

Ng (0,0) = [kV0 - (n — ;)] — [sVo(k)VE - 0] = Vs(Kk @ [sVO].  (2.41)

Here, Vg(k) is a matrix and a set of matrices of functions consisting of products of

elements of n and smooth functions defined for |k| < A, possessing the estimate
Sup H(VS(af{)vaf(VS(vE))HHl () <C. (2'42)
kI<A o

2.4. Main theorem. Let h and ¥, be the same functions as in subsections 2.1

and 2.2, combining (2.10) with (2.11), (2.14), (2.34), (2.39), (2.40) and (2.41), for
t € (0,T), we have seen that (1.1) is reformulated as follows:

pdyu — Div(uD(u) — ¢I) = Ny(u,a,0,¥;) + a(z(y,t),t) + agh in Q,
divu = Ny(u, ¥}) = div N3 (u, y,) in Q,
010 — KAO = Ny(u,0,},) in
Oth—n-u+ (u, L V'h) = N5(u, ¥p,) on T,
[+D(u)n]; = [N¢ (0, ¥5)], [u] =0 onT,
[(#D(w)n,n) — q] — o (Ach + Fh) = [N7 (w, 0,)] onT,
[£VO-n] = Ns(0,9), [0]=0 on T,
u=0, VO_-n_+p80_=0by,t) onT_,
ul,_y=uy inQ, 0,_y=0 inQ, hl,_,=ho onl.

(2.43)
The main theorem about local well-posedness is stated as follows.

Theorem 2.1. Let 2 < p < oo, N < q <00, 2/p+ N/q <1, B> 1 and let
T be a compact hypersurface of class C3. Let a(z(y,t),t) € LP((0,T), L4(S2)) and
b(y,t) € LP ((0,T), H:(Q-)) N Hy/? ((0,T), LI(Q)). Let (uo.80) € Byl /P ()
and hy € ng,l/”*l/q(r) be initial data satisfying ||(u0,OO)HB(?%A/,J)(S-Z) < B and

|holl g3-1/0-1/a < € for some small number e > 0 and the compatibility conditions
a,p

uy — N3 (UQ, \I’h|t:0) S D(Q), divug = Ny (1107 \Ilh|t:0) m Q,

[(1D (uo)n), ] = [(Ne (w0, Ynl,)), ], [uo] =0 on T,
[£V6o - n] = Ng (6o, ¥nl,—g), [60] =0 on I,
uy =0, Vb_-n_+p6_ =b|,_, onT_, (2.44)

where D(Q) can be found in the appendix, then there exists a small time T > 0 such
that problem (2.43) admits a unique solution (u,8,h) with

we 1} ((0.1),24(@)) n 27 ((0,7), HA(®))
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o€ Hy (0.1),24(@)) n £ ((0,7), H(S))
1 2—1 3—1
he Hy ((0,7), W2=/9(r)) L7 ((0,7), Wi 1/a(r) )
possessing the estimate (2.3) and the estimate
Ep7q7T(u, 0, h)
E/ B+ ”a”Lp((O,T))Lq(Q)) + Hb”H;/Q((o’T)’Lq(Qi)) + ||b||L:D((0’T)7H;(Qi))v (2'45)
where the symbol “<” denotes “< C” for some constant C > 0, and

Epvqu(uv 9, h) ::||(u, 0) HU’((O,T),H?(Q)) + ”at (ua 0) HLp((o’T),Lq(Q))

+ Hh”Lp ((O,T),ngl/q(F)) + ||athHLp((O,T),quil/q(l‘))

1ol (2.46)

0.7), Wy (D))

3. Linearization Theory. We consider the LP-L? maximal regularity to two lin-
earized equations. One is the Stokes equations with transmission conditions on I’
and non-slip conditions on I'_, the other is the heat equations with interface and
boundary conditions on I' and I'_, respectively.

3.1. Maximal regularity for the two-phase problem for the Stokes equa-
tions with interface conditions. This subsection is devoted to presenting the
LP-L9 maximal regularity for the two-phase problem of the Stokes equations with
free boundary conditions given as follows:

poyu — Div(pD(u) — ¢I) = f in Q x (0,7),
divu=g=divg in Q x (0,7),
Oh—m-u+ (A, LV'h)=d on T x (0,7), (3.1)
[(kD(w) — gDn] — ((F +cAr)h)n = [h], [u] =0 onT x(0,T),

u=0 onT'_ x (0,T),
u,_,=uy inQ, hl_,=hy onT.

Here, A,, for . € [0,1), is an (N — 1)-vector of functions defined on I' possessing the
following properties: Ay = 0 and for any ¢ € (0,1)

[Au(@)] <my, |A(2) = Ay)] <malz — y|® for any 2,y €T, (52)
HAL||W12'71/T(F) < m2L70’ .

for N < r < oo and some positive constants mq, ms, b and ¢ independent of
t € (0,1). Moreover, we assume that

||~Fh||qu*1/q(p) < CHh”Wg*l/q(p)' (33)

Theorem 3.1 (cf. [27]). Let 1 < p,q < oo with 2/p+ 1/q ¢ {1,2} and T > 0.
Assume that T is a compact hypersurface of class C®. There exists a vy such that
the following assertion holds: Let uy € Ba(pl*l/p)(fl) and ho € 32;1/1)71/(;(1,) be
initial data for equations (3.1) and let £,g,g,d and h be functions appearing in the
right side of equations (3.1) and satisfying the conditions:

ferr ((O,T),Lq(Q)) . delLp ((o,T),WqQ*”q(F)) :
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e~y e LP (R, qu(Q)) N H/? (R, Lq(Q)) , e vge H (R, L%Q)) ,
e Mhe LP (R, H;(Q)) N H/? (R, Lq(Q)) ,

for any v = v9. Assume that ug, g and h satisfy the following compatibility condi-
tions

up — g|t:0 € D(Q) and divuo = g|t:O m Q
In addition, we assume that

[(uD (ug)n)_ ] = [h-]],_, on T, for2/p+1/g <1,

[ug] =0 0nT, uy=0 onT_, for2/p+1/q < 2.
Then, (3.1) admits a unique solution (u,q,h) with
we 2 ((0,7), HAD)) 0 By (0.7), 949)) . q € L7 ((0,7), Hy () + H} (%))
ne L7 ((0.1), Wiu(ry) n Hy ((0.1), W2/o(r)),
where ﬁ; is defined in the appendix, possessing the estimates

||u||Lp((o,T),Hg(Q)) + ||atu||Lp((o7T)7Lq(Q))
+ (A + [|0:||

L ((0.1).wy () Le ((0.1). w1

st {”“0||Béfé‘1“’><n> e Wholl g m=sa ey + MEll o 0.1, 20(e)
—~t -t
+ ||dHLp((0,T),W3*1/Q(r)) + ||e ’ atg”Lr(R,Lq(Q)) + He K (gah)HLP(R,H;(Q))
1/2 —~t —yt
+ (1 +7 ) (He ! QHH;”(R,LQ(Q)) +le™ hHH;/Q(R,Lq(Q)))}
for any v = o with some constant C' > 0 independent of ~y.

3.2. The maximal regularity for the heat equations with interface condi-
tions. This subsection is devoted to presenting the maximal LP-L? regularity for
the heat equations with interface conditions,

10 — kAO = f in Q x (0,7),

[kVO-n]=g, [0]=0 onT x(0,7T), (3.4)
VO_ -n_+p0—=nhn onT'_ x (0,7),

0],_o = 6o in Q.

Theorem 3.2. Let 1 < p,q < oo with 2/p+ 1/q ¢ {1,2} and t > 0. Assume that

T is a compact hypersurface of class C3. Let 8y € Bﬁf,}‘l/p)(ﬂ) be initial data for

equation (3.4). Let f, g and h be functions appearing on the right side of equation
(3.4) which satisfy the following conditions:

e f e P ((O,T),LQ(Q)) . e tgelr (R,H;(Q)) N HL/2 (R,LQ(Q)) :
e he L (R, Hy(Q-)) N HY? (R, LI(Q-)),
for any v = o with some 9. Assume that the compatibility conditions hold:

[V -n] = gl,_, on T, iF2/p+1/g < 1;
VOo— -n_+ 36— =h|,_, onT_, (3.5)

[0o] =0 onT, if2/p+1/q < 2.
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Then, problem (3.4) admits a unique solution 0 with
gecLr ((o, o), H[;‘(Q)) N ! ((o, oo),Lq(Q))
possessing the estimate
1901l Lo (0,19, Lo () + 10 Lo ((0,7), 12 (62
< 7 {100l -1y + 1o 0.1 000)
+ |‘6_Wg’|LP(R,H;(Q)) + HG_WhHLP(R,H;(Q_))
+(192) (I 9l ooy * e 2 nae ) - 36)

Remark 3.3. (1) Theorem 3.2 has been proved by Hao and Zhang [10] in the case
where e~ f € LP(R, L9(Q2)). But we can set f to be the zero extension of f outside
(0,T), that is, f(t) = f(¢t) for t € (0,T). Then we can replace f with f in Theorem
3.2 and get

< )
(e zey) S Wl (om).zo@)

Thus, (3.6) is satisfied.
(2) Theorem 3.2 was proved in [10] under the assumption that € is a uniform
W2™Y" domain for 1 < r < oo. In fact, if Q is a uniform C3 domain, we can also

get the same result as in [26]. In this paper, we assume I is a compact hypersurface
of class C3, obviously,  is a uniform C® domain.

4. Estimates of nonlinear terms. We give an iteration scheme to prove Theorem
2.1 by the Banach fixed point theorem. We define an underlying space Up by

Ur :{(v, 0,0)| (v,0) € Hy ((0,7), L) N 17 ((0,T), HX(S)) ,
o€ H! ((O,T), Wj*l/Q(F)) nLP ((O,T), Wj*l/q(r)) ,
(v,0)|,_o = (u0,0) in Q, ol,_o=ho onT,

Epor(v.0,0) <L, sup |Q(',t)||wolo(r)<)\},
te(0,T)

where L is a sufficiently large number determined later. For ¢ € (0,7), let (v, 0, o) €
U~ and let u, ¢, # and h be solutions of the linear equations:

pdyu — Div(uD(u) — ¢I) = Ny (v,a,0,V,) + a(z(y,t),t) + agh in Q,

divu = Ny(v,¥,) = div N3(v, ¥,) in Q,

00 — KAO = Ny(v,0,¥,) in ,
Oth—n-u+ (u, L V'h) = Ns(v,¥,) on T,
[(uD(u)n), ] = [N (v, ¥,)], [u] =0 onl, (4.1)
[(uD(u)n,n) —q] — o (Arh + Fh) = [Nz (v, )] on I,
[£VO-n] = Ns(v,0,%,), [0]=0 on I

u=0, VO_-n_+p30_=10(y,t) onT_|
ul,_o=up inQ, 0,_,=0 inQ, hl,_,=ho onT,
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where U, = w(y)H,(y,t)n(y). In view of (2.3), we may assume

sup ”\IIQ('?t)HHl Q) <A, (42)
te(0,7) i

because we have assumed sup,¢ o 7 llo(-;t)[lw ) < A. Since B, o 7(v,0,0) < L,
we have

||8tv||Lp((o7T),Lq(Q)) + ||V||Lp((o,T),Hg(Q)) + Hat9||Lp((o,T),Lq(Q))
+ ||®||LP((O’T)’H§(Q)) + ||atQHLoc ((O,T),qu_l/q(F)) + HatQHLp ((O,T),qu_l/q(l"))

+ ||Q||Lp ((O,T),qufl/q(l‘)) g L. (43)

Moreover, for initial data ug, g and hg we assume
||u0||B§,(;*1/P)(Q) < -87 ||00‘|33511)*1/P)(Q) g Ba HhO”BS;l/p—l/q(F) < €. (44)

where € > 0 is a small constant and B is a given positive number. Since we mainly
consider the case where ug and 6y are large, we may assume that B > 1 hereafter.
And we may assume that 0 < e <1< B < L.

Remark 4.1. On the right side of the first equation in (4.1), we also need to
consider 6 and a. From Theorem 3.1, in fact we just estimate [|(a,0) 1, 0,7, ra()
with a given function a and

||9HLP((0,T),Lq(Q)) S ||0||LP((O,T),H§(Q))7

then, we can get estimates of 0|1, 1) 4y by (3.6). Thus, we only need to
consider the nonlinear term Ny(v,a,0,¥,).

Since N < g < oo, by Sobolev’s inequality we have the following estimates:
1l oo @y S Wz ey 1F0llas @) S 1 (@) llll e ()
1790 2 (@) S N7z (@) 9l () + 1 s () 191122 (2
10l vy S 17 a7 I3y
1Follyyz-vray S I lhgz-srae lalhgasva ey + 1l -vra gy lgllya-vvay  (45)
Moreover, since 2/p + N/q < 1, we have
||fHH;O(Q) S ||f||33f;—1/p>(g), 1z, 0y S 1A garrv=rra gy (4.6)

In order to obtain the estimates of u, § and h, we shall use Theorems 3.1 and
3.2. For this purpose, we shall estimate the nonlinear functions appearing on the
right-hand side of equations (4.1). The definition of Ny(v,a,0,¥,) is given by
replacing u, # and h with v, © and p in (2.10), respectively. Since |Vo(k)| < |K|
when |k| < A, by (4.2), we have

IN1(v, 2,0, %)l oy SIVI oo @) IVVIlLager) + 10:¥ ol poc () [V VIl Loy
+ IVl e 0 196Vl Ly + 1V Well o) V¥ Loy
+ ||v2\p0||m(g')) HVVHLOC(Q) + ||V‘Ijg||L°°(Q) ||a||Lq(Q)
+ HV\I]QHLOO(Q) ||®||Lq(Q)'
Thus, by (2.1), (4.5) and the fact that for any function f, g

£l ooy < N leecorpllglimcorys  Ngllzeory < TPllgllLe(o.1))
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we get
[N1(v,0,2a,¥,) ||Lp((oyT)7Lq(Q))

1 2 1
5 T /pHV” oo((O,T),H;(Q)) +T /pHV”LOO((O,T),H;(Q)) ||8tQ||Loo ((O,T),qu’l/q(l‘))

+ ||Q||Loo ((07T)7Wq2—1/q(r)) <||8tv||LP((O,T),L<1(Q)) + ||V||Lp((o,T),Hg(Q))

+ lall ooy, 06) + 1010 m20) ) - (4.7)
In what follows, we shall use the following inequalities:

Wl e (0.0, 2202 @)

< “WO|‘B§(:/(Q) + ||w||LP((O)T)’H§(Q)) + HatW”Lp((o)T))Lq(Q)) , (4'8)
for w € {v,0},
HQ”Loo ((O,T),B,?;,l/pil/q(lj))
,S ||h0||32;1/”*1/q(r‘) + HQ”Lp ((O,T),Wg_l/q(l")) + ||8tQI|LP((O,T),Wf_l/q(l")) ’ (49)

the inequalities: (4.8) and (4.9) will be proved later. Obviously, we also have

T
||Q||Loo ((O,T),Wq?*l/q(F)> < ||h0HW§—1/q(F) +A ||85«Q('78)||Wq2*1/‘7(p) ds
S lrollyz-1/a¢ry + TV Hat"HLP((07T>,W3‘”‘J<r>)
<TYP' L. (4.10)

< 1 such that TY?'L < 1 and

In what follows, we assume 0 < ¢ = T L
A4), (4.8) and (4.10), we have

1 < B < L. Combining (4.7) with (4.3), (4
||N1(V73763\PQ)

)s
HLP((07T)7L‘1(Q))

ng/p(L+B)2 N VA S LHaHLl’((O,T),L‘I(Q))

S Tl/p(B +L)* + ||a||Lp((o7T)7Lq(Q)) ) (4.11)

dueto 1/p' >1/pfrom 1 <p' =p/(p—1) <2< p< 0.
Let Ny(v,0,¥,) be a nonlinear term given in (2.15), by (4.2), we have

||N4(V7@,\I’g)||Lq(Q) 5||V||Loo(Q)HV@||Lq(Q) + Hat‘I'QHLoc(Q) ||V@||Lq(Q)
2 2
IVl poc () v GHLG(Q) +]v lI}E’HLlI(Q) VOl Loc ()
Employing a similar argument as that in proving (4.11), we get

[Na(v,0, \I/Q)HLP(([)’T)’LII(Q)) < Tl/p(L + B)2- (4.12)

We next consider N5(v, ¥,) given in (2.35), while the detailed proof was given
n [27]. Thus, we have

N5 (v, 0, L+B)TYL,

L= ((0,1),w; /(D)) S

IN5(v, @) <CLAB+D)TOVIY | (413)

e ((0,1), W=/ (r))
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where s € (1,2/p') is a constant and ¢ is small enough. According to Theorems
3.1 and 3.2, we have to extend other nonlinear terms to the whole time interval R.
Before turning to the extension of these functions, we make a few definitions. We

first consider v, let 0y € BS,/J” (RY) be an extension of ug € B;/pp/ (24) to RY such
that
up =up in Oy, ||ﬁ0||B§(;'(RN) S ||Uo||B§(pp'(Qi) :

Let

7""i (t)u() — e_(Q_A)tﬁOj: — fgl |:e_<‘§‘2+2)tf [ﬁOj:] (f):| , (414)
where

1 .
—1 _ ix-& d
P la(eNe) = g [ e Sae)ae

and Ty (t)ug = Tvi(t)u0|ﬂif0r x € Qg, then T, (0)ug = ug in Q). By the analytic
semigroup theory and a standard real-interpolation method, we directly have

€Ty (o] o < IMoll ey for X € {H§7B§é,p (Q)},
t t
e Tv(')UOHH;((o,oo),Lq(Q)) + e TV(.)uOHLi"((O,oo),Hg(Q)) S ”uO”Bi(g’(Q) - (415)
We can also define similar operators for Te(t)8p and T,(t)ho, then get the same

inequalities as (4.15).
Let W, P and = be solutions of the equations:

PO W + AW — m ™! Div(uD(W) — PI) =0, divW =0 in Q x (0,00),
HE+MNE-—W-n=0 on I' x (0, 00),
[uUD(W) — PI)n] — o (ArE) n=10 on I' x (0,00),
[W]=0 onI' x (0,00),
W =0 on I'_ x (0,00),
(W, E)|,_o = (0, ho) in QO xT,

where \g > 0 is large enough. Then by Theorem 3.1 and real interpolation theory,
we obtain the uniqueness and existence of W, P and = and

t
W,

)+ o,

||6tWHLm( (0,00), H2 ($)

(0,00), B3 () 0,00),L%(<2))

1 e (0ermzrr-2r00ey) 1€E s (00pw2o10)

-+ ||etatE'HLP ((O,oo),qufl/q(F)) < C ||h0“B2;1/P—1/Q(F) ,S €.

Setting T, (t)ho = ¥z, we have T,(0)ho = ¥y, in  and T,(0)ho=hg in T, then by
(2.1)

HetTg(')hoH(Loo(o,oo>,32;1/p<m) € 0To (V0 1 (0,001 113c20)

+ HetTQ(')hOHLP(((o,oo),Hg(Q))) + ||etatT9(')h0HLp((o,oo),Hg(Q))
< C ||h0HBg;1/p71/q(F) 5 €. (416)
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Given a function f(t) on (0,7), the extension Ep[f] of f is defined by

0 for t <0,

Erlf](t) = f@) for 0 <t < T, (4.17)
f@r—t) forT <t<2T,
0 for t > 2T.

Obviously, Er(f](t) = f(t) for t € (0,T) and Ep[f](t) =0 for t ¢ (0,2T). Moreover,
if fl,_o =0, then

0 for t < 0,
() (1) for0<t<T,
5 - 4.1
o ET([f](t) —0ef) 2T —t) for T <t < 2T, (1.18)
0 for t > 2T.

Let ¥(t) € C*°(R) equal one for t > —1 and zero for ¢ < —2. Under these prepara-
tions, we now define the extensions &;[v], £[0] and &3 [¥,] of v, © and ¥, to R,
respectively, by

&ilv] = BEr [v = Ty (t)uo] + ¥ () Ty ([t])uo,
& [O] = Er [0 — To(t)0o] + 1(t)To(|t])bo, (4.19)
& [\I’g] =Er [\IIQ - Tg(t)ho] + 'l/}(t)Tg(‘chO'

Since v|,_y = Ty (0)ug = ug, O,_, = Te(0)0y = by and V,|,_, = T,(0)hg, we can
differentiate &;[v], &[0] and & [¥,] once with respect to ¢ by using the formula
(4.17). Obviously, we have

Svl=v, &[O]=0, &[V,]=T, inQx(0,T), (4.20)

and then, applying the Hanzawa transformation: = = y + &3 [¥,] instead of = =
y+ U,, by (2.1), (4.10) and (4.16), we get

U < U . T (. )
ilelﬂlg 1€5 | Q]HH;O(Q) ~ tes(l(ljl?T) | g||H3(Q) + |1 7( )h0||Loc((o,oc),Hg(Q))

S ||h0||Wq3—1/p—1/q(F) +TYPL.

Thus, we choose T' and ||h0HW371/p71/q(F) so small that
a,p

sup [|€ [Wolll 1 ey < A (4.21)
teR o
Now, we consider Ng (6, ¥},) given in (2.41). We extend Ng (0, ¥,) to the whole
time interval R, let
N3 (0,0,) = Vg (V& [¥,]) VE [T,] ® [kVE[O]], (4.22)
Obviously, we have
Ng(©,¥,) = N3 (0,¥,) inQx(0,T).

Let £+ be the extension map acting on O+ € Hy () satisfying £+ (0+) € HZ(Q),
E_(©4)=0_in0_, & (0_) =0, in O, then we have

(0365 (01)) (w0)= lim 920s(z), [050]=O3E_ (O4)|p—02E, (O)|p . (4.23)

€N

for zop € T and || < 1, and

1€+ (04300 < Cia (104

i) +110-] H;(Q)) = Cigll®ll sy (4:24)
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for ¢+ = 0,1,2. Thus, we obtain
N3 (0,0,) = Vg (VE [T,]) VE [T,] @ VE [k_E O |p — ki E4O_|1].  (4.25)
Since
0, (Vs (V&3 [0,]) VE [U,]) =V (VEs [1,]) 8, VE; [¥,]
+V§ (?53 [\Ilg]) OV E; [, VE; [,],

where V} denotes the derivative of Vg(k) with respect to k, by (2.1), (2.42), (4.3),
(4.5), (4.10), (4.15), (4.16), (4.19), (4.21) and (4.26), we have the following esti-
mates:

HVS (VE3[W,]) VEs [

(4.26)

HL°° (R,H2())
<C& [‘I'Q]”Loo(R,Hg(Q)) <C ||Tg(|t|)h0HLoo((_Q,oo),Hg(Q)) + ||‘1/g||Loo((o,T),H§(Q))
<C (e + Tl/P'L) (4.27)
Hat (V8 (?53 (W ]) V€3 )HLOO R,L7($2)) <O, VéEs [\Ilh]HLOO(KL‘J(Q))

< Cle+1L), (4.28)
HLP (R,HL()) < Cl0VéEs [‘I’h]”Lp((R,H;(Q)))

<Cle+1L). (4.29)
For some v > 0 given in Theorem 3.2, we also have

e (V& [O])

10 (Vs (VE3 [¥,]) VEs [W

||LP(R,H;(Q))

C (H@HLP((O’T)’Hg(Q)) +e” IITe(ItI)GoIILP(H,@,Hg(m))
<C(L+€e"B), (4.30)

7" &x[0)] HH; (R,L2(<))

C (1901 11 0,19, 1) + € 1T UDI0N (2,00, 2110
<C(L+e¥B). (4.31)

Thus, from the Theorem 3.2, by (A.1), (A.3), (4.25), (4.27)—(4.31) and the Holder
inequality, it follows

He—vtNg ©,7,)

+ e N (0, 9,)

L?(R,HL()) Hy/?(R,La(%))

< ¢ {0 o, (Vi (963 0,) Ve ) 250

X Hat (VS (653 (v ) V53 )ng{(]?;Hl(Q

Vs (VE; [T,]) VE [P,] ||Loo(R,H;(Q))}

% (e V100 3 1. ageny + e VERLON 1o (8,130 )
SL(TV L T@ M) (L4 ). (4.32)

Moreover, we extend Ny (v, ¥,), N3 (v, ¥,), Ng (v, ¥,) and N7 (v, ¥,) to the whole
time interval R, by (2.12), (2.39) and (2.40), let

Ny (v, W,) =V (VE [U,]) VE [U,] ® V& [v],
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N3 (v, ¥,) =V3 (V& [¥,]) V53[ o] ® &1V,
Ne (v, U,) =V (VE; [U,]) VE [T,] ® VE [v],
N7 (v, 0,) =V (VE; [W,]) VE [W,] ® VE V]
+0V5 (VE[T,)) Vgg[ o) ®V2E3 [V, ]. (4.33)

By the fact that H} (R Lq(Q)) c HY? (R, LQ(Q)) and (4.16), we have

e V2 (W HLP (R,HL(S)) + ™ V2Es [ HH

»/? (R,La($))
< He Ve [0 ||H1 (R,H2(2)) + He T (Y, HL”(R’HS(Q)) S OL

Then, by (4.23) and (4.24), [Ng] and [N7] can be replaced by Ng and N7, then
employing the same argument as in proving (4.32), we have

He—wt (Nz (v, W,), N (v, W), N7 (v, ‘IIQ)) HHl/Q(R La())

+|e (W2 (v, 9,) No (v, 0,), N7 (v, 0,) )|

Lp(R,H} ()

e (R w0
H}(R,L9(2))

< (e YL (Tl/P LTVP T<q*N>/<Pq>)) (L+e¥B). (4.34)

Finally, we consider the interface condition on I'_. Noting that z = y near
T' x (0,T), we consider the following equation

V& [0_} ‘n_ + 652 [0_} = b(y,t)

with
0 for t < —2,
Y(E)VTo_([t))0o - n_ + fY(H)Ty_([t)0o for —2 <t < -1,
b VTy_(|t)0o - n_ + BTy_(|t]))b0o for —1<t<0,
b(y,t) for0<t<T,
b(y,2T —t) for T'< t < 2T,
VTy (t)0o -n_ + BTy (t)6o for t > 2T.

Obviously, we have
V&I[O-] n_ + &[] =VO0_ -n_+p0_=b(y,t) onTl_ x(0,T).
By (A.2), (A.3), (4.4), (4.15) and [|n_[[ 1 g~ < C, we have

Lr(R,HL(Q-)) Hy? (R,L1(Q-))

<c{e||T (1o )+ e [T (1theo

HLP (—2,00),H2(Q HHl —2,00),L9(Q_))

180 o030 ) + 100527207y 2o
S e27 ||90||B§/épl(g‘2) + ||b||LP((0,T),H;(Q_)) + Hb||H11)/2(([)7T)7Lq(Q7)) : (4-35)
Let
Epvqu(uv 9, h) :H (uv G)HLP((O)T)’H(?(Q)) =+ Hat(uv 9)||Lp((0’T)7Lq(Q))
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+ |2l (0w (r)) + [0kl (0w m))
then
Epqr(0,0,h) = Epqr(u,0,h) + ||athHLOC ((O,T),W,}*”q(ﬂ)) .
Applying Theorems 3.1 and 3.2, (4.11)—(4.13), (4.32), (4.34) and (4.35), we have

Eyqr(u,6,h) <Ce "T(1441/2) (M + ||a||Lp((o7T)7Lq(Q)) (4.36)

+ ”bHH;/Z((O,T),L‘I(Q,)) + ”bHH;/Z((O,T),H;(Q,))) ’
with
M :B+62’YB_|_T1/p(L+B)2 +L2(B+L)T(171/S)/P,
+L <T1/pf LTVP T(q—N)/(pq)) (L+>B),

for some positive constants v and C' independent of B and T. Combining (4.8) with
(4.4) yields that

00O e (019,237 ) < C (B 4 By qr(u,f, h)) : (4.37)

Noting that 3—1/p—1/q > 2—1/q, then by (2.33), (4.1), (4.10), (4.13), (4.37) and
the trace theorem, we have

\|ath(~,t)IILw((O,ﬂ,W;*/%r))
< g,y 1P o (309 O Dl 10,7

4.38
+ ||N5(',t)||Loo ((07T)7qu_1/q(r‘)) | |

< CBTl/p/Ep,qu +C (B B Epyqu) +C(L+ B)Tl/p/L.
Since we may assume that 0 < ¢t =€ =T < 1 is small enough, L > B > 1, we have
Epqr(u,0,h) <B+ (L + B)Tl/p/L +(1+ BTl/P’)(l + 71/2)67L*CT
x (M + ”a”L”((O,T),L‘I(Q)) + Hb”H,}/Q((o,T),Lq(Q,))

+ Bl oy ac0) ) (4.39)
Let

L=C {B + ||a||LP((O,T),LQ(Q)) + Hb||H117/2((07T)7Lq(Q7)) + ||b||H;/2((07T)7Hé(Qi))} ,

for some constant C' depend on - and independent of B,e€,¢ and T. But ~ is fixed
in such a way that the estimates given in Theorems 3.1 and 3.2 hold, so we do not
mention the dependence on 7. Choosing ¢ and T such that

M<2YB, v °T<1, (L+BTY"L<B, BT/ <1, (4.40)
we obtain
Epqr(u,60,h) < L. (4.41)

If we define a mapping ® by ®(v,0,0) = (u, 6, h), then, by (4.41), ® maps Up
into itself. Thus, we can use the contraction mapping principle in next section to
complete the proof of Theorem 2.1.
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Finally, we prove (4.8) and (4.9). Let & [v] be the function given in (4.19), we
just consider v to get

||V‘|Lx(<o,T>,B§/p’”<m) S ||51[V]||Leo(<0,T),Bg,/;/m>)

S IEVI Lo (10,00, 12 (60) TN EV o (0,000, La(2)) »
which, combined with (4.15), leads to the inequality (4.8). Analogously, using
&3 [¥,] given in (4.19) and the real interpolation theory, we have

||‘I’@HLOO ((O,T),Bgfpl/p’l/q(l“)) S ||\Ilg||Lp((o,T),Hg(Q)) + ||at\1/g||Lp((o7T)7H3(Q)) )
which, combined with (4.16) and (2.1), yields the inequality in (4.9).

5. Completion of the proof of Theorem 2.1. If we prove that ® is a contraction
mapping, then by the contraction mapping principle, we will complete the proof of
Theorem 2.1.

Let (v;,0,,0;) € Up(i = 1,2). We shall mainly estimate E, ;r(u; — ug, 01 —
02, h1 — ho) with (u;, 0;, h;) = ®(v;, ©;, 0;), then we shall prove that @ is a contrac-
tion map on Up. We set

ﬁ:ul—u2, 5:91—02, ilzhl—hQ,

Nl = N1 (Vl,a, @1, \I/Ql) — N1 (Vg,a, @2, \I/QQ) ;

-/vi =N; (Vlv \Pm) - N; (V27 \1192) ) J\/‘J = Nj (V17 \IJQ1> - Nj (V27\I]QQ) )

Ny =Ny (v1,01,%,,) = Ny (v2,02,¥,,), Ng=Ns(01,%,)— N5 (02,7,,),

for i = 2,5,7 and j = 3,6. Because a(z,t) and b(y,t) are given functions, then by
(4.1), 1t and h satisfy the following equations with some pressure term Q:

pdya — Div(uD(@) — QI) = N} + agh, in Q% (0,7),

divi = Ny = divNs in Q x (0,7),

0,0 — KAG = N in Q% (0,7),
Oh—mn-u+ (u, L V'h) =N; onT'x (0,7T),

[a] =0, [(uD(w);)] = [Ne] on I' x (0,7), (5.1)
[(pkD(@)n,n) — Q] —o (Apﬁ + ]:iz) =[N7] onT x(0,7),

[0] =0, [kVO-n] =N on ' x (0,7),

a=0, VO_-n_+86_=0 on T'_ x (0,7),

@0)]_ =00m h’t:O:O onT,

where §_ = 6;_ — #>_. We have to estimate the nonlinear terms appearing on the
right side of equations (5.1). By Remark 4.1, we only need to estimate N] in the
first equation in (5.1), as was written in (2.10), we write

Ni (v,a,0,0,) = V' (VU,)f (v,a,0,7,)

where V/(V¥,) is a matrix of bounded functions defined on |[V¥,| < X satisfying
the estimate:

sup H( 7),81‘(\//(-717{))”}[1 ) <C, (52)
IK|<A S
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with k corresponding to VU,. Let
fi (v.0,a,0,) =V¥,® (0,v,V*V) + 0¥, @ Vv +v® Vv + VU, ® Vv
+VU¥,®a+V¥,®ago,
then we can write N as
N =(V (V) =V (VU,,))fi (v1,01,a,T,,)
+ V/ (@\I/m) (fl (Vl7 @1, a, \Ilgl) — f1 (Vg, @2,a, \IJ.QZ)) ,
with
fl (Vh 617 a, \Ilm) - fl (VQ, 627 a, \Ilgz)
=V (mgl - \I’Qz) ® Opvy + Vq}@z ® O (Vl - V2) +V (lllgl - \1192> ® v2Vl
+ V\I/Qz & Vz (Vl — V2) + 8,5 (\Pgl — \1192) X VVl + 8,5\1!92 (24 v (Vl — V2)
+ (Vi = v2) @ VVi +v2 ® V (vi = v2) + V2 (¥, — Up,) @ Vv,
+ V2\IIQ2 @V (Vl - v2) + (V\Ilgl - vql@z) ®a-+ (V\Ilgl - V\Ij@) Y ag@l
+VV¥,, ® (ag01 — agBa).
Let f € H)(R, H;(Q)) and f|,_, =0, then f(t) = fot 95 f(-,s)ds. Applying Holder’s
inequality, we have
Hf”LOO((O,T),H;(Q)) < T ||8tfHLp((o’T)ﬁHé(Q)) : (5.3)

Notice that ¥,, — ¥,, = 0 for ¢t = 0, in view of the integral mean value theorem,
(2.1), (4.2), (5.2) and (5.3), we can get
Hvl(vquzl) - V/(v\ll92)HLOO((O)T))H;(Q))
<CV(T,, — ‘I’az)||Loo((o,T),H;(Q))
< cT'/r 10 (\1191 - \sz)HLp(RﬁHg(Q))

< CTYP |10, (01 — QQ)HLP(Rqu_l/q(F))

<SCTY" By yr (Vi — V2,01 — 02,01 — 02). (5.4)
In view of (4.11) and (5.2), we have
1£1(v1, 01,8, 00 1o (0,7),29(02)) < CT'?(B+ L)’ + lall e o1y, ey - (5:5)
By (2.1) and (4.5), we obtain that
11 (v1,01,8,¥,,) — f1 (v2,02,2, Wy, )l 140
S ller = oallyyz-1/a ) 10evill oy + o1 = e2llyyz-1/a(py V2V ]| oy
+llezllyyz-17a iy 196 (Vi = Vo)l Lagery + lle2llyyz=1rapy V2 (vi = vo)| (e
+10: (o1 = e2)llyya=17a 0y VYLl Lagery + 10c2llyya-17a 0y IV (Vi = V2)ll Loy
F NV Vo)l Ve = vall ) + llor = o2lly2-1/a ) V1l 20
Flloallyz-1/agey Vi = Vall gz ) + llor = eallyyz-1/a ) llall Loy

Hller — 22llyyz-v/aqry €1 lzacay + leallyz-17ar 101~ Osll uer -
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Since 01,y — 02],_o = 0, it follows from (5.3) that
_ 1/p _
||Q1 Q2HLOO ((07T)7wq2—1/7(1—‘)> < T ||6t (Ql QQ)HLP((O,T),WE_I/Q(F)) ) (56)

then, noticing that vi|,_, — va|,_, = 0 and ©O4],_, — ©2],_, = 0, and in view of
(2.1), (4.5), (4.8), (4.10) and (5.6), we have

”fl (Vla ©1,a, \IJQI) —f (VZ’ 02, a, \1192)HLP((07T)7L(1(Q))

< (17 (L + Nlall oo, gy ) + TV7(B + 1))
X Epgr (Vi — V2,01 — 02,01 — 02). (5.7)

Then, we can get the following estimate by combining with (5.2), (5.4), (5.5) and

(5.7),
||N1||Lp((o,T),LQ(Q))

<C (Tl/PTl/p/ (B+L)* + T al|, )+ T L T (B L))

(0,7),La($2)

X Epqr (Vi — V2,01 — 03,01 — 02)
<cer'r (L + B+ ||a||Lp((o,T)7Lq(Q))) Epqr (Vi —v2,01 — 02,01 —02). (5.8)

In fact, we have used the estimates: 1/p < 1/p’ for 2 < p and TV/?' TV/?(L + B)? <
2(TV/P L)TY/?(L+B) < 2T"/?(L+B) due to 1 < B < L and T being small enough.
Next we consider V. By (2.13), we may write

N4(Va 97 Q) = V//(?\Ilg)fQ(‘ﬁ @7 Q)v

where V”(V,) is a matrix of bounded functions defined on |V¥,| < A and satisfies
the estimate:

sup ||(V//('7R)78RV//('71_()) C, (59)

s [
with k corresponding to VU,. Let
£(v,0,V,) =ve VO + 90,0 VO + V¥, ® VO + £kV?O @ VU,

Employing the same argument as that in proving (5.8), we can get
||N4||Lp((o7T)7Lq(Q)) < CTYP(L+ B)Ey 47 (Vi — V2,01 — 09,01 —02).  (5.10)
We now consider N, in view of (2.35), we have
N5 =d(v1,U,,) —d(ve,U,,) + (vi — va L V'ga) + (vi —u, L V(01 — 02)),

where u, = 1 [ T(s)uods and by (2.30)

d(v1,%,,) —d(va, ¥,,)
=(vi—=va—0i (01— 02)n, V4 (-, V¥, ) VU, @ V¥, )
+ (va = Oroom, (V4 (-, VT, ) VT, — V4 (-, VT,,) VT,,) @ VT, )
4+ (v2 = 0p0om, Vi (-, VU, ) VT, @V (T, — Ty,)) .
By the definition of u,, we have

1 L
u, —ug = 7/ (T'(s)ap — up) ds,
0

L
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and so, by the interpolation theory, (2.32) and (2.33) we have

= vallagay < 1 [ (1070 0l ) s

< CLl/p/ ||u0||B§,(;71/p)(Q) s (511)

1-1 1
I, = wolly 6 < €l = woll 45 e = woll s gy

< CL(lfl/S)/pl ||uO||Bz(1_1/p)(Q) s (512)

where s is a positive number such that 1 < s < 2/p’. Putting (5.11) and (5.12)
together gives that

sup V(1) =Wl sy = sup [IV( 1) =10 +uo —wll o)
te(0,T) 1 te(0,7) !

<C (L(lfl/svp’ 4 T(H/s)/p’) (L + B), (5.13)
where we have used vy (-, t)fuozfot Opvi(-,r)dr and [|vi(-, 1) — ot 1o (e <LTYP

Finally, we set 1 < B < L, 0 < ¢ =T < 1 and choose T small enough, then in
view of (2.33), (4.5), (5.6) and (5.13), we can get

[{(u, — vy LV (01 — Q2)>HLP((O,T),Wf‘l/q(F))

.71/ i —
S (||UL||H3(Q) T+ ||V1||Lp((o,T),Hg(Q))) o1 o2l ((o,T),ijl/q(r))
+ ||uL - V1||L°°((0,T),HQI(Q)) ||Q1 - Q2||LP((O7T)7W;_1/Q(F))
SCL(L+ B)T YV, (0 (v — V2,01 — 02,01 — 02) - (5.14)
By interpolation theory, (4.8) and (5.3), we have
1-1 1
Ivi = Valligy o) <C v = vall () Ive = vally
q a
<CTU VIV E, (1 (vi = v2,01 — Oa,01 — 02) (5.15)
then in view of (4.10), we get

IIQQIILW((07T)7W371/q(r)) <CTYV L. (5.16)

By (4.5
|

S

and combining with (5.15) and (5.16), we have

)
(vi=va LV'00),, ((0.1)w2 /()
le2llys (0.1 wrracey) V1 = Vell e 0.y )
ezl .7y, w27y V2 = Vellio (o, i)

<C (T<1—1/S>/P'L n Tl/P’L) Epor (Vi — V2,01 — O, 01 — 02) . (5.17)
Then, by (4.5), (5.15) and ”n”H?,O(Q) < C, we have

” (Vl —va— 0 (01— 02)n, Vy ('7 v\I’m) v\1/91 ® ?\I/gl) HLP ((O,T),qu*l/q(l“))

<C <||V1 - V2||LP ((O’T)’qu—l/q(r)) + ||at («Ql - QQ)”LP ((O,T),Wfl/q(l“)))
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X HV4 (~, v\Ifgl) ?\I’gl (9 ?\1101 ||L°° ((O,T),qufl/q(l‘))

+ C HVl - V2||L°°((O,T),qu71/q(l")> + Hat (Ql - QQ)HLOQ ((O’T)’qufl/tZ(l—x))

X |[Va (-, V¥,,) VI, @ VT, Hm(@,T),W;*l/%r))

< CL(L + B)T(l_l/s)/p/Ep,q,T (Vi — V2,01 — O9, 01 — 02), (5.18)

then for the others in d (v, ¥p,) — d(va, ¥,,), we can get similar conclusions and
omit details. Thus, we obtain

||d (Vl, ‘1191) —d (V27 \IJQQ)”Lp ((O,T),W(?il/q(r‘))

S CL(L+B)TUYI)P B, 1 (vi — va,01 — O, 01 — 02) . (5.19)
By (5.14), (5.17) and (5.19), we have
|W5HL,,((O’T)’W;A/«;(F))
< CL(L+B) TV P, o (v = v2,01 -0, 01 — 02). (5.20)
Next, by (4.33), we get
Ny =Ny (v1,¥,,) — Ny (va, ¥,,)
=(V2 (VE[V,,]) VE[Wy, ] = V2 (VE[U,,]) VE[W,,]) @ VEI[V4]
— V3 (VE[U,,]) VE[TU,,] ® (VEI[V1] — V& [va]), (5.21)
N3 =N3 (v1,¥,,) — N3 (v, ¥,,)
=(V3 (VE[V,,]) VE Wy, | — V3 (VE[W,,]) VE[T,,]) @ Ei[vi]
— V3 (VE[U,,]) VE[T,,] ® (E1[vi] — E1lva)). (5.22)
Owing to (v;,0;,0;) € Up(i = 1,2), we have
vi=vy=1uy, ©O;=05=0) o01=02=hy fort=0,

thus, we can get £1[v1] — &1[va] = Ei[vi — va]. By (A.1), (A.3), (2.1), (4.8), (4.16),
(4.27), (4.28) and (4.29), we have

eV (VE[¥0,]) V& ) @ (VEV) = VEIVD) 22 s ey

+ [|eT"V, (VES[W,,]) VE[U,,] ® (VEI[v1] — VE[Va])| ., (R ()

<C (Tl/p’ . T(qu)/pq) L (He*vtEt[vl - VQ]HHI(R,LQ(Q)) (5.23)
+ He_vtEt[Vl — V2 HLP(R,Hg(Q)))
< C (Tl/p/ + T(‘I*N)/p‘I) LEp,qu(Vl — Vo, @1 — @27 01 — QQ) (524)

By (2.1), (4.5), (4.10), (4.15), (4.21), (5.6) and E3[¥,, ] — E3[¥,,] = Ei[¥,, — Uyl »
we can also get

V2 (VE; [‘I'gl]) VéEs [‘I'm] - Vy (Vg?»[‘llgz}) Vg?»[\pgz]”LoC(RH(}(Q))
< I(V2 (VEW 1) = Va (VE0))VEY o]l o (1,113 1)
+ V2 (VE[¥y,]) (VE[P,,] — Vg?»[q}@])HLoc (R,HL())

< CTl/p ||at(91 - QQ)”LP((()’T)’W(IQ’I/‘?(F)) H‘S'B[\Iim]”Loo(R,Hg(Q))
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< CLTY" E, ,1(v1 — v2,01 — O3, 01 — 02). (5.25)
Then by (2.1), (4.5), (4.16) (4.21), (4.26) and (5.6), we have
10:(V2 (VE[Wo,]) VE Yo, ] = Vo (VE[ W0, ]) VEY o)l e (8, 10 ()
SN0V (& [Yor], E3 [Wou )l oo (L)) 101 — 2l (02).w21(m)
IV (& [Yar] E3 [V o)l Lo (13 () 100 (01 = 02)I] (01). w1 /2(r))

<CLT1/p/Ep7q’T(V1 — Vo, @1 — @2, 01 — QQ). (526)
Thus, using (A.2), (A.3), (5.25) and (5.26), we have
He_ﬂ/t(v2 (VE[W,,]) VE Yy, | — Vo (VE[Vy,]) VE[W,,]) VEI V1 HHI/2 (R,La(5))

+ He—’Yt(Vz (VE3[Wy,]) VE[T,, | = V2 (VE[W,,]) VE[W,,]) VEI V1 HLP (R,H1())
< (I1V2 (VE39,.]) VEIW 0] = Va (VELW ) VEW ]l e (5,111 60
+[10:(V2 (VE[,,]) VE[Wy,] = Vo (VE[T,,]) VEs [‘1’@2])||L°°<R7”<Q)))
(el gy I )

§ CTl/p L(L + GQWB)Ep,q,T(Vl — Vg, @1 — @2, 01 — QQ). (527)
Combining with (5.23) and (5.27), we have

e e

Hy/?(R,La(2))
< C’L(Tl/p' JrquN/(pq))(L + 6273) o0 7(V1— V2,01 — 02,01 — 02).  (5.28)
Next we consider N, from (2.1), (4.3), (4.8), (4.15) and (5.6), it follows
|70 (V3 (VE3 [W,,]) VES [W,,]
—V5(VE [W0.]) VE [0u]) @ &1 Vi)l 1o (8, L0

<CIV (& [¥0,] = E 100l sy ) 7 00 )l o ey

L (R,HL(Q))

F VO (&[] = & [You )l 1o (e, Loy le™" & [Vl]HLoo(R,H;(Q))
(1IN0 (90, L o 2, o) + 1 V96 Wl .10 )
X (HV(53 [(Uo,] — &5 [\Ijgz])‘le(R,H(}(Q)) [e7" & [Vl]HLoc(R,H;(Q)))

< CTYP(e¥B + L)Ep g 1(v1 — v2,01 — 02,01 — 02), (5.29)

where we have used TV?'L < 1 and 1/p < 1/p'. By (2.1), (4.3), (4.8), (4.15), (5.3)
and (5.15), we have

€770 (V3 (VE3 [Wy,]) VES [Ty, ] ® (&1 [vi] — &1 [va] Hm (R.L()

< CLTY7' ||y (vi - Vo)ll o (0,7, aey) F LIV = Vall oo (0.7 113 (00)

< CL(T(l—l/S)/p/ + Tl/p,)Epg,T(Vl — Vo, (—)1 — @2’ 01 — Q2) (530)
Combining (5.29) and (5.30) yields

e

L?(R,Le(Q))
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<C(L+ e B) (T + 70~ 1)/’ )Ep g r(V1 — V2,01 — O2, 01 — 02). (5.31)
We finally consider N, N7 and M. By (4.25), we have
Ns = N5 (©1,9,,) — Ns (02, 7,,)

= Vg (?83 [\Ifgl]) v&; [\I/QJ X VEQ [tr[lﬁl@l]]

— Vg (?53 [\Ijgz]) ?53 [\1192] ® VSQ [tl"[li@g“
= (Vs (V& [W,,]) VE [0,] = Vs (VE [,,]) VE [V,,]) @ VEs [tr[rO1]]
+ Vg (@53 [\IJQQD ?53 [\I/QQ] & V(gg [tl“[li@l]] - 52 [tr[ﬁ@ﬂ]),
where tr [k0;] = k_E€_O;4|p — k4 €40, | for i = 1,2. By (4.3), (4.15) and (A.3),

we have
He‘”tVé’g [tI‘ [@1“ HH;N(]R,LQ(Q)) + He‘”tVé’g [tI‘ [@1” )) < 0(6273 + L)

(5.32)

HLP (R,HL(Q

Since & [tr [01]] — & [tr [O2]] = er {[tr [01] — tr [©2]]}, by (A.3), we have
He—'vtV (52 [tI‘ [@1” Es [tr @2 HHl/z(R Lq(Q))

+[le7V (& [t [61]) — & [t (O] Lo 2,111 )

<C (H@l - @2‘|Lp((o7T)7Hg(Q)) +10¢ (01 — 92)|‘LP((07T),L41(Q)))
S CEpqr(vi—v2,01 — 02,01 — 02). (5.33)
By (A.2), combined with (5.32) and (5.33), we have

eivt./\?g‘

e

Hy/?(R,La()) Lr(R,HL())
= He_’)’th (?53 [\1192]) ?53 [\1192} & V(EQ [tI‘[KJ@l]] — 52 [tr[K®2]])HH;/Z(R,L‘I(Q))

+ He_’yth (?53 [\1192]) ?53 [\IJQZ] &® V(gg [tl"[li@l]] — 52 hr[n@ﬂb”L#’(R,Hé(Q))

<CL(E» B+ L) (Tl/P’ + TN/ <W>) Epqar(Vi— V2,01 — Oa, 01 — 02). (5.34)
Then, by (2.1), (4.16) and (A.3), we get
|V2E; @ |V2E; W

HH”2 R,L4(52)) + ‘ o1 HLP (RHL())

s¢ (|Q1|Hé(<0,T>,W§‘”"<F)) ol (o, weamy)
1T CVRoll s (0,000 m12607) + 1T V0l 0,000,130 )
< CL, (5.35)
and
eV (&3 [W,,] — &3 [\1192])||H;/2(R7Lq(m)

+ He—'ytﬁ2 (83 [‘1191] —& [qlgz])"Lp(R,Hé(Q))

C (|Q1 - QQHH}) (Omw2=/4(n) + o1 — o2l , ((O,T),Wg‘l/q(r))>
S CEpqr(vi— V2,01 — 02,01 — 02). (5.36)
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Since N and N are similar to N, employing a similar argument in proving (5.34)
and combined with (5.35) and (5.36), we have

e, 5) e )

Hy/? (R,La($2)
<COL(L + eQ'yB)(Tl/p’ + T(q—N)/pQ)Ep7q7T(V1 — V3,01 —Oy,01 —02).  (5.37)

Moreover, by the fourth equation of (5.1), (5.6), (2.33) and (5.20), we have
10¢ (ha = ha)|

Lr(R,HL())

L= ((0,0),w5 (D))

S BTl/P Hat (hl - h2)||LP ((O,T),Wq?*l/q(l“)) + ||111 - u2||L°°((07T)7Hé(Q))

+ Tl/p/(L + B)Ep,q,T(VI — Va2, 91 - 92’ 01 — 92) (538)

Applying Theorems 3.1 and 3.2, (5.8), (5.10), (5.20), (5.28), (5.31), (5.34), (5.37)
and (5.38) gives

Ep g1 (W —ug, 01 =02, hy—ho) <fr(L, B)E, g1 (Vi—V2,01—02,01—02), (5.39)
with
fr(L, B) =Ce™ T(1 + ) L(TY/? 4 TO-1/)/P" 4 pla=N)/pa)

X (L +e*'B + HaHLp((o,T),Lq(O))) :

Thus, choosing ¢ = T so small that fr(L, B) < 1/2, we see that ® is a contraction
mapping from Uy into itself, and so there is a unique fixed point (u,8,h) € Ur of
the mapping ®. Then (u, 6, h) solves equations (2.43) uniquely and possesses the
properties mentioned in Theorem 2.1. This completes the proof of Theorem 2.1.

Appendix A. Notations and useful results.

A.1. Further notations. For any scalar function f = f(x) and N-vector function
g = (91(2),...,gn(x)), we write

Vf= (alf(x)’ s 76Nf(z)) , Vg= (vyl(‘r)a R VQN(I» )

N
divg =Y _"0;g;(z), Vf=(2:0;£))_,, V&= (Vg ...,V’gn).
j=1
For any m-vector V = (v1,...,v,) and n-vector W = (w1, ..., w,), VW denotes

an (m,n) matrix whose (,7)*® component is V;W,. For any (mn, N) matrix
A=A ) fori=1,....m, j=1...,nk=1,...,N,AV ® W denotes an N
column vector whose i component is the quantity: 7", >3 Ajk ivjw.

For an open set Q of RV, p,q € [1,00] and s € R, let LY(Q), H3(Q2) and B; ()
denote Lebesgue spaces, Sobolev spaces and Besov spaces on €, with norms || -
e || - s ) and || - || Bs  (q), respectively. Let

X(Q) = {f floy €X (Qi)}7 ||fHX(Q) = Hf|Q+||X(Q+) + Hf|9— ||X(Q_) )

for X € {L9,H;, B;,}. For simplicity, we write el x@~ = l18llx()- In this
paper, for boundary I', we write Wi (I') = By (I'), while its norm is written by
| - llwg(r). For any N-vectors a and b, we set a-b = (a,b) = Z;\Ll a;b;, and
the tangential component a, of a with respect to the normal n is defined by a, =
a— (a,n)n. For complex-valued functions f and g, we set (f, g)o = [, f(2)g(z)dz
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where g(x) is the complex conjugate of g(x), and for any two N-vector functions f
and g, denote (f,g)q = Z;V:1 (fj+95i)q- Let 1 < q < oo, E + % = 1, we introduce
the following spaces
HH(Q) = {ue LT°°(Q) | Vu e LYQ)},
D(Q) == {f € LIQ) | (F,V)a =0 forany e ﬁ;,(m} .

Since C§° () C ISI; (), we see that divf = 0 in Q provided f € D(2). But, the
opposite direction does not hold in general.

Definition A.1. Let 1 < 7 < 0o, and § be a domain in RY with boundaries I and
I'_. We say that Q is a uniform C3 domain, if there exist some positive constants
a, B, v and K such that

(1) for any g = (xo1, xog, ...,xon) €T, there exist a coordinate number j and a
C*® function h( ') (where 2/ = (x1,...,2j,...,2n) = (T1,. .., Zj—1,Tj41,---, TN))
for o' € B!, (x}) with x{ Tol,---20j,---,Ton) and ||h||gs (B’ (»)) <K such that

0 0= j 3. (BL (%))

QN Bga (o) {xGRN —’y—i—h( )<xj<h(x;-)+’y}ﬂB5(xo),
I'NBg(z0) ={z eRY : 2 5 =h ()} N Bg (x0).
(2) For any zo € I'_, there exist a coordinate number j and a C® function h (z')
for 2’ € B, (z() with ||hHH3 (B1(x})) < K such that
QN Bg (z9) = {z € RY 12, > h(z')} N Bg (o),
I'_NBs(wo) ={z eRY :z;=h(2')} N Bs (20).

Here, Bl (z}) = {2/ e RN71: |2/ — x| < a}, Bg(z0) = {# € RN : |z — 20| < B}.
LemmaA2(c []).Letl<p<oo,N<q<ooand0<T 1. Let
feH) (R H}(Q )) and g € Hl/q (R,Lq(Q)) nLp (R H}(Q )) If f vanishes for

t ¢ (0, 2T), then we have

Hfg||H;/2<R7Lq(Q)) + ”fg”Lp(R)H;(Q))
_N 1-N/(2 N/(2q)
< C{fHLoo(R,H;(Q)) + TN “atf”Loo(R qu(g ) Hatf”LP(Rqu sz))}

% (119l 372 s, oy + 19 o g3 ) ) - (A1)
Lemma A.3 (cf. [28]). Let 1 <p < oo and N < g < co. Let
fer= (RHyQ) N HL (RLID)),
geH/? (R, Lq(Q)) NP (R,H;(Q)) .
Then, we have
”ngH;/Q(]R,Lq(Q))+||ngLp(R’H(}(Q)) (AQ)
C (U1 e (g3 ) 1, (o)) % (N2 oy 19l ooz ) -
Lemma A.4 (cf. [28]). Let 1 < p,q < co. Then,
H! (R, Lq(Q)) N L (R,Hg((z)) C H/2 (R,H;(Q))
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and
el gy oy ) < € { Il gomzn) + 10 o(poay) - (A)

A.2. Laplace-Beltrami Operator. In this subsection, we introduce the Laplace-
Beltrami operator and some important formulas from differential geometry, which is
necessary to know to introduce the surface tension. Let I be a hypersurface of class
C3 in RN. Locally at p € T is parametrized as p = ¢(0) = (¢1(0),...,on5(0))T,
where 6 = (0,...,0n_1) runs through a domain © C RN-1 Let

7]
7 =Ti(p) = Y2

p0)=0;¢ (i=1,...,N—1)
which forms a basis of the tangent space T,I' of T at p. Let n = n(p) denote the
outer unit normal of I at p. Notice that
(1i,m) = 0.
Here and in the following, (-,-) denotes a standard inner product in R". Let
and let G be an (N — 1) x (N — 1) matrix whose (i, )" components are g;;. The
matrix G is called the first fundamental form of I'. G is a positive symmetric
matrix, and therefore G~ exists. Let g/ be the (i,7)"" component of G~! and let
Tt = gijTj. We next consider 7;; = 0;0;¢ = 0;7;. Notice that 7;; = 7;. Let
Ajy = (1, 7),  Lij = (Tij,m),
and then, we have
Tij = Afjﬂf +4;;n.

Let L be an N —1 x N — 1 matrix whose (,7)"® component is ¢;; which is called
the second fundamental form of I'. Let

_ 1

Then H(T") is called the mean curvature of I'. Let g = detG. We can get the
following formulas easily

9; (Vag'1;) = Vagtiym,  9; (\/99"7) = —/99"" Al (A.5)

We now introduce the Laplace-Beltrami operator Ar on I', which is defined by

H(T) =

1 g
Arf = ﬁai (9970, f) -

By (A.5), we have
Arf =g"0:0;f — "M, f.
By (A.3) and (A.5), we have
Ar¢ = (N — )H(D)n.
Usually, we put H(T') = (N — 1)H(T"), and thus, we have
Arz=HI)n forzeTl.



2130

1]

2]

(3]
[4]

[5]
[6]
[7]
[8]
[9]
[10]

(11]
(12]

(13]
(14]
(15]
(16]

(17)

(18]
(19]
20]
21]
(22]
23]
24]

[25]

[26]
27]

(28]

CHENGCHUN HAO AND WEI ZHANG

REFERENCES

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differ. Equ.,
233 (2007), 199-220.

H. Abidi and P. Zhang, On the global well-posedness of 2-d Boussinesq system with variable
viscosity, Adv. Math., 305 (2017), 1202-1249.

J. Boussinesq, Théorie Analytique de la Chaleur, Gauthier-Villars, 1903.

D. Chae, Global regularity for the 2-d Boussinesq equations with partial viscosity terms, Adv.
Math., 203 (2006), 497-513.

I. V. Denisova and S. H. Nechasova, Oberbeck-Boussinesq approximation for the motion of
two incompressible fluids, J. Math. Sci., 159 (2009), 436-451.

I. V. Denisova and V. A. Solonnikov, Global solvability of the problem of the motion of two
incompressible capillary fluids in a container, Zap. Naué. Semin. POMI., 397 (2011), 20-52.
R. Denk, M. Hieber and J. Priiss. R-boundedness, Fourier multipliers and problems of elliptic
and parabolic type, in Memoirs of the American Mathematical Society, 2003.

Y. Enomoto and Y. Shibata, On the R-sectoriality and the initial boundary value problem
for the viscous compressible fluid flow, Funkc. Ekvacacioj., 56 (2013), 441-505.

E. V. Frolova and Y. Shibata, Local well-posedness for the magnetohydrodynamics in the
different two liquids case, Mathematics, 10 (2022), 4751.

C. Hao and W. Zhang, Maximal LP-L4 regularity for two-phase fluid motion in the linearized
Oberbeck-Boussinesq approximation, J. Differ. Equ., 322 (2022), 101-134.

D. D. Joseph, Stability of Fluid Motions, Springer-Verlag, 1976.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2™¢ edition, Course of Theoretical Physics,
Pergamon Press, 1987.

S. Maryani and H. Saito, On the R-boundedness of solution operator families form two-phase
Stokes resolvent equations, Differ. Integral. Equ., 30 (2017), 1-52.

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal
dissipation, Commun. Math. Phys., 321 (2013), 33-67.

A. Oberbeck, Uber die Warmleitung der Fliissigkeiten bei Beriicksichtigung der Stromungen
infolge von Temperaturdifferenzen, Ann. Phys. Chem., 7 (1879), 271-292.

A. Oberbeck, Uber die Bewegungsercheinungen der Atmosphere, Sitz. Ber. K. Preuss. Akad.
Wiss. 1888, 383 and 1120.

J. Priiss and G. Simonett, Analysis of the boundary symbol for the two-phase Navier- Stokes
equations with surface tension, in Nonlocal and Abstract Parabolic Equations and their Ap-
plications, Banach Center Publ, 2009, 265—-285.

J. Priiss and G. Simonett, On the two-phase Navier—Stokes equations with surface tension,
Interfaces Free Bound., 12 (2010), 311-345.

J. Priiss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations,
Monogr. Birkhauser Monographs in Mathematics, 2016.

K. R. Rajagopal, M. Ruzicka and A. R. Srinivasa, On the Oberbeck-Boussinesq approxima-
tion, Math. Models Methods Appl. Sci., 6 (1996), 1157-1167.

P. H. Roberts and G. Veronis, On the Boussinesq approximation for a compressible fluid,
Astrophys. J., 131 (1960), 442-447.

Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary
condition in a general domain, J. Math. Fluid Mech., 15 (2013), 1-40.

Y. Shibata, On the R-boundedness of solution operators for the Stokes equations with free
boundary condition, Differ. Integral Equ., 27 (2014), 313-368.

Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal
LP-L9 regularity class, J. Differ. Equ., 258 (2015), 4127-4155.

Y. Shibata, On the R-bounded solution operators in the study of free boundary problem for
the Navier-Stokes equations, in Mathematical Fluid Dynamics, Present and Future, 2016,
203-285.

Y. Shibata, R-boundedness, maximal regularity and free boundary problems for the Navier-
Stokes equations. in Mathematical Analysis of the Navier-Stokes Equations, 2020, 193-462.
Y. Shibata and H. Saito, Global well-posedness for imcompressible-incompressible two-phase
problem. Fluids Under Pressure, Adv. Math. Fluid Mech., Springer, Cham, (2020), 157-347.
Y. Shibata and S. Shimizu, On a free boundary problem for the Navier-Stokes equations,
Differ. Integral. Equ., 20 (2007), 241-276.


http://mathscinet.ams.org/mathscinet-getitem?mr=MR2290277&return=pdf
http://dx.doi.org/10.1016/j.jde.2006.10.008
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3570157&return=pdf
http://dx.doi.org/10.1016/j.aim.2016.09.036
http://dx.doi.org/10.1016/j.aim.2016.09.036
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2227730&return=pdf
http://dx.doi.org/10.1016/j.aim.2005.05.001
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2760552&return=pdf
http://dx.doi.org/10.1007/s10958-009-9455-6
http://dx.doi.org/10.1007/s10958-009-9455-6
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2870107&return=pdf
http://dx.doi.org/10.1007/s10958-012-0951-8
http://dx.doi.org/10.1007/s10958-012-0951-8
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2006641&return=pdf
http://dx.doi.org/10.1090/memo/0788
http://dx.doi.org/10.1090/memo/0788
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3157151&return=pdf
http://dx.doi.org/10.1619/fesi.56.441
http://dx.doi.org/10.1619/fesi.56.441
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4398420&return=pdf
http://dx.doi.org/10.1016/j.jde.2022.03.022
http://dx.doi.org/10.1016/j.jde.2022.03.022
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0449147&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0108121&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3599794&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3089663&return=pdf
http://dx.doi.org/10.1007/s00220-013-1721-2
http://dx.doi.org/10.1007/s00220-013-1721-2
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2571494&return=pdf
http://dx.doi.org/10.4064/bc86-0-17
http://dx.doi.org/10.4064/bc86-0-17
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2727674&return=pdf
http://dx.doi.org/10.4171/IFB/237
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3524106&return=pdf
http://dx.doi.org/10.1007/978-3-319-27698-4
http://dx.doi.org/10.1007/978-3-319-27698-4
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1428150&return=pdf
http://dx.doi.org/10.1142/S0218202596000481
http://dx.doi.org/10.1142/S0218202596000481
http://mathscinet.ams.org/mathscinet-getitem?mr=MR128767&return=pdf
http://dx.doi.org/10.1086/146849
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3020903&return=pdf
http://dx.doi.org/10.1007/s00021-012-0130-1
http://dx.doi.org/10.1007/s00021-012-0130-1
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3161607&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3327550&return=pdf
http://dx.doi.org/10.1016/j.jde.2015.01.028
http://dx.doi.org/10.1016/j.jde.2015.01.028
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3613763&return=pdf
http://dx.doi.org/10.1007/978-4-431-56457-7_9
http://dx.doi.org/10.1007/978-4-431-56457-7_9
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4175737&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4295712&return=pdf
http://dx.doi.org/10.1007/978-3-030-39639-8_3
http://dx.doi.org/10.1007/978-3-030-39639-8_3
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2293985&return=pdf

LOCAL WELL-POSEDNESS FOR TWO-PHASE FLUID 2131

[29] Y. Shibata and S. Shimizu, On the LP-L? maximal regularity of the Neumann problem for
the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157-209.

[30] Y. Shibata and S. Shimizu, On the LP-L? maximal regularity of the Stokes problem with first
order boundary condition; Model Problem, J. Math. Soc. Jpn., 64 (2012), 561-626.

[31] E. A. Spiegel and N. O. Weiss, Magnetic buoyancy and the Boussinesq approximation, Geo-
phys. Astrophys. Fluid Dyn., 22 (1982), 219-234.

[32] L. R. Volevich, Solvability of boundary value problems for general elliptic systems, Mat. Sb.,
68 (1965), 373-416.

Received for publication November 2022; early access April 2023.


http://mathscinet.ams.org/mathscinet-getitem?mr=MR2384339&return=pdf
http://dx.doi.org/10.1515/CRELLE.2008.013
http://dx.doi.org/10.1515/CRELLE.2008.013
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2916080&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0192191&return=pdf

	1. Introduction
	2. Hanzawa transform and the main theorem
	2.1. Hanzawa transform
	2.2.  Reformulation of equations and the divergence free condition
	2.3. Reformulation of boundary conditions
	2.4. Main theorem

	3. Linearization Theory 
	3.1. Maximal regularity for the two-phase problem for the Stokes equations with interface conditions
	3.2. The maximal regularity for the heat equations with interface conditions

	4. Estimates of nonlinear terms 
	5. Completion of the proof of Theorem 2.1
	Appendix A. Notations and useful results
	A.1. Further notations
	A.2. Laplace-Beltrami Operator

	REFERENCES

