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ABSTRACT
This paper focuses on the global well-posedness of the Oberbeck–Boussinesq approximation for the unsteady motion of a drop in another
bounded fluid separated by a closed interface with surface tension. We assume that the initial state of the drop is close to a ball BR with
the same volume as the drop, and that the boundary of the drop is a small perturbation of the boundary of BR. To begin, we introduce the
Hanzawa transformation with an added barycenter point to obtain the linearized Oberbeck–Boussinesq approximation in a fixed domain.
From there, we establish time-weighted estimates of solutions for the shifted equation using maximal Lp–Lq regularities for the two-phase
fluid motion of the linearized system, as obtained by Hao and Zhang [J. Differ. Equations 322, 101–134 (2022)]. Using time decay estimates
of the semigroup, we then obtain decay time-weighted estimates of solutions for the linearized problem. Additionally, we prove that these
estimates are less than the sum of the initial value and its own square and cube by estimating the corresponding non-linear terms. Finally,
the existence and uniqueness of solutions in the finite time interval (0, T) was proven by Hao and Zhang [Commun. Pure Appl. Anal. 22(7),
2099–2131 (2023)]. After that, we demonstrate that the solutions can be extended beyond T by analyzing the properties of the roots of algebraic
equations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0220764

I. INTRODUCTION
When studying natural or mixed convection flows, the most commonly used theoretical approach is the Oberbeck–Boussinesq

approximation. This approximation provides an approximate description of the thermo-mechanical behavior of linear viscous fluids,
such as Navier–Stokes fluids or Newtonian fluids. It was first proposed by Oberbeck11 and later developed by Boussinesq.1 This approx-
imation is applicable to a wide range of problems in astrophysics, geophysics, and oceanography (see, for example, Ref. 9). There
have been numerous thorough and comprehensive analyses on the derivation of this approximation from the general formulation of
the fluid’s local balance equations for mass, momentum, and energy, including works by Feireisl–Novotný,4 Rajagopal et al.16 and
Roubíček.17

In the present paper, we consider the unsteady two-phase fluid motion of a drop of one incompressible viscous fluid inside another one
in the Oberbeck–Boussinesq approximation with surface tension:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(∂tu + u ⋅ ∇u) −Div(μD(u) − pI) = f(x, t) − αgΘ in Ω̇t ,

∂tΘ + div(uΘ − ν∇Θ) = 0 in Ω̇t ,

div u = 0 in Ω̇t ,

[[(μD(u) − pI)nt]] = σH(Γt), [[u]] = 0 on Γt ,

[[ν∇Θ ⋅ nt]] = 0, [[Θ]] = 0 on Γt ,

Vn = u ⋅ nt on Γt ,

u = 0, ∇Θ− ⋅ n− + βΘ− = b(x, t) on Γ,

u∣t=0 = u0, Θ∣t=0 = Θ0 in Ω̇,

(1.1)

where u = (u1(x, t), . . . , uN(x, t))⊺, p = p(x, t) and Θ(x, t) denote the velocity field, the pressure and the deviation from the average temper-
ature, respectively. f is a given vector function of mass forces, and g = g(0, . . . , 0, 1)⊺ is a constant vector with the gravity constant g. Let Ω
be a bounded domain in the N-dimensional Euclidean space RN

(N ≥ 2) with a rigid boundary Γ being a compact hypersurface of class C2.
Let SR be the sphere of radius R centered at the origin and assume dist(Γ, SR) = inf{∣x − y∣ : x ∈ Γ, y ∈ SR} ≥ 3d for some constant d > 0. The
domain Ω+ occupied by the drop is close to the ball BR whose volume equals the volume of the drop, where BR denotes the ball in RN of
radius R centered at the origin. Denote Ω− ∶= Ω/Ω+. Let Ωt+ be the evolution of Ω+ and Γt be the boundary of Ωt+, both of which depend
on the time t > 0. Set Ωt− ∶= Ω/(Ωt+ ∪ Γt) with Ω0+ = Ω+, Ω0− = Ω− and Γ0 being a normal perturbation of SR. Let nt be the normal to Γt
oriented from Ωt+ into Ωt−, n = y/R for y ∈ SR and n− be the unit outward normal to Γ. Denote Ω̇t ∶= Ωt+ ∪Ωt− and Ω̇ ∶= Ω̇0. The piece-wise
positive constants ρ, μ,α and ν correspond to the mass density, the kinematic viscosity, the temperature expansion coefficient and the ther-
mal conductivity, respectively. Here, both the above functions u, p,Θ, f and the constants ρ, μ,α, ν are piece-wisely defined, for instance, u
= u+χΩ+ + u−χΩ− , ρ = ρ+χΩ+ + ρ−χΩ− , etc., where χΩ± are the characteristic function of Ω±. D(u) is the doubled deformation tensor with the
(i, j)th component ∂iuj + ∂ jui, and I is the N ×N identity matrix. b(x, t) is a given function on the fixed boundary Γ, and β ≥ 0 is a constant.
Ω̇, u0 and Θ0 are the prescribed initial data for Ω̇t , u and Θ, respectively. Vn is the evolution velocity of Γt along nt . σ is a positive constant
describing the coefficient of the surface tension and H(Γt) is (N − 1) times the mean curvature of Γt . Moreover, for any function f (x, t)
= f±(x, t) for x ∈ Ωt± and t ≥ 0, we denote the jump of f across Γt by

[[ f ]](x0) = lim
x→x0
x∈Ωt+

f+(x) − lim
x→x0
x∈Ωt−

f−(x)

for every point x0 ∈ Γt .
This paper focuses on the free boundary problem of two-phase incompressible viscous fluids. For the two-phase Navier–Stokes flow,

Tanaka25 obtained a global solution near an equilibrium state for small initial data and proved its unique solvability by assuming certain
regularity for the coefficients and the free boundary with general initial data;26 Takahashi24 also established a global weak solution. For the
two-phase Stokes flow, Giga and Takahashi6 constructed a global weak solution under periodic boundary conditions.

Assuming that the initial liquid velocities were small and the initial configuration of the inner fluid was close to a ball, Denisova and
Solonnikov3 proved the global solvability for two incompressible fluids. Shibata proved the existence of unique solutions to the generalized
resolvent problems for the Stokes operator in Ref. 20. Shibata et al. have made significant contributions to the resolvent problems, such as
in Refs. and 10 21 –10 23, with the aid of the R -bounded operator theory. Prüss and Simonett13–15 contributed to the Lp approach for two-
phase problems, particularly for the case of surface tension. More recently, for the linearized electromagnetic field equations, Frolova and
Shibata developed maximal Lp–Lq regularity in Ref. 5. Additionally, in the framework of maximal Lp–q regularity, Saito, Shibata, and Zhang19

established the local and global existence for the two-phase Navier–Stokes equations without surface tension. Taking into account surface
tension and gravity, Saito and Shibata18 proved the global well-posedness of the free boundary Navier–Stokes equations in an unbounded
domain.

The rest of this paper is structured as follows. Before stating the main theorem, we first need to establish some assumptions about the
initial region Ω+ in Sec. II. Specifically, Ω+ must satisfy (2.2). Once these assumptions are in place, we can use the Hanzawa transformation
to reduce the problem in a time-dependent domain Ω(t) to a problem in a fixed domain Ω. In Sec. III, we establish time-weighted estimates
for solutions of the shifted Eq. (3.2). Moving on to Sec. IV, we then study the decay properties of the analytic semigroup associated with
Eq. (3.1), where F6 = 0, F7 = 0, and b = 0 in (3.1). This allows us to obtain decay estimates for solutions of the linearized problem (3.1). In
Sec. V, we focus on estimating the nonlinear terms, resulting in (5.39). Finally, in Sec. VI, we analyze solutions of the algebraic equations
x3
+ x2
+I − C−1x = 0 to obtain the inequality

E
κ
T(v, θ, h) ≤ x0(I ) for any T ∈ (0, T0).

By repeating this argument, we can extend the solutions of v, θ, and h to the time interval (0,∞).
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II. HANZAWA TRANSFORM AND THE MAIN THEOREM
In this section, we will use the Hanzawa transform to convert (1.1) into a problem on a fixed domain. We will then provide a statement

on the global well-posedness of Eq. (1.1) when Ω is a bounded domain. Unlike the transformation used in the proof of local well-posedness,
we will consider Ω+ with the following assumptions:

∣Ω+∣ = ∣BR∣, ∫
Ω+

xdx = 0, Γ0 = {x = ξ + h0(ξ)n ∣ ξ ∈ SR}. (2.1)

where h0(ξ) is a given small function defined on SR. Notice that n = R−1ξ (ξ ∈ SR) is the unit outer normal to SR. Let Γt be given by

Γt = {x = ξ + h(ξ, t)R−1ξ + ζ(t) ∣ ξ ∈ SR} (2.2)

with an unknown function h(ξ, t) with h(ξ, 0) = h0(ξ) and ζ(t) is the barycenter point of the domain Ωt+ defined by

ζ(t) =
1
∣Ωt+∣∫Ωt+

xdx. (2.3)

By the assumptions mentioned above, it is clear that ζ(0) = 0. In view of (2.1) and

d
dt∫Ω̇t

ρxidx = ∫
Ω̇t

ρuidx,

we have
ζ′(t) =

1
∣BR∣
∫
Ωt+

u(x, t)dx.

Let Φh be a suitable extension of h(ξ, t) such that Φh(ξ, t) = h(ξ, t) for (ξ, t) ∈ SR × (0, T) and possesses the estimate

C1∥h(⋅, t)∥Wk−1/q
q (SR) ≤ ∥Φh(⋅, t)∥Hk

q(Ω̇) ≤ C2∥h(⋅, t)∥Wk−1/q
q (SR),

C1∥∂th(⋅, t)∥Wℓ−1/q
q (SR) ≤ ∥∂tΦh(⋅, t)∥Hℓ

q (Ω̇) ≤ C2∥∂th(⋅, t)∥Wℓ−1/q
q (SR),

(2.4)

for k = 1, 2, 3 and ℓ = 1, 2. The definitions of Ws
q(SR) and Hs

q(Ω̇) can be found in Appendix. Let Ψh(ξ, t) = χ(ξ)(Φh(ξ, t)R−1ξ + ζ(t)), where
χ(ξ) is a C∞(RN

) function which equals 1 for ∣ξ∣ < R + d and 0 for ∣ξ∣ > R + 2d. Then, we can use the following Hanzawa transform defined
by

x = ξ +Ψh(ξ, t) for ξ ∈ Ω, (2.5)

which was originally introduced by Hanzawa in Ref. 1 to treat classical solutions of the Stefan problem. In the following, we assume that

sup
t∈(0,T)

∥Ψh(⋅, t)∥H1∞(Ω) ≤ ε, (2.6)

where ε is a small positive number. In fact, we can choose ε ∈ (0, 1), and then the Hanzawa transform defined above is an injective map. Let

Ω̇t = {x = ξ +Ψh(ξ, t) ∣ ξ ∈ Ω̇},

the Hanzawa transform maps Ω̇ into Ω̇t injectively. By (2.3) and the definition of χ(ξ), we can get x = ξ +Φh(ξ, t)R−1ξ + ζ(t) for ξ ∈ SR and
x = ξ for ξ ∈ Γ. Let ∂x

∂ξ be the Jacobean matrix of the transformation, that is, ∂x
∂ξ = I +∇Ψh(ξ, t), where Ψh(ξ, t) = (Ψ1(ξ, t), . . . ,ΨN(ξ, t))⊺,

∂iΨ j =
∂Ψ j
∂ξi

and

∇Ψh = ∇(χ(ξ)Φh(ξ, t)R−1ξ) +∇χ(ξ)ζ(t), in Ω̇,

∇Ψh = ∇(χ(ξ)h(ξ, t)R−1ξ), on SR,

∂tΨh = χ(ξ)(∂tΦh(ξ, t)R−1ξ + ξ′(t)) inΩ.

(2.7)

Since ε is a small positive number, by (2.4) and (2.6) and the chain rule, we have

∂ξ
∂x
= (

∂x
∂ξ
)

−1
= I +

∞
∑
k=1
(−∇Ψh(ξ, t))k

= I +V0(∇Ψh), (2.8)
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where V0(k) is an N ×N matrix of analytic functions defined on {k ∣ ∣k∣ < ε} such that V0(0) = 0. Here and in the following, we will use the
notation k = (ki j) with kij to represent the variables corresponding to ∂iΨj. Then we have

∇x = (I +V0(k))∇ξ ,
∂

∂xℓ
=

∂

∂ξℓ
+

N

∑
j=1

V0ℓj(k)
∂

∂ξj
, (2.9)

where ∇z = (
∂
∂z1

, . . . , ∂
∂zN
)
⊺

for z = x or ξ. V0ℓj is the (ℓ, j)th component of the N ×N matrix V0. Let u, p and Θ be solutions of (1.1), and we
set

v(ξ, t) = u(ξ +Ψh(ξ, t), t), q(ξ, t) = p(ξ +Ψh(ξ, t), t), θ(ξ, t) = Θ(ξ +Ψh(ξ, t), t).

Noting that x = ξ near Γ and ζ(0) = 0, we have

v = 0, ∇θ− ⋅ n− + βθ− = b(ξ, t) on Γ × (0, T),

v∣t=0 = v0, θ∣t=0 = θ0 in Ω̇; Φh∣t=0 = h0 on SR.
(2.10)

Since ζ(t) is also an unknown function, by (2.5), we get dx = dy + J(k)dξ with

J(k) = det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Ψh1(ξ, t)
∂ξ1

⋅ ⋅ ⋅
∂Ψh1(ξ, t)

∂ξN

⋮
. . . ⋮

∂ΨhN(ξ, t)
∂ξ1

⋅ ⋅ ⋅
∂ΨhN(ξ, t)

∂ξN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In view of (2.3) and (2.5), we can obtain ζ′(t) = ζ̃ ′(t) where ζ̃ ′(t) is defined by

ζ̃ ′(t) ∶=
1
∣BR∣
∫

BR

v(ξ, t)dξ +
1
∣BR∣
∫

BR

v(ξ, t)J(k)dξ. (2.11)

Since ζ(0) = 0, we can define ζ̃(t) by setting

ζ̃(t) = ∫
t

0
ζ̃ ′(τ)dτ =

1
∣BR∣
∫

t

0
∫

BR

v(ξ, τ)dξdτ +
1
∣BR∣
∫

t

0
∫

BR

v(ξ, τ)J(k)dξdτ. (2.12)

In the following sections, although ζ(t) is an unknown function, we can change its estimate into the estimate of ζ̃(t). And then, by using
the Hanzawa transform, we transform Eq. (1.1) to the following nonlinear equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv −Div(μD(v) − qI) = N1(v, f, θ,Ψh) + f(x(ξ, t), t) − αgθ in Ω̇ × (0, T),
div v = N2(v,Ψh) = div N3(v,Ψh) in Ω̇ × (0, T),
∂tθ − νΔθ = N4(v, θ,Ψh) in Ω̇ × (0, T),
∂th − n ⋅ Pv = N5(v,Ψh) on SR × (0, T),
[[μD(v)n]]τ = [[N6(v,Ψh)]], [[v]] = 0 on SR × (0, T),

[[(μD(v)n, n) − q]] − σΔSR h +
N − 1

R2 h = [[N7(v,Ψh)]] on SR × (0, T),

[[ν∇θ ⋅ n]] = N8(θ,Ψh), [[θ]] = 0 on SR × (0, T),
v = 0, ∇θ− ⋅ n− + βθ− = b(ξ, t) on Γ × (0, T),
v∣t=0 = v0 in Ω̇, θ∣t=0 = θ0 in Ω̇, h∣t=0 = h0 on SR,

(2.13)

where n = R−1ξ(ξ ∈ SR), Pv = v − 1
∣BR ∣∫BR

vdξ, andΔSR is the Laplace–Beltrami operator on SR. Moreover, N1(v, f, θ,Ψh), N2(v,Ψh), N3(v,Ψh),
N4(v, θ,Ψh) and N6(v,Ψh) are the same as in Ref. 8, but the other nonlinear terms on boundary are slightly different from those in Ref. 8.

Thus, we need to reformulate the boundary conditions on SR. Let ω ∈ S1 be represented by ω = ω(p1, . . . , pN−1) under a local coordinate
(p1, . . . , pN−1), and then for x = (R + h)ω + ζ(t) ∈ Γt , we have

∂x
∂pj
= (R + h)τj +

∂h
∂pj

ω, (2.14)
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where τ j =
∂ω
∂p j

is a basis of the tangent space of S1. From (2.7) and (2.14), we see that ζ(t) does not work in reformulation of boundary
conditions.

Next, we give a representation formula of nt . We set

nt = a(ω +
N−1

∑
i=1

biτi),

where a and bi’s are unknown functions. Using the same method as in Ref. 8, we can obtain

nt = ω +V1(∇̄Φh)∇̄Φh, (2.15)

where ∇̄ = (I,∇), V1(∇̄Φh) is an N ×N matrix of analytic functions defined on {∣∇̄Φh∣ < ε} such that V1(0) = 0. By (2.15), we can find that
N5(v,Ψh), N7(v,Ψh) and N8(θ,Ψh) only have some different C∞ coefficient functions for the corresponding nonlinear terms in Ref. 8. Since
C∞ functions do not affect our estimation, we still use N5(v,Ψh), N7(v,Ψh) and N8(θ,Ψh) to represent the nonlinear terms in (2.13), and the
formulas are the same as those in Ref. 8.

The main theorem about global well-posedness for (2.13) is stated as follows.

Theorem 2.1. Let 2 < p <∞, N < q <∞ and 2/p +N/q < 1. Assume that Ω is a bounded domain, (2.1) holds and Γ is a compact hypersur-
face of class C2. Let 0 < κ ≤ 1 be a constant, eκtf(x(ξ, t), t) ∈ Lp

((0,∞), Lq
(Ω̇)) and eκtb(ξ, t) ∈ Lp

((0,∞), H1
q(Ω−)) ∩H1/2

p ((0,∞), Lq
(Ω−)).

Let (u0, θ0) ∈ B2(1−1/p)
q,p (Ω̇) and h0 ∈ B1−1/p−1/q

q,p (SR) be the initial data for (2.13) and satisfy the smallness condition:

∥eκtf∥Lp((0,∞),Lq(Ω̇)) + ∥e
κtb∥Lp((0,∞),H1

q(Ω−)) + ∥e
κtb∥H1/2

p ((0,∞),Lq(Ω−))

+ ∥v0∥B2(1−1/p)
q,p (Ω̇) + ∥θ0∥B2(1−1/p)

q,p (Ω̇) + ∥h0∥B3−1/p−1/q
q,p (SR) ≤ ε

(2.16)

for some small number ε > 0. Assume that the compatibility conditions hold:

v0 −N3(v0, Ψh∣t=0) ∈ D (Ω), div v0 = N2(v0, Ψh∣t=0) in Ω̇,

[[(μD(v0)n)τ]] = [[(N6(v0, Ψh∣t=0))τ]], [[v0]] = 0 on SR,

[[ν∇θ0 ⋅ n]] = N8(θ0, Ψh∣t=0), [[θ0]] = 0 on SR,

v0 = 0, ∇θ0− ⋅ n− + βθ0− = b∣t=0 on Γ,

where D (Ω) can be found in the Appendix. Then, problem (2.13) with T =∞ admits a unique solution which possesses the estimate

∥(eκtv, eκtθ)∥Lp((0,∞),H2
q(Ω̇)) + ∥(e

κt∂tv, eκt∂tθ)∥Lp((0,∞),Lq(Ω̇))

+ ∥eκt∂th∥Lp((0,∞),W2−1/q
q (Ω)) + ∥e

κth∥Lp((0,∞),W3−1/p
q (SR))

+ ∥eκt∂th∥L∞((0,∞),W1−1/q
q (Ω)) ≲ ε,

(2.17)

where the symbol “≲” denotes “≤C” for some constant C > 0 independent of ε and κ.

III. ESTIMATES OF SOLUTIONS FOR THE SHIFTED EQUATIONS
In order to prove Theorem 2.1, we first consider the following linearized equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv −Div(μD(v) − qI) = F1 in Ω̇ × (0, T),
div v = F2 = div F3 in Ω̇ × (0, T),
∂tθ − νΔθ = F4 in Ω̇ × (0, T),
∂th − n ⋅ Pv = F5 on SR × (0, T),

[[(μD(v) − qI)n]] − σ(ΔSR +
N − 1

R2 )hn = [[F6]], [[v]] = 0 on SR × (0, T),

[[ν∇θ ⋅ n]] = F7, [[θ]] = 0 on SR × (0, T),
v = 0, ∇θ− ⋅ n− + βθ− = b(ξ, t) on Γ × (0, T),
v∣t=0 = v0 in Ω̇, θ∣t=0 = θ0 in Ω̇, h∣t=0 = h0 on SR,

(3.1)
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where F1, . . . , F7 are given functions. Here and in the following, we denote gκ(t) = eκt g(t) for a function g, and it is clear that gκ∣κ=0 = g(t)
and gκ∣t=0 = g(0). Let

Eκ
T(v, θ, h) ∶= ∥(vκ, θκ)∥Lp((0,T),H2

q(Ω̇)) + ∥(e
κt∂tv, eκt∂tθ)∥Lp((0,T),Lq(Ω̇))

+ ∥eκt∂th∥Lp((0,T),W2−1/q
q (Ω)) + ∥h

κ
∥Lp((0,T),W3−1/p

q (SR)),

and

EκT(v0, θ0, h0, F1, . . . , F7, b) ∶= ∥(v0, θ0)∥B2(1−1/p)
q,p (Ω̇) + ∥h0∥B3−1/p−1/q

q,p (SR)

+ ∥(Fκ1, Fκ4)∥Lp((0,T),Lq(Ω̇)) + ∥F
κ
5∥Lp((0,T),W2−1/q

q (SR))

+ ∥eκt∂tF3∥Lp(R,Lq(Ω̇)) + ∥(F
κ
2 , Fκ6, Fκ7)∥Lp(R,H1

q(Ω̇))
+ ∥bκ∥

Lp(R,H1
q(Ω−))

+ ∥(Fκ2 , Fκ6, Fκ7)∥H1/2
p (R,Lq(Ω̇)) + ∥b

κ
∥

H1/2
p (R,Lq(Ω−)).

In order to get the decay estimates of solutions for the linearized Eq. (3.1), we need to consider the following shifted equations with
λ1 > 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv1 + λ1v1 −Div(μD(v1) − q1I) = F1 in Ω̇ × (0, T),

div v1 = F2 = div F3 in Ω̇ × (0, T),

∂tθ1 + λ1θ1 − νΔθ1 = F4 in Ω̇ × (0, T),
∂th1 + λ1h1 − n ⋅ Pv1 = F5 on SR × (0, T),

[[(μD(v1) − q1I)n]] − σ(ΔSR +
N − 1

R2 )h1n = [[F6]], [[v1]] = 0 on SR × (0, T),

[[ν∇θ1 ⋅ n]] = F7, [[θ1]] = 0 on SR × (0, T),
v1 = 0, ∇θ1− ⋅ n− + βθ1− = b(ξ, t) on Γ × (0, T),

v1∣t=0 = v0 in Ω̇, θ1∣t=0 = θ0 in Ω̇, h1∣t=0 = h0 on SR.

(3.2)

Then, we devote to presenting the maximal regularity for the shifted Eq. (3.2). In fact, we will prove the following results.

Theorem 3.1. Let 1 < p, q <∞ and T > 0. Assume that 2/p + 1/q ≠ 1, 2. Then, there exists a positive constant λ2 > 0 such that if λ1 ≥ λ2,
then the following assertion holds: Let v0, θ0 ∈ B2(1−1/p)

q,p (Ω̇) and h0 ∈ B3−1/p−1/q
q,p (SR) be initial data for equations (3.2), and let F1, . . . , b be given

functions on the right side of equations (3.2) satisfying for 0 < κ ≤ κ0 ∶= λ1 − λ2 that

Fκ1, Fκ4 ∈ Lp
((0, T), Lq

(Ω̇)), Fκ5 ∈ Lp
((0, T), W2−1/q

q (SR)),

Fκ3 ∈ H1
p(R, Lq

(Ω̇)), Fκ2 , Fκ6 , Fκ7 ∈ H1
p(R, H1

q(Ω̇)) ∩H1/2
p (R, Lq

(Ω̇)),

bκ ∈ Lp
(R, H1

q(Ω−)) ∩H1/2
p (R, Lq

(Ω−)).

Assume that the compatibility conditions hold:

div v0 = F2∣t=0 in Ω̇, v0 − F3∣t=0 ∈ D (Ω),

and for 2/p + 1/q < 1

[[(μD(v0)n)τ]] = [[(F6)τ]]∣t=0
, [[ν∇θ0 ⋅ n]] = F7∣t=0 on SR,

∇θ0− ⋅ n− + βθ0− = b∣t=0 on Γ;

for 2/p + 1/q < 2
[[v0]] = 0, [[θ0]] = 0 on SR, v0 = 0 on Γ.

Then, problem (3.2) admits a unique solution possessing the estimate

Eκ
T(v1, θ1, h1) ≲ EκT(v0, θ0, h0, F1, . . . , F7, b). (3.3)

Proof. Let’s first consider the corresponding resolvent problem of (3.2). Since the argument is the same as for the system with θ1 = 0, we
only discuss the temperature equation with interface conditions, then the related results for v1 and h1 can be obtained by a similar method. Let
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F̃4 be the zero extension of F4 outside (0, T), that is, F̃4(t) = F4(t) for t ∈ (0, T) and F̃4(t) = 0 for t ∉ (0, T). Notice that F̃4(t), F7(t) and b(t)
are defined on the whole line R, we can apply the Laplace transform to temperature equation with interface conditions. Let A (λ) (λ = γ + iτ)
be operators given in Ref. 7, and then, A (λ + λ1) is R -bounded solution operators for the generalized resolvent problem corresponding to
the following equations:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

λθ̂1 + λ1θ̂1 − νΔθ̂1 =
ˆ̃F4 in Ω̇,

[[ν∇θ̂1 ⋅ n]] = F̂7, [[θ̂1]] = 0 on SR,

∇θ̂1− ⋅ n− + βθ̂− = b̂ on Γ,

(3.4)

provided that

F4 ∈ Lp
((0, T), Lq

(Ω̇)), F7 ∈ H1
p(R, H1

q(Ω̇)) ∩H1/2
p (R, Lq

(Ω̇)),

b ∈ Lp
(R, H1

q(Ω−)) ∩H1/2
p (R, Lq

(Ω−)).
(3.5)

In view of Ref. 7, Theorem 3.1, we have for τ = Im λ and some positive constant r that

RL(Xq(Ω̇),H2−k
q (Ω̇))({(τ∂τ)

ℓ
((λ + λ1)

k/2
A (λ + λ1)) : λ + λ1 ∈ Σε,λ0}) ≤ r (3.6)

is valid for ℓ = 0, 1 and k = 0, 1, 2. Here,

∥(A0, A1, . . . , A4)∥Xq(Ω̇) = ∥(A0, A1)∥Lq(Ω̇) + ∥A2∥H1
q(Ω̇) + ∥A3∥Lq(Ω−) + ∥A4∥H1

q(Ω−),

where Ai’s correspond to F̃4, (λ + λ1)
1/2F7, F7, (λ + λ1)

1/2b and b, respectively. As in Ref. 7, for τ ∈ R, the solution of Eq. (3.4) has the following
expression:

θ1 = eγt
F
−1
τ [A ((λ + λ1))F [e−γtG(t)](τ)]

with G(t) = (F̃4,Λ1/2
γ F7, F7,Λ1/2

γ b, b) and

Λ1/2
γ f ∶= F

−1
L [(λ + λ1)

1/2
FL[ f ]] = eγt

F
−1
τ [(λ + λ1)

1/2
F [e−γt f ]]

where F−1
L and F−1

τ can be found in the Appendix. In view of the properties of the Laplace transform, we have

∂tθ1 = eγt
F
−1
τ [λA (λ + λ1)F [e−γtG(t)](τ)].

Obviously, we can rewrite it as

∂tθ1 = eγt
F
−1
τ [(λ + λ1)A (λ + λ1)F [e−γtG(t)](τ)]

− λ1eγt
F
−1
τ [A (λ + λ1)F [e−γtG(t)](τ)].

(3.7)

According to the maximal Lp–Lq regularity in Ref. 7 for the system of heat equations with interface conditions, by (3.6) and (3.7), we obtain

∥e−γt∂tθ1∥Lp(R,Lq(Ω̇)) + ∥e
−γtθ1∥Lp(R,H2

q(Ω̇))

≲∥e−γtF̃4∥Lp(R,Lq(Ω̇)) + ∥e
−γtF7∥Lp(R,H1

q(Ω̇))
+ ∥e−γtΛ1/2

γ F7∥
Lp(R,Lq(Ω̇))

+ ∥e−γtb∥
Lp(R,H1

q(Ω−))
+ ∥e−γtΛ1/2

γ b∥
Lp(R,Lq(Ω−))

.

(3.8)

Since ∣(λ + λ1)
1/2
(1 + τ2

)
−1/4
∣ ≲ 1 + λ1/2

1 + γ
1/2, we get

∥e−γtΛ1/2
γ F7∥

Lp(R,Lq(Ω̇))
+ ∥e−γtΛ1/2

γ b∥
Lp(R,Lq(Ω−))

≲ (1 + λ1/2
1 + γ

1/2
)(∥e−γtF7∥H1/2

p (R,Lq(Ω̇)) + ∥e
−γtb∥

H1/2
p (R,Lq(Ω−))).

(3.9)
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Due to ∣(γ + λ1)(λ + λ1)
−1
∣ ≤ 1, by (3.7)–(3.9), we have

∥e−γtθ1∥Lp(R,Lq(Ω̇))

≲ (γ + λ1)
−1
(∥e−γt∂tθ1∥Lp(R,Lq(Ω̇)) + ∥e

−γtθ1∥Lp(R,H2
q(Ω̇))

)

≲ (γ + λ1)
−1
{∥e−γtF4∥Lp((0,T),Lq(Ω̇)) + ∥e

−γtF7∥Lp(R,H1
q(Ω̇))

+ ∥e−γtb∥
Lp(R,H1

q(Ω−))

+ (1 + λ1/2
1 + γ

1/2
)(∥e−γtF7∥H1/2

p (R,Lq(Ω̇)) + ∥e
−γtb∥

H1/2
p (R,Lq(Ω−)))}.

(3.10)

Thus, letting λ1 →∞, we can get ∥θ1∥Lp((−∞,0),Lq(Ω̇)) ≤ ∥e
−γtθ1∥Lp(R,Lq(Ω̇)) = 0, which leads to θ1 = 0 a.e. for t < 0.

In Ref. 7, Theorem 2.1, γ > 0 is large enough to ensure θ1 = 0 a.e. for t < 0, but by (3.10), we can choose γ = 0 and λ1 ≥ λ2, where λ2 is
sufficiently large position number, to lead to θ1 = 0 a.e. for t < 0. Thus, by (3.8)–(3.10) and choosing γ = 0, we have

E0
T(0, θ1, 0) ≲ E0

T(0, θ0, 0, 0, . . . , F7, b).

Analogously, let F̃1 and F̃5 be the zero extension of F1 and F5 outside (0, T), respectively, by the maximal regularity in Ref. 23 and choosing γ
= 0 we have

E0
T(v1, θ1, h1) ≲ E0

T(v0, θ0, h0, F1, . . . , F7, b). (3.11)

Then for any κ > 0, vκ1, θκ1 and hκ1 are solutions of the following shifted equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tvκ1 + (λ1 − κ)vκ1 −Div(μD(vκ1) − qκ1I) = Fκ1 in Ω̇ × (0, T),

div vκ1 = Fκ2 = div Fκ3 in Ω̇ × (0, T),

∂tθκ1 + (λ1 − κ)θκ1 − νΔθ
κ
1 = Fκ4 in Ω̇ × (0, T),

∂thκ1 + (λ1 − κ)hκ1 − n ⋅ Pvκ1 = Fκ5 on SR × (0, T),

[[(μD(vκ1) − qκ1I)n]] − σ(ΔSR +
N − 1

R2 )hκ1n = [[Fκ6]] on SR × (0, T),

[[vκ1]] = 0, [[ν∇θκ1 ⋅ n]] = Fκ7 , [[θκ1]] = 0 on SR × (0, T),
vκ1 = 0, ∇θκ1− ⋅ n− + βθ

κ
1− = bκ on Γ × (0, T),

vκ1∣t=0 = v0 in Ω̇, θκ1∣t=0
= θ0 in Ω̇, hκ1∣t=0

= h0 on SR.

(3.12)

We can choose 0 < κ ≤ κ0 = λ1 − λ2, by (3.11) and H1
q(Ω̇) ⊂ Lq

(Ω̇), then we have

Eκ
T(v1, θ1, h1) ≲ E0

T(v
κ
1, θκ1, hκ1) ≲ EκT(v0, θ0, h0, F1, . . . , F7, b).

Therefore, we complete the Proof of Theorem 3.1. ◻

IV. DECAY ESTIMATES OF SOLUTIONS FOR THE LINEARIZED EQUATIONS
In this section, we study the resolvent problem corresponding to (3.1) in which we assume F2 = 0 (i.e., div v = 0), F6 = 0, F7 = 0 and b

= 0. Since the pressure q in Eq. (3.1) has no evolution, we will eliminate q to formulate the problem in the semigroup setting. In view of Ref.
23, in fact, we shall reduce the corresponding resolvent equations to the following equivalent equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv −Div(μD(v) − K(v, h)I) = F1 in Ω̇ × (0,∞),

∂tθ − νΔθ = F4 in Ω̇ × (0, T),
[[ν∇θ ⋅ n]] = 0, [[θ]] = 0 on SR × (0, T),
∂th − n ⋅ Pv = F5, [[v]] = 0 on SR × (0,∞),

[[(μD(v) − K(v, h)I)n]] − σ(ΔSR h +
N − 1

R2 h)n = 0 on SR × (0,∞),

v = 0, ∇θ− ⋅ n− + βθ− = 0 on Γ × (0,∞),

(v, θ, h)∣t=0 = (v0, θ0, h0) on Ω̇ × SR.

(4.1)
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Here, let K(v, h) ∈ H1
q(Ω̇) + Ĥ1

q(Ω) be a unique solution of the weak Dirichlet problem

(∇K(v, h),∇φ)Ω̇ = (Div(μD(v)) −∇ div v,∇φ)Ω̇

for any φ ∈ Ĥ1
q′(Ω), subject to

[[K(v, h)]] = [[(μD(v)n, n)]] − δ(ΔSR h +
N − 1

R2 h) − [[div v]] on SR.

Let
L(v, θ, h) = (Div(μD(v) − K(v, h)I), νΔθ, (n ⋅ Pv)∣SR).

For (v, h) ∈ Dq and θ ∈Jq, when F1 = 0, F4 = 0 and F5 = 0, we see that (4.1) is formulated by

∂t(v, θ, h) = L(v, θ, h) for t > 0, (v, θ, h)∣t=0 = (v0, θ0, h0). (4.2)

According to Ref. 23, Theorem 3.2.4 and Ref. 7, Theorem 3.1, we can obtain that L generates an analytic semigroup S(t) on (v, θ, h) ∈Hq
with the norm

∥(v, θ, h)∥Hq
= ∥v∥Lq(Ω̇) + ∥θ∥Lq(Ω̇) + ∥h∥W2−1/q

q (SR),

then, we have the following theorem.

Theorem 4.1. Let 1 < q <∞. Then, {S(t)}t≥0 is exponentially stable, that is,

∥S(t)(v, θ, h)∥Hq
≤ Ce−κ1t

∥(v, θ, h)∥Hq
,

for any t > 0 and (v, θ, h) ∈Hq with some positive constants C and κ1.

According to the standard semigroup theory in Ref. 12, we consider the following resolvent equations:

(λI − L)(v, θ, h) = U, (4.3)

for U = (U1, U2, U3) ∈Hq. In fact, our task is to prove the following theorem.

Theorem 4.2. Let 1 < q <∞ and Λ = {λ ∈ C ∣ Re λ ≥ 0}. Then, for any λ ∈ Λ and U ∈Hq, (4.3) admits a unique solution (v, θ, h) ∈
Hq(Ω̇) with (v, h) ∈ Dq(Ω̇) and θ ∈Jq(Ω̇) possessing the estimate

∣λ∣∥(v, θ, h)∥Hq
+ ∥(v, h)∥Dq

+ ∥θ∥Jq
≤ C∥U∥Hq

,

where ∥(v, h)∥Dq
= ∥v∥H2

q(Ω̇) + ∥h∥W3−1/q
q (SR) and ∥θ∥Jq

= ∥θ∥H2
q(Ω̇).

Proof. Let Λλ0 = {λ ∈ C ∣ Re λ ≥ 0, ∣λ∣ ≤ λ0}, where λ0 is a positive number in Theorem A.4. And then, we only consider the resolvent
heat equation with the interface condition

λθ − νΔθ = U3, for θ ∈Jq. (4.4)

Since λ0 ∈ Λλ0 , we can set λ = λ0 ∈ Σε0 ,λ0 , we see that (λ0I − νΔ)−1 is a bounded linear operator by Theorem A.4, where I is the identity
operator. Then for λ ∈ Λλ0 , we have

λI − νΔ = (λ − λ0)I + λ0I − νΔ = (I + (λ − λ0)(λ0I − νΔ)−1
)(λ0I − νΔ).

Therefore, if (I + (λ − λ0)(λ0I − νΔ)−1
)
−1

exists as a bounded linear operator, we have

θ = (λ0I − νΔ)−1
(I + (λ − λ0)(λ0I − νΔ)−1

)
−1

U3.

Since Ω̇ is a bounded domain, Jq is compactly embedded into Lq by the compactness theorem, then by Theorem A.4, (λ0I − νΔ)−1

is a compact operator from Hq into itself. Thus, by the Riesz–Schauder theorem, it suffices to prove the triviality of the ker-
nel of I + (λ − λ0)(λ0I − νΔ)−1 in order to prove the existence of the inverse operator (I + (λ − λ0)(λ0I − νΔ)−1

)
−1. Notice that f

= −(λ − λ0)(λ0I − νΔ)−1 f ∈Jq. Moreover,

(λI − νΔ) f = (λ0I − νΔ + (λ − λ0)I) f = −(λ − λ0) f + (λ − λ0) f = 0.
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Our task is to prove f = 0. Namely, f ∈Jq satisfies the homogeneous equations

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

λ f − νΔ f = 0 in Ω̇,

[[ν∇ f ⋅ n]] = 0, [[ f ]] = 0 on SR,

∇ f− ⋅ n− + β f− = 0 on Γ,

(4.5)

then we devote to proving f = 0.
Firstly, we consider the case that 2 ≤ q <∞. Since f ∈Jq and Ω̇ is a bounded domain, by the divergence theorem and (4.5), we have

0 = (λ f − νΔ f , f )Ω̇
= λ∥ f ∥2

L2(Ω̇) + ν∥∇ f ∥2
L2(Ω̇) − ([[ν∇ f ⋅ n]], f )SR − (ν∇ f− ⋅ n−, f−)Γ.

Thus, noticing the interface conditions in (4.5), we obtain

0 = λ∥ f ∥2
L2(Ω̇) + ν∥∇ f ∥2

L2(Ω̇) +
β
ν
∥ f−∥2

L2(Γ). (4.6)

Therefore, combined with Re λ ≥ 0, taking the real part of the (4.6) leads to∇ f = 0 in Ω̇. Since [ [ f ] ] = 0 on SR and f+ = f− = 0 on Γ, we have
f = 0 in Ω̇. Namely, problem (4.4) admits a unique solution θ ∈Jq possessing the estimate

∣λ∣∥θ∥Lq(Ω̇) + ∥θ∥Jq(Ω̇) ≤ C∥U3∥Lq(Ω̇) (4.7)

with some constant C > 0, 2 ≤ q <∞ and λ ∈ Λλ0 .
Next, we consider the case that 1 < q < 2 and for any ω ∈ Lq′. Let g ∈Jq′ be a solution of the following equations:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

λ̄g − νΔg = ω in Ω̇,

[[ν∇g ⋅ n]] = 0, [[g]] = 0 on SR,

∇g− ⋅ n− + βg− = 0 on Γ.

(4.8)

Since λ, λ̄ ∈ Λλ0 and 2 < q′ <∞, by the fact proved above we know the unique existence of g ∈Jq′ . By (4.5) and (4.8) and the divergence
theorem, we have

0 = (λ f − νΔ f , g)Ω̇
= λ( f , g)Ω̇ + ν(∇ f ,∇g)Ω̇ − ([[∇ f ⋅ n]], g)SR − (∇ f− ⋅ n−, g−)Γ,

( f ,ω)Ω̇ = ( f , λ̄g)Ω̇ + ν(∇ f ,∇g)Ω̇ − ([[∇g ⋅ n]], f )SR − (∇g− ⋅ n−, f−)Γ.

By the boundary condition on Γ, we obtain
( f ,ω)Ω̇ = 0 for anyω ∈ Lq′

(Ω̇),

which yields f = 0. Thus, problem (4.4) admits a unique solution θ ∈Jq(Ω̇) possessing the estimate (4.7) when 1 < q < 2 and λ ∈ Λλ0 .
Finally, we consider λ ∈ {λ ∈ C ∣ Re λ ≥ 0, ∣λ∣ ≥ λ0}. It is evident that the result in Theorem A.4 can be obtained. The estimation of v

and h is similar to the treatment of temperature θ, and one can refer to Ref. 23, therefore, we omit the proof details. In summary, we have
completed the Proof of Theorem 4.2. ◻

Now, we can get the following decay estimates for linearized Eq. (3.1).

Theorem 4.3. Let 1 < p, q <∞ and T > 0. Assume that 2/p + 1/q ≠ 1, 2. Assume that Γ is a nonempty compact hypersurface of class C2.
Let 0 < κ ≤ 1, u0, θ0 ∈ B2(1−1/p)

q,p (Ω̇) and h0 ∈ B1−1/p−1/q
q,p (SR) be initial data for (3.1), and let F1, . . . , b be given functions on the right side of (3.1)

satisfying:

(Fκ1, Fκ4) ∈ Lp
((0, T), Lq

(Ω̇)), Fκ5 ∈ Lp
((0, T), W2−1/q

q (SR)),

Fκ3 ∈ H1
p(R, Lq

(Ω̇)),

Fκ2 , Fκ6 , Fκ7 ∈ H1
p(R, H1

q(Ω̇)) ∩H1/2
p (R, Lq

(Ω̇))

bκ ∈ Lp
(R, H1

q(Ω−)) ∩H1/2
p (R, Lq

(Ω−)).
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Assume that the compatibility conditions hold:

div v0 = F2∣t=0 in Ω̇, v0 − F3∣t=0 ∈ D (Ω),

where D (Ω) can be found in the Appendix, and for 2/p + 1/q < 1

[[(μD(v0)n)τ]] = [[(F6)τ]]∣t=0
, [[ν∇θ0 ⋅ n]] = F7∣t=0 on SR,

∇θ0− ⋅ n− + βθ0− = b∣t=0 on Γ;

for 2/p + 1/q < 2
[[v0]] = 0, [[θ0]] = 0 on SR, v0 = 0 on Γ.

Then, problem (3.1) admits a unique solution possessing the estimate

Eκ
T(v, θ, h) ≲ EκT(v0, θ0, h0, F1, . . . , F7, b).

Proof. We consider the solutions v, θ, q and h of Eq. (3.1) of the form: v = v1 + v2, θ = θ1 + θ2, q = q1 + q2 and h = h1 + h2, where v1, θ1,
q1 and h1 are solutions of the shifted Eq. (3.2), and then v2, θ2, q2 and h2 satisfy the equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv2 −Div(μD(v2) − q2I) = λ1v1, div v2 = 0 in Ω̇ × (0, T),

∂tθ2 − νΔθ2 = λ1θ1 in Ω̇ × (0, T),
∂th2 − n ⋅ Pv2 = λ1h1 on SR × (0, T),

[[(μD(v2) − q2I)n]] − σ(ΔSR h2 +
N − 1

R2 h2)n = 0, [[v2]] = 0 on SR × (0, T),

[[ν∇θ2 ⋅ n]] = 0, [[θ2]] = 0 on SR × (0, T),
v2 = 0, ∇θ2− ⋅ n− + βθ2− = 0 on Γ × (0, T),

(v2, θ2, h2)∣t=0 = (0, 0, 0) on Ω̇ × SR.

(4.9)

In fact, the estimations of (4.9) can be reduced to the study of (4.1). Then, we can replace F1, F4, F5 with λ1v1, λ1θ1 and λ1h1, respectively.
Thus, in view of (4.2), L generates an analytic semigroup S(t) on (v2, θ2, h2) ∈Hq. Then by the Duhamel principle, it yields

(v2, θ2, h2)(⋅, τ) = ∫
τ

0
S(τ − s)(λ1v1(⋅, s), λ1θ1(⋅, s), λ1h1(⋅, s))ds.

Owing to Theorem 4.1, we have

∥(v2, θ2, h2)(⋅, τ)∥Hq
≲ ∫

τ

0
e−κ1(τ−s)

∥(v1(⋅, s), θ1(⋅, s), h1(⋅, s))∥Hq
ds

≲ (∫

τ

0
e−κ1(τ−s)ds)

1/p′
(∫

τ

0
e−κ1(τ−s)

∥(v1(⋅, s), θ1(⋅, s), h1(⋅, s))∥p
Hq

ds)
1/p

.

Thus, by the above inequality we obtain

∫

t

0
(eκτ∥(v2(⋅, τ), θ2(⋅, τ), h2(⋅, τ))∥Hq

)
p
dτ

≲ ∫

t

0
(∫

τ

0
e−(κ1−pκ)(τ−s)

(eκs
∥((v1(⋅, s), θ1(⋅, s), h1(⋅, s)))∥Hq

)
p
ds)dτ

≲ (κ1 − pκ)−1
∫

T

0
(eκs
∥(v1(⋅, s), θ1(⋅, s), h1(⋅, s))∥Hq

)
p
ds.

Choosing 0 < κ < 1 such that 0 < κp < κ1, and combining with (3.3), for any t ∈ (0, T), we have

∥eκτ(v2, θ2, h2)∥Lp((0,T),Hq) ≲ EκT(v0, θ0, h0, F1, . . . , F7, b). (4.10)
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By (4.9), (v2, θ2, h2) are solutions of the shifted equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv2 + λ1v2 −Div(μD(v2) − q2I) = λ1v1 + λ1v2 in Ω̇ × (0, T),

∂tθ2 + λ1θ2 − νΔθ2 = λ1θ1 + λ1θ2 in Ω̇ × (0, T),
∂th2 + λ1h2 − n ⋅ Pv2 = λ1h1 + λ1h2 on SR × (0, T),

[[(μD(v2) − q2I)n]] − σ(ΔSR h2 +
N − 1

R2 h2)n = 0, [[v2]] = 0 on SR × (0, T),

[[ν∇θ2 ⋅ n]] = 0, [[θ2]] = 0 on SR × (0, T),
v2 = 0, ∇θ2− ⋅ n− + βθ2− = 0 on Γ × (0, T),

(v2, θ2, h2)∣t=0 = (0, 0, 0) on Ω̇ × SR.

(4.11)

Using Theorem 3.1, (3.3) and (4.10), we have

Eκ
T(v2, θ2, h2) ≲EκT(0, 0, 0, λ1v1 + λ1v2, λ1θ1 + λ1θ2, λ1h1 + λ1h2, 0 . . . , 0)

≲ ∥eκs
(v1, θ1, h1)∥Lp((0,T),Hq) + ∥e

κs
(v2, θ2, h2)∥Lp((0,T),Hq)

≲EκT(v0, θ0, h0, F1, . . . , F7, b).

(4.12)

Thus, v = v1 + v2, θ = θ1 + θ2 and h = h1 + h2 are the required solutions of Eq. (3.1). And by (3.3) and (4.12), we obtain

Eκ
T(v, θ, h) ≲ Eκ

T(v1, θ1, h1) + Eκ
T(v2, θ2, h2) ≲ EκT(v0, θ0, h0, F1, . . . , F7, b), (4.13)

which completes the Proof of Theorem 4.3. ◻

V. ESTIMATES OF NONLINEAR TERMS
Let T0 > 1 be a given positive number such that T ∈ (0, T0], then assume that the initial data are so small enough that for some κ > 0 and

small number ε,
I ∶= ∥fκ∥Lp((0,∞),Lq(Ω̇)) + ∥b

κ
∥Lp((0,∞),H1

q(Ω−)) + ∥b
κ
∥H1/2

p ((0,∞),Lq(Ω−))

+ ∥v0∥B2−2/p
q,p (Ω̇) + ∥θ0∥B2−2/p

q,p (Ω̇) + ∥h0∥W3−1/p−1/q
q,p (SR) ≤ ε.

(5.1)

Denote
E
κ
T(v, θ, h) = Eκ

T(v, θ, h) + ∥eκt∂th∥L∞((0,T),W1−1/q
q (SR)).

In what follows, we shall use the following inequalities

sup
t∈(0,T)

∥(vκ(⋅, t), θκ(⋅, t))∥B2(1−1/p)
q,p (Ω̇) ≲ I + E

κ
T(v, θ, h),

sup
t∈(0,T)

∥hκ(⋅, t)∥B3−1/p−1/q
q,p (SR) ≲ I + E

κ
T(v, θ, h),

(5.2)

which will be proved later. Since p > 2 and 1/p + 1/q < 1, combined with (2.4) and (5.2), they lead to

sup
t∈(0,T)

∥(vκ(⋅, t), θκ(⋅, t))∥H1
q(Ω̇) ≲ sup

t∈(0,T)
∥(vκ(⋅, t), θκ(⋅, t))∥B2(1−1/p)

q,p (Ω̇) ≲ I + E
κ
T(v, θ, h),

sup
t∈(0,T)

∥hκ(⋅, t)∥W2−1/q
q (SR) ≲ sup

t∈(0,T)
∥hκ(⋅, t)∥B3−1/p−1/q

q,p (SR) ≲ I + E
κ
T(v, θ, h).

(5.3)

In fact, we also need to assume
sup

t∈(0,T0)
∥Ψh(⋅, t)∥H1∞(Ω) ≤ ε, (5.4)

by (2.7) and the definition of ζ̃(t), we have

∥Ψh(⋅, t)∥H1∞(Ω̇) ≤ C0(∥Φh(⋅, t)∥H1∞(Ω̇) + ∣ζ̃(t)∣),
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where C0 is a positive constant independent of T. From this point of view, instead of (5.4), we assume that

∥Φh(⋅, t)∥H1∞(Ω̇) ≤ ε1, ∣ζ̃(t)∣ ≤ ε1, (5.5)

where ε1 is a small number such that 2C0ε1 ≤ ε. We need to guarantee the justification of the a priori assumption of (5.5). By (2.11) and
Sobolev’s inequality, we have

∣J(k)∣ ≲ ∥Φh(⋅, t)∥H1∞(Ω̇), ∣ζ̃ ′(t)∣ ≤ C∥v(⋅, t)∥Lq(BR), (5.6)

provided that ∥Φh(⋅, t)∥H1∞(Ω̇) is small enough. Thus, by (2.12) and (5.6) and Hölder’s inequality, we get

sup
t∈(0,T0)

∣ζ̃(t)∣ ≤ CR∫

T0

0
∥v(⋅, τ)∥Lq(BR)dτ

≲ (∫

T0

0
e−κτp′dτ)

1/p′
∥eκtv∥

Lp((0,T0),Lq(BR))

≲ (κp′)1/p′
∥eκtv∥

Lp((0,T0),Lq(BR)).

(5.7)

Then by (2.11), (5.3), and (5.7) and Sobolev’s inequality, we can get that

sup
t∈(0,T0)

∥Φh(⋅, t)∥H1∞(Ω̇) ≲ I + E
κ
T0(v, θ, h),

sup
t∈(0,T0)

∣ζ̃(t)∣ ≲ I + E
κ
T0(v, θ, h), sup

t∈(0,T0)
eκt
∣ζ̃ ′(t)∣ ≲ I + E

κ
T0(v, θ, h).

(5.8)

Thus, when I and EκT0
(v, θ, h) are small enough, (5.5) is obviously reasonable, we complete the justification of (5.5).

Now, for the decay estimates of solutions for linearized Eq. (3.1), from (4.13), we need to estimate EκT(v0, θ0, h0, F1, . . . , F7, b). Thus,
each nonlinear term can be directly replaced with the corresponding term on the right side of (2.13). Firstly, we will replace F1 in (3.1) with
N1 + f − αgθ. By Theorem 4.3, we need to estimate ∥(fκ, θκ)∥Lp((0,T),Lq(Ω̇)) with a given function f. Then, in fact, we can get the following
estimate of θ by Theorem 4.3 as follows:

∥θκ∥
Lp((0,T),Lq(Ω̇)) ≲∥θ0∥B2(1−1/p)

q,p (Ω̇) + ∥N
κ
4∥Lp((0,T),Lq(Ω̇)) + ∥N

κ
8∥Lp(R,H1

q(Ω̇))

+ ∥bκ∥
Lp(R,H1

q(Ω−))
+ ∥Nκ

8∥H1/2
p (R,Lq(Ω̇)) + ∥b

κ
∥

H1/2
p (R,Lq(Ω−)).

Thus, we only need to consider the nonlinear term N1(v, f, θ,Ψh). From (2.4) and (2.7) and the formula of N1(v, f, θ,Ψh) in Ref. 8, we get

∥N1(v, f, θ,Ψh)∥Lq(Ω̇)

≲(∥v∥L∞(Ω̇) + ∥∂tΦh∥L∞(Ω̇) + ∣ζ̃
′
(t)∣)∥∇v∥Lq(Ω̇)

+ (∥Φh∥H1∞(Ω̇) + ∣ζ̃(t)∣)(∥∂tv∥Lq(Ω̇) + ∥∇
2v∥

Lq(Ω̇) + ∥f∥Lq(Ω̇) + ∥θ∥Lq(Ω̇))

+ (∥Φh∥H2
q(Ω̇) + ∣ζ̃(t)∣)∥∇v∥L∞(Ω̇).

(5.9)

Therefore, in view of (5.3), (5.8), and (5.9), N < q and Sobolev’s inequality, we get

∥Nκ
1(v, θ, f,Ψh)∥Lp((0,T),Lq(Ω̇))

≲
⎛

⎝
∥vκ∥L∞((0,T),H1

q(Ω̇)) + ∥∂thκ∥L∞((0,T),W1−1/q
q (SR)) + sup

t∈(0,T)
eκt
∣ζ̃ ′(t)∣

⎞

⎠

∥vκ∥Lp((0,T),H1
q(Ω̇)) +

⎛

⎝
∥hκ∥L∞((0,T),W2−1/q

q (SR)) + sup
t∈(0,T)

∣ζ̃(t)∣
⎞

⎠

(∥vκ∥Lp((0,T),H2
q(Ω̇)) + ∥∂tvκ∥Lp((0,T),Lq(Ω̇)) + ∥θ

κ
∥Lp((0,T),Lq(Ω̇))

+ ∥fκ∥Lp((0,T),Lq(Ω̇))) +
⎛

⎝
∥hκ∥L∞((0,T),W2−1/q

q (SR)) + sup
t∈(0,T)

∣ζ̃(t)∣
⎞

⎠

× ∥vκ∥Lp((0,T),H2
q(Ω̇))

≲ (I + E
κ
T(v, θ, h))2.

(5.10)
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Let N4(v, θ,Ψh) be a nonlinear term given in Ref. 8, by (2.7), we have

∥N4(v, θ,Ψh)∥Lq(Ω̇)

≲(∥v∥L∞(Ω̇) + ∥∂tΦh∥L∞(Ω̇) + ∣ζ̃
′
(t)∣)∥∇θ∥Lq(Ω̇)

+ (∥Φh∥H1∞(Ω̇) + ∣ζ̃(t)∣)∥∇
2θ∥

Lq(Ω̇) + (∥Φh∥H2
q(Ω̇) + ∣ζ̃(t)∣)∥∇θ∥L∞(Ω̇).

(5.11)

Employing a similar argument as that in proving (5.10), we have

∥Nκ
4(v, θ,Ψh)∥Lp((0,T),Lq(Ω̇))

≲
⎛

⎝
∥vκ∥

L∞((0,T),H1
q(Ω̇))

+ ∥∂thκ∥L∞((0,T),W1−1/q
q (SR)) + sup

t∈(0,T)
∣ζ̃ ′(t)∣

⎞

⎠

∥θκ∥
Lp((0,T),H1

q(Ω̇))
+
⎛

⎝
∥hκ∥

L∞((0,T),W2−1/q
q (SR)) + sup

t∈(0,T)
∣ζ̃(t)∣

⎞

⎠
∥θκ∥

Lp((0,T),H2
q(Ω̇))

+
⎛

⎝
∥∂thκ∥L∞((0,T),W2−1/q

q (SR)) + sup
t∈(0,T)

∣ζ̃(t)∣
⎞

⎠
∥θκ∥

Lp((0,T),H2
q(Ω̇))

≲ (I + E
κ
T(v, θ, h))E κ

T(v, θ, h).

(5.12)

We next consider N5(v,Ψh) given in Ref. 8. Since the detailed proof was given in Ref. 23, we omit the details. Then we have

∥Nκ
5(v,Ψh)∥L∞((0,T),W1−1/q

q (SR)) ≲(I + E
κ
T(v, θ, h))E κ

T(v, θ, h),

∥Nκ
5(v,Ψh)∥Lp((0,T),W2−1/q

q (SR)) ≲(I + E
κ
T(v, θ, h))E κ

T(v, θ, h)

+ (I + E
κ
T(v, θ, h))2

E
κ
T(v, θ, h).

(5.13)

According to Theorem 4.3, we have to extend other nonlinear terms to the whole time interval R. Before turning to the extension of
these functions, we recall some definitions and estimations in Ref. 8. Let Tv(t) be the given analytic semigroup defined in Ref. 8, we can set
Tv(t)v0 = Tv±(t)v0∣Ω± for x ∈ Ω±, then Tv(0)v0 = v0 in Ω̇. By the analytic semigroup theory and a standard real-interpolation method, we
directly have

∥etTv(⋅)v0∥D(Ω̇) ≲ ∥v0∥D(Ω̇) for D(Ω̇) ∈ {Hk
q(Ω̇), B2(1−1/p)

q,p (Ω̇)},

∥etTv(⋅)v0∥H1
p((0,∞),Lq(Ω̇)) + ∥e

tTv(⋅)v0∥Lp((0,∞),H2
q(Ω̇))

≲ ∥v0∥B2(1−1/p)
q,p (Ω̇).

(5.14)

We can also define a similar operator for Tθ(t)θ0. Setting Th(t)h0 to be the solution of the given shifted equations in Ref. 8, we have Th(0)h0
= Ψh0 in Ω̇, Th(0)h0 = h0 on SR and

∥etTh(⋅)h0∥L∞((0,∞),B3−1/p
q,p (Ω̇)) + ∥e

t∂tTh(⋅)h0∥L∞((0,∞),H1
q(Ω̇))

+ ∥etTh(⋅)h0∥Lp((0,∞),H3
q(Ω̇))

+ ∥et∂tTh(⋅)h0∥Lp((0,∞),H2
q(Ω̇))

≲ ∥h0∥B3−1/p−1/q
q,p (SR).

(5.15)

Then, given a function φ(t) defined on (0, T), the extension ET[φ] of φ is defined by

ET[φ](t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t < 0,

φ(t) for 0 < t < T,

φ(2T − t) for T < t < 2T,

0 for t > 2T.

(5.16)
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Obviously, ET[φ](t) = φ(t) for t ∈ (0, T) and ET[φ](t) = 0 for t ∉ (0, 2T). Let ψ(t) be a function in C∞(R) which equals 1 for t > −1 and 0
for t < −2. Under these preparations, we now define the extensions E1[vκ], E2[θκ] and E3[Ψh] of vκ, θκ and Ψh, respectively, to R by

E1[vκ] = ET[vκ − Tv(t)v0] + ψ(t)Tv(∣t∣)v0,

E2[θκ] = ET[θκ − Tθ(t)θ0] + ψ(t)Tθ(∣t∣)θ0,

E3[Ψh] = χ(y)(R
−1
(ET[Φh(y, t) − Th(t)h0] + ψ(t)Th(t)h0)y + ET[ζ̃](t)).

(5.17)

Since ζ̃(0) = 0, we have
E1[vκ] = vκ, E2[θκ] = θκ, E3[Ψh] = Ψh in Ω̇ × (0, T), (5.18)

and then, applying the Hanzawa transform x = ξ + E3[Ψh] instead of x = ξ +Ψh, by (5.5), (5.15), and (5.17), choosing ε1 smaller if necessary,
we may assume that

sup
t∈R
∥E3[Ψρ]∥H1∞(Ω̇) ≲ sup

t∈(0,T)
∥Φh∥H1∞(Ω̇) + ∥Th(⋅)h0∥L∞((0,∞),H2

q(Ω̇)) + sup
t∈(0,T)

∣ζ̃(t)∣

≲ ε.
(5.19)

Now, in view of (2.9) and (2.15), N8(θ,Ψh) is given by

N8(θ,Ψh) = [[ν∇θ ⋅ (n − nt)]] − [[νV0(k)∇θ ⋅ nt]] = V8(k)k⊗ [[ν∇θ]]. (5.20)

Here, k is the variable corresponding to ∇̄Ψh = (Ψh,∇Ψh) and ∂k denotes the partial derivative with respect to variable k. V8(k̄) = V8(⋅, k̄) is
a set of matrices of functions consisting of products of elements of n = ξ/∣R∣ and smooth functions defined for ∣k∣ < ε, possessing the estimate

sup
∣k̄∣≤ε
∥(V8(⋅, k̄),∂k̄V8(⋅, k))∥

L∞(Ω̇) ≤ C. (5.21)

We extend Nκ
8(θ,Ψh) to the whole time interval R. Let

N̄κ
8(θ,Ψh) = V8(∇̄E3[Ψh])∇̄E3[Ψh]⊗ [[ν∇E2[θκ]]]. (5.22)

Obviously, we have
N̄κ

8(θ,Ψh) = Nκ
8(θ,Ψh) in Ω̇ × (0, T).

Let Z∓ be an extension map acting on θ± ∈ H2
q(Ω±) satisfying the properties: Z∓(θ±) ∈ H2

q(Ω), Z−(θ+) = θ− in Ω−, Z+(θ−) = θ+ in Ω+, we
have

(∂αx Z∓(θ±))(x0) = lim
x→x0
x∈Ω±

∂αx θ±(x), [[∂αx θ]] = ∂αx Z−(θ+)∣SR
− ∂αx Z+(θ−)∣SR

, (5.23)

for x0 ∈ SR, ∣α∣ ≤ 1 and for i = 0, 1, 2.

∥Z∓(θ±)∥Hi
q(Ω) ≤ Ci,q(∥θ+∥Hi

q(Ω) + ∥θ−∥Hi
q(Ω)) = Ci,q∥θ∥Hi

q(Ω̇). (5.24)

Thus, by (5.23), we obtain

N̄κ
8(θ,Ψh) = V8(∇̄E3[Ψh])∇̄E3[Ψh]⊗∇E2[ν−Z−θκ+∣SR

− ν+Z+θκ−∣SR
]. (5.25)

Moreover, since
∂t(V8(∇̄E3[Ψh])∇̄E3[Ψh]) =V8(∇̄E3[Ψh])∂t∇̄E3[Ψh]

+V′8(∇̄E3[Ψh])∂t∇̄E3[Ψh]∇̄E3[Ψh],
(5.26)

where V′8 denotes the derivative of V8(k̄) with respect to k̄, by (2.4), (5.5), (5.14), (5.15), (5.17), and (5.21) and the fact that χ(ξ) = 1 on SR, we
have the following estimates:

∥V8(∇̄E3[Ψh])∇̄E3[Ψh]∥L∞(R,H1
q(Ω̇))

≲ ∥Th(∣t∣)h0∥L∞((−2,∞),H2
q(Ω̇)) + ∥Ψh∥L∞((0,T),H2

q(Ω̇))

≲ ∥h0∥W3−1/p−1/q
q,p (SR) + ∥h∥L∞((0,T),W2−1/q

q (Ω̇)) ≲ I + E
κ
T(v, θ, h),

(5.27)
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and
∥∂t(V8(∇̄E3[Ψh])∇̄E3[Ψh])∥L∞(R,H1

q(Ω̇))

≲ ∥∂th∥L∞((0,T),W1−1/q
q (SR)) + ∥∂tTh(∣t∣)h0∥L∞((−2,∞),H1

q(Ω̇))

≲ I + E
κ
T(v, θ, h).

(5.28)

From Lemma A.2, (5.27) and (5.28), it follows

∥N̄κ
8(θ,Ψh)∥Lp(R,H1

q(Ω̇)
+ ∥N̄κ

8(θ,Ψh)∥H1/2
p (R,Lq(Ω̇))

≲ (I + E
κ
T(v, θ, h))(∥∇E2[θκ]∥H1/2

p (R,Lq(Ω̇)) + ∥∇E2[θκ]∥Lp(R,H1
q(Ω̇))

).
(5.29)

Applying Lemma A.3, (5.14) and (5.17), we have

∥∇E2[θκ]∥H1/2
p (R,Lq(Ω̇)) + ∥∇E3[θκ]∥Lp(R,H1

q(Ω̇))

≲ I + ∥∂tθκ∥Lp((0,T),Lq(Ω̇)) + ∥θ
κ
∥

Lp((0,T),H2
q(Ω̇))

.
(5.30)

Thus, combining with (5.29) and (5.30), we have

∥N̄κ
8(θ,Ψh)∥Lp(R,H1

q(Ω̇))
+ ∥N̄κ

8(θ,Ψh)∥H1/2
p (R,Lq(Ω̇)) ≲ (I + E

κ
T(v, θ, h))2. (5.31)

Moreover, we extend N2(v,Ψh), N3(v,Ψh), N6(v,Ψh) and N7(v,Ψh) to the whole time interval R. In fact, ζ(t) does not play a role in
N6(v,Ψh) and N7(v,Ψh), we just need to estimate Φh. By (5.17), (Refs. 8 and 23), let

N̄κ
2(v,Ψh) = V2(∇E3[Ψh])∇E3[Ψh]⊗∇E1[vκ],

N̄κ
3(v,Ψh) = V3(∇E3[Ψh])∇E3[Ψh]⊗ E1[vκ],

N̄κ
6(v,Ψh) = V6(∇̄E3[Φh])∇̄E3[Φh]⊗∇E1[vκ],

N̄κ
7(v,Ψh) = V7(∇̄E3[Φh])∇̄E3[Φh]⊗∇E1[vκ]

+ σV5(∇̄E3[Ψh])∇̄E3[Φh]⊗ ∇̄
2
E3[Φκ

h],

(5.32)

where for i = 2, 3, 5, 6, 7, Vi(k̄) are some matrix of C1 functions consisting of products of elements of n = ξ/∣R∣ defined on Ω̇ × {k̄ ∣ ∣k̄∣ < ε}
possessing the estimate

sup
∣k̄∣≤ε
∥(Vi(⋅, k̄),∂k̄Vi(⋅, k̄))∥

H1∞(Ω̇)
≤ C. (5.33)

By the fact H1
p(R, Lq

(Ω̇)) ⊂ H1/2
p (R, Lq

(Ω̇)), (2.4), (5.3), (5.15), and (5.17), we have

∥∇̄
2
E3[Ψκ

h]∥Lp(R,H1
q(Ω̇))

+ ∥∇̄
2
E3[Ψκ

h]∥H1/2
p (R,Lq(Ω̇) )

≲ ∥E3[Ψκ
h]∥H1

p(R,H2
q(Ω̇))

+ ∥E3[Ψκ
h]∥Lp(R,H3

q(Ω̇))

≲ I + ∥Φκ
h∥H1

p((0,T),H2
q(Ω̇))

+ ∥Φκ
h∥Lp((0,T),H3

q(Ω̇))
.

≲ I + E
κ
T(v, θ, h).

(5.34)

Then, by (5.24), [[N̄κ
6]] and [[N̄κ

7]] can replace with N̄κ
6 and N̄κ

7, respectively, employing the same argument as in proving (5.31), we have

∥(N̄κ
2(v,Ψh), N̄κ

6(v,Ψh), N̄κ
7(v,Ψh))∥H1/2

p (R,Lq(Ω̇)) + ∥(N̄
κ
3(v,Ψh))∥H1

p(R,Lq(Ω̇))

+ ∥(N̄κ
2(v,Ψh), N̄κ

6(v,Ψh), N̄κ
7(v,Ψh))∥Lp(R,H1

q(Ω̇))

≲ (I + E
κ
T(v, θ, h))2.

(5.35)
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Finally, we consider the interface condition on Γ. Noting that x = ξ near Γ × (0, T), then, we consider the following equation for t ∈ R

∇E2[θκ−] ⋅ n− + βE2[θκ−] = b̄ κ
(ξ, t)

with

b̄ κ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t < −2,

ψ(t)∇Tθ−(∣t∣)θ0 ⋅ n− + βψ(t)Tθ−(∣t∣)θ0 for − 2 < t < −1,

∇Tθ−(∣t∣)θ0 ⋅ n− + βTθ−(∣t∣)θ0 for − 1 < t < 0,

eκtb(ξ, t) for 0 < t < T,

eκ(2T−t)b(ξ, 2T − t) for T < t < 2T,

∇Tθ−(t)θ0 ⋅ n− + βTθ−(t)θ0 for t > 2T.

Obviously, we have

∇E2[θκ−] ⋅ n− + βE2[θκ−] = ∇θ
κ
− ⋅ n− + βθ

κ
− = bκ(ξ, t) on Γ × (0, T).

By Lemma A.2, (5.14) and (5.17) and ∥n−∥H1∞
≤ C, we have

∥b̄ κ
∥

Lp(R,H1
q(Ω−))

+ ∥b̄ κ
∥

H1/2
p (R,Lq(Ω−))

≲ ∥Tθ−(∣t∣)θ0∥Lp((−2,∞),H2
q(Ω−)) + ∥Tθ−(∣t∣)θ0∥H1

p((−2,∞),Lq(Ω−))

+ ∥bκ∥
Lp((0,T),H1

q(Ω−))
+ ∥bκ∥

H1/2
p ((0,T),Lq(Ω−))

≲ ∥θ0∥B2(1−1/p)
q,p (Ω̇) + ∥b

κ
∥

Lp((0,T),H1
q(Ω−))

+ ∥bκ∥
H1/2

p ((0,T),Lq(Ω−)) ≲ I .

(5.36)

Applying Theorem 4.3 to Eq. (2.13) and using (5.10), (5.12), (5.13), (5.31), (5.35), and (5.36), we have

Eκ
T(v, θ, h) ≤ C(I + (E κ

T(v, θ, h))2
+ (E

κ
T(v, θ, h))3

) (5.37)

for some positive constant C. Moreover, by the fourth equation in Eqs. (2.13) and (5.37), it yields

∥eκt∂th∥L∞((0,T),W1−1/q
q (SR)) ≤ C(I + (E κ

T(v, θ, h))2
+ (E

κ
T(v, θ, h))3

). (5.38)

Combined with (5.37) and (5.38),

E
κ
T(v, θ, h) ≤ C(I + (E κ

T(v, θ, h))2
+ (E

κ
T(v, θ, h))3

) (5.39)

holds for any T ∈ (0, T0], and for some positive constants C independent of T and T0.
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Finally, we should prove (5.2). We just consider vκ, let E1[vκ] be the function given in (5.17), then by Lemma A.1, we have

∥vκ∥L∞((0,T),B2(1−1/p)
q,p (Ω̇)) ≤ ∥E1[vκ]∥L∞((0,∞),B2(1−1/p)

q,p (Ω̇))

≤ C{∥E1[vκ]∥Lp((0,∞),H2
q(Ω̇))

+ ∥∂tE1[vκ]∥Lp((0,∞),Lq(Ω̇))}

which, combined with (5.14), leads to inequality (5.2).

VI. COMPLETION OF THE PROOF OF THEOREM 2.1
From Theorem A.5, when I is small enough, problem (2.13) admits a unique solution in (0, T0). Thus, we shall prove that v, q, θ and h

can be prolonged beyond T0 keeping condition (5.5) provided that ε1 > 0 is small enough. From Sec. V, we know that

E
κ
T(v, θ, h) ≤ C(I + (E κ

T(v, θ, h))2
+ (E

κ
T(v, θ, h))3

)

holds for any T ∈ (0, T0) with some constant C > 0 independent of ε, ε1, T and T0. In fact, we need to consider the properties of the roots
of an algebraic equation x3

+ x2
− C−1x +I = 0. Using Veda’s theorem and changing C larger in (5.39) if necessary, since we choose I ≤ ε

enough small, we can make the algebraic equation have three different real solutions x0(I ) and x±(I ):

x0(I ) = CI +O(I2
), x+(I ) = C−1

+O(C−2
) +O(I ),

x−(I ) = −1 − C−1
+O(C−2

) +O(I ),
(6.1)

as C →∞ and I → 0. Since E κ
T(v, θ, h) ≥ 0 > x−(I ), by (5.39), one of the following cases holds:

E
κ
T(v, θ, h) ≤ x0(I ), E

κ
T(v, θ, h) ≥ x+(I ).

In view of Theorem A.5, when I ≤ ε, Eq. (2.13) admits a unique solution (v, θ, h) satisfying:

E
0
T0(v, θ, h) ≤ δ, (6.2)

where δ > 0 is small enough such that
eδ < 1/2C.

By (6.2), we have Eκκ−1(v, θ, h) ≤ eE0
T0
(v, θ, h) < 1/2C < x+(I ), and therefore,

E
κ
T(v, θ, h) ≤ x0(I ) for T ∈ (0, κ−1

).

But E κ
T(v, θ, h) is a continuous function with respect to T ∈ (0, T0) which yields that

E
κ
T(v, θ, h) ≤ x0(I ) for any T ∈ (0, T0). (6.3)

In particular, setting T̃ = T0 − 1/2, by (5.2) and (6.3), we have

∥v(⋅, T̃)∥
B2−2/p

q,p (Ω̇) + ∥θ(⋅, T̃)∥
B2−2/p

q,p (Ω̇) + ∥h(⋅, T̃)∥
W3−1/p−1/q

q,p (SR) ≤ x0(I ).

Thus, choosing I sufficiently small and using the same argument as that in proving Theorem A.5, we see that there exists a unique solution
(ṽ, θ̃, q̃, h̃) of the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂t ṽ −Div(μD(ũ) − q̃I) = N1(ṽ, f, θ̃,Ψh̃) + f(x(ξ, t), t) − αgθ̃ in Ω̇ × (T̃, T̃ + 1),

div ṽ = N2(ṽ,Ψh̃) = div N3(ṽ,Ψh̃) in Ω̇ × (T̃, T̃ + 1),

∂t θ̃ − νΔθ̃ = N4(ṽ, θ̃,Ψh̃) in Ω̇ × (T̃, T̃ + 1),

∂t h̃ − n ⋅ Pv = N5(ṽ,Ψh̃) on SR × (T̃, T̃ + 1),

[[μD(ṽ)n]]τ = [[N6(ṽ,Ψh̃)]], [[ṽ]] = 0 on SR × (T̃, T̃ + 1),

[[(μD(ṽ)n, n) − q̃]] − σΔSR h̃ +
N − 1

R2 h̃ = [[N7(ṽ,Ψh̃)]] on SR × (T̃, T̃ + 1),

ṽ = 0, ∇θ̃ ⋅ n− + βθ̃ = b(ξ, t) on Γ × (T̃, T̃ + 1),

ṽ∣t=0 = v(⋅, T̃) in Ω̇, θ̃∣
t=T̃
= θ(⋅, T̃) in Ω̇, h̃∣

t=T̃
= h(⋅, T̃) on SR,

(6.4)
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which satisfies the condition:

sup
T̃<t<T̃+1

∥Φh̃(⋅, t)∥
H1∞(Ω̇)

≤ ε1/2, sup
T̃<t<T̃+1

∣ζ̃(t, ṽ, h̃)∣ ≤ ε1/2, E
0
(T̃,T̃+1)(ṽ, θ̃, h̃) ≲ δ, (6.5)

and
E

0
(T̃,T̃+1)(ṽ, θ̃, h̃) = ∥(ṽ, θ̃)∥Lp((T̃,T̃+1),H2

q(Ω̇)) + ∥(∂t ṽ,∂t θ̃)∥Lp((T̃,T̃+1),Lq(Ω̇))

+ ∥∂t h̃∥Lp((T̃,T̃+1),W2−1/q
q (Ω̇)) + ∥h̃∥Lp((T̃,T̃+1),W3−1/p

q (SR))

+ ∥∂t h̃∥L∞((T̃,T̃+1),W1−1/q
q (SR)).

Let

v1 =

⎧⎪⎪
⎨
⎪⎪⎩

v 0 < t ≤ T̃,

ṽ T̃ < t < T̃ + 1,
q1 =

⎧⎪⎪
⎨
⎪⎪⎩

q 0 < t ≤ T̃,

q̃ T̃ < t < T̃ + 1,

θ1 =

⎧⎪⎪
⎨
⎪⎪⎩

θ 0 < t ≤ T̃,

θ̃ T̃ < t < T̃ + 1,
h1 =

⎧⎪⎪
⎨
⎪⎪⎩

h 0 < t ≤ T̃,

h̃ T̃ < t < T̃ + 1,

and then (v1, θ1, q1, h1) satisfies the condition:

sup
0<t<T̃+1

∥Φh1(⋅, t)∥H1∞(Ω̇) ≤ ε1, sup
0<t<T̃+1

∣ζ̃(t, v1, h1)∣ ≤ ε1, E
0
T̃+1(v1, θ1, h1) ≲ δ. (6.6)

Since T̃ + 1 = T0 + 1/2, we can prolong the solutions. Repeating this argument, we can prolong v, θ and h to the time interval (0,∞) satisfying
(2.17). This completes the Proof of Theorem 2.1.

ACKNOWLEDGMENTS
The authors would like to thank the referees for the suggestions which have helped to improve the presentation of the paper significantly.

Hao, Yang and Zhang were partially supported by NSF of China under Grant No. 12171460. Hao was also partially supported by CAS
Project for Young Scientists in Basic Research under Grant No. YSBR-031 and National Key R & D Program of China under Grant No.
2021YFA1000800.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Wei Zhang: Formal analysis (equal); Methodology (equal); Resources (equal); Writing – original draft (equal); Writing – review & editing
(equal). Jie Fu: Formal analysis (equal); Methodology (equal); Writing – original draft (equal); Writing – review & editing (equal). Chengchun
Hao: Formal analysis (equal); Methodology (equal); Writing – original draft (equal); Writing – review & editing (equal). Siqi Yang: Formal
analysis (equal); Methodology (equal); Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

APPENDIX: NOTATIONS AND USEFUL RESULTS

For any scalar function a = a(x) and N-vector function b = (b1(x), . . . , bN(x))⊺, we write

∇a = (∂1a(x), . . . ,∂N a(x)), ∇b = (∇b1(x), . . . ,∇bN(x)),

div b =
N

∑
j=1

∂jbj(x), ∇
2a = (∂i∂ ja)N

i, j=1, ∇
2b = (∇2b1, . . . ,∇2bN).
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For any n-vector X = (x1, . . . , xn)
⊺ and m-vector Y = (y1, . . . , ym)

⊺, Y⊗X denotes an (n, m)-matrix whose (i, j)th component is XiYj. For
any (mn, N)-matrix A = (Ai j,k) for i = 1, . . . , n, j = 1, . . . , m, k = 1, . . . , N, AX⊗ Y denotes an N column vector whose ith component is the
quantity:∑n

j=1∑
m
k=1 A jk,ix jyk.

Let Lq
(Ω), Hs

q(Ω) and Bs
q,p(Ω) denote Lebesgue’s spaces, Sobolev’s spaces and Besov’s spaces, respectively, on an open set Ω of RN with

p, q ∈ [1,∞] and s ∈ R. Let
D(Ω̇) = { f : f ∣Ω± ∈ D(Ω±)}, ∥ f ∥D(Ω̇) = ∥ f ∣Ω+∥D(Ω+) + ∥ f ∣Ω−∥D(Ω−),

for D ∈ {Lq, Hs
q, Bs

q,p}. For simplicity, we write ∥g∥X(Ω̇ )N =: ∥g∥X(Ω̇). In this paper, for boundary SR, we write Ws
q(SR) ∶= Bs

q,q(SR) with the
norm written by ∥ ⋅ ∥Ws

q(SR). ∣X∣ denotes the Lebesgue measure of a Lebesgue measurable set X in RN . For any two Banach spaces E and H,
L (E, H) denotes the set of all bounded linear operators from E into H. Let D (R, E) denote the space of E-valued distributions. S (R, E)
denotes the space of E-valued Schwartz functions and S ′

(R, E) = L (S (R, E),R) is the space of E-valued tempered distributions. For a
domain U in C, let Hol(U, L (X, Y)) be the set of all L (X, Y)-valued holomorphic functions defined on U, where C denotes the set of all
complex numbers. Set

Σε = {λ ∈ C/{0} ∣ ∣ arg λ∣ ≤ π − ε}, Σε,λ0 = {λ ∈ Σε ∣ ∣λ∣ ≥ λ0}. (A1)

For any N-vectors a and b, we set a ⋅ b = (a, b) = ∑N
j=1 aibi, and the tangential component aτ of a with respect to the normal n is defined by aτ

= a − (a, n)n. For complex-valued functions f and g, we set ( f , g)Ω = ∫Ω f (x)g(x)dx where g(x) is the complex conjugate of g(x), and for
any two N-vector functions f and g, denote (f, g)Ω = ∑N

j=1 ( f j , g j)Ω. Let 1 < q <∞, 1
q +

1
q′ = 1, we introduce the following spaces

Jq(Ω̇) ∶= {v ∈ Lq
(Ω̇)N

∣ (v,∇φ)Ω̇ = 0 for anyφ ∈ Ĥ1
q′(Ω)},

Ĥ1
q(Ω) ∶= {v ∈ Lq, loc

(Ω) ∣ ∇v ∈ Lq
(Ω)},

Hq ∶= {(v, θ, h) ∣ v ∈ Jq(Ω̇), θ ∈ Lq
(Ω̇), h ∈W2−1/q

q (SR)},

Dq ∶= {(v, h) ∣ v ∈ Jq(Ω̇) ∩H2
q(Ω̇), h ∈W3−1/q

q (SR),

[[(μD(v)n)τ]] = 0, [[v]] = 0 on SR, v = 0 on Γ},

Jq := {θ ∈ H2
q(Ω̇) ∣ [[ν∇θ ⋅ n]] = 0, [[θ]] = 0on SR, ∇θ− ⋅ n− + βθ− = 0on Γ}.

Definition A.1. F [ f ] and F−1
ξ denote the Fourier transform and the inverse Fourier transform, respectively, given by

F [ f ](ξ) = ∫
RN

e−ix⋅ξ f (x)dx, F
−1
ξ [g(ξ)](x) =

1
(2π)N ∫RN

eix⋅ξg(ξ)dξ.

Let FL and F−1
L be the Laplace transform and the inverse Laplace transform, respectively, defined by

f̂ (λ) = FL[ f ](λ) = ∫
∞

−∞
e−λt f (t)dt, F

−1
L [g(λ)](t) =

1
2π∫

∞

−∞
eλtg(τ)dτ,

for λ = γ + iτ ∈ C. Obviously,

FL[ f ](λ) = ∫
∞

−∞
e−iτte−γt f (t)dt = F [e−γt f ](τ),

F
−1
L [g](t) = eγt 1

2π∫
∞

−∞
eiτtg(τ)dτ = eγt

F
−1
[g](t), FLF

−1
L = F

−1
L FL = I.

Definition A.2. Let both X and Y be Banach spaces. A family of operators T ⊂ L (X, Y) is called to be R -bounded on L (X, Y), if there
exist some constants C > 0 and p ∈ [1,∞) such that for each n ∈ N, T j ∈ L (X, Y) and fj ∈ X( j = 1, . . . , n), we have

XXXXXXXXXXX

n

∑
j=1

rjTj fj

XXXXXXXXXXXLp((0,1),Y)
≤ C
XXXXXXXXXXX

n

∑
j=1

rj fj

XXXXXXXXXXXLp((0,1),X)
.

Here, the Rademacher functions {r j}
n
j=1 are defined from [0, 1] into {−1, 1}. The smallest of such C’s is called the R -bound of T on L (X, Y),

and denoted by RL(X,Y)T .
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Lemma A.1 (cf. Ref. 2). If X is a dense subspace of Y and the embedding X ⊂ Y is continuous, we have

Lp
(0,∞; X) ∩H1

p(0,∞; Y) ⊂ C([0,∞); (X, Y)1/p,p)

and

sup
t∈∣0,∞)

∥u(t)∥(X,Y)1/p,p
≤ (∥u∥p

Lp(0,∞;X) + ∥u∥
p
H1

p(0,∞;Y))
1/p

for each p ∈ (1,∞).

Lemma A.2 (cf. Ref. 23). Let 1 < p <∞ and N < q <∞. Let

f ∈ L∞(R, H1
q(Ω̇)) ∩H1

∞(R, Lq
(Ω̇)),

g ∈ H1/2
p (R, Lq

(Ω̇)) ∩ Lp
(R, H1

q(Ω̇)).

Then, we have
∥ f g∥H1/2

p (R,Lq(Ω̇)) + ∥ f g∥Lp(R,H1
q(Ω̇))

≤ C(∥ f ∥L∞(R,H1
q(Ω̇)) + ∥ f ∥H1∞(R,Lq(Ω̇))) × (∥g∥H1/2

p (R,Lq(Ω̇)) + ∥g∥Lp(R,H1
q(Ω̇))).

(A2)

Lemma A.3 (cf. Ref. 23). Let 1 < p, q <∞. Then,

H1
p(R, Lq

(Ω̇)) ∩ Lp
(R, H2

q(Ω̇)) ⊂ H1/2
p (R, H1

q(Ω̇))

and
∥u∥H1/2

p (R,H1
q(Ω̇))

≤ C{∥u∥Lp(R,H2
q(Ω̇)) + ∥∂tu∥Lp(R,Lq(Ω̇))}. (A3)

Theorem A.4 (cf. Ref. 7). Let 1 < q <∞ and 0 < ε0 < π/2. Then, there exists a λ0 > 0 such that for any λ ∈ Σε0 ,λ0 and (v, θ, h) ∈Hq,
equations (4.3) admits a unique solution (v, h) ∈ Dq and θ ∈Jq possessing the estimate:

∣λ∣∥(v, θ, h)∥Hq
+ ∥(v, h)∥Dq

+ ∥θ∥Jq
≤ C∥U∥Hq

.

Theorem A.5 (cf. Ref. 8). Let 2 < p <∞, N < q <∞, 2/p +N/q < 1 and T > 0. Assume that Ω is a bounded domain, (2.1) holds and Γ is
a compact hypersurface of class C2. Let f(x(ξ, t), t) ∈ Lp

((0, T), Lq
(Ω̇)) and b(ξ, t) ∈ Lp

((0, T), H1
q(Ω−)) ∩H1/2

p ((0, T), Lq
(Ω−)). Then, let

(u0, θ0) ∈ B2(1−1/p)
q,p (Ω̇) and h0 ∈ B1−1/p−1/q

q,p (SR) be initial data for (2.13) and satisfying the smallness condition:

∥f∥Lp((0,T),Lq(Ω̇)) + ∥b∥Lp((0,T),H1
q(Ω−)) + ∥b∥H1/2

p ((0,T),Lq(Ω−))

+ ∥v0∥B2(1−1/p)
q,p (Ω̇) + ∥θ0∥B2(1−1/p)

q,p (Ω̇) + ∥h0∥B3−1/p−1/q
q,p (SR) ≤ ε

2
1

(A4)

for some small number ε1 > 0. Let sup
t ∈(0,T)

∥Ψh(⋅, t)∥H1∞(Ω̇) ≤ ε1. Assume that the compatibility conditions hold:

v0 −N3(v0, Ψh∣t=0) ∈ D (Ω), divv0 = N2(v0, Ψh∣t=0) in Ω̇,

[[(μD(v0)n)τ]] = [[(N6(v0, Ψh∣t=0))τ]], [[v0]] = 0 on SR,

[[ν∇θ0 ⋅ n]] = N8(θ0, Ψh∣t=0), [[θ0]] = 0 on SR,

v0 = 0, ∇θ0− ⋅ n− + βθ0− = b∣t=0 on Γ,

Then, problem (2.13) admits a unique solution possessing the estimate

∥(v, θ)∥Lp((0,T),H2
q(Ω̇)) + ∥(∂tv,∂tθ)∥Lp((0,T),Lq(Ω̇)) + ∥∂th∥Lp((0,T),W2−1/q

q (SR))

+ ∥h∥Lp((0,T),W3−1/p
q (SR)) + ∥∂th∥L∞((0,T) ,W1−1/q

q (SR) ≲ ε1.
(A5)
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Proof. Different from Ref. 8, Theorem 2.1, we do not require time to be sufficiently small. Meanwhile, we need to assume that
∥v0∥B2(1−1/p)

q,p (Ω̇) is small enough. Employing a similar argument to that in the proof of Ref. 8, Theorem 2.1, we have

∥v∥Lp((0,T),H2
q(Ω̇))

+ ∥∂tv∥Lp((0,T),Lq(Ω̇)) + ∥h∥Lp((0,T),W3−1/q
q (SR))

+ ∥∂th∥Lp((0,T),W2−1/q
q (SR)) + ∥∂th∥L∞((0,T),W1−1/q

q (SR)) ≤ CeγTε2
1

(A6)

for some positive constants C and γ. Thus, we can choose ε1 so small that CeγTε1 ≤ 1, then use the contraction mapping principle to complete
the proof. So, we may omit its detailed proof. ◻
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