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Abstract. In this paper, we consider the three-dimensional rotating Boussinesq equations (the “primitive” equations of
geophysical fluid flows). Inspired by Christodoulou and Lindblad (Pure Appl Math 53:1536–1602, 2000), we establish a
priori estimates of Sobolev norms for free boundary problem of inviscid rotating Boussinesq equations under the Taylor-
type sign condition on the initial free boundary. Using the same method, we can also obtain a priori estimates for the
incompressible inviscid rotating MHD system with damping.
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1. Introduction

The Boussinesq equations are of relevance to study a number of models coming from atmospheric or
oceanographic turbulence where the rotation and stratification play an important role. Referring to [19],
we consider the following inviscid rotating Boussinesq equations without heat diffusion in D:

⎧
⎪⎨

⎪⎩

∂tv + v · ∇v + fe3 × v + ∇p = Υhe3,

∂th + v · ∇h = −Γv3,

∇ · v = 0,

(1.1)

where v = (v1, v2, v3), p and h denote the velocity, the fluid pressure and the deviation of the temperature
function from the basic temperature profile, respectively. The Coriolis parameter f = 2A sin φ is assumed
to be a nonzero real constant in which A is the angular frequency of rotation and φ is the latitude;
e3 = (0, 0, 1) is the vertical unit vector; the Coriolis force fe3 × v gives rise to a vertical rigidity in the
fluid. The number Υ > 0 is gravity and Γ > 0 is the stratification parameter which represents the Brunt-
Väisälä frequency (also buoyancy frequency). The stratification induces the term Γv3 in the equations,
which gives rise to a horizontal rigidity in the fluid. D ⊂ ∪0�t�T {t} × R

3 is an unknown time-space
domain for some constant T > 0.

We want to find a set D and (v, h) solving (1.1) and satisfying the initial conditions:

{x : (0, x) ∈ D} = D0, (v, h)|t=0 = (v0(x), h0(x)) for x ∈ D0. (1.2)

Let Dt = {x ∈ R
n : (t, x) ∈ D}, then the conditions on the free boundary read

{
vN = κ, on ∂Dt,

p = 0, on ∂Dt,
(1.3)

for each t ∈ [0, T ], where N is the exterior unit normal to ∂Dt, vN = N ivi in the sense of Einstein’s
summation convention, κ is the normal velocity of ∂Dt.
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We will prove a priori bounds for (1.1)–(1.3) in some Sobolev spaces under the assumption:

∇Np � −ε < 0 on ∂Dt, (1.4)

where ε is a constant. In fact, we can assume that the condition (1.4) holds initially and it will hold true
within some time. In other words, (1.4) is natural physical condition, the pressure is larger in the interior
than on the boundary. Moreover, (1.4) is called the Taylor sign condition for the Euler equations.

The free boundary problems of incompressible Euler equations have been studied by many people in
recent decades. In two and three dimensions, Wu [24,25] obtained the well-posedness for the incompress-
ible irrotational water wave problem. Christodoulou and Lindblad [6] proved the a priori energy estimates
under Taylor’s sign condition without surface tension for the incompressible Euler equations; Lindblad
proved the local well-posedness for the motion of an incompressible liquid with free surface boundary
in [15,16]; Coutand and Shkoller [7] obtained the local well-posedness of the problem with or without
surface tension. More important progresses have been made for flows with some general data, see [18] for
example.

When f = Γ = 0, there have been some results for the Boussinesq equations in R
n. Chae and Nam [3]

proved the local existence and blow-up criterion for the Boussinesq equations. In [1], Abidi and Hmidi got
the global well-posedness for Boussinesq system. Danchin and Paicu proved the existence and uniqueness
results for the Boussinesq system with data in Lorentz spaces in [10]. Sulaiman [20] obtained the global
existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces. Xu had done a lot of
work involving the Boussinesq equations in [21–23].

When f �= 0, in [5], Charve proved the global well-posedness for the primitive equations with some less
regular initial data. Charve also studied asymptotics and lower bound for the lifespan of solutions to the
primitive equations in [4]. Babin, Mahalov and Nicolaenko had considered regularity of three-dimensional
rotating Euler–Boussinesq equations in [2]. Iwabuchi, Mahalov and Takada proved global solutions for
the incompressible rotating stably stratified fluids in [14].

However, there have been only few results on the free boundary problems for the Boussinesq equations.
In the Hölder spaces, the local and global existence theorem for the problem in the Oberbeck–Boussinesq
approximation was established by Denisova and Solonnikov in [8,9]. Hao and Zhang proved the maximal
Lp-Lq regularity for the linearized equations in [12] and the local well-posedness in [13] for the two-phase
fluid motion in the Oberbeck–Boussinesq approximation.

In this paper, we adopt a geometrical point of view used in [6], and estimate quantities such as the
second fundamental form. The energy contains interior and boundary parts involving projected spatial
derivatives which is crucial due to the loss of regularity for the estimates of pressure on the boundary.
We denote the material derivative by Dt = ∂t + vk∂k, then the system (1.1) can be rewritten as:

Dtvj + ṽj + ∂jp = δj3Υh, in D,

Dth = −Γv3, in D,

∂jv
j = 0, in D,

vN = κ, on [0, T ] × ∂Dt,

p = 0, on [0, T ] × ∂Dt,

∇Np < −ε, on {t = 0} × ∂D0,

(1.5)

where ṽ := (−fv2, fv1, 0) and δij is the Kronecker delta symbol such that δii = 1 and δij = 0 for i �= j.

Remark 1.1. Just consider fixed boundary problem, we need to add additional conditions to (1.5). When
Γ = Υ and vN = 0 on ∂D0, the energy

E0(t) =
1
2

∫

D0

(
|v(t, x)|2 + |h(t, x)|2

)
dx (1.6)

is conserved. In fact, the rotation and stratification do not cause the above energy loss.
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Remark 1.2. Similar to the fixed boundary problem, in this paper, we do not need to assume the condition
of temperature on the boundary. Different from Euler equations, the energy of the system is not conserved,
but it can be controlled by the initial data and time T . In the following proof, we can find that the higher-
order energy of temperature is actually controlled by velocity and the initial energies, and is not affected
by the boundary condition.

In order to define higher-order energies, we introduce the second fundamental form of the free surface
and tensor products given in [6]. We want to project the system to the tangent space of the boundary.
The orthogonal projection Π to the tangent space of the boundary of a (0,r) tensor α is defined to be
the projection of each component along the normal:

(Πα)i1···ir = Πj1
i1

· · · Πjr
ir

αj1···jr , where Πj
i = δj

i − NiN
j .

Let ∂̄i = Πj
i∂j be a tangential derivative. If p = 0 on ∂Dt, it follows that ∂̄ip = 0 and

(
Π∂2p

)

ij
= θij∇Np, (1.7)

where θij = ∂̄iNj is the second fundamental form of ∂Dt. Then we define the quadratic form Q of the
form:

Q(α, β) = 〈Πα,Πβ〉 = qi1j1 · · · qirjrαi1···irβj1···jr ,

where

qij = δij − η2(d)N iN j , d(x) = dist (x, ∂Dt) , N i = −δij∂jd.

Here η is a smooth cut-off function satisfying 0 � η(d) � 1, η(d) = 1 when d < d0/4, and η(d) = 0 when
d > d0/2. d0 is a fixed number that is smaller than the injectivity radius ς0 of the normal exponential
map, defined to be the largest number ς0 such that the map

∂Dt × (−ς0, ς0) → {x ∈ R
n : dist (x, ∂Dt) < ς0} ,

given by

(x̄, ς) → x = x̄ + ςN(x̄),

is an injection. Then we define the higher energies for r � 1 as

Er(t) =
∫

Dt

δijQ (∂rvi, ∂
rvj) +

∫

Dt

∣
∣∂r−1curlv

∣
∣2 dx

+
∫

Dt

|∂rh|2 dx + sgn(r − 1)
∫

∂Dt

Q (∂rp, ∂rp) ϑdS,

(1.8)

where sgn denotes the sign function and

ϑ = (−∇Np)−1
.

In the present paper, we prove the following main result.

Theorem 1.1. Let

K(0) = max
(
‖θ(0, ·)‖L∞(∂D0), 1/ς0(0)

)
,

E(0) = ‖1/ (∇Np(0, ·))‖L∞(∂D0)
= 1/ε(0) > 0.

(1.9)

There exists a continuous function T > 0 such that if

T � T (|f |,Υ,Γ,K(0), E(0), E0(0), · · · , E4(0),VolD0) , (1.10)
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then any smooth solution of the free boundary problem for inviscid rotating Boussinesq Eq. (1.5) without
heat diffusion satisfies

4∑

s=0

Es(t) � 2
4∑

s=0

Es(0), 0 � t � T. (1.11)

Let us now outline the proof of Theorem 1.1. Firstly, for the rotating Boussinesq Eq. (1.5), we transform
the free boundary problem to a fixed boundary problem in the Lagrangian coordinates in Sect. 2. In
Sect. 3, we prove the zero-order and the first-order energy estimates. Section 4 is devoted to the higher-
order energy estimates by using the identities derived in Sect. 2, then, we justify the a priori assumptions
in Sect. 5. Finally, for the rotating MHD equations with damping, we can get a similar conclusion in
Sect. 6.

2. Reformulation in Lagrangian coordinates

We introduce the Lagrangian coordinates to transform the free boundary problem to a fixed boundary
problem. Let Ω be a bounded domain in R

3, and f0 : Ω → D0 where f0 is a diffeomorphism. The connection
between the Eulerian coordinates x and the Lagrangian coordinates y is given by x = x(t, y) = ft(y) and

dx

dt
= v(t, x(t, y)), x(0, y) = f0(y), y ∈ Ω. (2.1)

The Euclidean metric δij in Dt, then in Ω for each fixed t, induces a metric

gab(t, y) = δij
∂xi

∂ya

∂xj

∂yb
, (2.2)

and its inverse

gcd(t, y) = δkl ∂yc

∂xk

∂yd

∂xl
. (2.3)

Furthermore, expressed in the y-coordinates, we have

∂i =
∂

∂xi
=

∂ya

∂xi

∂

∂ya
. (2.4)

Let us introduce the notation for the material derivative

Dt =
∂

∂t

∣
∣
∣
∣
y= const

=
∂

∂t

∣
∣
∣
∣
x= const

+ vk ∂

∂xk
.

If k(t, x) is the (0,r) tensor expressed in the x-coordinates, we have

Dtwa1···ar
=

∂xi1

∂ya1
· · · ∂xir

∂yar

(

Dtki1···ir +
∂v�

∂xi1
k�···ir + · · · +

∂v�

∂xir
wi1···�

)

where wa1···ar
(t, y) =

∂xi1

∂ya1
· · · ∂xir

∂yar
ki1···ir (t, x).

Let u(t, y), Θ(t, y), P (t, y) represent the velocity, deviation of the temperature function, pressure in
the Lagrangian coordinates, respectively. Then from [17, Lemma 2.1] and (1.5), we have

Dtua =
∂xj

∂ya
(−ṽj − ∂jp + Υδ3jh) + vj

∂xk

∂ya

∂vj

∂xk

= − ũa − ∇aP + Υδ3aΘ + uc∇auc,

(2.5)

where ũa = ∂xj

∂ya ṽj . Similarly, since the deviation of the temperature function Θ is scalar, we directly get

DtΘ = −Γu3. (2.6)
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Thus, the system (1.5) can be rewritten in the Lagrangian coordinates as

Dtua + ũa + ∇aP = Υδ3aΘ + uc∇auc, in [0, T ] × Ω,

DtΘ = −Γu3, in [0, T ] × Ω,

∇aua = 0, in [0, T ] × Ω,

P = 0, on [0, T ] × ∂Ω.

(2.7)

3. The zero-order and the first-order energy estimates

In this section, we define the zero-order energy as

E0(t) =
1
2

∫

Ω

(
|u(t, y)|2 + |Θ(t, y)|2

)
dy. (3.1)

By [17, Lemma 2.1] and (2.7), Gauss’ formula, it yields

d

dt
E0(t) =

1
2

∫

Ω

Dt

(
gabuaub + |Θ|2

)
dμg

=
∫

Ω

(uaDtua + ΘDtΘ) dμg +
∫

Ω

1
2

(
Dtg

ab
)
(uaub) dμg

=
∫

Ω

[−uaũa − ua∇aP + Υuaδ3aΘ + uauc∇auc − ΓΘu3] dμg −
∫

Ω

hab (uaub) dμg

= −
∫

∂Ω

NauaPdμγ +
∫

Ω

(Υ − Γ)u3Θdμg +
∫

Ω

uauc∇aucdμg

− 1
2

∫

Ω

gac (∇cud + ∇duc) gdbuaubdμg

=
∫

Ω

(Υ − Γ)u3Θdμg,

where dμg =
√

detgdy is the Riemannian volume element on Ω in the metric g. In fact, we can easily
obtain Dtdμg = 0 and uaũa = 0 by using divu = 0. Obviously, when Υ = Γ, the energy of the system is
conserved. Using the Hölder inequality

d

dt
E0(t) � C(Υ,Γ)‖u‖L2(Ω)‖Θ‖L2(Ω) � C(Υ,Γ)E0(t). (3.2)

From the Gronwall inequality, for t ∈ [0, T ] with a constant T > 0, it follows that

E0(t) � C(T, Υ,Γ)E0(0). (3.3)

Due to the initial energy is given, we can get the zero-order energy estimate. Before dealing with the
first-order energy estimates, we need the following Identities. From [11, Lemma 2.3], (2.5) and (2.7), we
have

Dt (∇bua) + ∇b∇aP

= [Dt,∇b] ua + ∇bDtua + ∇b∇aP

= −
(
∇a∇bu

d
)
ud + ∇bũa + Υδ3a∇bΘ + ∇bu

c∇auc + uc∇b∇auc

= ∇bu
c∇auc + ∇bũa + δ3aΥ∇bΘ.

(3.4)
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Note that by (2.6) and [11, Lemma 2.3], we directly find that

Dt (∇Θ) = [Dt,∇] Θ + ∇DtΘ = −Γ∇u3. (3.5)

Now we calculate the first-order energy estimates. From (3.4), [17, Lemma 2.1], and [11, (A.13)], we
derive the material derivative of gbdγae∇aub∇eud,

Dt

(
gbdγae∇aub∇eud

)

=
(
Dtg

bd
)
γae∇aub∇eud + gbd (Dtγ

ae) ∇aub∇eud + 2gbdγae (Dt∇aub) ∇eud

= − 4γaeγfc∇euf∇aud∇cud + 2Υγae∇eu
bδ3b∇aΘ − γae∇eu

b∇aũb − 2∇b

(
γae∇eu

b∇aP
)

+ 2 (∇bγ
ae)

(
∇eu

b∇aP
)
.

(3.6)

In fact, γae∇eu
b∇aũb = 0 by using symmetry and the definition of ũ. Similarly, by (3.5), we obviously

have

Dt

(
|∇Θ|2

)
= Dt(gab∇aΘ∇bΘ) = (Dtg

ab)∇aΘ∇bΘ + 2gabDt∇aΘ∇bΘ

= 4gacgbd∇cud∇aΘ∇bΘ − 2Γgab∇au3∇bΘ.
(3.7)

Next, we shall calculate the material derivative of |curlu|2. Indeed, we can get

Dt|curlu|2 =Dt

(
gacgbd(curlu)ab(curlu)cd

)

=2 (Dtg
ac) gbd(curlu)ab(curlu)cd + 4gacgbd (Dt∇aub) (curlu)cd

= − 2gaegfcgbd (∇euf + ∇fue) (curlu)ab(curlu)cd

+ 4gacgbd(curlu)cd∇aue∇bue − 4gacgbd(curlu)cd∇aũb

− 4gacgbd(curlu)cd∇a∇bP + 4Υgacgbd(curlu)cdδ3b∇aΘ

= − 4gaegbd∇eu
c(curlu)ab(curlu)cd − 4gacgbd(curlu)cd∇aũb

+ 4Υgacgbd(curlu)cdδ3b∇aΘ.

(3.8)

Define the first-order energy as

E1(t) =
∫

Ω

gbdγae∇aub∇euddμg +
∫

Ω

|curlu|2dμg +
∫

Ω

|∇Θ|2dμg. (3.9)

Then we get the following estimates.

Theorem 3.1. For any smooth solution of system (2.7) satisfying

|∇P | � M, |∇u| � M, in [0, T ] × Ω,

|θ| + |∇u| +
1
ς0

� K, on [0, T ] × ∂Ω,

we have for t ∈ [0,T]

E1(t) � 2eCMtE1(0) + CK2
(
eCMt − 1

)
, (3.10)

where C depends only on Γ,Υ, |f | and VolΩ.
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Proof. By (3.6), (3.7), (3.8), [17, Lemma 2.1] and Gauss’ formula, it holds

d

dt
E1(t) =

∫

Ω

(
−4γaeγfc∇euf∇aud∇cud + 2Υγae∇eu

bδ3b∇aΘ
)
dμg

+ 2
∫

Ω

(∇bγ
ae)

(
∇eu

b∇aP
)
dμg − 4

∫

Ω

gaegbd∇eu
c(curlu)ab(curlu)cddμg

− 4
∫

Ω

gacgbd(curlu)cd∇aũb + 4Υ
∫

Ω

gacgbd(curlu)cdδ3b∇aΘdμg

+ 4
∫

Ω

gacgbd∇cud∇aΘ∇bΘ − 2Γ
∫

Ω

gab∇au3∇bΘ − 2
∫

∂Ω

Nb

(
γae∇eu

b∇aP
)
dμγ ,

where dμγ is the Riemannian volume element on ∂Ω. Since P = 0 on ∂Ω, it follows that γae∇aP = 0.
Thus, the integral on the boundary is zero.

Next, from [11, (A.3) and (A.5)], we get

∇bγ
ae = −θa

b Ne − θe
bN

a.

By the Hölder inequality and [11, (A.5)], we directly get that

d

dt
E1(t) �CKM(VolΩ)1/2E

1/2
1 (t) + C(Υ + Γ + |f |)E1(t)

+ C‖∇u‖L∞(Ω)

(
‖∇u‖2

L2(Ω) + ‖∇Θ‖2
L2(Ω) + ‖curlu‖2

L2(Ω)

)

�CKM(VolΩ)1/2E
1/2
1 (t) + C(M,Υ,Γ, |f |)E1(t).

From the Gronwall inequality, it yields the desired estimate. �

Remark 3.1. Whether in the lower order or the higher-order energy estimates later in this paper, we can
find that the Coriolis force ũ does not affect energy of tangential velocity, but it will affect Θ and the
energy of curlu. In fact, the integral involving P is zero, so we do not need to estimate the boundary
integral in E1. But for the higher-order estimates, we have to introduce boundary integrals for P .

4. The general r-th order energy estimates

In this section, we establish the higher-order energy estimates. Applying [11, Lemma 2.2] and (1.5), we
get

Dt∇rua =Dt∇a1 · · · ∇ar
ua

=Dt

(
∂xi1

∂ya1
· · · ∂xir

∂yar

∂xi

∂ya
∂i1 · · · ∂irvi

)

= − ∇rũa − ∇r∇aP −
r−1∑

s=1

(
r

s + 1

)
(
∇1+su

)
· ∇r−sua + Υδ3a∇rΘ

+ ∇auc∇ruc,

and so, we get for r � 2,

Dt∇rua + ∇r∇aP = − ∇rũa + (curlu)ac∇ruc + Υδ3a∇rΘ

+ sgn(2 − r)
r−2∑

s=1

(
r

s + 1

)
(
∇1+su

)
· ∇r−sua.

(4.1)
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Similarly, by (2.7) and [11, Lemma 2.3], we have

Dt∇rΘ = [Dt,∇r] Θ + ∇rDtΘ = −
r−1∑

s=1

(
r

s + 1

)
(
∇s+1u

)
· ∇r−sΘ − Γ∇ru3. (4.2)

Define the r-th order energy for r � 2 as

Er(t) =
∫

Ω

gbdγafγAF ∇r−1
A ∇aub∇r−1

F ∇fuddμg +
∫

Ω

∣
∣∇r−1curlu

∣
∣2 dμg

∫

Ω

|∇rΘ|2dμg +
∫

∂Ω

γafγAF ∇r−1
A ∇aP∇r−1

F ∇fPϑdμγ ,

(4.3)

where ϑ = 1/ (−∇NP ) as before, then we have the following theorem.

Theorem 4.1. For the integer r ∈ [2, 4], there exists a constant T > 0 such that, for any smooth solution
to system (2.7) for 0 � t � T satisfying

|∇P | � M, |∇u| � M, |∇Θ| � M, in [0, T ] × Ω,

|θ| + 1/ς0 � K, on [0, T ] × ∂Ω,

−∇NP � ε > 0, on [0, T ] × ∂Ω,
∣
∣∇2P

∣
∣ + |∇NDtP | � L, on [0, T ] × ∂Ω,

(4.4)

we have, for t ∈ [0, T ],

Er(t) � eC1tEr(0) + C2

(
eC1t − 1

)
, (4.5)

where the constants C1 and C2 depend on Υ,Γ, |f |,K,M,L, 1/ε,VolΩ, E0(0), E1(0), · · · and Er−1(0).

Proof. By (4.3), the derivative of Er with respect to t is

d

dt
Er(t) =

∫

Ω

Dt

(
gbdγafγAF ∇r−1

A ∇aub∇r−1
F ∇fud

)
dμg +

∫

Ω

Dt

(
|∇rΘ|2

)
dμg

+
∫

Ω

Dt

∣
∣∇r−1curlu

∣
∣2 dμg +

∫

∂Ω

Dt

(
γafγAF ∇r−1

A ∇aP∇r−1
F ∇fP

)
ϑdμγ

+
∫

∂Ω

γafγAF ∇r−1
A ∇aP∇r−1

F ∇fP

(
ϑt

ϑ
− hNN

)

ϑdμγ ,

(4.6)

where hNN = habN
aN b and hab = Dtgab/2. By using [17, Lemma 2.1], (4.1) and (4.2), we can directly

get

Dt

(
gbdγafγAF ∇r−1

A ∇aub∇r−1
F ∇fud

)

=
(
Dtg

bd
)
γafγAF ∇r−1

A ∇aub∇r−1
F ∇fud + rgbd

(
Dtγ

af
)
γAF ∇r−1

A ∇aub∇r−1
F ∇fud

+ 2gbdγafγAF Dt

(
∇r−1

A ∇aub

)
∇r−1

F ∇fud

= − 2∇cueγ
afγAF ∇r−1

A ∇auc∇r−1
F ∇fue − 4r∇cueγ

acγefγAF ∇r−1
A ∇aud∇r−1

F ∇fud

− 2γafγAF ∇r−1
F ∇fub∇r−1

A ∇aũb − 2γafγAF ∇r−1
F ∇fub∇r−1

A ∇a∇bP

+ 2γafγAF ∇r−1
F ∇fub(curlu)bc∇r−1

A ∇auc + 2ΥγafγAF ∇r−1
F ∇fubδ3b∇r−1

A ∇aΘ

+ 2sgn(2 − r)γafγAF ∇r−1
F ∇fud

r−2∑

s=1

(
r

s + 1

)
((

∇s+1u
)

· ∇r−sud
)

Aa
.
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Similarly,

Dt

(
|∇rΘ|2

)
=Dt(gafgAF ∇r−1

A ∇aΘ∇r−1
F ∇fΘ)

=r(Dtg
af )gAF ∇r−1

A ∇aΘ∇r−1
F ∇fΘ + 2gafgAF Dt(∇r−1

A ∇aΘ)∇r−1
F ∇fΘ

= − 2rgae∇eu
fgAF ∇r−1

A ∇aΘ∇r−1
F ∇fΘ − 2ΓgafgAF ∇r−1

F ∇fΘ∇r−1
A ∇au3

− 2gafgAF ∇r−1
F ∇fΘ

(
r−1∑

s=1

(
r

s + 1

)
(
∇s+1u

)
· ∇r−sΘ

)

Aa

,

(4.7)

and

Dt

(
γafγAF ∇r−1

A ∇aP∇r−1
F ∇fP

)

= −2r∇cueγ
acγefγAF ∇r−1

A ∇aP∇r−1
F ∇fP + 2γafγAF ∇r−1

A ∇aPDt

(
∇r−1

F ∇fP
)
.

In fact, the difficulty is how to deal with the integration of the higher-order derivatives of P on the
boundary.

We can apply (4.7), the Hölder inequality and

r−1∑

s=1

( r
s+1)

(
∇s+1u

)
· ∇r−sΘ = ∇ru · ∇Θ + sgn(r − 2)

r−2∑

s=1

( r
s+1)

(
∇s+1u

)
· ∇r−sΘ,

to get the estimates for |∇rΘ|2, it follows that
∣
∣
∣
∣
∣
∣

∫

Ω

Dt

(
|∇rΘ|2

)
dμg

∣
∣
∣
∣
∣
∣
� C‖∇u‖L∞(Ω)Er(t) + CΓEr(t) + C‖∇Θ‖L∞(Ω)Er(t)

+ Csgn(r − 2)
∫

Ω

gafgAF ∇r−1
F ∇fΘ

(
r−2∑

s=1

( r
s+1)

(
∇s+1u

)
· ∇r−sΘ

)

Aa

dμg

� C(‖∇u‖L∞(Ω) + ‖∇Θ‖L∞(Ω) + Γ)Er(t)

+ Csgn(r − 2)E1/2
r (t)

r−2∑

s=1

∥
∥∇s+1u

∥
∥

L4(Ω)

∥
∥∇r−sΘ

∥
∥

L4(Ω)
.

(4.8)

Similarly, by the Hölder inequality, we finally obtain that
∫

Ω

Dt

(
gbdγafγAF ∇r−1

A ∇aub∇r−1
F ∇fud

)
dμg

+
∫

∂Ω

Dt

(
γafγAF ∇r−1

A ∇aP∇r−1
F ∇fP

)
ϑdμγ

� C ‖∇u‖L∞(Ω) Er(t) + CΥEr(t)

+ Csgn(r − 2)E1/2
r (t)

r−2∑

s=1

∥
∥∇s+1u

∥
∥

L4(Ω)

∥
∥∇r−su

∥
∥

L4(u)

+ 2
∫

∂Ω

γafγAF ∇r
AaP

(

Dt∇r
FfP − 1

ϑ
Nb∇r

Ffub

)

ϑdμγ

+ 2
∫

Ω

∇b

(
γafγAF

)
∇r−1

F ∇fub∇r−1
A ∇aPdμg.

(4.9)
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Hence, by the Hölder inequality, we get

2
∫

Ω

∇b

(
γafγAF

)
∇r−1

F ∇fub∇r−1
A ∇aPdμg � CKE1/2

r (t) ‖∇rP‖L2(Ω) . (4.10)

Now we need to estimate ‖∇rP‖L2(Ω). The first step is to find an equation for P , taking divergence
on the first equation of (2.7), by [11, Lemma 2.2], we obtain

ΔP = −∇aũa − ∇aub∇bu
a + Υ∂3Θ. (4.11)

We get for r � 2

∇r−2ΔP = −∇r−2(∇aũa) −
r−2∑

s=0

(r−2
s ) ∇s∇aub∇r−2−s∇bu

a + Υ∇r−2∂3Θ.

Definition 4.1. Let 0 < ε1 < 2 be a fixed number, and let ι1 = ι1 (ε1) the largest number such that

|N (x̄1) − N (x̄2)| ≤ ε1 whenever |x̄1 − x̄2| ≤ ι1, x̄1, x̄2 ∈ ∂Dt.

Suppose 1/ς1 � K1, then from [11, (A.28)], we see that, for ς1 � 1/K1,

‖u‖L∞(Ω) � C
2∑

s=0

K
n/2−s
1 ‖∇su‖L2(Ω) � C (K1)

2∑

s=0

E1/2
s (t). (4.12)

In view of (4.12), for s � 0, one has

‖∇su‖L∞(Ω) � C

2∑

�=0

K
n/2−�
1

∥
∥∇�+su

∥
∥

L2(Ω)
� C (K1)

2∑

�=0

E
1/2
s+�(t), (4.13)

and similarly,

‖∇sΘ‖L∞(Ω) � C
2∑

�=0

K
n/2−�
1

∥
∥∇�+sΘ

∥
∥

L2(Ω)
� C (K1)

2∑

�=0

E
1/2
s+�(t).

From the Hölder inequality, (4.12) and (4.13), we get for r ∈ {3, 4},

∥
∥∇r−2ΔP

∥
∥

L2(Ω)
�C|f |‖∇r−1u‖L2(Ω) + C

r−2∑

s=0

∥
∥∇s∇aub∇r−2−s∇bu

a
∥
∥

L2(Ω)

+ CΥ
∥
∥∇r−1Θ

∥
∥

L2(Ω)

�C‖∇u‖L∞(Ω)

∥
∥∇r−1u

∥
∥

L2(Ω)
+ (r − 3)C

∥
∥∇2u

∥
∥

L∞(Ω)

∥
∥∇2u

∥
∥

L2(Ω)

+ C(|f |,Υ)(
∥
∥∇r−1u

∥
∥

L2(Ω)
+

∥
∥∇r−1Θ

∥
∥

L2(Ω)
)

�C (K1)
r−1∑

�=1

E�(t) + C (K1) E
1/2
2 (t)E1/2

r (t) + C(Υ, |f |)E1/2
r−1(t)

�C (K1,Υ, |f |)
r−1∑

�=0

E�(t) + C (K1) E
1/2
2 (t)E1/2

r (t).

(4.14)

The last inequality is attributed to the zero-order energy estimate and the inequality E
1/2
r−1(t) � CE0(t)+

Er−1(t). For r = 2, we have the following estimate from the assumption of (4.4) and the Hölder inequality,
i.e.,

‖ΔP‖L2(Ω) � C(M, |f |,Υ)E1/2
1 (t), (4.15)
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which is a lower-order energy term. Then, by [6, (A.17)], (4.14) and (4.15), we obtain for any δr > 0

‖∇rP‖L2(Ω) �δr ‖Π∇rP‖L2(∂Ω) + C (1/δr,K,VolΩ)
∑

s�r−2

‖∇sΔP‖L2(Ω)

�δr ‖Π∇rP‖L2(∂Ω) + C (1/δr,Υ, |f |,K,K1,M,VolΩ)
r−1∑

�=0

E�(t)

+ (r − 2)C (1/δr,K,K1,M,VolΩ) (E1/2
2 (t)E1/2

r (t)).

(4.16)

Since P = 0 on ∂Ω, due to [11, (A.18)], we obtain for r � 1,

‖Π∇rP‖L2(∂Ω) � C (K,K1)

⎛

⎝‖θ‖L∞(∂Ω) + (r − 2)
∑

k�r−3

∥
∥∇̄kθ

∥
∥

L2(∂Ω)

⎞

⎠
∑

k�r−1

∥
∥∇kP

∥
∥

L2(∂Ω)
. (4.17)

From [11, (A.7)], we get the fact that Π∇2P = θ∇NP , and then by (4.4), we have

‖θ‖L2(∂Ω) =
∥
∥
∥
∥

Π∇2P

∇NP

∥
∥
∥
∥

L2(∂Ω)

� 1
ε

∥
∥Π∇2P

∥
∥

L2(∂Ω)
. (4.18)

Next, we will estimate ‖Π∇rP‖L2(∂Ω) and ‖∇rP‖L2(Ω) for r ∈ {2, 3, 4}.
For r = 2, by using the trace theorem, (4.16) and (4.17), we get

∥
∥Π∇2P

∥
∥

L2(∂Ω)
� ‖θ‖L∞(∂Ω)‖∇P‖L2(∂Ω)

� C(K,VolΩ)
(∥
∥∇2P

∥
∥

L2(Ω)
+ ‖∇P‖L2(Ω)

)

� C(K,VolΩ)δ2

∥
∥Π∇2P

∥
∥

L2(∂Ω)
+ C(K,VolΩ,M,Υ, |f |)(VolΩ)1/2E1(t)

+ C (1/δ2,Υ, |f |,K,K1,M,VolΩ, E0(0)) E1(t).

We can take δ2 so small that the first term can be absorbed by the left-hand side. Thus,
∥
∥Π∇2P

∥
∥

L2(∂Ω)
,
∥
∥∇2P

∥
∥

L2(Ω)
� C (K,K1,Υ, |f |,M,VolΩ, E0(0)) (1 + E1(t)) , (4.19)

‖θ‖L2(∂Ω) � C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0)) (1 + E1(t)) . (4.20)

By Theorem 3.1, there exists a constant T > 0 such that E1(t) � CE1(0) for t ∈ [0, T ].
For r = 3, from (4.4), (4.17), (4.19) and (4.20), we get

∥
∥Π∇3P

∥
∥

L2(∂Ω)
�C (K,K1)

(
K + ‖θ‖L2(∂Ω)

) ∑

k�2

∥
∥∇kP

∥
∥

L2(∂Ω)

�C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0)E1(0))
∥
∥∇3P

∥
∥

L2(Ω)

+ C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0), E1(0)) ,

(4.21)

and it follows from (4.16) that
∥
∥∇3P

∥
∥

L2(Ω)
�δ3C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E1(0))

∥
∥∇3P

∥
∥

L2(Ω)

+ δ3C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E1(0))

+ C (1/δ3,K,K1,Υ, |f |,M,VolΩ) (E0(t) + E1(t) + E2(t))

+ C (1/δ3,K,K1,Υ, |f |,M,VolΩ) (E1/2
2 (t)E1/2

3 (t)).

(4.22)
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Hence, we can choose a sufficiently small δ3 > 0, and by using (4.21) and (4.22), it implies
∥
∥∇3P

∥
∥

L2(Ω)
,
∥
∥Π3P

∥
∥

L2(∂Ω)
�C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0), E1(0))

+ C (K,K1,Υ, |f |,M,VolΩ)

(
2∑

�=0

E�(t) + E
1/2
2 (t)E1/2

3 (t)

)

.
(4.23)

For r = 4, since

∇̄b∇NP = γd
b ∇d (Na∇aP ) =

(
δd
b − NbN

d
)
((∇dN

a) ∇aP + Na∇d∇aP )

= θa
b ∇aP + Na∇b∇aP − NbN

d (θa
d∇aP + Na∇d∇aP ) ,

then from [11, (A.31) and (A.8)], (4.15), (4.19), (4.20) and (4.23), it follows that
∥
∥∇̄∇NP

∥
∥

L2(∂Ω)
�C‖θ‖L∞(∂Ω)‖∇P‖L2(∂Ω) + C

∥
∥∇2P

∥
∥

L2(∂Ω)

�C(K,VolΩ)
(∥
∥∇3P

∥
∥

L2(Ω)
+

∥
∥∇2P

∥
∥

L2(Ω)
+ ‖∇P‖L2(Ω)

)

�C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0), E1(0))

·
(

1 +
2∑

�=0

E�(t) + E
1/2
2 (t)E1/2

3 (t)

)

.

Thus, by [11, (A.8)], it follows that (∇̄θ)∇NP = Π∇3P − 3θ⊗̃∇̄∇NP , and we have

‖∇̄θ‖L2(∂Ω) �1
ε

(∥
∥Π∇3P

∥
∥

L2(∂Ω)
+ C‖θ‖L∞(∂Ω)

∥
∥∇̄∇Np

∥
∥

L2(∂Ω)

)

�C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0), E1(0))

·
(

1 +
2∑

�=0

E�(t) + E
1/2
2 (t)E1/2

3 (t)

)

.

Hence, by using (4.17), it yields

∥
∥Π∇4P

∥
∥

L2(∂Ω)
� C (K,K1)

(
K + ‖θ‖L2(∂Ω) + ‖∇̄θ‖L2(∂Ω)

) ∑

k�4

∥
∥∇kP

∥
∥

L2(Ω)
.

Consequently, from (4.16), we choose a sufficiently small δ4 > 0 which can absorb the highest-order term
in the right-hand side, and get

∥
∥∇4P

∥
∥

L2(Ω)
,
∥
∥Π∇4P

∥
∥

L2(∂Ω)

� C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0), E1(0))

(

1 +
3∑

�=0

E�(t) + E
1/2
2 (t)E1/2

4 (t)

)

.
(4.24)

Therefore, thanks to (4.19), (4.23) and (4.24), we can get for r � 2

‖∇rP‖L2(Ω) �C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0), E1(0))

·
(

1 +
r−1∑

�=0

E�(t) + (r − 2)(E1/2
2 (t)E1/2

r (t))

)

,
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from which and (4.10), we obtain

2
∫

Ω

∇b

(
γafγAF

)
∇r−1

F ∇fub∇r−1
A ∇aPdμg

� C (K,K1,Υ, |f |,M,VolΩ, 1/ε,E0(0), E1(0)) E1/2
r (t)

·
(

1 +
r−1∑

�=0

E�(t) + (r − 2)E1/2
2 (t)E1/2

r (t)

)

.

Now, we recall that P = 0 on ∂Ω, so γa
b ∇aP = 0 on ∂Ω. Then we also obtain

− ϑ−1Nb = ∇NPNb = Na∇aPNb = δa
b ∇aP − γa

b ∇aP = ∇bP. (4.25)

Next, by the Hölder inequality and (4.25), we have
∫

∂Ω

γafγAF ∇r
AaP

(

Dt∇r
FfP − 1

ϑ
Nb∇r

Ffub

)

ϑdμγ

� C‖ϑ‖1/2
L∞(∂Ω)E

1/2
r (t)

∥
∥Π

(
Dt (∇rP ) − ϑ−1Nb∇rub

)∥
∥

L2(∂Ω)

= C‖ϑ‖1/2
L∞(∂Ω)E

1/2
r (t) ‖Π(Dt (∇rP ) + ∇ru · ∇P )‖L2(∂Ω) ,

(4.26)

then we need to estimate ΠDt (∇rP ) and ∇ru · ∇P , by [11, Lemma 2.3], it follows that

Dt∇rP + ∇ru · ∇P = [Dt,∇r] P + ∇rDtP + ∇ru · ∇P

= sgn(2 − r)
r−2∑

s=1

(
r

s + 1

)
(
∇s+1u

)
· ∇r−sP + ∇rDtP.

(4.27)

By [11, (A.18), (A.31) and (A.17)], we have, for 2 � r � 4

‖Π∇rDtP‖L2(∂Ω) � C (K,K1,VolΩ)

⎛

⎝‖θ‖L∞(∂Ω) + (r − 2)
∑

k�r−3

∥
∥∇̄kθ

∥
∥

L2(∂Ω)

⎞

⎠

·
∑

k�r

∥
∥∇kDtP

∥
∥

L2(Ω)
,

(4.28)

and

‖∇rDtP‖L2(Ω) � δ ‖Π∇rDtP‖L2(∂Ω) + C(1/δ,K, VolΩ)
∑

s�r−2

‖∇sΔDtP‖L2(Ω) . (4.29)

Now, from [11, Lemmas 2.1 and 2.3], (2.7), (3.4), (4.11) and

Dt(∇aũa) =Dtf(−∇1u2 + ∇2u1)

=f(−[Dt,∇1]u2 − ∇1Dtu2 + [Dt,∇2]u1 + ∇2Dtu1)

=f(∇bu
c∇auc + ∇bũa − ∇b∇aP − ∇auc∇buc − ∇aũb + ∇a∇bP )

=f(−f∂1u1 − f∂2u2)

=f2∂3u3,
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it follows that

ΔDtP = − 2hab∇a∇bP + (Δue) ∇eP − Dt

(
gbdgac∇aud∇buc + ∇aũa + Υ∂3Θ

)

= − 2hab∇a∇bP + (Δue) ∇eP − 2Dt

(
gbd

)
∇aud∇bu

a − 2gbdDt (∇aud) ∇bu
a

+ Dt(∇aũa) + ΥDt(∂3Θ)

= − 2hab∇a∇bP + (Δue) ∇eP + 4hbd∇aud∇bu
a + 2gbd∇bu

a∇a∇dP + ΥDt(∂3Θ)

+ 2gbd∇bu
a∇aũd − 2gbd∇bu

a∇auc∇duc + f2∂3u3 − 2Υgbd∇bu
aδ3d∇aΘ

=4gac∇cu
b∇a∇bP + (Δue) ∇eP + 2∇eu

b∇bu
a∇aue + 2gbd∇bu

a∇aũd

− 2Υgbd∇bu
aδnb∇aΘ + (f2 − ΓΥ)∂3u3.

By (4.13), (4.16) and [11, Lemma A.12], it implies that, for s = 2 (similarly for s = 0, 1)
∥
∥∇2ΔDtP

∥
∥

L2(Ω)

� C
∥
∥∇3u∇2P + ∇2u∇3P + ∇u∇4P + ∇P∇4u

∥
∥

L2(Ω)

+ C
∥
∥∇3u∇u∇u + ∇2u∇2u∇u

∥
∥

L2(Ω)
+ C|f |

∥
∥∇2u∇2u + ∇3u∇u

∥
∥

L2(Ω)

+ CΥ
∥
∥∇3u∇Θ + ∇2u∇2Θ + ∇u∇3Θ

∥
∥

L2(Ω)

+ C(ΓΥ + |f |2)‖∇3u‖L2(Ω)

� C‖∇u‖L∞(Ω)

∥
∥∇4P

∥
∥

L2(Ω)
+ C

∥
∥∇3u

∥
∥

L2(Ω)

∥
∥∇2P

∥
∥

L∞(Ω)

+ C
∥
∥∇2u

∥
∥

L4(Ω)

∥
∥∇3P

∥
∥

L4(Ω)
+ C

∥
∥∇4u

∥
∥

L2(Ω)
‖∇P‖L∞(Ω)

+ C‖∇u‖L∞(Ω)‖∇u‖L∞(Ω)

∥
∥∇3u

∥
∥

L2(Ω)
+ C‖∇u‖L∞(Ω)

∥
∥∇2u

∥
∥

L4(Ω)

∥
∥∇2u

∥
∥

L4(Ω)

+ CΥ ‖∇u‖L∞(Ω)

∥
∥∇3Θ

∥
∥

L2(Ω)
+ C

∥
∥∇3u

∥
∥

L2(Ω)
(Υ ‖∇Θ‖L∞(Ω) + |f | ‖∇u‖L∞(Ω))

+ C
∥
∥∇2u

∥
∥

L4(Ω)
(Υ

∥
∥∇2Θ

∥
∥

L4(Ω)
+ |f |

∥
∥∇2u

∥
∥

L4(Ω)
) + C(ΓΥ + |f |2)‖∇3u‖L2(Ω).

From [11, (A.11)] and (4.13), we can get

∥
∥∇s+1u

∥
∥

L4(Ω)
� C ‖∇su‖1/2

L∞(Ω)

(
2∑

�=0

∥
∥∇s+�u

∥
∥

L2(Ω)
K2−�

1

)1/2

� C (K1)
2∑

�=0

E
1/2
s+�(t).

(4.30)

Similarly, it follows that

∥
∥∇s+1Θ

∥
∥

L4(Ω)
� C (K1)

2∑

�=0

E
1/2
s+�(t). (4.31)

By (4.30) and (4.31), we can estimate all terms with L4(Ω) norms and the similar estimate of P by the
assumptions. Thus, we obtain the bound which is linear about the highest-order energy E

1/2
r (t), i.e.,

‖∇sΔDtP‖L2(Ω) �C (K,K1,Γ,Υ, |f |,M,L, 1/ε,VolΩ, E0(0), E1(0))

·
(

1 +
r−1∑

�=0

E�(t)

)
(
1 + E1/2

r (t)
)

.
(4.32)
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Therefore, by (4.28), (4.29), (4.32), for small δ independent of Er(t), we obtain, by induction argument
for r, that

‖Π∇rDtP‖L2(∂Ω) �C (K,K1,Γ,Υ, |f |,M,L, 1/ε,VolΩ, E0(0), E1(0))

·
(

1 +
r−1∑

�=0

E�(t)

)
(
1 + E1/2

r (t)
)

.
(4.33)

Then, we estimate the remaining term Π
((

∇s+1u
)

· ∇r−sP
)
, for the case r = 3, 4 and s = r − 2, indeed,

we have, by (A.6), [11, Lemma A.14] and (4.4),

∥
∥Π

((
∇r−1u

)
· ∇2P

)∥
∥

L2(∂Ω)

�
∥
∥∇r−1u

∥
∥

L2(∂Ω)

∥
∥∇2P

∥
∥

L∞(∂Ω)
� CL

∥
∥∇2u

∥
∥

L2(n−1)/(n−2)(∂Ω)

�C(K,VolΩ)L
(
‖∇ru‖L2(Ω) +

∥
∥∇r−1u

∥
∥

L2(Ω)

)

�C(K,L,VolΩ)
(
E

1/2
r−1(t) + E1/2

r (t)
)

.

For r = 4 and s = 1, we get similarly

∥
∥Π

((
∇2u

)
· ∇3P

)∥
∥

L2(∂Ω)

=
∥
∥Π∇2u · Π∇3P + Π

(
∇2u · N

)
⊗̃Π

(
N · ∇3P

)∥
∥

L2(∂Ω)

� C
∥
∥Π∇2u

∥
∥

L4(∂Ω)

∥
∥Π∇3P

∥
∥

L4(∂Ω)
+ C

∥
∥Π

(
Na∇2ua

)∥
∥

L4(∂Ω)

∥
∥Π

(
∇N∇2P

)∥
∥

L4(∂Ω)

� C
∥
∥∇2u

∥
∥

L4(∂Ω)

∥
∥∇3P

∥
∥

L4(∂Ω)

� C(K,VolΩ)
(∥
∥∇3u

∥
∥

L2(Ω)
+

∥
∥∇2u

∥
∥

L2(Ω)

)(∥
∥∇4P

∥
∥

L2(Ω)
+

∥
∥∇3P

∥
∥

L2(Ω)

)

� C (K,K1,Υ, |f |,M,VolΩ)
(
E

1/2
3 (t) + E

1/2
2 (t)

)
(

3∑

s=0

Es(t) +

(
2∑

�=0

E
1/2
� (t)

)

E
1/2
4 (t)

)

� C (K,K1,Υ, |f |,M,VolΩ)
3∑

s=0

Es(t)
4∑

�=0

E
1/2
� (t).

Hence, we have

|(4.26)| � C (K,K1,Γ,Υ, |f |,M,L, 1/ε,VolΩ, E0(0), E1(0))

(

1 +
r−1∑

s=0

Es(t)

)

(1 + Er(t)) .

By combining (4.30) with (4.31), we can get

|(4.8)| + |(4.9)| �C (K,K1,Γ,Υ, |f |,M,L, 1/ε,VolΩ, E0(0), E1(0))

·
(

1 +
r−1∑

s=0

Es(t)

)

(1 + Er(t)) .
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Now we calculate the material derivatives of
∣
∣∇r−1curlu

∣
∣2. By [17, Lemma 2.1] and (4.1), we have

Dt

(∣
∣∇r−1curlu

∣
∣2

)

= Dt

(
gacgbdgAF ∇r−1

A (curlu)ab∇r−1
F (curlu)cd

)

= (r + 1)Dt (gac) gbdgAF ∇r−1
A (curlu)ab∇r−1

F (curlu)cd

+ 4gacgbdgAF Dt

(
∇r−1

A ∇aub

)
∇r−1

F (curlu)cd

= −2(r + 1)gae∇eu
cgbdgAF ∇r−1

A (curlu)ab∇r−1
F (curlu)cd

− 4gacgbdgAF ∇r−1
F (curlu)cd∇r

Aa∇bP + 4gacgbdgAF ∇r−1
F (curlu)cd∇r

Aaũb

− 4ΥgacgbdgAF ∇r−1
F (curlu)cdδb3∇r

AaΘ + 4gacgbdgAF ∇r−1
F (curlu)cd(curlu)be∇r

Aaue

+ 4sgn(2 − r)gacgAF ∇r−1
F (curlu)cd

r−2∑

s=1

( r
s+1)

((
∇1+su

)
· ∇r−sud

)

Aa
.

The higher-order term involving pressure P will vanish by symmetry. For other terms, we can apply the
Hölder inequality and the Gauss formula to get that

∫

Ω

Dt

(∣
∣∇r−1curlu

∣
∣2

)
dμg

� (K,Υ, |f |,M,L, 1/ε,VolΩ, E0(0)) ·
(

1 +
r−1∑

s=0

Es(t)

)

(1 + Er(t)) .

Finally, we only need to estimate the last term in (4.6). By [11, (A.12)], we have

ϑt

ϑ
=

2ha
dNd∇aP

∇NP
− hNN − ∇NDtP

∇NP
.

Thus, the integrals can be controlled by C(K,Υ,Γ, |f |,M,L, 1/ε)Er(t).
In summary, we obtain

d

dt
Er(t) � C (K,K1,Υ,Γ, |f |,M,L, 1/ε,VolΩ, E0(0))

(

1 +
r−1∑

s=0

Es(t)

)

(1 + Er(t)) ,

which implies the desired result by Gronwall’s inequality and the induction argument for r ∈ {2, 3, 4}.
�

5. Justification of a priori assumptions

In this section, we justify the a priori assumptions in Sect. 4. At time t, denote

K(t) = max
(
‖θ(t, ·)‖L∞(∂Ω), 1/ς0(t)

)
,

E(t) = ‖1/ (∇NP (t, ·))‖L∞(∂Ω) , ε(t) =
1

E(t)
.

(5.1)

In fact, our judgment is very similar to those in [6,11], so we only state the results and omit their proofs
as follows.
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Lemma 5.1. Let K1 � 1/ς1(t), then there are continuous functions Fj, j = 1, 2, 3, 4, such that

‖∇u‖L∞(Ω) + ‖∇Θ‖L∞(Ω) � F1 (K1, E0, · · · , E4) ,

‖∇P‖L∞(Ω) +
∥
∥∇2P

∥
∥

L∞(Ω)
� F2 (K1, E , E0, · · · , E4,VolΩ) ,

‖∇DtP‖L∞(∂Ω) � F4 (K1, E , E0, · · · , E4,VolΩ) ,

‖θ‖L∞(∂Ω) � F3 (K1, E , E0, · · · , E4,VolΩ) ,
∣
∣
∣
∣
d

dt
E
∣
∣
∣
∣ � Cr (K1, E , E0, · · · , E4,VolΩ) ,

∣
∣
∣
∣
d

dt
Er

∣
∣
∣
∣ � Cr (K1, E , E0, · · · , E4,VolΩ)

r∑

s=0

Es.

Lemma 5.2. There exists a continuous function T > 0 depending on K1, |f |,Υ,Γ, E0(0), E1(0), · · · ,
E4(0) and VolΩ such that for

0 � t � T (K1, |f |,Υ,Γ, E(0), E0(0), · · · , E4(0),VolΩ)

the following statements hold

Es(t) � 2Es(0), 0 � s � 4, E(t) � 2E(0).

Furthermore,

1
2
gab(0, y)Y aY b � gab(t, y)Y aY b � 2gab(0, y)Y aY b,

and with ε1 as in Definition 4.1,

|N(x(t, ȳ)) − N(x(0, ȳ))| � ε1

16
, ȳ ∈ ∂Ω,

|x(t, y) − x(t, y)| � ς1
16

, y ∈ Ω,
∣
∣
∣
∣
∂x(t, ȳ)

∂y
− ∂(0, ȳ)

∂y

∣
∣
∣
∣ � ε1

16
, ȳ ∈ ∂Ω.

Lemma 5.3. Let T be as in Lemma 5.2. There exists some ε1 > 0 such that, if

|N (x (0, y1)) − N (x (0, y2))| � ε1

2
,

then for t � T , it holds

|N (x (t, y1)) − N (x (t, y2))| � ε1.

Proof.

|N (x (t, y1)) − N (x (t, y2))|
� |N (x (t, y1)) − N (x (0, y1))| + |N (x (0, y1)) − N (x (0, y2))|

+ |N (x (0, y2)) − N (x (t, y2))| ,

and follows from Lemma 5.2. �

Consequently, Lemmas 5.2 and 5.3 yield immediately Theorem 1.1.
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6. A priori estimates for rotating magnetohydrodynamics with damping

As everyone knows, the rotating MHD has wide application including planetary flows, stellar flows and
accretion discs. An incompressible inviscid MHD system with damping under solid body rotation and in
the presence of a uniform background magnetic field will be considered. The equations in the rotating
frame of reference are:

⎧
⎪⎨

⎪⎩

∂tv + v · ∇v + αe3 × b + ∇p = b · ∇b,

∂tb + v · ∇b = b · ∇v − ηb,

∇ · u = 0, ∇ · b = 0,

(6.1)

in D (the same as before), where v, b, p denote the velocity, the magnetic field, the total pressure,
respectively; α is the rotation rate and η > 0 is a damping coefficient. Obviously, when α = η = 0, (6.1)
are the incompressible inviscid MHD equations considered in [11]. The system (6.1) with the conditions
p = 0, b ·N = 0 and vN = κ (the normal velocity of free surface) on the free boundary ∂Dt can be written
in the Lagrangian coordinates as

Dtua + ∇aP = −β̃a + βuc∇auc + βd∇dβa, in [0, T ] × Ω,

Dtβa = βd∇dua + βc∇auc − ηβa, in [0, T ] × Ω,

∇aua = 0, ∇aβa = 0, in [0, T ] × Ω,

βaNa = 0, P = 0, on [0, T ] × ∂Ω,

(6.2)

where β̃ = (−αβ2, αβ1, 0), Ω = D0; u, β, P denote the velocity, the magnetic field, the total pressure in
the new coordinates. Thus, in view of (6.2) and [17, Lemma 2.1], we also have the zero-order energy

E0(t) =
1
2

∫

Ω

(
|u(t, x)|2 + |β(t, x)|2

)
dμg + η

t∫

0

∫

Ω

|β|2dμgdτ.

A direct computation yields that the energy of the system is conserved.
Similarly, we can define the first-order energy as

E1(t) =
∫

Ω

(
gbdγae∇aub∇eud + gbdγae∇aβb∇eβd

)
dμg

+
∫

Ω

(
|curlu|2 + |curlβ|2

)
dμg + η

t∫

0

∫

Ω

|∇β|2dμgdτ.

Theorem 6.1. For any smooth solution of system (6.2) for 0 � t � T satisfying

|∇P | � M, |∇u| � M, in [0, T ] × Ω, (6.3)

|θ| + |∇u| +
1
ς0

� K, on [0, T ] × ∂Ω, (6.4)

we have for t ∈ [0,T]

E1(t) � 2eCMtE1(0) + CK2 (VolΩ + E0(0))
(
eCMt − 1

)
, (6.5)

where C depend on α, η.
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Define the r-th order energy for r � 2 as

Er(t) =
∫

Ω

gbdγafγAF ∇r−1
A ∇aub∇r−1

F ∇fuddμg +
∫

Ω

∣
∣∇r−1curlu

∣
∣2 dμg

+
∫

Ω

gbdγafγAF ∇r−1
A ∇aβb∇r−1

F ∇fβddμg +
∫

Ω

∣
∣∇r−1curlβ

∣
∣2 dμg

+ η

t∫

0

∫

Ω

|∇rβ|2dμgdτ +
∫

∂Ω

γafγAF ∇r−1
A ∇aP∇r−1

F ∇fPϑdμγ .

(6.6)

Theorem 6.2. For the integer 2 � r � 4, there exists a constant T > 0 such that, for any smooth solution
to system (6.2) for 0 � t � T satisfying

|β| � M1, for r = 2, in [0, T ] × Ω,

|∇P | � M, |∇u| � M, |∇β| � M, in [0, T ] × Ω,

|θ| + 1/ς0 � K, on [0, T ] × ∂Ω,

−∇NP � ε > 0, on [0, T ] × ∂Ω,
∣
∣∇2P

∣
∣ + |∇NDtP | � L, on [0, T ] × ∂Ω,

(6.7)

we have for t ∈ [0, T ],

Er(t) � eC1tEr(0) + C2

(
eC1t − 1

)
, (6.8)

where the constants C1 and C2 depend on K,α, η,M,M1, L, 1/ε,VolΩ, E0(0), E1(0), · · · and Er−1(0).

Remark 6.1. It is meaningfully different from the Boussinesq equations that in such case the Taylor sign
condition does involve the total pressure rather than just the pure hydrostatic pressure.

Remark 6.2. Because the nonlinear term involves β, then we have to estimate the L2 norm of ∇bβ
aβe∇e

∇aua when we estimate ‖∇sΔDtP‖L2(Ω) for s � 2. Obviously, we have to assume |β| � M1 when r = 2.
It is different from the rotating Boussinesq equations.

Similarly, we can obtain the following a priori estimates.

Theorem 6.3. Let

K(0) = max
(
‖θ(0, ·)‖L∞(∂Ω), 1/ς0(0)

)
,

E(0) = ‖1/ (∇NP (0, ·))‖L∞(∂Ω) = 1/ε(0) > 0.

There exists a continuous function T > 0 such that if

T � T (α, η,K(0), E(0), E0(0), · · · , E4(0),VolΩ) ,

then any smooth solution of the free boundary problem for incompressible inviscid rotating MHD system
(6.1) with damping satisfies

4∑

s=0

Es(t) � 2
4∑

s=0

Es(0), 0 � t � T.

Theorems 6.1, 6.2 and 6.3 can be proved similarly as those of rotating Boussinesq equations and the
non-rotating MHD case in [11]. We omit the details of the proof.
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