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ON THE MOTION OF THE CLOSED FREE SURFACE IN THREE-DIMENSIONAL
INCOMPRESSIBLE IDEAL MHD WITH SURFACE TENSION

CHENGCHUN HAO AND SIQI YANG

Abstract. We consider the three-dimensional free boundary incompressible ideal magnetohydrodynam-
ics (MHD) equations with surface tension in a bounded domain. The moving closed surface is param-
eterized by the height function, which is defined on a smooth and compact reference hypersurface. In
Eulerian coordinates, we establish a priori estimates for smooth solutions in the C∞-class without losing
any regularity. This approach allows us to avoid dealing with the spatial regularity of the flow map in
Lagrangian coordinates, which may lack maximal regularity and the geometric characteristics, such as

the curvature and normal velocity, of the evolutionary domain. The scaling ∂t ∼ ∇
3

2 motivates us to
formulate the energy functional, and the regularity estimates are driven by the curvature bound and the
regularity of the pressure. In the spirit of the Beale-Kato-Majda criterion, we propose a set of the a priori
assumptions to guarantee the possibility of extending the solution for a short period while preserving
the initial regularity within the time interval of existence. As far as we know, this is the first result in-
volving the blow-up of the free boundary incompressible ideal MHD equations with surface tension. It
is worth noting that the velocity and magnetic fields remain bounded in Sobolev’s space H6, while the
second fundamental form remains bounded in H5, throughout the time interval [0, T0]. The value of T0

depends only on the H6 norm of the initial velocity and magnetic fields, the initial domain, and the H5

norm of the mean curvature.
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1. Introduction

In this paper, we consider the following three-dimensional free boundary incompressible ideal mag-
netohydrodynamics (MHD) equations with surface tension in a bounded domain:







Dtv +∇p = H · ∇H, in Ωt,

DtH = H · ∇v, in Ωt,

div v = 0, divH = 0, in Ωt,

H · ν = 0, p = AΓt, vn = V, on Γt,

v(0, ·) = v0, H(0, ·) = H0, in Ω0,

(1.1)

where the time t > 0, v = (v1, v2, v3)⊤ is the velocity field,H = (H1,H2,H3)⊤ is the magnetic field,
p is the scalar total pressure, and the domain Ωt ⊂ R

3 is bounded with a closed surface Γt := ∂Ωt.
ν = (ν1, ν2, ν3)⊤ represents the unit outer normal to Γt, AΓt denotes the mean curvature of Γt,
vn = v · ν is the normal velocity, and V represents the normal velocity of Γt. Additionally,H · ∇ and
v · ∇ are the directional derivatives, and Dt := ∂t + v · ∇ represents the material derivative. Ω0, v0
and H0 are the prescribed initial data. We denote Γ0 := ∂Ω0, and have assumed that the coefficient of
surface tension is 1 for simplicity.
In recent decades, there has been significant interest in studying the free boundary incompressible

Euler equations, and substantial advancements have been made. Extensive research has been achieved
for the irrotational case, especially, the water wave equations. We refer readers to [Lan05, Wu09,
Wu11, GMS12, IP15] and the references therein. If the fluid flow exhibits vorticity, one may refer
to [CL00, Lin03, Lin05, CS07, SZ08a, ZZ08, DE14, Sch05, DE16, DKT19] for results on a priori
estimates, local well-posedness with or without surface tension, the zero surface tension limit, the large
surface tension limit, and more.
The investigation of free boundary problems for MHD equations has emerged relatively recently

in comparison to the study of the Euler equations, mainly because of the strong interactions between
the magnetic and velocity fields. We focus on the incompressible MHD equations in this paper. Hao
and Luo [HL14] obtained a priori estimates for free boundary problems of the incompressible ideal
MHD without surface tension under the Taylor-type sign condition. They considered the case where
the initial domain is bounded and homeomorphic to a ball. They also showed the ill-posedness of
the problem if the Taylor-type sign condition is violated in the two-dimensional case [HL20]. Luo
and Zhang [LZ20] derived a priori estimates for the lower regular initial data in the initial domain
of sufficiently small volume. In [GW19], a local existence result was given, with a detailed proof
provided in an initial flat domain T

2 × (0, 1). The local well-posedness for the incompressible ideal
MHD equations with surface tension is established by Gu, Luo, and Zhang in [GLZ23], in the same
initial domain setting, namely, the flat domain T2×(0, 1). For the problem of the current-vortex sheet,
the nonlinear stability of the current-vortex sheet in the incompressible MHD equations was solved
by Sun, Wang and Zhang [SWZ18] under the Syrovatskij stability condition, assuming that the free
boundaries are graphs in T2× (−1, 1). Wang and Xin [WX21] established the global well-posedness of
a free interface problem for the incompressible inviscid resistive MHD, taking into account magnetic
diffusion, under similar assumptions regarding the graph. We also refer to some related works [SWZ19,
HL21, Lee17, FHYZ23,HLZ23,HY24, GLZ22,MTT08, LZ23, Tra05, Tra09, TW21] on the topics
of well-posedness, current-vortex sheets problem, breakdown criterion, viscous splash singularity, zero
surface tension limit, and compressible MHD.
It may be possible to reduce the problem of a general free boundary to the case of a graph by

selecting local coordinates that flatten the boundary near a point. However, this reduction will be
technically complicated with challenging difficulties. In the presence of surface tension, if we only
select a portion of the free boundary and flatten it near a point, there is a risk of losing certain geo-
metric characteristics of the free boundary, such as the evolution of its curvature. We discovered that
the blow-up of the curvature would result in the breakdown of a smooth solution in Sobolev spaces.
Additionally, the Lagrangian coordinate can be utilized to transform a moving domain into a fixed
one and the aforementioned well-posedness results for MHD equations are mainly derived from this
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methodology. Nevertheless, as indicated in [SZ08a, SZ11], the Lagrangian map lacks maximal reg-
ularity because all the variables are defined on an evolutionary domain. In fact, the moving surface
can also be described using alternative methods, such as the study of the Euler equations with surface
tension [Sch05], the fluid interface problem [SZ11], the surface diffusion flow with elasticity [FJM20],
the motion of charged liquid drop [JLM22], and the plasma-vacuum problem [LX23b], among others.
Different from the local well-posedness result in [GLZ23] for the flat domain employing Lagrangian

coordinates, we investigate system (1.1) in an arbitrary bounded domain by parameterizing the moving
boundary with the height function defined on a smooth and compact reference hypersurface. Addition-
ally, we eliminate the requirement for the initial velocity on the boundary (v0 ∈ H4.5(Ω0)∩H5(Γ) is
assumed in [GLZ23]). We establish a distinct energy functional by preserving the material derivative,
which avoids destroying the structure of system (1.1) when separating the time derivative ∂t. Also,

we mention that the spatial-temporal scaling is different, i.e., ∂t ∼ ∇
3
2 and the energy estimates are

driven by the second fundamental form together with the pressure, which is different from the strategy
used in [GLZ23]. For example, we cannot define the fractional derivative using the Fourier transform,
which makes calculating the time derivative of the energy challenging.
The curvature of the moving boundary is crucial for well-posedness. Roughly speaking, the blow-up

of curvature (‖B‖H1+δ → ∞ with δ > 0 small) will result in the breakdown of a smooth solution
in H6(Ωt). We provide the a priori assumptions and prove higher-order energy estimates to ensure
the extension of a smooth solution without any loss of regularity. Moreover, we should avoid the
self-intersection of the free boundary, as indicated in [CS14].

1.1. Motivation for the Construction of Energy Functionals. Given any smooth initial domain Ω0

and any divergence-free initial velocity and magnetic fields v0,H0 ∈ C∞(Ω0) such thatH0 ·νΓ0 = 0 on
Γ0, we assume that system (1.1) has a smooth solution that exists for a short time interval throughout
the paper. In particular, the solution (v,H, p) is well-defined on Γt, allowing us to define∇v,∇H,∇p,
etc. on Γt by taking limits inside the domain.
It is well-known that the physical energy is conserved. Indeed, applying Lemmas A.2 and A.3 (see,

e.g., [LZ21]), one can verify that

d

dt

(
1

2

∫

Ωt

[
|v(x, t)|2 + |H(x, t)|2

]
dx+

∫

Γt

1dS

)

= 0,

where dS denotes the measure on Γt.
Motivated by [SZ08a, JLM22], we construct the higher-order energy functional as

el(t) :=
1

2

(∫

Ωt

[

|Dl+1
t v|2 + |Dl+1

t H|2
]

dx+

∫

Γt

|∇̄(Dl
tv · ν)|

2dS

)

+
1

2

∫

Ωt

[

|∇⌊ 3l+1
2

⌋ curl v|2 + |∇⌊ 3l+1
2

⌋ curlH|2
]

dx, (1.2)

for any l ≥ 1, and we denote the sum of the first three by ē(t), i.e.,

ē(t) =
1

2

3∑

k=1

(∫

Ωt

[

|Dk+1
t v|2 + |Dk+1

t H|2
]

dx+

∫

Γt

|∇̄(Dk
t v · ν)|

2dS

)

+
1

2

∑

k=2,3,5

∫

Ωt

[

|∇k curl v|2 + |∇k curlH|2
]

dx. (1.3)

Above, ⌊·⌋ denotes the integer part of a given number, and ∇̄ denotes the tangential derivative. We
also define the following energy functional, taking into account the spatial regularity:

El(t) :=

l∑

k=0

(

‖Dl+1−k
t v‖2

H
3
2 k(Ωt)

+ ‖Dl+1−k
t H‖2

H
3
2k(Ωt)

)

+ ‖v‖2
H

⌊ 3l+3
2 ⌋(Ωt)

+ ‖H‖2
H⌊ 3l+3

2 ⌋(Ωt)
+ ‖∇̄(Dl

tv · ν)‖
2
L2(Γt)

+ 1, (1.4)
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for any l ≥ 1. As before, we define

Ē(t) :=

3∑

k=0

(

‖D4−k
t v‖2

H
3
2 k(Ωt)

+ ‖D4−k
t H‖2

H
3
2 k(Ωt)

)

+ ‖v‖2H6(Ωt)
+ ‖H‖2H6(Ωt)

+
3∑

k=1

‖∇̄(Dk
t v · ν)‖

2
L2(Γt)

+ 1, (1.5)

and we observe that
3∑

i=1
Ei(t) ≤ CĒ(t) ≤ C

3∑

i=1
Ei(t).

Remark. Note that we define the energy functional preserving the material derivative in contrast to
the energy in [GLZ23].

The energy el(t) is specifically designed to cancel the leading terms on the free boundary Γt when
computing its time derivative. Since the evolution of the boundary contributes to the energy estimates
at higher orders, it is necessary to consider the divergence-free condition and the fact that the normal
component of the magnetic field vanishes on the free boundary. In addition, we need to include the term
1
2‖∇̄(Dl

tv ·ν)‖
2
L2(Γt)

in the energy. This term helps us eliminate the dominant terms that arise from the

material derivatives of the pressure on Γt (cf. Lemma 2.13). We exclude the term
1
2‖D

l
tv ·ν‖

2
L2(Γt)

since

it can be controlled by applying either the divergence theorem or the trace theorem (provided that the
a priori assumptions defined below hold). With this simplification, we will avoid the tedious proof
required when we close the energy estimates. It is worth mentioning that we define the energy starting
from ‖D2

t v‖
2
L2(Ωt)

and ‖D2
tH‖2

L2(Ωt)
. We make this choice because ‖Dtv‖

2
L2(Ωt)

can be controlled by

the pressure (cf. Section 4 and Proposition 6.1), and ‖DtH‖2
L2(Ωt)

can be estimated by substituting

DtH = H · ∇v. The curl part in el(t) is used to control the energy El(t) when applying the div-curl
estimates. Furthermore, it is essential to note that the region under consideration is neither a periodic
region nor the entire space. Consequently, it is not possible to define the fractional derivative using
the Fourier transform. Therefore, we shall choose the integer part of 3l

2 + 1
2 , which is a significant

difference.
The scaling 3

2 is revealed in [SZ08b] that a second-order time derivative can be roughly equated to
a third-order spatial differentiation. In other words, one-order time derivative ∂t is associated with
spatial regularity of 3

2 -order, indicating the regularizing effect of the surface tension. In the absence of
surface tension, however, two-order time derivatives are similar to one-order spatial differentiation, i.e.,

∂t ∼ ∇
1
2 . This point will be consistently used throughout the paper. Nevertheless, the improvement

in regularity of the free boundary Γt is geometric, as it is connected to the regularity of the mean
curvature (cf. Lemma A.4), and is not completely evident in the Lagrangian coordinates. Therefore,
we do not adopt the strategy of fixing the boundary, which has to deal with the spatial regularity of
the flow map. Instead, we choose a reference hypersurface to serve as a representation of the free
boundary by utilizing the height function. Then, it is more convenient to control the mean curvature
using the height function. The free boundary Γt is specifically parameterized by a smooth and compact
hypersurface Γ = ∂Ω. Here, Ω is a smooth and compact subset of R3 that satisfies the interior and
exterior ball condition with a radius R > 0. For any t ≥ 0, we represent the free boundary Γt as
Γt = {x+ h(x, t)νΓ(x) : x ∈ Γ} using the height function h(·, t) : Γ → R with ‖h(·, t)‖L∞(Γ) < R.
Note that the time derivative of h is equal to the normal velocity of the free boundary, i.e., ∂th = vn.
Given a solution (v,H, p,Ωt) to system (1.1), whose time interval of existence is [0, T ), we define the
following quantity

MT := R− sup
0≤t<T

‖h(·, t)‖L∞(Γ). (1.6)

It is obvious that the height function is well-defined in the interval [0, T ) as long asMT > 0.
From the perspective of system (1.1), the scaling suggests that we can reduce “12 -order” spatial

regularity if we substitute Dtv = −∇p + H · ∇H and DtH = H · ∇v. In this sense, we can also
reduce “12 -order” spatial regularity when the operators Dt and curl are combined (cf. Lemma 2.5).

These observations are crucial in deriving the optimal expressions for divDl
tv, curlD

l
tv, etc. based on
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the principle of “reducing derivatives” (see, e.g., Lemmas 2.8 and 2.10 in Section 2 for details). These
lemmas will play a vital role in our application of the div-curl estimates to control the higher-order
energy (cf. Lemma 6.2).

1.2. A Priori Assumptions. Having introduced the quantity MT to ensure the well-definedness of
the height function, we then define the following quantity to ensure that the solution can be extended
and controlled by the initial data. Taking δ > 0 to be sufficiently small, we define

NT := sup
0≤t<T

(‖h(·, t)‖H3+δ (Γ) + ‖v(·, t)‖H4(Ωt) + ‖H(·, t)‖H4(Ωt)

+ ‖vn(·, t)‖H4(Γt)). (1.7)

It should be noted that in order to simplify the a priori assumptions, neither the pressure nor the
time derivative are included in NT . Estimating certain pressure-related terms may become challenging
as a consequence. For instance, in Section 4, it is not possible to directly control ‖∇Dtp‖L2(Ωt) using
NT and the initial data. Instead, we need to utilize ∆Dtp in Ωt along with Dtp on Γt to control it.
Furthermore, the requirement for the height function h and the normal velocity vn is related to the
fact that the boundary Γt is moving and will be clarified in Section 4. The former will ensure that
the second fundamental form BΓt is uniformly bounded, i.e., ‖B‖L∞(Γt) ≤ C, provided NT ≤ C.
Moreover, these two terms will be constrained by the curvature bound in Section 7.
In contrast to the Euler equations [JLM22], the presence of the magnetic field necessitates an en-

hancement in the regularity of the velocity and magnetic fields in both the a priori assumptions and the
initial data. It is challenging to assume that the initial velocity and magnetic fields belong to H3(Ω0)
even for the flat domain (see, e.g., [LZ21]). For this reason, in order to demonstrate that the initial data
inHs(Ω0) controls the energy of the same order, we can assume that v0 ∈ H4(Ω0) andH0 ∈ H4(Ω0)
in order to estimateE2(t). However, recalling that we select integer-order Sobolev spaces in the energy
functional to compute the time derivative, the floor function (⌊92⌋ = 4) suggests that we do not have a
control over the first two terms in E2(t). To address this issue, we attempted to enhance the regularity
of E1(t). However, we encountered a challenging problem as the commutators consistently generated
uncontrollable terms of the highest order.
Ultimately, we are able to control the energy Ē(t) for arbitrary initial data in H6(Ω0), provided

the following the a priori assumptions hold:

NT < ∞, andMT > 0.

We expect the requirement of ‖v‖H4(Ωt) and ‖H‖H4(Ωt) in the a priori assumptions to be crucial as it
allows us to control ‖v‖H6(Ωt) and ‖H‖H6(Ωt).

1.3. Main Results. The following is the main result of this paper.

Theorem 1.1. Let Ω0 ⊂ R
3 be a smooth domain, and assume that the boundary Γ0 = ∂Ω0 can be

represented as Γ0 = {x+ h0(x)νΓ(x) : x ∈ Γ} with ‖h0‖L∞(Γ) < R. Let v0,H0 ∈ C∞(Ω0;R
3) be any

divergence-free initial velocity and magnetic fields such thatH0 · νΓ0 = 0 on Γ0. Assume that system (1.1)
has a smooth solution in [0, T ) for some time T > 0, and the following the a priori assumptions hold

NT < ∞, andMT > 0. (1.8)

Then, we have the following results:

(1) There exists a positive number τ , which depends on T,NT ,MT , ‖v0‖H6(Ω0),

‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0), such that the solution exists in the time interval [0, T + τ).
(2) We have the following lower-order quantitative regularity estimates:

sup
0≤t<T+τ

(

Ē(t) +

3∑

k=0

‖D3−k
t p‖

H
3
2 k+1(Ωt)

+ ‖BΓt‖H5(Γt)

)

≤ C̄,

where the constant C̄ depends on T,NT ,MT , ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0).
(3) For l ≥ 4, we also have the higher-order regularity estimates:

sup
0≤t<T+τ

El(t) ≤ Cl,



6 CHENGCHUN HAO AND SIQI YANG

where the constant Cl depends on l, T,NT ,MT , and El(0).

In particular, the smooth solution of system (1.1) can be extended and remains smooth (with respect to
both t and x), as long as the a priori assumptions (1.8) are satisfied.
Moreover, there exists some T0 > 0, which depends only on the quantitiesM0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0),

and ‖AΓ0‖H5(Γ0), such that the a priori assumptions (1.8) hold for T = T0.

We will make a few remarks about the Main Theorem.
The first result is similar in spirit to the Beale-Kato-Majda criterion, which dates back to the remark-

able work [BKM84]. Roughly speaking, in order to ensure that the solution remains bounded in H3,
the L∞-norm of the vorticity of the flow must be integrated over the entire time interval of existence.
However, the assumptions here regarding the velocity, magnetic field, and height function are stronger
in order to guarantee that the velocity and magnetic fields remain bounded inH6(Ωt). The a priori as-
sumptionMT > 0 is technical. IfMT = 0, we will select a different reference surface to parameterize
the free boundary. It is worth noting that we can always select the reference surface unless the boundary
self-intersects in at least one point (splash or splat singularity, see, e.g., [CS14]). The hypothesis of the
height function is roughly related to the singularity of the free boundary. In other words, the second
fundamental form remains uniformly bounded. The singularity ‖B‖L∞(Γt) = ∞ suggests that the
curvature of the free boundary will blow up. Moreover, the volume-preserving property suggests that
the domain becomes exceedingly narrow as |h(·, t)| increases. The requirement for the normal velocity
of the free boundary is reasonable because we do not fix the boundary using Lagrangian coordinates,
and it also ensures the boundedness of the pressure.
The last statement highlights that the a priori estimates remain bounded until time T0 > 0, which

is determined by the initial height function, velocity, magnetic field, and the mean curvature, i.e.,

T0 = T0

(
M0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), ‖AΓ0‖H5(Γ0)

)
.

On the time interval (0, T0), our lower-order energy estimates yield

sup
0≤t<T0

(

Ē(t) +

3∑

k=0

‖D3−k
t p‖

H
3
2 k+1(Ωt)

+ ‖BΓt‖H5(Γt)

)

≤ C,

where the constant C = C
(
M0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), ‖AΓ0‖H5(Γ0)

)
. In particular, we bound the

velocity and magnetic fields in H6(Ωt) and the second fundamental form in H5(Γt) by the initial data
M0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0) without any loss of regularity. It is worth noting that
we only need the initial mean curvature to control the second fundamental form of the same order.
We also included the pressure ‖p‖

H
11
2 (Ωt)

, as well as the time derivatives of the velocity, magnetic field,

and pressure.
In fact, from the definitions of the material derivative (Dt = ∂t+ v ·∇) and Ē(t), it is easy to verify

that

sup
0≤t<T0

3∑

k=1

(

‖∂3−k
t v‖2

H
3
2 (k+1)(Ωt)

+ ‖∂3−k
t H‖2

H
3
2 (k+1)(Ωt)

)

≤ C,

sup
0≤t<T0

3∑

k=1

‖∂3−k
t p‖2

H
3
2k+1(Ωt)

≤ C,

with the constant C = C
(
M0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), ‖AΓ0‖H5(Γ0)

)
defined above.

Furthermore, the higher-order energy El(t) can be controlled by its initial value El(0) as long as
the a priori assumptions hold. The higher-order energy estimates also include the estimates for ∂i

tv,

∂j
tH, ∂k

t p, and the second fundamental form in appropriate Sobolev spaces. Therefore, the solution
can be extended while remaining smooth with respect to both the time and spatial variables, provided
that the a priori assumptions (1.8) hold.

1.4. Outline of the Proofs and the Structure of the Paper.



MOTION OF FREE SURFACE IN INCOMPRESSIBLE IDEAL MHD WITH SURFACE TENSION 7

1.4.1. Reduce the derivatives. The foundation of our energy estimates lies in the reduction of the deriva-
tives, which helps in formulating the error terms, divDl

tv, curlD
l
tv, ∆Dl

tp, D
l
tp, etc. We will explain

this in detail below.

(1) Based on the structure of system (1.1), the equation DtH = H · ∇v suggests that we can
replace the material derivative of the magnetic field by the gradient of the velocity. To be more
specific, the formulas (2.9) and (2.10) in Lemma 2.6 demonstrate that for any i, j ∈ N, it is
true that

Dj
tH =

∑

1≤m≤j

∑

|β|≤j−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆ H,

and

∇iDj
tH =

∑

1≤m≤j

∑

|α|≤i
|β|≤j−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αmDβm

t v ⋆∇αm+1H,

where ⋆ denotes the contraction of certain indices of tensors with constant coefficients (see,
e.g., [Ham82]). In the above, at least one-order material derivative is substituted by the spatial
derivative at the cost of the expression containing more product terms. These enable us to con-
vert certain estimates for the magnetic field into those for the velocity field (e.g., Propositions
4.7, 6.1 and 6.2).

(2) When the operators Dt and curl join together, we can reduce spatial regularity by 1
2 -order.

For example, a straightforward calculation yields

curlDtv = (∇H)⊤ curlH + curlH∇H + (H · ∇)(curlH),

where curlH := ∇H − (∇H)⊤. This demonstrates that the material derivative Dt is replaced

by the spatial derivative ∇, while ∂t ∼ ∇
3
2 . This fact is essential for formulating the error

terms (e.g., Lemmas 2.8 and 2.10) to control the energy. It also indicates that we should reserve
the curl operator (rather than simply∇) for the highest order term when seeking strategies to
reduce the derivatives.

(3) To compute −∆Dk+1
t p, we will calculate the divergence of Dk

t (H · ∇H) (cf. Lemma 2.7).
The divergence-free condition ensures that when taking the divergence of Dk

t (H · ∇H), the
order of derivatives does not increase and even “decreases by 1

2 -order”.

1.4.2. Estimates for the product of functions. To establish the energy estimates, we will estimate the time
derivative of the energy functional using the Kato-Ponce inequalities. We start with the estimates

d

dt
ē(t) ≤ C

(

1 + ‖∇p‖2H2(Ωt)

)

Ē(t), (1.9)

and
d

dt
el(t) ≤ CEl(t), l ≥ 4, (1.10)

for any 0 < t < T , provided that the a priori assumptions (1.8) hold for the time T > 0.
To estimate the time derivative of the higher-order energy el(t) (i.e., l ≥ 4), we primarily rely on

induction arguments. However, when working with the estimates for d
dt
ē(t), it is crucial to accurately

estimate the product (⋆ product) of functions in the error terms. Our strategy involves controlling the
most challenging terms (at most two) in the product using pressure and energy Ē(t), while imposing
the a priori assumptions on the remaining terms. This helps us distribute the derivatives. In the end,
we only require ‖∇p‖H2(Ωt) in (1.9) to control

d
dt
ē(t).

At the end of the proof of (1.9) in Section 3, we could not simply integrate by parts when estimating
the integral of

∫

Ωt
divDl+1

t (H ·∇H)udx because the leading term inDl+1
t (H ·∇H), i.e.,∇2Dl

tv , is out
of control (cf. Lemma 2.6). Fortunately, as Lemmas 2.6 and 2.7 show, the divergence-free condition
facilitates the substitution of one order material derivative with one order spatial derivative. Roughly
speaking, we reduce the 1

2 -order derivative. Consequently, we can control
∫

Ωt
divDl+1

t (H · ∇H)udx

using Lemma 2.7 and H · ν = 0.
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1.4.3. Auxiliary functions to control the pressure. Since (1.10) is established using induction arguments,
it is necessary to demonstrate that

d

dt
ē(t) ≤ CĒ(t),

where C shall depend only on the initial data. For this purpose, we need to estimate the pressure in
(1.9), and we apply an ad-hoc argument to show that

sup
t∈[0,T ]

‖p‖2H3(Ωt)
≤ C

(
T,NT ,MT , ‖∇̄

2p‖L2(Γ0), ‖∇p‖H2(Ω0)

)
. (1.11)

In fact, to prove (1.11), we compute the evolution of the pressure in the domain Ωt, and obtain

d

dt

1

2
‖∇p‖2L2(Ωt)

≤ C
(

1 + ‖∇p‖2L2(Ωt)

)

,

d

dt

1

2
‖∇2p‖2L2(Ωt)

≤ C
(

1 + ‖∇p‖2H1(Ωt)
+ ‖p‖2H2(Γt)

)

,

d

dt

1

2
‖∇3p‖2L2(Ωt)

≤ C
(

1 + ‖∇p‖2H2(Ωt)
+ ‖p‖2H3(Γt)

)

.

As a result, we need to additionally consider the pressure (e.g., ∇̄2p and ∇̄3p) on the free boundary.
We study the following functions

∫

Γt

∇̄p · ∇̄(∇vν · ν)dS, and

∫

Γt

∇̄2p : ∇̄2(∇vν · ν)dS + ε

∫

Γt

|∇̄2p|2dS,

with ε > 0 sufficiently small, which are designed based on the formula of the Beltrami-Laplace operator,
i.e.,

∆Bv = ∆u− (∇2vν · ν)−A∂νv.

To estimate their time derivatives, we apply the estimates

‖∇̄2p‖2L2(Γt)
≤ ‖∆Bp‖

2
L2(Γt)

+ C

∫

Γt

|B|2|∇̄p|2dS,

‖∇̄3p‖2L2(Γt)
≤ ‖∇̄∆Bp‖

2
L2(Γt)

+ C‖p‖2H2(Γt)
,

considering the commutation of the tangential derivatives, that are proved by using Simon’s identity
(see, e.g., [FJM20]). Furthermore, we bound the spatial derivatives of p and Dtp on the free boundary
by their tangential derivatives, ‖∆p‖H2(Ωt), together with ‖∆Dtp‖H1(Ωt). For example,

‖∇2Dtp‖
2
L2(Γt)

≤ C
(

‖∆Dtp‖
2
H1(Ωt)

+ ‖Dtp‖
2
H2(Γt)

)

,

‖∇3p‖2L2(Γt)
≤ C

(

‖∆p‖2H2(Ωt)
+ ‖p‖2H3(Γt)

)

.

Also, we use the fact that ‖vn‖H4(Γt) ≤ C from the a priori assumptions.
Finally, we obtain

d

dt

∫

Γt

∇̄p · ∇̄(∇vν · ν)dS ≤ −
1

2
‖∇̄2p‖2L2(Γt)

+ C,

d

dt

(∫

Γt

∇̄2p : ∇̄2(∇vν · ν)dS + ε

∫

Γt

|∇̄2p|2dS

)

≤ −
1

4
‖∇̄3p‖2L2(Γt)

+ C(‖∇̄2p‖2L2(Γt)
+ 1),

and deduce

sup
t∈[0,T ]

‖∇̄2p‖2L2(Γt)
+

∫ T

0
‖∇̄3p‖2L2(Γt)

dt ≤ C.

Combined with the estimates in the domain Ωt, (1.11) follows. The initial quantities ‖∇̄2p‖L2(Γ0) and
‖∇p‖H2(Ω0) in (1.11) can be easily controlled by the initial data. In fact, we control the initial energy
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and pressure through the initial velocity, magnetic field, and mean curvature:

Ē(0) +

3∑

k=0

‖D3−k
t p‖2

H
3
2 k+1(Ω0)

≤ C
(
M0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), ‖A‖H5(Γ0)

)
,

using (2.9) and (2.10), whereM0 := R− ‖h0‖L∞(Γ). In the same way, it holds

Ē(t) +
3∑

k=0

‖D3−k
t p‖2

H
3
2 k+1(Ωt)

≤ C,

where the constantC depends onR−‖h(·, t)‖L∞(Γ), ‖v‖H6(Ωt), ‖H‖H6(Ωt), and ‖A‖H5(Γt), provided
R− ‖h(·, t)‖L∞(Γ) > 0.

1.4.4. Curvature, Kato-Ponce and div-curl estimates. Thanks to the pressure estimates, we are able to
bound the second fundamental form. As a result, we can extend the function to the entire space,
enabling us to apply the Kato-Ponce estimates to half-integer Sobolev spaces and control the constants
by the curvature bound. Indeed, the estimates in [JLM22] for the Euler equations

‖f1 . . . fj‖
H

1
2 (Ωt)

≤ C

j
∑

i=1

‖fi‖L∞(Ωt)

∏

k 6=i

‖fk‖
H

1
2 (Ωt)

are not suitable for our case due to the existence of the magnetic field, and we shall apply (A.7) to
estimate the error terms, e.g.,

‖∇v ⋆∇Dl
tv‖H

1
2 (Ωt)

≤ C
(

‖∇v‖L∞(Ωt)‖∇Dl
tv‖H

1
2 (Ωt)

+ ‖∇v‖
W

1
2 ,6(Ωt)

‖∇Dl
tv‖L3(Ωt)

)

.

Nevertheless, controlling the error associatedwith the magnetic tensionH·∇H (denoted asR0
∇2H,H

)

turns out to be challenging. We shall control it by the curl of the magnetic field, i.e.,

‖R0
∇2H,H‖2

H
3
2 k−1(Ωt)

≤ C‖ curlH‖2
H⌊ 3

2 l+1
2 ⌋(Ωt)

,

which is distinct from all other error terms.
To close the energy estimates, we define another energy functional containing curl v and curlH as

ẽ(t) :=
1

2

3∑

k=1

(

‖Dk+1
t v‖2L2(Ωt)

+ ‖Dk+1
t H‖2L2(Ωt)

+ ‖∇̄(Dk
t v · ν)‖

2
L2(Γt)

)

+
1

2

(

‖ curl v‖2H5(Ωt)
+ ‖ curlH‖2H5(Ωt)

)

+ 1,

ẽl(t) :=
1

2

(

‖Dl+1
t v‖2L2(Ωt)

+ ‖Dl+1
t H‖2L2(Ωt)

+ ‖∇̄(Dl
tv · ν)‖

2
L2(Γt)

)

+
1

2

(

‖ curl v‖2
H⌊ 3l+1

2 ⌋(Ωt)
+ ‖ curlH‖2

H⌊ 3l+1
2 ⌋(Ωt)

)

+ 1, l ≥ 4,

and apply the div-curl estimates to obtain

Ē(t) ≤ Cẽ(t) ≤ C (1 + ē(t)) , and El(t) ≤ Cẽl(t) ≤ C (1 + el(t)) , l ≥ 4.

Finally, we deduce the desired energy estimates

d

dt
ē(t) ≤ C (1 + ē(t)) , and

d

dt
el(t) ≤ C (1 + el(t)) , l ≥ 4.
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1.4.5. Justification for the validity of the a priori assumptions. To show that the a priori assumptions
(1.8) hold for some time T0 ≥ c0 > 0, where the constant c0 depends on the initial data, we define

I(t) := ‖B‖2H3(Γt)
+ ‖p‖2H3(Ωt)

+ ‖v‖2H4(Ωt)
+ ‖H‖2H4(Ωt)

+ 1,

for t ≥ 0. The curvature bound can recover the regularity of the free boundary (see, e.g., [SZ08a,
LX23a]), and as a result, we can apply Proposition 6.1. It turns out that

d

dt
I(t) ≤ CĒ(t)I(t) ≤ CĒ(0)I(t),

in a short period, and we can obtain a lower bound of T0. To ensure that the height function is
well-defined, we use the fundamental theorem of calculus and the fact that ∂th = vn.

1.4.6. Organization of the paper. The rest of this paper is organized as follows.
In Section 2, we calculate the commutators (e.g., Lemmas 2.3 and 2.4, and (2.14)), the error terms

(e.g., Lemmas 2.6 and 2.8), and additional terms associated with the div-curl estimates (e.g., Lemmas
2.7 and 2.10) in order to establish the energy estimates. These calculations reveal that as the number
of terms multiplied in the formula of a commutator increases, the total number of derivatives for all
these terms decreases. This is extremely crucial in closing the energy estimates.
In Section 3, we compute the time derivative of the energy functional by canceling out the leading

terms. Under the a priori assumptions, we control d
dt
ē(t) using

(

1 + ‖∇2p‖2
L2(Ωt)

)

Ē(t) in conjunc-

tion with some error terms. We further assume that sup
0≤t<T

El−1(t) ≤ C for l ≥ 4 to demonstrate

that d
dt
el(t) can be bounded by El(t) along with some higher-order error terms using the induction

arguments.
In Section 4, we will show that ‖p‖H3(Ωt) can be uniformly bounded within the time interval of

existence by the time T > 0, the a priori assumptions NT ,MT , and the initial data ‖v0‖H6(Ω0),
‖H0‖H6(Ω0), ‖A‖H5(Γ0). Furthermore, the initial data can additionally control the initial quantities

Ē(0) and ‖D3−k
t p‖2

H
3
2k+1(Ω0)

for 0 ≤ k ≤ 3.

In Section 5, we utilize the Kato-Ponce inequalities to estimate the error terms appeared in Section
3. Due to the shared order of derivatives in the error formulas for the product terms, these error terms
can be bounded by the product

(

1 + ‖∇p‖2H2(Ωt)

)

Ē(t),

and the energy El(t) for l ≥ 4, respectively.
In Section 6, we apply the div-curl estimates to close the energy estimates by incorporating another

energy functional that includes the curl of the velocity and magnetic fields.
Finally, we prove our main theorem in Section 7.

2. Formulas for the Energy Estimates

All notationwill be defined as it is introduced, and a list of symbols will also be provided in Appendix
B for a quick reference. Throughout the paper, we will use the Einstein summation convention and
the notation S ⋆ T from [Ham82, Man02] to denote a tensor formed by contracting certain indices
of tensors S and T with constant coefficients. In particular, for k, l ∈ N, we denote ∇kf ⋆ ∇lg a
contraction of certain indices of tensors ∇if and ∇jg for 0 ≤ i ≤ k and 0 ≤ j ≤ l with constant
coefficients. Here, we denote N = {1, 2, 3, . . . } for the positive integers and N0 = {0, 1, 2, 3, . . . }
for the non-negative integers. Note that f and g can be vector fields, and we include the lower-order
derivatives along with the function (or vector field) itself. However, we exclude the case of a single
term ∇if .
Let u : Γ → R and F : Γ → R

3 be any sufficiently regular function and vector field, respectively.
Since the reference hypersurfaceΓ is embedded inR3, it has a natural metric g induced by the Euclidean
metric. Then, (Γ, g) is a Riemannian manifold, and we denote the Riemannian connection on Γ by
∇̂. For a function u ∈ C∞(Γ) and a vector field F , it holds ∇̂Fu = Fu.
We denote the normal part of F on Γ by Fn := F · νΓ, and the tangential part by Fσ := F −FnνΓ,

where “·” denotes the inner product of two vectors. If Γ is smooth, we can extend both u and F to
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R
3. Then, we define the tangential differential of u by ∇̄u := (∇u)σ = ∇u− (∇u ·ν)ν, the tangential

gradient of F by ∇̄F := ∇F − (∇Fν) ⊗ ν, i.e., (∇̄F )ij = ∂jF
i − ∂lF

iνlνj , and the tangential
divergence by divσ F := Tr(∇̄F ), where Tr is the trace of a square matrix. It is easy to verify that
divσ F = ∂jF

j − ∂lF
jνlνj . We remark that the tangential gradient and covariant gradient of u are

equivalent in the following sense: for any vector field F̃ : Γ → R
3, F̃ ·ν = 0, we have ∇̂F̃u = ∇̄u · F̃ .

Additionally, the second fundamental form and the mean curvature can be written as

B = ∇̄ν, and A = divσ ν. (2.1)

We also recall the divergence theorem
∫

Γ
divσ FdS =

∫

Γ
AΓ(F · νΓ)dS.

The Beltrami-Laplacian of u is defined by ∆Bu := divσ(∇̄u), and it holds

∆Bu = ∆u−
(
∇2uν · ν

)
−A∂νu, (2.2)

where ∂ν denotes the outer normal derivative.
We will fix our reference surface Γ, which is a boundary of a smooth, compact set Ω satisfying

the interior and exterior ball condition with radius R. We denote the tubular neighborhood of Γ by
U(R,Γ), given by U(R,Γ) = {x ∈ R

3 : dist(x,Γ) < R}. Then the map Ψ : Γ × (−R,R) →
U(R,Γ) defined as Ψ(x, s) = x+ sνΓ(x) is a diffeomorphism. We say that a hypersurface Γt = ∂Ωt

(or Ωt) is Hs(Γ)-regular, if it can be written as Γt = {x+ h(x, t)νΓ(x) : x ∈ Γ}, for a Hs(Γ)-regular
function h(·, t) : Γ → R with ‖h(·, t)‖L∞(Γ) < R. We say that Γt is uniformly Hs(Γ)-regular if the
height-function satisfies ‖h(·, t)‖Hs(Γ) ≤ C and ‖h(·, t)‖L∞(Γ) ≤ cR for constants C and c < 1 (see
[JLM22] for similar definitions).
We can express the unit outer normal and the second fundamental form by the tangential derivative

of the height function (cf. [Man11])

νΓt = a1
(
h(·, t), ∇̄h(·, t)

)
, (2.3)

BΓt = a2
(
h(·, t), ∇̄h(·, t)

)
∇̄2h(·, t), (2.4)

where a1 and a2 are smooth functions.
Let us next fix the notation for the function spaces. We define the Sobolev spaceW l,p(Ω) (W l,p(Γ))

in a standard way for p ∈ [1,∞] by ∇ (∇̂ or ∇̄), and denote the Hilbert space H l = W l,2. We define

the space H
1
2 (Γ) via the harmonic extension: let u ∈ L2(Γ),

‖u‖
H

1
2 (Γ)

:= ‖u‖L2(Γ) + inf
{
‖∇w‖L2(Ω) : w ∈ H1(Ω) and w = u on Γ

}
.

The spaces H−1 and H− 1
2 are defined by duality. For any index vector α = (α)ki=1 ∈ N

k
0, we define

its norm by |α| =
k∑

i=1
αi.

We extend the unit outer normal ν to Ω using harmonic extension and denote it as ν̃. With a slight
abuse of notation, we sometimes still denote the extended one as ν. From (1.8) and (2.3), we see that
‖ν̃‖

H
5
2+δ(Ωt)

≤ C.

Now, we recall the following results including some basic commutator formulas. As usual, we use
the Lie bracket to represent the commutators, i.e., [L1,L2] := L1L2 − L2L1.

Lemma 2.1. For a smooth function f , it holds

[Dt,∇]f = −(∇v)⊤∇f, [Dt, ∂i]f = −∂iv
k∂kf, [Dt, ∇̄]f = −(∇̄v)⊤∇̄f,

[Dt, ∇̄
2]f = ∇̄2v ⋆ ∇̄f + ∇̄v ⋆ ∇̄2f, Dtν = −(∇̄v)⊤ν = −∇̄vn +Bvσ,

∇̄vn = ∇̄v⊤ν +BΓvσ, [∂ν , ∂k]u = −∇u · ∂kν, [∇̄,∇]f = ∇f ⋆∇ν ⋆ ν,

[Dt,∆B ]f = ∇̄2f ⋆∇v − ∇̄f ·∆Bv +B ⋆∇v ⋆ ∇̄f,

DtB = −∇̄2v ⋆ ν − ∇̄v ⋆ B.
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Proof. Most of the above formulas can be found in [SZ08b, Section 3.1] and the others follows from
direct calculations. �

From the definition of curl, namely, curlF = ∇F − (∇F )⊤, a straightforward calculation yields
the following lemma.

Lemma 2.2. Let F and G be smooth vector fields. Then we have

curl(F · ∇G) = ∇G∇F − (∇F )⊤(∇G)⊤ + (F · ∇)(curlG),

[Dt, curl]F = (∇v)⊤(∇F )⊤ −∇F∇v.

Let l, k ∈ N and let f be a smooth function. Then we have

[Dl+1
t ,∇k]f = Dt[D

l
t,∇

k]f + [Dt,∇
k]Dl

tf,

[Dl
t,∇

k+1]f = [Dl
t,∇]∇kf +∇[Dl

t,∇
k]f.

To derive a general formula for the commutators, we need to apply the following results. It is easy
to verify that

Dta(ν) = b(ν)∇̄v, Dt∇Dk
t v = ∇Dk+1

t v +∇v ⋆∇Dk
t v,

Dt∇̄Dk
t v = ∇̄Dk+1

t v + ∇̄v ⋆ ∇̄Dk
t v,

for k ∈ N, where a(ν) and b(ν) denote the finite ⋆ product of ν.
As we shall see below, the commutator formulas involve the product of functions, and the total order

of derivatives decreases as more terms are multiplied. Thanks to this observation, we can control the
errors in Section 5 and establish the energy estimates in Section 6.

Lemma 2.3. Let l, k ∈ N such that l ≥ 2 and k ≥ 3. It holds

[Dt,∇
2]f = ∇v ⋆∇2f +∇2v ⋆∇f,

[Dt,∇
k]f =

∑

|α|≤k−1

∇1+α1v ⋆∇1+α2f,

[Dl
t,∇]f =

∑

2≤m≤l+1

∑

|β|≤l+1−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇Dβm

t f,

and

[Dl
t,∇

2]f =
∑

2≤m≤l+1

∑

|α|≤1
|β|≤l+1−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αm−1D

βm−1
t v

⋆∇1+αmDβm

t f.

Roughly speaking, the leading term is ∇kDl−1
t in the commutator [Dl

t,∇
k].

Proof. A direct calculation yields the first claim and the second claim can be found in [JLM22, Lemma
4.1].
We prove the third one by induction, and it is easy to verify the case of l = 2. For the case of l ≥ 3,

from Lemma 2.2 and the above formulas, it follows that

[Dl
t,∇]f

= Dt[D
l−1
t ,∇]f +∇v ⋆∇Dl−1

t f

= Dt(
∑

2≤m≤l

∑

|β|≤l−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇Dβm

t f) +∇v ⋆∇Dl−1
t f

= ∇v ⋆∇Dl−1
t f +

∑

2≤m≤l

∑

|β|≤l−m

∇DtD
β1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇Dβm

t f

+ · · ·+
∑

2≤m≤l

∑

|β|≤l−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇DtD

βm

t f
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+
∑

2≤m≤l

∑

|β|≤l−m

∇v ⋆∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇Dβm

t f

+ · · ·+
∑

2≤m≤l

∑

|β|≤l−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇v ⋆∇Dβm

t f

=
∑

2≤m≤l+1

∑

|β|≤l+1−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇Dβm

t f.

Finally, we prove the last claim. Again by induction, for l ≥ 3, one has

[Dl
t,∇

2]f

= Dt[D
l−1
t ,∇2]f + [Dt,∇

2]Dl−1
t f

= Dt(
∑

2≤m≤l

∑

|α|≤1
|β|≤l−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αm−1D

βm−1

t v ⋆∇1+αmDβm

t f)

+∇v ⋆∇2Dl−1
t f +∇2v ⋆∇Dl−1

t f

=
∑

2≤m≤l+1

∑

|α|≤1
|β|≤l+1−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αm−1D

βm−1

t v ⋆∇1+αmDβm

t f.

�

Below, let aβ(ν) and aα,β(ν,B) denote the finite ⋆ product of the tensors. The following lemma is
critical for our estimates, in which we provide a more precise formulation of the quantities than those
in [JLM22, Lemma 4.2].

Lemma 2.4. Let l ≥ 1, we have

[Dl
t, ∇̄]f =

∑

2≤m≤l+1

∑

|β|≤l+1−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄D

βm−1
t v ⋆ ∇̄Dβm

t f,

Dl
tν =

∑

1≤m≤l

∑

|β|≤l−m

aβ(ν)∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm

t v,

Dl
tB =

∑

1≤m≤l

∑

|β|≤l−m
|α|≤1

aα,β(ν,B)∇̄1+α1Dβ1
t v ⋆ · · · ⋆ ∇̄1+αmDβm

t v, (2.5)

and

[Dl
t, ∇̄

2]f =
∑

2≤m≤l+1

∑

|β|≤l+1−m
|α|≤1

aα,β(ν,B)∇1+α1Dβ1
t v ⋆ · · ·

⋆∇1+αm−1D
βm−1

t v ⋆ ∇̄1+αmDβm

t f.

Proof. To prove the first claim, we recall [Dt, ∇̄]f = −(∇̄v)⊤∇̄f in Lemma 2.1. For the case of l ≥ 2,
we have by induction that

[Dl
t, ∇̄]f = Dt[D

l−1
t , ∇̄]f + [Dt, ∇̄]Dl−1

t f

= Dt(
∑

2≤m≤l

∑

|β|≤l−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄D

βm−1

t v ⋆ ∇̄Dβm

t f)

+ ∇̄v ⋆ ∇̄Dl−1
t f

=
∑

2≤m≤l+1

∑

|β|≤l+1−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄D

βm−1
t v ⋆ ∇̄Dβm

t f.

Similarly, we can obtain the last claim.
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For the second claim, we recall Dtν = ∇̄v ⋆ ν, and for l ≥ 2, it holds by induction that

Dl
tν = Dt(

∑

1≤m≤l−1

∑

|β|≤l−1−m

aβ(ν)∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm

t v)

=
∑

1≤m≤l

∑

|β|≤l−m

aβ(ν)∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm

t v.

As for the third claim, we have for l ≥ 1 that

Dl
tB = [Dl

t, ∇̄]ν + ∇̄Dl
tν

= ∇̄(
∑

1≤m≤l

∑

|β|≤l−m

aβ(ν)∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm

t v)

+
∑

2≤m≤l+1

∑

|β|≤l+1−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄D

βm−1

t v ⋆ ∇̄Dβm

t ν

=:I1 + I2.

It is clear that
I1 =

∑

1≤m≤l

∑

|β|≤l−m
|α|≤1

aα,β(ν,B)∇̄1+α1Dβ1
t v ⋆ · · · ⋆ ∇̄1+αmDβm

t v.

For I2, it follows that

I2 =
∑

2≤m≤l+1

∑

|β|≤l+1−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄D

βm−1
t v

⋆ (
∑

1≤n≤βm

∑

|λ|≤βm−n
|γ|≤1

∇̄1+γ1Dλ1
t v ⋆ · · · ⋆ ∇̄1+γnDλn

t v)

=
∑

2≤m≤l+1
|β|≤l+1−m

∑

1≤n≤βm

∑

|λ|≤βm−n
|γ|≤1

aβ,λ,γ(ν,B)∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄D

βm−1
t v

⋆ ∇̄1+γ1Dλ1
t v ⋆ · · · ⋆ ∇̄1+γnDλn

t v,

which is also contained in
∑

1≤m≤l

∑

|α|≤1,|β|≤l−m

aα,β(ν,B)∇̄1+α1Dβ1
t v ⋆ · · · ⋆ ∇̄1+αmDβm

t v.

�

To estimate energy, it is necessary to determine the order of the material and spatial derivatives that
appear in the time derivative of the energy functional. Additionally, we will consider the magnetic
field. We denote the divergence of a matrix A = (Aij) as (divA)i :=

∑

j ∂jAij and recall that the curl

of a vector field F is defined by curlF = ∇F − (∇F )⊤.
We begin with the following basic results. By the divergence-free condition, it is clear that divDtv =

∂iv
j∂jv

i and

−∆p = ∂iv
j∂jv

i − ∂iH
j∂jH

i. (2.6)

The operators curlDt and Dt curl can be represented in terms of spatial derivatives of lower orders,
suggesting that the curl operator should not be regarded merely as the gradient when considering the
velocity and magnetic fields. In fact, a direct calculation produces the following identities.

Lemma 2.5. For the velocity and magnetic fields, we have

curlDtv = (∇H)⊤ curlH + curlH∇H + (H · ∇)(curlH),

Dt curl v = − (∇v)⊤ curl v − curl v∇v + (∇H)⊤ curlH + curlH∇H

+ (H · ∇)(curlH),

[Dt, curl]v = − (∇v)⊤ curl v − curl v∇v,
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curlDtH = ∇v∇H − (∇H)⊤(∇v)⊤ + (H · ∇)(curl v),

Dt curlH = (∇v)⊤(∇H)⊤ −∇H∇v +∇v∇H − (∇H)⊤(∇v)⊤

+ (H · ∇)(curl v),

[Dt, curl]H = (∇v)⊤(∇H)⊤ −∇H∇v.

Next, due to the presence of the magnetic tension H · ∇H in contrast to the Euler equations,
we introduce some error terms associated with the magnetic field. These will be necessary for the
subsequent computation of the quantities curlDk+1

t v, [Dk+1
t ,∇]p, and −∆Dk+1

t p.
Denote R0

∇H,H := 0, R0
∇H,∇H := ∇H ⋆∇H, and we define

Rk
∇H,H :=

∑

3≤m≤k+2

∑

|α|≤1
|β|≤k+2−m

aα,β(∇v)∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αm−2D

βm−2
t v

⋆∇αm−1H ⋆ H, (2.7)

Rk
∇H,∇H :=

∑

3≤m≤k+2

∑

|α|≤2,αi≤1
|β|≤k+2−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αm−2D

βm−2
t v

⋆∇αm−1H ⋆∇αmH, (2.8)

for k ≥ 1, where aα,β(∇v) = ∇v ⋆∇v ⋆ · · · ⋆∇v denotes the finite ⋆ product. In the case of βj = 0,

∇D
βj

t can be absorbed into aα,β(∇v).
A direct calculation shows Dt(∇H ⋆∇H) = ∇2v ⋆H ⋆∇H +∇v ⋆∇H ⋆∇H and Dt(∇H ⋆H) =

∇2v ⋆H ⋆H +∇v ⋆∇H ⋆H, and the following is some results for higher-order material derivatives.

Lemma 2.6. Let k ∈ N. It follows that

Dk
t (∇H ⋆∇H) = Rk

∇H,∇H , Dk
t (∇H ⋆ H) = Rk

∇H,H .

Proof. It is sufficient to consider the case of k ≥ 2. We claim that given any k ≥ 2, one has

Dk
t (∇H ⋆∇H) =

∑

2≤m≤k+2

∑

|β|≤k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−2
t v ⋆∇D

βm−1
t H

⋆∇Dβm

t H,

Dk
t (∇H ⋆H) =

∑

2≤m≤k+2

∑

|β|≤k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−2

t v ⋆∇D
βm−1

t H

⋆Dβm

t H.

In fact, from Lemma 2.3, we see that

Dk
t (∇H ⋆∇H)

= ∇Dk
tH ⋆∇H + [Dk

t ,∇]H ⋆∇H +
∑

|γ|=k,γ1,γ2≥1

[Dγ1
t ,∇]H ⋆ [Dγ2

t ,∇]H

+∇Dγ1
t H ⋆ [Dγ2

t ,∇]H +∇Dγ1
t H ⋆∇Dγ2

t H

= ∇Dk
tH ⋆∇H

+
∑

2≤m≤k+1

∑

|β|≤k+1−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇Dβm

t H ⋆∇H

+
∑

2≤m≤k+2

∑

|β|≤k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−2

t v ⋆∇D
βm−1

t H ⋆∇Dβm

t H

=
∑

2≤m≤k+2

∑

|β|≤k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−2
t v ⋆∇D

βm−1
t H ⋆∇Dβm

t H,

and

Dk
t (∇H ⋆ H)
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= ∇Dk
tH ⋆H + [Dk

t ,∇]H ⋆ H +Dk
tH ⋆∇H +

∑

|γ|=k,γi≥1

[Dγ1
t ,∇]H ⋆Dγ2

t H

+∇Dγ1
t H ⋆Dγ2

t H

= ∇Dk
tH ⋆H +Dk

t H ⋆∇H

+
∑

2≤m≤k+1

∑

|β|≤k+1−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇Dβm

t H ⋆ H

+
∑

2≤m≤k+2

∑

|β|≤k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−2
t v ⋆∇D

βm−1
t H ⋆Dβm

t H

=
∑

2≤m≤k+2

∑

|β|≤k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−2

t v ⋆∇D
βm−1

t H ⋆Dβm

t H.

By substitutingDtH = H ·∇v, we remove the material derivatives of the magnetic field. By induction,
it is readily verified that

Dj
tH =

∑

1≤m≤j

∑

|β|≤j−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆ H, (2.9)

∇iDj
tH =

∑

1≤m≤j

∑

|α|≤i
|β|≤j−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αmDβm

t v

⋆∇αm+1H, (2.10)

where i, j ∈ N. These conclude the proof of the lemma. �

The above lemma shows that Dk
t (H · ∇H) = Rk

∇H,H . Due to the divergence-free condition, it can
be shown that taking the divergence does not increase the order of derivatives. This observation is
crucial for establishing the validity of Proposition 3.1 when dealing with −∆Dk+1

t p.

Lemma 2.7. We have divDt(H · ∇H) = ∇2v ⋆∇H ⋆H +∇v ⋆∇H ⋆∇H +∇2H ⋆∇v ⋆H , and it
holds

divDk
t (H · ∇H) = ∂j∂lD

k−1
t viH l∂iH

j +∇3Dk−2
t v ⋆∇v ⋆ H ⋆ H + L.O.T.,

for any integer k ≥ 2, where L.O.T. stands for lower-order terms.

Proof. By Lemma 2.1, a direct calculation gives

divDt(H · ∇H) = ∂j(Dt∂iH
jH i + ∂iH

jDtH
i)

= ∂j([Dt, ∂i]H
jH i + ∂iDtH

jH i + ∂iH
j∂kv

iHk)

= ∇2v ⋆∇H ⋆ H +∇v ⋆∇H ⋆∇H +∇2H ⋆∇v ⋆ H.

For k ≥ 2, the condition divH = 0 implies that ∂jD
γ
t ∂iH

j = [∂j ,D
γ
t ]∂iH

j , and therefore

divDk
t (H · ∇H)

= ∂j(D
k
t ∂iH

jH i) + ∂j(∂iH
jDk

tH
i) + ∂j(

∑

|γ|=k,γi<k

Dγ1
t ∂iH

jDγ2
t H i)

= ∂jD
k
t ∂iH

jH i +Dk
t ∂iH

j∂jH
i + ∂iH

j∂jD
k
tH

i

+Dγ1
t ∇H ⋆∇Dγ2

t H

= ∂jD
k
tH

i∂iH
j + [∂j ,D

k
t ]∂iH

jH i + [Dk
t ,∇]H ⋆∇H +∇Dγ1

t H ⋆∇Dγ2
t H

+ [Dγ1
t ,∇]H ⋆∇Dγ2

t H +
∑

|γ|=k,γi<k

[∂j ,D
γ1
t ]∂iH

jDγ2
t H i.

In the above, it suffices to consider the most challenging term, i.e., ∂jDk
t H

i∂iH
j . Note that

∂jD
k
tH

i = ∂jD
k−1
t (∂lv

iH l)
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= ∂j∂lD
k−1
t viH l +

∑

|γ|=k−1,γ1<k−1

∂j∂lD
γ1
t viDγ2

t H l

+
∑

|γ|=k−1

∂j [D
γ1
t , ∂l]v

iDγ2
t H l,

and we find that

divDk
t (H · ∇H)

= ∂j∂lD
k−1
t viH l∂iH

j + [∇,Dk
t ]∇H ⋆H + [Dk

t ,∇]H ⋆∇H

+
∑

|γ|=k
γi<k

[∇,Dγ1
t ]∇H ⋆Dγ2

t H +∇Dγ1
t H ⋆∇Dγ2

t H + [Dγ1
t ,∇]H ⋆∇Dγ2

t H

+
∑

|γ|=k−1
γ1<k−1

∇2Dγ1
t v ⋆Dγ2

t H ⋆∇H +
∑

|γ|=k−1

∇[Dγ1
t ,∇]v ⋆Dγ2

t H ⋆∇H

=: ∂j∂lD
k−1
t viH l∂iH

j +R.

Here, the highest-order term in R is ∇2Dk−1
t H ⋆∇v ⋆ H, resulting from [∇,Dk

t ]
∇H⋆H. To complete the proof, we replace the material derivative with the spatial derivative, resulting
in ∇3Dk−2

t v ⋆∇v ⋆ H ⋆ H, along with lower-order terms as shown in (2.10). �

To derive the energy estimates, we need to apply the div-curl estimates. Accordingly, it is inevitable
to compute divDl

tv,divD
l
tH, curlDl

tv, and curlDl
tv. The following lemma is crucial for computing

curlDl
tv (see Lemma 2.10). Additionally, it indicates that we should reserve the curl operator (not

simply ∇) for the highest-order term, and seek opportunities to utilize Lemma 2.5.

Lemma 2.8. It holds

Dt((H · ∇)(curlH)) = ∇2 curl v ⋆ H ⋆ H +∇2H ⋆∇v ⋆ H +∇2v ⋆∇H ⋆ H,

and

Dk
t ((H · ∇) curlH)

= ∇k+1 curlH ⋆H ⋆ · · · ⋆ H
︸ ︷︷ ︸

k times

+
∑

|α|≤k+2,αi≤k+1
m≤k+2,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇
αmFm

+
∑

|α|+|β|≤k+2
αi+βi≤k+1,βi≤k−1
m≤k+1,Fj=v,H

∇α1Dβ1
t v ⋆ · · · ⋆∇αk−1D

βk−1
t v ⋆∇αkFk ⋆ · · · ⋆∇

αmFm,

if the integer k ≥ 2 is even. For an odd integer k ≥ 3, we replace ∇k+1 curlH ⋆ H ⋆ · · · ⋆ H
︸ ︷︷ ︸

k times

by

∇k+1 curl v ⋆ H ⋆ · · · ⋆ H
︸ ︷︷ ︸

k times

in the above identity.

Proof. First, we apply Lemma 2.5 to obtain

Dt[(H · ∇)(curlH)] = Dt∂i curlHH i + ∂i curlHDtH
i

= [Dt, ∂i] curlHH i + ∂iDt curlHH i + ∂i curlH∂jv
iHj

= ∇2 curl v ⋆ H ⋆ H +∇2H ⋆∇v ⋆ H +∇2v ⋆∇H ⋆ H.

In the case of k = 2, one has

D2
t ((H · ∇)(curlH)) = D2

t ∂i curlHH i + ∂i curlHD2
tH

i +Dt∂i curlHDtH
i

= ∂iD
2
t curlHH i + [D2

t , ∂i] curlHH i +∇2H ⋆D2
tH

+Dt∇
2H ⋆∇v ⋆ H

=:I1 + I2 + I3 + I4.
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We denote

I1 = ∇D2
t curlH ⋆ H = (∇ curlDt(H · ∇v)) ⋆ H +∇([D2

t ,∇]H) ⋆ H =: I11 + I12.

Again from Lemma 2.5, it holds

curl(H · ∇Dtv) = ∇H ⋆∇Dtv + (H · ∇) curlDtv

= ∇H ⋆∇Dtv + (H · ∇)(∇H ⋆∇H)

+ (H · ∇)(H · ∇) curlH

= ∇Dtv ⋆∇H +∇2 curlH ⋆ H ⋆ H +∇2H ⋆∇H ⋆H,

and using Lemma 2.1, it follows that

I11 = ∇(curl(DtH · ∇v)) ⋆ H +∇(curl(H · Dt∇v)) ⋆ H

= ∇(curl(H · ∇Dtv)) ⋆ H +∇2(H ⋆∇v ⋆∇v) ⋆ H

= ∇3 curlH ⋆H ⋆H +∇2Dtv ⋆∇H +∇Dtv ⋆∇
2H

+
∑

|α|≤4,αi≤3,m≤4
F1,...,Fm=v,H

∇α1F1 ⋆ · · · ⋆∇
αmFm.

Applying Lemma 2.3, we have

I12 = ∇2Dtv ⋆∇H ⋆ H +∇Dtv ⋆∇
2H ⋆ H +∇2H ⋆∇v ⋆∇v ⋆ H

+∇2v ⋆∇H ⋆∇v ⋆ H +∇2H ⋆∇v ⋆ H +∇2v ⋆∇H ⋆ H,

and

I2 = ∇Dtv ⋆∇
2H ⋆H +∇3v ⋆∇v ⋆ H ⋆ H +∇2H ⋆∇v ⋆∇v ⋆ H

+∇2v ⋆∇H ⋆∇v ⋆ H +∇2H ⋆∇v ⋆ H.

To control the last two terms, (2.9) implies that

I3 = ∇Dtv ⋆∇
2H ⋆ H +∇2H ⋆∇v ⋆∇v ⋆ H +∇2H ⋆∇v ⋆ H,

and Lemma 2.3 together with (1.1) yields

I4 = [Dt,∇
2]H ⋆∇v ⋆ H +∇2DtH ⋆∇v ⋆ H

= ∇3v ⋆∇v ⋆ H ⋆ H +∇2H ⋆∇v ⋆∇v ⋆ H +∇2v ⋆∇H ⋆∇v ⋆ H.

We arrive at the following

D2
t ((H · ∇) curlH) = ∇3 curlH ⋆H ⋆H +

∑

|α|≤4,αi≤3
m≤4,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇
αmFm

+
∑

|α|+|β|≤4,αi+βi≤3
βi≤1,m≤3,Fj=v,H

∇α1Dβ1
t v ⋆∇α2F2 ⋆ · · · ⋆∇

αmFm

=:J1 + J2 + J3.

As for k = 3, to calculate DtJ1, we only focus on the most difficult term. Actually, it holds

Dt∇
3 curlH = ∇3Dt curlH + [Dt,∇

3] curlH

= ∇3(∇v ⋆∇H + (H · ∇) curl v) +
∑

|α|≤5,αi≤4

∇α1H ⋆∇α2v

= ∇4 curl v ⋆ H +
∑

|α|≤5,αi≤4

∇α1H ⋆∇α2v,

from Lemmas 2.3 and 2.5. With the help of Lemma 2.3, DtJ2 and DtJ3 can be treated in the same
fashion. Therefore, we obtain

D3
t ((H · ∇) curlH)
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= ∇4 curl v ⋆ H ⋆ H ⋆ H +
∑

|α|≤5,αi≤4
m≤5,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇
αmFm

+
∑

|α|+|β|≤5,βi≤2,αi+βi≤4
m≤4,Fj=v,H

∇α1Dβ1
t v ⋆∇α2Dβ2

t v ⋆∇α3F3 ⋆ · · · ⋆∇
αmFm.

The other cases can be shown in the same way. �

From now on, we denote

R0
∇2H,H

:= (H · ∇) curlH, Rk
∇2H,H

:= Dk
t ((H · ∇) curlH), k ≥ 1. (2.11)

We proceed to introduce another two types of error terms that are related to divDl
tv, curlD

l
tv and

[Dl+1
t ,∇]p. The first one is written as the form

R0
I = ∇v ⋆∇v, Rl

I =
∑

2≤m≤l+1

∑

|β|≤l+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇Dβm

t v, (2.12)

for any l ≥ 1. Recall that divDtv = ∂iv
j∂jv

i and curlDtv = ∇H ⋆∇H + (H · ∇)(curlH). We will
show that it holds

divDl+1
t v = Rl

I , curlDl+1
t v = Rl

I +Rl
∇H,∇H +Rl

∇2H,H ,

for l ∈ N0. The second error term is denoted by

R0
II = ∇v ⋆Dtv +∇v ⋆∇v ⋆ v,

Rl
II =

∑

2≤m≤l+1

∑

|β|≤l,|α|≤1

aα,β(∇v)∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇α1Dα2+βm

t v, (2.13)

where l ≥ 1 and aα,β(∇v) denotes the finite ⋆ product as before.
By applying Lemma 2.3 and (1.1), we arrive at the following result.

Lemma 2.9. For l ∈ N0, we have

[Dl+1
t ,∇]p =

∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆H +Rl

II +Rl
∇H,H . (2.14)

Proof. We work by induction on l ∈ N0. The case of l = 0 can be obtained via a straightforward
calculation. As for l ≥ 1, by Lemmas 2.2 and 2.3, it holds

[Dl+1
t ,∇]p = Dt([D

l
t,∇]p) + [Dt,∇]Dl

tp = Dt([D
l
t,∇]p)− (∇v)⊤∇Dl

tp,

where

−∇Dl
tp = [Dl

t,∇]p+Dl
t(Dtv −H · ∇H) = [Dl

t,∇]p +Dl+1
t v −Dl

t(H · ∇H).

A direct computation also shows thatDtR
l−1
II = Rl

II andDtR
l−1
∇H,H = Rl

∇H,H . These, combined with

[Dl
t,∇]p =

∑

β1≤l−1

∇Dβ1
t v ⋆∇H ⋆ H +Rl−1

II +Rl−1
∇H,H from the induction argument, yield that

[Dl+1
t ,∇]p = Dt(

∑

β1≤l−1

∇Dβ1
t v ⋆∇H ⋆ H +Rl−1

II +Rl−1
∇H,H) +Rl

II +Rl
∇H,H

= Dt(
∑

β1≤l−1

∇Dβ1
t v ⋆∇H ⋆ H) +Rl

II +Rl
∇H,H

=
∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆ H +Rl

II +Rl
∇H,H ,

where in the last step, the lower-order terms have been absorbed into Rl
II and Rl

∇H,H . �

The following lemma will also be used to prove Propositions 3.1, 6.1 and 6.2.
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Lemma 2.10. Let l ∈ N. We have

Dt∇
l curl v = (H · ∇)∇l curlH +∇v ⋆∇l curl v +∇l+1v ⋆ curl v

+
∑

|β|=l

∇1+β1H ⋆∇β2 curlH

+
∑

|α|≤l−1,α2≤l−2

∇1+α1v ⋆∇1+α2 curl v,

Dt∇
l curlH = (H · ∇)∇l(curl v) +∇v ⋆∇l curlH

+
∑

|β|=l

∇1+β1v ⋆∇1+β2H

+
∑

|α|≤l−1,α2≤l−2

∇1+α1v ⋆∇1+α2 curlH.

Moreover, divDl
tv and curlD

l
tv can be written as the form

divDl
tv = Rl−1

I , curlDl
tv = Rl−1

I +Rl−1
∇H,∇H +Rl−1

∇2H,H
.

We may also write divDl+1
t v = div div(v ⊗Dl

tv) + divRl−1
II .

Proof. The first claim is an immediate consequence of Lemmas 2.3 and 2.5. Indeed, one has

Dt∇
l curl v

= [Dt,∇
l] curl v +∇lDt curl v

= ∇l[−(∇v)⊤ curl v − curl v∇v + (∇H)⊤ curlH + curlH∇H

+ (H · ∇)(curlH)] +
∑

|α|≤l−1

∇1+α1v ⋆∇1+α2 curl v

= (H · ∇)∇l curlH +∇v ⋆∇l curl v +∇l+1v ⋆ curl v

+
∑

|β|=l

∇1+β1H ⋆∇β2 curlH +
∑

|α|≤l−1,α2≤l−2

∇1+α1v ⋆∇1+α2 curl v,

and Dt∇
l curlH can be computed in the same way.

Regarding curlDl
tv and divDl

tv for l ≥ 2. Noting that (Dl
t∇u)⊤ = Dl

t[(∇u)⊤] and applying
Lemmas 2.3 and 2.8, together with Lemma 2.5, we obtain

curlDl
tv = ∇Dl−1

t (Dtv)− [∇Dl−1
t (Dtv)]

⊤

= [∇,Dl−1
t ](Dtv)− ([∇,Dl−1

t ](Dtv))
⊤ +Dl−1

t curlDtv

=
∑

2≤m≤l

∑

|β|≤l−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇Dβm+1

t v

+Dl−1
t (∇H ⋆∇H) +Dl−1

t ((H · ∇)(curlH))

= Rl−1
I +Rl−1

∇H,∇H +Rl−1
∇2H,H

.

Similarly, it follows that divDl
tv = Rl−1

I thanks to div v = 0.
For the last statement, we need to apply

[Dt,div]F = − div(∇vF ), and div div(v ⊗Dl
tv) = div(∇Dl

tvv), for l ≥ 1,

both of which can be easily computed. Then, we have

divD2
t v = Dt divDtv − [Dt,div]Dtv

= Dt div(∇vv) + div(∇vDtv)

= divDt(∇vv)− div(∇v∇vv) + divR0
II

= div(Dt(∇v)v) − div(∇v∇vv) + divR0
II
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= div(∇Dtvv) + div([Dt,∇]vv)− div(∇v∇vv) + divR0
II

= div div(v ⊗Dtv) + divR0
II .

As for l ≥ 2, we argue by induction, i.e.,

divDl+1
t v = Dt divD

l
tv − [Dt,div]D

l
tv

= Dt(div div(v ⊗Dl−1
t v) + divRl−2

II ) + div(∇vDl
tv)

= Dt div(∇Dl−1
t vv) +Dt divR

l−2
II + div(∇vDl

tv).

A straightforward calculation yields Dt divR
l−2
II = divRl−1

II ,div(∇vDl
tv) = divRl−1

II , and therefore

Dt div(∇Dl−1
t vv)

= divDt(∇Dl−1
t vv) + [Dt,div](∇Dl−1

t vv)

= div(Dt(∇Dl−1
t v)v) + div(∇Dl−1

t v(Dtv)) + div(v ⋆∇v ⋆∇Dl−1
t v)

= div(([Dt,∇]Dl−1
t v +∇Dl

tv)v) + div(Dtv ⋆∇Dl−1
t v + v ⋆∇v ⋆∇Dl−1

t v)

= div(∇v ⋆∇Dl−1
t v ⋆ v) + div(∇Dl

tvv +Dtv ⋆∇Dl−1
t v + v ⋆∇v ⋆∇Dl−1

t v)

= div(∇Dl
tvv) + divRl−1

II

= div div(v ⊗Dl
tv) + divRl−1

II .

�

The following lemma will be used to establish Proposition 3.1 and the pressure estimates in Section
4.

Lemma 2.11. We have

−∆Dtp = div div(v ⊗Dtv) + div(R0
II +∇v ⋆ H ⋆∇H +H · ∇(H · ∇v))

= − div div(v ⊗∇p) + divR0
II +∇2v ⋆∇H ⋆H +∇2H ⋆∇v ⋆ H

+∇2H ⋆∇H ⋆ v +∇v ⋆∇H ⋆∇H,

and for l ≥ 1, it holds

−∆Dl+1
t p = div div(v ⊗Dl+1

t v)− divRl+1
∇2H,H

+ div(
∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆H +Rl

II +Rl
∇H,H).

Proof. From the divergence-free condition, Lemma 2.10 and (2.14), −∆Dtp can be written as

−∆Dtp

= − divDt∇p+ div[Dt,∇]p

= − divDt(H · ∇H) + divD2
t v − div(∇v⊤(H · ∇H)) + div(∇v⊤Dtv)

= div div(v ⊗Dtv) + divR0
II − divDt(H · ∇H)− div(∇v⊤(H · ∇H))

= − div div(v ⊗∇p) + divR0
II +∇2v ⋆∇H ⋆ H +∇v ⋆∇H ⋆∇H

+∇2H ⋆∇v ⋆ H + v ⋆∇2H ⋆∇H.

The second claim follows by applying (2.14) that

−∆Dl+1
t p = − divDl+1

t ∇p+ div[Dl+1
t ,∇]p

= divDl+2
t v − divDl+1

t (H · ∇H) + divRl
II

+ div(
∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆H +Rl

∇H,H)

= div div(v ⊗Dl+1
t v)− divRl+1

∇2H,H
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+ div(
∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆H +Rl

II +Rl
∇H,H).

�

Remark. In the above formula, the term divRl+1
∇2H,H

appears to be more challenging than the other

error terms (e.g., divRl
II ). However, taking the divergence (divR

l+1
∇2H,H

) does not increase the order

of derivatives, as indicated in Lemma 2.7 due to the divergence-free condition. The key observation
will enable us to conclude the proof of Proposition 3.1.

To establish the energy estimates, it is necessary to derive the formula for Dl
tp on the free boundary.

It is important to note that the solution is well-defined on Γt due to our assumption of the local
existence result. Furthermore, it is important to mention that the following formulas do not include
the magnetic field.

Lemma 2.12. On the free-boundary Γt, it holds

Dtp = −∆Bv · ν − 2B : ∇̄v = −∆Bvn − |B|2vn + ∇̄p · v. (2.15)

Proof. We recall that p = A and from the identities (e.g., [SZ08b, Section 3.1])

DtA = −∆Bvn − |B|2vn + ∇̄A · v, ∆Bν = −|B|2ν + ∇̄A, (2.16)

it is clear that

Dtp = −∆Bvn − |B|2vn + (∆Bν + |B|2ν) · v

= −∆Bvn +∆Bν · ν

= −∆Bv · v − 2B : ∇̄v.

�

Finally, we introduce the error term Rl
p as described in [JLM22]. We define

R1
p = − |B|2Dtv · ν + ∇̄p · Dtv + a1(ν,∇v) ⋆∇2v + a2(ν,∇v) ⋆ B,

R2
p = − |B|2D2

t v · ν + ∇̄p · D2
t v + a3(ν,∇v) ⋆∇2Dtv

+ a4(ν,∇v) ⋆∇Dtv ⋆∇
2v + a5(ν,∇v) ⋆∇Dtv ⋆ B

+ a6(ν,∇v) ⋆∇2v + a7(ν,∇v) ⋆ B,

and

R3
p = − |B|2D3

t v · ν + ∇̄p · D3
t v

+ a8(ν,∇v) ⋆∇2D2
t v + a9(ν,∇v) ⋆∇D2

t v ⋆∇
2v

+ a10(ν,∇v) ⋆∇D2
t v ⋆ B + a11(ν,∇v) ⋆∇2Dtv ⋆∇Dtv

+ a12(ν,∇v) ⋆∇2Dtv ⋆ B + a13(ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆∇
2v

+ a14(ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆ B + L.O.T.,

where ai(ν,∇v) denotes the finite ⋆ product of ν and ∇v. For l ≥ 4, we define

Rl
p = −|B|2Dl

tv · ν + ∇̄p · Dl
tv +

∑

|α|≤1,|β|≤l−1

aα,β(ν,B)∇1+α1Dβ1
t v ⋆ . . .

⋆∇1+αl+1D
βl+1
t v,

where aα,β(ν,B) also denotes the finite ⋆ product.

Lemma 2.13. On the free-boundary Γt, we have

Dl+1
t p = −∆B(D

l
tv · ν) +Rl

p,

for l ∈ N.
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Proof. For l = 1, we differentiate (2.15) to obtainD2
t p = −Dt∆Bv ·ν−∆Bv ·Dtν−2DtB : ∇̄v−2B :

Dt∇̄v. Recalling the formulas for [Dt,∆B ],Dtν and DtB in Lemma 2.1, it holds

D2
t p = −∆BDtv · ν − 2B : ∇̄Dtv + a1(ν,∇v) ⋆∇2v + a2(ν,∇v) ⋆ B.

where a1 and a2 are finite ⋆ product of ν and ∇v.
As l = 2, we differentiate D2

t p and calculate [Dt,∆B ]Dtv = ∇̄2Dtv ⋆∇v − ∇̄Dtv · ∆Bv + BΓ ⋆
∇v ⋆ ∇̄Dtv,DtB = a1(ν,∇v)⋆B+a2(ν,∇v)⋆∇2v,Dt∇̄Dtv = ∇̄D2

t v+ ∇̄v ⋆ ∇̄Dtv,Dta(ν,∇v) =
b(ν,∇v) ⋆∇Dtv,Dt∇

2v = ∇2v ⋆∇v +∇2Dtv to obtain

D3
t p = −∆BD

2
t v · ν − 2B : ∇̄D2

t v + a3(ν,∇v) ⋆∇2Dtv + a4(ν,∇v) ⋆∇Dtv

⋆∇2v + a5(ν,∇v) ⋆∇Dtv ⋆ B + a6(ν,∇v) ⋆∇2v + a7(ν,∇v) ⋆ B.

Similarly, it holds

D4
t p = −∆BD

3
t v · ν − 2B : ∇̄D3

t v

+ a8(ν,∇v) ⋆∇2D2
t v + a9(ν,∇v) ⋆∇D2

t v ⋆∇
2v

+ a10(ν,∇v) ⋆∇D2
t v ⋆ B + a11(ν,∇v) ⋆∇2Dtv ⋆∇Dtv

+ a12(ν,∇v) ⋆∇2Dtv ⋆ B + a13(ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆∇
2v

+ a14(ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆ B + L.O.T.,

for l = 3. As in [JLM22, Lemma 4.7], we can show that

Dl
tp = −∆BD

l−1
t v · ν − 2B : ∇̄Dl−1

t v +
∑

|α|≤1
|β|≤l−1

aα,β(ν,B)∇1+α1Dβ1
t v ⋆ . . .

⋆∇1+αl+1D
βl+1
t v,

for l ≥ 5. Combined with (2.2) and (2.16), the remaining proof is similar to [JLM22, Lemma 4.7]. �

3. Time Derivatives of the Energy Functionals

In this section, we compute the time derivative of the energy functional el(t) by applying Lemmas
A.2 and A.3. The main result in this section is the following proposition.

Proposition 3.1. Assume that the a priori assumptions (1.8) hold for some T > 0. Then, we have

d

dt
ē(t) ≤ C

3∑

l=1

(

‖Rl
I‖

2

H
1
2 (Ωt)

+ ‖Rl
II‖

2
L2(Ωt)

+ ‖Rl
∇H,H‖2L2(Ωt)

+ ‖Rl
p‖

2

H
1
2 (Γt)

)

+ C
(

1 + ‖∇2p‖2L2(Ωt)

)

Ē(t),

where the constant C depends on T,NT , andMT .
Moreover, we further assume that sup

0≤t<T

El−1(t) ≤ C for l ≥ 4. Then, it holds

d

dt
el(t) ≤ C

(

El(t) + ‖Rl
I‖

2

H
1
2 (Ωt)

+ ‖Rl
II‖

2
L2(Ωt)

+ ‖Rl
∇H,H‖2L2(Ωt)

+ ‖Rl
p‖

2

H
1
2 (Γt)

)

,

for l ≥ 4, where the constant C depends on T,NT ,MT , and sup
0≤t<T

El−1(t).

When computing the time derivative of el(t), we denote

el(t) =
1

2

∫

Ωt

|Dl+1
t v|2dx+

1

2

∫

Ωt

|Dl+1
t H|2dx+

1

2

∫

Γt

|∇̄(Dl
tv · ν)|

2dS

+
1

2

∫

Ωt

|∇⌊ 3l+1
2

⌋ curl v|2dx+
1

2

∫

Ωt

|∇⌊ 3l+1
2

⌋ curlH|2dx =:
5∑

i=1

I li(t),
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and we will apply Lemmas A.2 and A.3 several times.
We begin by considering the material derivative of the velocity field. From equation (1.1) and

applying the divergence theorem, we obtain

d

dt
I l1(t)

=

∫

Ωt

Dl+2
t v · Dl+1

t vdx

= −

∫

Ωt

Dl+1
t ∇p · Dl+1

t vdx+

∫

Ωt

Dl+1
t (H · ∇H) · Dl+1

t vdx

= −

∫

Ωt

∇Dl+1
t p · Dl+1

t vdx−

∫

Ωt

[Dl+1
t ,∇]p · Dl+1

t vdx

+

∫

Ωt

Dl+1
t (Hj∂jHi)D

l+1
t vidx

= −

∫

Ωt

div(Dl+1
t pDl+1

t v)dx+

∫

Ωt

Dl+1
t p divDl+1

t vdx

−

∫

Ωt

[Dl+1
t ,∇]p · Dl+1

t vdx+

∫

Ωt

Dl+1
t (Hj∂jHi)D

l+1
t vidx

≤

∫

Ωt

Hj∂j(D
l+1
t Hi)D

l+1
t vidx

︸ ︷︷ ︸

=:J l
1(t)

−

∫

Γt

Dl+1
t p(Dl+1

t v · ν)dS

︸ ︷︷ ︸

=:Kl
1(t)

+‖Dl+1
t v‖2L2(Ωt)

+

∫

Ωt

Dl+1
t p divDl+1

t vdx

︸ ︷︷ ︸

=:Il11(t)

+ ‖[Dl+1
t ,∇]p‖2L2(Ωt)

︸ ︷︷ ︸

=:Il12(t)

+

l∑

k=0

∫

Ωt

Dk
tH

j [Dl+1−k
t , ∂j ]HiD

l+1
t vidx

︸ ︷︷ ︸

=:Il13(t)

+
l+1∑

k=1

∫

Ωt

Dk
tH

j∂jD
l+1−k
t HiD

l+1
t vidx

︸ ︷︷ ︸

=:Il14(t)

,

where we have used the fact that

Dl+1
t (Hj∂jHi)D

l+1
t vi

= Hj∂j(D
l+1
t Hi)D

l+1
t vi +

l∑

k=0

Dk
tH

j[Dl+1−k
t , ∂j ]HiD

l+1
t vi

+
l+1∑

k=1

Dk
tH

j∂jD
l+1−k
t HiD

l+1
t vi.

Similarly, for the magnetic field, it follows that

d

dt
I l2(t)

=

∫

Ωt

Dl+2
t H · Dl+1

t Hdx

=

∫

Ωt

Dl+1
t (Hj∂jv

i)Dl+1
t Hidx
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=

∫

Ωt

Hj∂j(D
l+1
t vi)Dl+1

t Hidx

︸ ︷︷ ︸

=:J l
2(t)

+

l∑

k=0

∫

Ωt

Dk
tH

j [Dl+1−k
t , ∂j ]v

iDl+1
t Hidx

︸ ︷︷ ︸

=:Il21(t)

+

l+1∑

k=1

∫

Ωt

Dk
tH

j∂jD
l+1−k
t viDl+1

t Hidx

︸ ︷︷ ︸

=:Il22(t)

.

Recalling that divH = 0 in Ωt and H · ν = 0 on Γt, it is clear that

J l
1(t) + J l

2(t) = 0,

and we obtain

d

dt

(

I l1(t) + I l2(t)
)

≤ K l
1(t) +

4∑

i=1

I l1i(t) + I l21(t) + I l22(t) + ‖Dl+1
t v‖2L2(Ωt)

.

To control the third term, we apply Lemma 2.1 to deduce

d

dt
I l3(t)

=

∫

Γt

[Dt, ∇̄](Dl
tv · ν) · ∇̄(Dl

tv · ν)dS +
1

2

∫

Γt

|∇̄(Dl
tv · ν)|

2 divσ vdS

+

∫

Γt

∇̄Dt(D
l
tv · ν) · ∇̄(Dl

tv · ν)dS

=

∫

Γt

−(∇̄v)⊤∇̄(Dl
tv · ν) · ∇̄(Dl

tv · ν)dS +
1

2

∫

Γt

|∇̄(Dl
tv · ν)|

2 divσ vdS

+

∫

Γt

∇̄(Dl+1
t v · ν) · ∇̄(Dl

tv · ν)dS +

∫

Γt

∇̄(Dl
tv · Dtν) · ∇̄(Dl

tv · ν)dS

≤ −

∫

Γt

(Dl+1
t v · ν) ·∆B(D

l
tv · ν)dS

︸ ︷︷ ︸

=:Kl
3(t)

+ ‖∇̄(Dl
tv · Dtν)‖

2
L2(Γt)

︸ ︷︷ ︸

=:Il31(t)

+ C(‖∇̄v‖L∞(Γt) + 1)‖∇̄(Dl
tv · ν)‖

2
L2(Γt)

.

Finally, to compute the last two terms involving the curl, we denote µl := ⌊12 (3l+1)⌋. We then utilize
the divergence-free condition and the fact that H · ν = 0 on Γt to obtain

∫

Ωt

∑

|α|=l

(H · ∇)∇α curlH : ∇α curl v +
∑

|α|=l

(H · ∇)∇α curl v : ∇α curlHdx = 0.

Therefore, from Lemma 2.10, it follows that

d

dt
I l4(t)−

∫

Ωt

∑

|α|=l

(H · ∇)∇α curlH : ∇α curl vdx

=

∫

Ωt

∇v ⋆∇µl curl v ⋆∇µl curl v +∇µl+1v ⋆ curl v ⋆∇µl curl v

+
∑

|β|=µl

∇1+β1H ⋆∇β2 curlH ⋆∇µl curl v

+
∑

|α|≤µl−1,α2≤µl−2

∇1+α1v ⋆∇1+α2 curl v ⋆∇µl curl vdx

≤ C(‖∇v‖L∞(Ωt) + 1)‖∇µl+1v‖2L2(Ωt)
+ ‖∇H‖2L∞(Ωt)

‖ curlH‖2Hµl (Ωt)

+ ‖ curlH‖2L∞(Ωt)
‖∇H‖2Hµl (Ωt)

+ ‖∇v‖2L∞(Ωt)
‖∇v‖2Hµl (Ωt)

,
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and

d

dt
I l5(t)−

∫

Ωt

∑

|α|=l

(H · ∇)∇α curl v : ∇α curlHdx

≤ C(‖∇v‖L∞(Ωt) + 1)‖∇µl curlH‖2L2(Ωt)
+ ‖∇v‖2Hµl (Ωt)

‖∇H‖2L∞(Ωt)

+ ‖∇H‖2Hµl (Ωt)
‖∇v‖2L∞(Ωt)

.

Proof of Proposition 3.1. Since we assume the local existence of smooth solution, by (1.8), one has
‖∇̄v‖L∞(Γt) ≤ C‖∇v‖L∞(Ωt) ≤ C. This, combined with the above calculations, and applying Lemma
2.13, ‖∇H‖L∞(Ωt) ≤ C by (1.8), together with the definition (1.5), we obtain

K l
1(t) +K l

3(t) = −

∫

Γt

Rl
p(D

l+1
t v · ν)dS,

and

d

dt
ē(t) ≤ CĒ + C

3∑

l=1

(

−

∫

Γt

Rl
p(D

l+1
t v · ν)dS +

4∑

i=1

I l1i(t) + I l31(t)

+ I l21(t) + I l22(t)

)

.

As for l ≥ 4, it follows that

d

dt
el(t) ≤ CEl(t) + C

(

−

∫

Γt

Rl
p(D

l+1
t v · ν)dS +

4∑

i=1

I l1i(t) + I l31(t)

+ I l21(t) + I l22(t)

)

.

We divide the remaining proof into six steps.
Step 1. We control I l14(t) and I l22(t). Let l = 1 and assume F = v,G = H or F = H,G = v

respectively. From (1.8), it holds

2∑

k=1

∫

Ωt

Dk
t H

j∂jD
2−k
t FiD

2
tG

idx

≤ C
2∑

k=1

‖Dk
t H

j∂jD
2−k
t F‖2L2(Ωt)

+ C‖D2
tG‖2L2(Ωt)

≤ C(E1(t) + ‖DtH‖2L2(Ωt)
‖∇DtF‖2L∞(Ωt)

+ ‖D2
tH‖2L2(Ωt)

‖∇F‖2L∞(Ωt)
)

≤ CĒ(t).

In the case of l = 2, from the fact that

‖∇DtH‖2L2(Ωt)
≤ ‖∇(H · ∇v)‖2L2(Ωt)

≤ C, (3.1)

‖∇Dtv‖
2
L2(Ωt)

≤ ‖∇(H · ∇H)‖2L2(Ωt)
+ ‖∇2p‖2L2(Ωt)

≤ C(1 + ‖∇2p‖2L2(Ωt)
), (3.2)

it follows that
3∑

k=1

∫

Ωt

Dk
tH

j∂jD
3−k
t FiD

3
tG

idx

≤ C
3∑

k=1

‖Dk
tH

j∂jD
3−k
t F‖2L2(Ωt)

+ C‖D3
tG‖2L2(Ωt)

≤ C(E2(t) + ‖H · ∇v‖2L2(Ωt)
‖D2

tF‖2H3(Ωt)
+ ‖D2

tH‖2H2(Ωt)
‖∇DtF‖2L2(Ωt)
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+ ‖D3
tH‖2L2(Ωt)

‖∇F‖2L∞(Ωt)
)

≤ C(1 + ‖∇2p‖2L2(Ωt)
)Ē(t).

As for l = 3, again by (3.1) and (3.2), we obtain

4∑

k=1

∫

Ωt

Dk
tH

j∂jD
4−k
t FiD

4
tG

idx

≤ C

4∑

k=1

‖Dk
t H

j∂jD
4−k
t F‖2L2(Ωt)

+ C‖D4
tG‖2L2(Ωt)

≤ C(E3(t) + ‖H · ∇v‖2L6(Ωt)
‖D3

t F‖2
H

3
2 (Ωt)

+ ‖D2
tH‖2L2(Ωt)

‖D2
tF‖2H3(Ωt)

+ ‖D2
t (H · ∇v)‖2L∞(Ωt)

‖∇DtF‖2L2(Ωt)
+ ‖D4

tH‖2L2(Ωt)
‖∇F‖2L∞(Ωt)

)

≤ C(1 + ‖∇2p‖2L2(Ωt)
)Ē(t),

where we have used

‖D2
tH‖2L2(Ωt)

≤ C‖DtH ⋆∇v‖2L2(Ωt)
+ C‖H ⋆Dt∇v‖2L2(Ωt)

≤ C(1 + ‖∇2p‖2L2(Ωt)
), (3.3)

and

‖D3
tH‖2L∞(Ωt)

≤ ‖D2
t (H · ∇v)‖2L∞(Ωt)

≤ ‖D2
tH ⋆∇v‖2L∞(Ωt)

+ ‖DtH ⋆Dt∇v‖2L∞(Ωt)
+ ‖H ⋆D2

t∇v‖2L∞(Ωt)

≤ C(‖D2
tH‖2L∞(Ωt)

+ ‖[Dt,∇]v‖2L∞(Ωt)
+ ‖∇Dtv‖

2
L∞(Ωt)

+ ‖[D2
t ,∇]v‖2L∞(Ωt)

+ ‖∇D2
t v‖

2
L∞(Ωt)

)

≤ CĒ(t),

by utilizing (1.8), Lemmas 2.1 and 2.3. Additionally, one order material derivative has been substituted
with the spatial derivative of the velocity field.
As l ≥ 4, we use the hypotheses El−1(t) ≤ C to obtain

l+1∑

k=1

∫

Ωt

Dk
tH

j∂jD
l+1−k
t FiD

l+1
t Gidx

≤ C

l+1∑

k=1

‖Dk
tH

j∂jD
l+1−k
t F‖2L2(Ωt)

+ C‖Dl+1
t G‖2L2(Ωt)

≤ C(
l∑

k=2

‖Dk
tH‖2H1(Ωt)

‖Dl+1−k
t F‖2

H
3
2 (Ωt)

+ ‖DtH
j∂jD

l
tF‖2L2(Ωt)

) + CEl(t)

≤ CEl(t)El−1(t) +CEl(t) + C‖DtH‖2L6(Ωt)
‖∇Dl

tF‖2L3(Ωt)
≤ CEl(t).

Step 2. We control I l13(t) and I l21(t). As before, we assume F = v,G = H or F = H,G = v. We
only consider the cases in which l = 2 and l = 3, since the case for l = 1 is simpler. In fact, from the

commutator formula of [Dj
t ,∇] in Lemma 2.3, (3.1), (3.2) and (3.3), it holds

2∑

k=0

∫

Ωt

Dk
t H

j[D3−k
t , ∂j ]FiD

3
tG

idx

≤ C
2∑

k=0

‖Dk
t H

j[D3−k
t , ∂j ]F‖2L2(Ωt)

+ CE2(t)

≤ C(‖D2
tH

j [Dt, ∂j ]F‖2L2(Ωt)
+ ‖DtH

j[D2
t , ∂j ]F‖2L2(Ωt)

+ ‖Hj [D3
t , ∂j ]F‖2L2(Ωt)
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+ E2(t))

≤ C(Ē(t) + ‖D2
tH

j∂jv
k∂kF‖2L2(Ωt)

+ ‖DtH ⋆ (∇v ⋆∇F +∇Dtv ⋆∇F +∇v ⋆∇DtF +∇v ⋆∇v ⋆∇F )‖2L2(Ωt)

+ ‖H ⋆ (∇D2
t v ⋆∇F +∇Dtv ⋆∇DtF +∇v ⋆∇D2

tF +∇Dtv ⋆∇v ⋆∇F

+∇v ⋆∇v ⋆∇DtF + L.O.T.)‖2L2(Ωt)
)

≤ C(1 + ‖∇2p‖2L2(Ωt)
)Ē(t),

and
3∑

k=0

∫

Ωt

Dk
tH

j [D4−k
t , ∂j ]FiD

4
tG

idx

≤ C(E3(t) + ‖D3
tH

j∂jv
k∂kF‖2L2(Ωt)

+ ‖D2
tH ⋆ (∇v ⋆∇F +∇Dtv ⋆∇F +∇v ⋆∇DtF +∇v ⋆∇v ⋆∇F )‖2L2(Ωt)

+ ‖DtH ⋆ (∇D2
t v ⋆∇F +∇Dtv ⋆∇DtF +∇v ⋆∇D2

tF +∇Dtv ⋆∇v

⋆∇F +∇v ⋆∇v ⋆∇DtF + L.O.T.)‖2L2(Ωt)

+ ‖H ⋆ (∇D3
t v ⋆∇F +∇D2

t v ⋆∇DtF +∇Dtv ⋆∇D2
tF +∇v ⋆∇D3

tF

+ L.O.T.)‖2L2(Ωt)
)

≤ C(1 + ‖∇2p‖2L2(Ωt)
)Ē(t).

For l ≥ 4, from Lemma 2.3 and the assumption El−1(t) ≤ C, we deduce

l∑

k=0

∫

Ωt

Dk
tH

j[Dl+1−k
t , ∂j ]FiD

l+1
t Gidx

≤ C(‖Dl
tH

j [Dt, ∂j ]F‖2L2(Ωt)
+

l−1∑

k=0

‖Dk
t H

j[Dl+1−k
t , ∂j ]F‖2L2(Ωt)

+ El(t))

≤ C(El(t) + ‖Dl
tH

j∂jv
k∂kF‖2L2(Ωt)

+

l−1∑

k=0

‖Dk
t H ⋆

∑

2≤m≤l+2−k

∑

|β|≤l+2−k−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v

⋆∇Dβm

t F‖2L2(Ωt)
)

≤ CEl−1(t)El(t) + CEl(t) ≤ CEl(t).

Step 3. To estimate
∫

Γt
Rl

p(D
l+1
t v · ν)dS, we apply Lemmas 2.10 and A.12 to obtain

‖Dl+1
t v · ν‖

H
− 1

2 (Γt)
≤ C(‖Dl+1

t v‖L2(Ωt) + ‖divDl+1
t v‖H−1(Ωt)).

Therefore, it follows that

|

∫

Γt

Rl
p(D

l+1
t v · ν)dS| ≤ C(Ē(t) + ‖Rl

I‖
2
L2(Ωt)

+ ‖Rl
p‖

2

H
1
2 (Γt)

), l ≤ 3,

|

∫

Γt

Rl
p(D

l+1
t v · ν)dS| ≤ C(El(t) + ‖Rl

I‖
2
L2(Ωt)

+ ‖Rl
p‖

2

H
1
2 (Γt)

), l ≥ 4.

It should be noted that later on, we must estimate ‖Rl
p‖

2

H
1
2 (Γt)

.

Step 4. We estimate I l31(t). We only present estimates for l = 3, and the cases of l ≤ 2 are similar
or easier. Actually, by the a priori assumption (1.8) and the trace theorem, one has

‖∇̄(D3
t v · Dtν)‖

2
L2(Γt)



MOTION OF FREE SURFACE IN INCOMPRESSIBLE IDEAL MHD WITH SURFACE TENSION 29

≤ ‖∇̄D3
t v ⋆Dtν‖

2
L2(Γt)

+ ‖D3
t v ⋆ ∇̄Dtν‖

2
L2(Γt)

≤ C(‖Dtν‖
2
L∞(Γt)

‖D3
t v‖

2

H
3
2 (Ωt)

+ ‖D3
t v ⋆ ∇̄

2v ⋆ ν‖2L2(Γt)

+ ‖D3
t v ⋆ ∇̄v ⋆ ∇̄ν‖2L2(Γt)

︸ ︷︷ ︸

=:L3
31(t)

)

≤ CĒ(t).

Above, we have applied the Sobolev embedding, i.e., for p−1+ q−1 = 2−1, p = 2δ−1 with δ > 0 small
enough, it holds

L3
31(t) ≤ ‖D3

t v‖
2
Lp(Γt)

‖∇̄2v‖2Lq(Γt)
≤ ‖D3

t v‖
2
H1−δ(Γt)

‖∇̄2v‖2Hδ(Γt)
,

and ‖D3
t v‖

2
H1−δ(Γt)

‖∇̄2v‖2
Hδ(Γt)

≤ ‖D3
t v‖

2

H
3
2−δ(Ωt)

‖v‖2
H

5
2+δ(Ωt)

≤ CĒ(t), by using the trace theo-

rem.
As for l ≥ 4, it follows that

‖∇̄(Dl
tv · Dtν)‖

2
L2(Γt)

≤ C(‖Dtν‖
2
L∞(Γt)

‖Dl
tv‖

2
H1(Γt)

+ ‖Dtν‖
2
W 1,4(Γt)

‖Dl
tv‖

2
L4(Γt)

)

≤ C(‖Dl
tv‖

2

H
3
2 (Ωt)

+ El−1(t)‖D
l
tv‖

2
H1(Ωt)

) ≤ CEl(t),

where we have used the fact that Dtν = ∇̄v ⋆ ν from Lemma 2.1 and ‖ν‖H2+δ(Γt) ≤ C by (1.8)
together with (2.3).

Step 5. For I l12(t), we recall that it holds [D
l+1
t ,∇]p =

∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆H +Rl

II +Rl
∇H,H by

(2.14). Clearly, we have ‖
∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆H‖2

L2(Ωt)
≤ CĒ(t) for l ≤ 3, and ‖

∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆

H‖2
L2(Ωt)

≤ CEl(t) as l ≥ 4. We leave the estimates for ‖Rl
II‖

2
L2(Ωt)

and ‖Rl
∇H,H‖2

L2(Ωt)
to Section

5 (cf. Lemmas 5.3 and 5.4).
Step 6. Finally, controlling I l11(t) is trickier and necessitates the application of Lemmas 2.7 and

2.10. Let u be a solution to {

−∆u = divDl+1
t v, in Ωt,

u = 0, on Γt,

where l ≥ 1, and we integrate by parts to obtain

I l11(t) = −

∫

Ωt

∆Dl+1
t pudx−

∫

Γt

Dl+1
t p∂νudS =: I l111(t) + I l112(t).

Again by integration by parts, Lemma 2.11 and the divergence theorem, it follows that

I l111(t)

=

∫

Ωt

(div div(v ⊗Dl+1
t v) + div(Rl

II +
∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆ H +Rl

∇H,H))udx

−

∫

Ωt

divDl+1
t (H · ∇H)udx

=

∫

Ωt

(v ⊗Dl+1
t v) : ∇2u− (Rl

II +Rl
∇H,H +

∑

β1≤l

∇Dβ1
t v ⋆∇H ⋆ H) · ∇udx

−

∫

Ωt

divDl+1
t (H · ∇H)udx−

∫

Γt

viDl+1
t vj∂iuνjdS

≤ C(‖u‖2H2(Ωt)
+ El(t) + ‖Rl

II‖
2
L2(Ωt)

+ ‖Rl
∇H,H‖2L2(Ωt)

)

+

∫

Ωt

div(viDl+1
t v∂iu)dx

︸ ︷︷ ︸

=:Ll
1111(t)

−

∫

Ωt

divDl+1
t (H · ∇H)udx

︸ ︷︷ ︸

=:Ll
1112(t)

.
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We estimate the first term by using Lemma 2.10. Indeed, it holds

|Ll
1111(t)| = |

∫

Ωt

∇v ⋆Dl+1
t v ⋆∇u+ v ⋆ divDl+1

t v ⋆∇u

+ v ⋆Dl+1
t v ⋆∇2udx|

≤ C(‖u‖2H2(Ωt)
+ El(t) + ‖Rl

I‖
2
L2(Ωt)

).

To control Ll
1112(t), it is important to note that the integration by parts method used previously

is not applicable. However, as indicated in Lemmas 2.6 and 2.7, one-order material derivative can be
substituted for one-order spatial derivative due to the divergence-free condition. Roughly speaking, we
reduce the spatial derivative of 1

2 -order , which enables us to close the energy estimates.
In fact, we have from Lemma 2.7 that

divDl+1
t (H · ∇H) = ∂i∂mDl

tv
j∂jH

mH i +∇3Dl−1
t v ⋆ H ⋆ H + L.O.T.,

and

|Ll
1112(t)| ≤ |

∫

Ωt

∂i∂mDl
tv

j∂jH
mH iudx|+ C‖u‖2L2(Ωt)

+ C‖∇3Dl−1
t v ⋆ H ⋆ H‖2L2(Ωt)

+M l
1112(t)

≤ C‖u‖2H1(Ωt)
+ CEl(t) +M l

1112(t),

where we have used H · ν = 0, and

|

∫

Ωt

∂i∂mDl
tv

j∂jH
mH iudx|

= | −

∫

Ωt

∂mDl
tv

j∂i(∂jH
mH iu)dx|+ |

∫

Γt

∂mDl
tv

j∂jH
mH iuνidS|

= |

∫

Ωt

∂mDl
tv

j∂i∂jH
mH iu+ ∂mDl

tv
j∂jH

mH i∂iudx|

≤ CEl(t) + C‖u‖2H1(Ωt)

by integration by parts. Also, M l
1112(t) contains lower-order terms (at most ∇

2Dl−1
t ) which can be

controlled in the same fashion as before. These, together with

‖u‖2H2(Ωt)
≤ ‖divDl+1

t v‖2L2(Ωt)
≤ C‖Rl

I‖
2
L2(Ωt)

,

it follows that

I l111(t) ≤ C(Ē(t) + ‖Rl
I‖

2
L2(Ωt)

+ ‖Rl
II‖

2
L2(Ωt)

+ ‖Rl
∇H,H‖2L2(Ωt)

),

for l ≤ 3, and

I l111(t) ≤ C(El(t) + ‖Rl
I‖

2
L2(Ωt)

+ ‖Rl
II‖

2
L2(Ωt)

+ ‖Rl
∇H,H‖2L2(Ωt)

),

for l ≥ 4.
We are left with I l112(t). Applying Lemma 2.13 and by integration by parts, one has

∫

Γt

Dl+1
t p∂νdSu =

∫

Γt

(−∆B(D
l
tv · ν) +Rl

p)∂νudS

=

∫

Γt

∇̄(Dl
tv · ν) · ∇̄∂νudS +

∫

Γt

Rl
p∂νudS.

Then, we use Lemmas A.9 and A.17 to deduce

|I l112(t)| ≤ C(‖∇̄(Dl
tv · ν)‖

2
L2(Γt)

+ ‖∇̄∂νu‖
2
L2(Γt)

+ ‖Rl
p‖

2
L2(Γt)

)

≤ C(Ē(t) + ‖divDl+1
t v‖2

H
1
2 (Ωt)

+ ‖Rl
p‖

2
L2(Γt)

)

≤ C(Ē(t) + ‖Rl
I‖

2

H
1
2 (Ωt)

+ ‖Rl
p‖

2
L2(Γt)

),
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for l ≤ 3. Similarly, it holds |I l112(t)| ≤ C(El(t) + ‖Rl
I‖

2

H
1
2 (Ωt)

+ ‖Rl
p‖

2
L2(Γt)

) for l ≥ 4. This

completes the proof of the proposition. �

4. Estimates for the Pressure

In this section, we treat the pressure and will show that

sup
t∈[0,T ]

‖p‖H3(Ωt) ≤ C, (4.1)

where the constant C depends on the time T > 0, the a priori assumptions NT ,MT , and the initial
data ‖v0‖H6(Ω0), ‖H0‖H6(Ω0) and ‖AΓ0‖H5(Γ0).
For this purpose, we assume the a priori assumptions (1.8) for some T > 0. As a result, it follows

that sup
0≤t<T

‖h‖H3+δ(Γ) ≤ C and sup
0≤t<T

‖B‖H1+δ(Γt) ≤ C. In particular, we have ‖p‖H1+δ(Γt) ≤ C and

∫ T

0
‖p‖2H1(Γt)

dt ≤ C (NT ,MT )T. (4.2)

Recalling we define H
1
2 (Γt) via the harmonic extension. From Lemma A.15 and (A.4), we obtain

‖∂νp‖
2
L2(Γt)

≤C(‖∇̄p‖2L2(Γt)
+ ‖∇p‖2L2(Ωt)

+ ‖∆p‖2L2(Ωt)
)

≤C(‖∇̄p‖2L2(Γt)
+ ‖p‖2

H
1
2 (Γt)

+ ‖∆p‖2L2(Ωt)
)

≤C(‖p‖2H1(Γt)
+ ‖∆p‖2L2(Ωt)

)

≤C(NT ,MT )(1 + T ). (4.3)

For higher-order derivatives, we have the following results.

Proposition 4.1. Assume that Γt is uniformly H3+δ(Γ)-regular for δ > 0 sufficiently small. For smooth
function f , it holds

‖∇2f‖2L2(Γt)
≤ C

(

‖∆f‖2H1(Ωt)
+ ‖f‖2H2(Γt)

)

, (4.4)

‖∇3f‖2L2(Γt)
≤ C

(

‖∆f‖2H2(Ωt)
+ ‖f‖2H3(Γt)

)

. (4.5)

In particular, we have

‖∇2p‖2L2(Γt)
≤ C

(

‖∆p‖2H1(Ωt)
+ ‖p‖2H2(Γt)

)

, (4.6)

‖∇2Dtp‖
2
L2(Γt)

≤ C
(

‖∆Dtp‖
2
H1(Ωt)

+ ‖Dtp‖
2
H2(Γt)

)

, (4.7)

‖∇3p‖2L2(Γt)
≤ C

(

‖∆p‖2H2(Ωt)
+ ‖p‖2H3(Γt)

)

. (4.8)

Proof. For any k ∈ {1, 2, 3}, it follows that

‖∇∂kf‖
2
L2(Γt)

≤ C(‖∇̄∂kf‖
2
L2(Γt)

+ ‖∇2f‖2L2(Ωt)
+ ‖∇∆f‖2L2(Ωt)

),

by applying Lemma A.15. Recall that we extend the unit outer normal ν to Ωt by the harmonic
extension and ‖ν̃‖

H
5
2+δ(Ωt)

≤ C. This, combined with Lemmas 2.1 and A.15 implies that

‖∇̄∂kf‖
2
L2(Γt)

≤ C(‖∇∇̄f‖2L2(Γt)
+ ‖∇f ⋆∇ν̃ ⋆ ν̃‖2L2(Γt)

)

≤ C(‖∇̄2f‖2L2(Γt)
+ ‖∇∇̄f‖2L2(Ωt)

+ ‖∆∇̄f‖2L2(Ωt)

+ ‖∇f‖2H1(Ωt)
)

≤ C(‖∇̄2f‖2L2(Γt)
+ ‖∇∆f‖2L2(Ωt)

+ ‖∇f‖2H1(Ωt)

+ ‖∇f ⋆∇ν̃ ⋆∇ν̃‖2L2(Ωt)
+ ‖∇2f ⋆∇ν̃‖2L2(Ωt)

)

≤ C(‖∇̄2f‖2L2(Γt)
+ ‖∇∆f‖2L2(Ωt)

+ ‖∇f‖2H1(Ωt)
),
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and therefore,

‖∇∂kf‖
2
L2(Γt)

≤ C(‖∇̄2f‖2L2(Γt)
+ ‖∇∆f‖2L2(Ωt)

+ ‖∇f‖2H1(Ωt)
).

Next, we apply (A.4) and Lemma A.16 to find that

‖∇f‖2H1(Ωt)
≤ C(‖∂νf‖

2

H
1
2 (Γt)

+ ‖∇f‖2L2(Ωt)
+ ‖∆f‖2L2(Ωt)

)

≤ C(‖∂νf‖
2

H
1
2 (Γt)

+ ‖f‖2
H

1
2 (Γt)

+ ‖∆f‖2L2(Ωt)
).

To control ‖∂νf‖2
H

1
2 (Γt)

, using Lemma A.15 and by interpolation, one has

‖∂νf‖
2

H
1
2 (Γt)

≤ ε‖∇̄∂νf‖
2
L2(Γt)

+ Cε‖∂νf‖
2
L2(Γt)

≤ ε(‖∇2f‖2L2(Γt)
+ ‖∇f‖2H1(Ωt)

)

+ Cε(‖∇̄f‖2L2(Γt)
+ ‖f‖2

H
1
2 (Γt)

+ ‖∆f‖2L2(Ωt)
),

where ε > 0 is sufficiently small. We conclude that

‖∇f‖2H1(Ωt)
≤ ε‖∇2f‖2L2(Γt)

+ C(‖f‖2H1(Γt)
+ ‖∆f‖2L2(Ωt)

), (4.9)

and then (4.4) follows.
To prove the second claim, by Lemma A.15 again with k ∈ {1, 2, 3}, it holds

‖∇∂k∂lf‖
2
L2(Γt)

≤ C(‖∇̄∂k∂lf‖
2
L2(Γt)

+ ‖∇3f‖2L2(Ωt)
+ ‖∇2∆f‖2L2(Ωt)

).

To estimate ‖∇3f‖2
L2(Ωt)

, from Lemma A.16, we obtain

‖∂if‖
2
H2(Ωt)

≤ C(‖∂ν∂if‖
2

H
1
2 (Γt)

+ ‖∇f‖2L2(Ωt)
+ ‖∇∆f‖2L2(Ωt)

)

for i ∈ {1, 2, 3}, and by interpolation, we see that

‖∂ν∂if‖
2

H
1
2 (Γt)

≤ ε‖∇̄∂ν∂if‖
2
L2(Γt)

+ Cε‖∂ν∂if‖
2
L2(Γt)

,

where ε > 0 is small enough. These, combined with (4.4), (A.4) and the fact that ‖ν̃‖
H

5
2+δ(Ωt)

≤ C,

yield

‖∇f‖2H2(Ωt)
≤ ε(‖∇3f‖2L2(Γt)

+ ‖∇2f ⋆∇ν̃‖2L2(Γt)
) + ‖f‖2H2(Γt)

+ ‖∆f‖2H1(Ωt)

≤ ε‖∇3f‖2L2(Γt)
+ ‖f‖2H2(Γt)

+ ‖∆f‖2H1(Ωt)
. (4.10)

Then, we control ‖∇̄∂k∂lf‖
2
L2(Γt)

by Lemma A.15 and the fact that ∆ν̃ = 0, i.e.,

‖∇̄∂k∂lf‖
2
L2(Γt)

≤ C‖∂k∇̄∂lf‖
2
L2(Γt)

+ C‖∇2f ⋆∇ν̃ ⋆ ν̃‖2L2(Γt)

≤ C(‖∇̄2∂lf‖
2
L2(Γt)

+ ‖∇∇̄∇f‖2L2(Ωt)
+ ‖∆∇̄∇f‖2L2(Ωt)

+ ‖∇2f‖2L2(Γt)
)

≤ C(‖∇̄2∂lf‖
2
L2(Γt)

+ ‖∇2f‖2H1(Ωt)
+ ‖∆f‖2H2(Ωt)

+ ‖f‖2H2(Γt)
).

Again by (4.4) and Lemma A.15, we obtain

‖∇̄2∂lf‖
2
L2(Γt)

≤ ‖∂l∇̄
2f‖2L2(Γt)

+ ‖∇2f ⋆∇ν̃‖2L2(Γt)
+ ‖∇f ⋆ ∇̄∇ν̃‖2L2(Γt)

+ ‖∇f ⋆∇ν̃ ⋆∇ν̃‖2L2(Γt)

≤ ‖∇̄3f‖2L2(Γt)
+ ‖∇3f‖2L2(Ωt)

+ ‖∇3f ⋆∇ν̃‖2L2(Ωt)
+ ‖∇2f ⋆∇ν̃‖2L2(Ωt)

+ ‖∇2∆f‖2L2(Ωt)
+ ‖∇f ⋆∇2ν̃‖2L2(Ωt)

+ ‖∇2f‖2L2(Γt)

+ ‖∇2f ⋆∇2ν̃‖2L2(Ωt)
+ ‖∇f‖2

H
3
2+δ(Ωt)
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≤ C(‖f‖2H3(Γt)
+ ‖∇f‖2H2(Ωt)

+ ‖∆f‖2H2(Ωt)
).

Recalling (4.10), we conclude that

‖∇3f‖2L2(Γt)
≤ ε‖∇3f‖2L2(Γt)

+ C(‖f‖2H3(Γt)
+ ‖∆f‖2H2(Ωt)

).

This completes the proof. �

We will proceed with the estimates for the pressure.

Lemma 4.2. Assume that (1.8) holds for some T > 0. Then, we have

sup
t∈[0,T ]

‖∇p‖2L2(Ωt)
≤ eC(NT ,MT )(1+T )

(

1 + ‖∇p‖2L2(Ω0)

)

.

Proof. From Lemmas 2.1 and A.2, and the divergence-free condition, we differentiate as follows

d

dt

1

2

∫

Ωt

|∇p|2dx =

∫

Ωt

Dt∇p · ∇pdx

=

∫

Ωt

∇Dtp · ∇pdx+

∫

Ωt

∇v ⋆∇p ⋆∇pdx

=: I1(t) + I2(t).

Clearly, the a priori assumptions (1.8) imply that |I2(t)| ≤ C‖∇p‖2
L2(Ωt)

. For the first term, by (2.15),

(4.3), and the divergence theorem, we have

I1(t) ≤

∫

Ωt

div(Dtp∇p)−Dtp∆pdx

≤

∫

Γt

Dtp∂νpdS −

∫

Ωt

Dtp∆pdx

≤ C(1 + ‖p‖2H1(Γt)
)−

∫

Ωt

Dtp∆pdx.

To control
∫

Ωt
Dtp∆pdx, we consider the following elliptic equation

{

−∆u = ∆p, in Ωt,

u = 0, on Γt.

Then, we see that

−

∫

Ωt

Dtp∆pdx =

∫

Ωt

∆Dtpudx+

∫

Γt

Dtp∂νudS =: I11(t) + I12(t).

Note that (2.6) implies |∆p| ≤ C, and we have ‖u‖H1(Ωt) ≤ C. Also, from Lemma A.15, we get

‖∇u‖2
L2(Γt)

≤ C and

|I12(t)| ≤ ‖Dtp‖
2
L2(Γt)

+ ‖∂νu‖
2
L2(Γt)

≤ C(1 + ‖p‖2H1(Γt)
).

We are left with I11(t), for which one can repeat the argument in [JLM22, Propsition 6.3] to deduce
‖u‖2

H2(Ωt)
≤ C(1+ ‖p‖2

H1(Γt)
). Then, by (1.1), (1.8), Lemma 2.11, (2.13) and (4.3), we integrate by

parts to obtain

I11(t) ≤ C(1 + ‖p‖2H1(Γt)
+ ‖∇p‖2L2(Ωt)

).

Combining the above calculations, it follows that

I1(t) + I2(t) ≤ C(1 + ‖p‖2H1(Γt)
+ ‖∇p‖2L2(Ωt)

).

With the help of estimate (4.2), the proof is complete since we have

d

dt
ln(1 + ‖∇p‖2L2(Ωt)

) ≤ C(1 + ‖p‖2H1(Γt)
).

�
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Lemma 4.3. Assume that (1.8) holds for some T > 0. Then, we have
∫ T

0
‖∇̄2p‖2L2(Γt)

dt ≤ C(NT ,MT )(1 + T ).

Proof. We define

I(t) :=

∫

Γt

∇̄p · ∇̄(∇vν · ν)dS,

and from the hypothesis (1.8) and (4.2), we see that

|I(t)| ≤ C‖∇̄p‖2L2(Γt)
+ C‖∇2v‖2L2(Γt)

+ C‖∇v ⋆ B‖2L2(Γt)
≤ C.

Again by (1.8) and applying the divergence theorem, Lemmas 2.1 and A.3, we deduce for sufficiently
small ε > 0 that

d

dt
I(t) ≤ C|I(t)|+

∫

Γt

Dt∇̄p · ∇̄(∇vν · ν) + ∇̄p · Dt∇̄(∇vν · ν)dS

≤ Cε + ε‖∇̄Dtp‖
2
L2(Γt)

+

∫

Γt

∇̄p · ∇̄Dt(∇vν · ν)dS

≤ Cε + ε ‖∇̄Dtp‖
2
L2(Γt)

︸ ︷︷ ︸

=:I1(t)

−

∫

Γt

∆BpDt(∇vν · ν)dS

︸ ︷︷ ︸

=:I2(t)

.

By (1.8), (2.15) and (4.2), it holds

|I1(t)| ≤ C(1 + ‖vn‖
2
H3(Γt)

+ ‖∇̄B ⋆ B ⋆ vn‖
2
L2(Γt)

+ ‖∇̄p‖2H1(Γt)
)

≤ C(1 + ‖∇̄2p‖2L2(Γt)
).

For the second term, from (1.8), Lemma (2.1) and the divergence theorem, we have

|I2(t)| ≤ −

∫

Γt

∆Bp(∇Dtvν · ν)dS + C‖∇̄p‖L1(Γt)

= −

∫

Γt

∆Bp(∇(−∇p+H · ∇H)ν · ν)dS + ε‖∇̄2p‖2L2(Γt)
+ Cε

≤

∫

Γt

∆Bp(∇
2pν · ν)dS −

∫

Γt

∆Bp ⋆∇
2H ⋆∇H ⋆ ν ⋆ νdS

+ ε‖∇̄2p‖2L2(Γt)
+ Cε

≤

∫

Γt

∆Bp(∇
2pν · ν)dS + ε‖∇̄2p‖2L2(Γt)

+ Cε.

Recalling |∆p| ≤ C and by (2.2), (4.3), the divergence theorem, for ε > 0 small enough, we deduce
∫

Γt

∆Bp(∇
2pν · ν)dS =

∫

Γt

∆Bp∆p−∆Bp∆Bp−∆BpA∂νpdS

≤ C +
ε

2
‖∇̄2p‖2L2(Γt)

+ Cε‖p‖
2
H1(Γt)

−

∫

Γt

|∇̄2p|2dS

+ ‖∆Bp‖L2(Γt)‖∂νp‖L2(Γt)‖p‖L∞(Γt)

≤ −
3

4
‖∇̄2p‖2L2(Γt)

+ Cε.

Above, we have applied the results in [FJM20, Remark 2.4] that

‖∇̄2p‖2L2(Γt)
≤ ‖∆Bp‖

2
L2(Γt)

+ C

∫

Γt

|B|2|∇̄p|2dS.

Combining the above calculations, it follows that

d

dt
I(t) ≤ −

1

2
‖∇̄2p‖2L2(Γt)

+ C.
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Integrating over [0, T ], we obtain
∫ T

0
‖∇̄2p‖2L2(Γt)

dt ≤ C(1 + T + I(0)) ≤ C(NT ,MT )(1 + T ).

�

Lemma 4.4. Assume that (1.8) holds for some T > 0. Then, we have

sup
t∈[0,T ]

‖∇2p‖2L2(Ωt)
≤ eC(NT ,MT )(1+T )(1 + ‖∇2p‖2L2(Ω0)

).

Proof. We differentiate and apply Lemma 2.3 to obtain

d

dt

1

2

∫

Ωt

|∇2p|2 =
1

2

∫

Ωt

|∇2p|2
=0
︷︸︸︷

div v dx+

∫

Ωt

Dt∇
2p : ∇2pdx

=

∫

Ωt

∇2Dtp : ∇2pdx

+

∫

Ωt

∇2v ⋆∇p ⋆∇2p+∇v ⋆∇2p ⋆∇2pdx

=:I1(t) + I2(t).

From (1.8), (2.6) and using Lemma 4.2, we have

I1(t) ≤

∫

Ωt

∑

i,j

∂i(∂jDtp∂i∂jp)dx−

∫

Ωt

∇Dtp · ∇∆pdx

≤

∫

Γt

∑

j

∂jDtp∂ν∂jpdS +

∫

Ωt

∆Dtp∆pdx−

∫

Γt

∂νDtp∆pdS

≤ C
∑

j

‖∂ν∂jp‖
2
L2(Γt)

+ C‖∂νDtp‖
2
L2(Γt)

+ C‖∆Dtp‖
2
L2(Ωt)

=: I11(t) + I12(t) + I13(t),

I2(t) ≤ C(‖v‖2
H

7
2 (Ωt)

‖∇p‖2L6(Ωt)
+ ‖∇2p‖2L2(Ωt)

)

≤ C(1 + ‖∇2p‖2L2(Ωt)
).

We apply Lemmas 2.11 and 4.2, and (4.6) to obtain |I13(t)| ≤ C(1 + ‖∇2p‖2
L2(Ωt)

) and |I11(t)| ≤

C(1 + ‖p‖2
H2(Γt)

). Finally, (1.8), Lemmas 2.11 and A.15, and (A.4) imply that

|I12(t)| ≤ C(‖∇̄Dtp‖
2
L2(Γt)

+ ‖∇Dtp‖
2
L2(Ωt)

+ ‖∆Dtp‖
2
L2(Ωt)

)

≤ C(‖∇̄Dtp‖
2
L2(Γt)

+ ‖Dtp‖
2

H
1
2 (Γt)

+ ‖∆Dtp‖
2
L2(Ωt)

)

≤ C(1 + ‖p‖2H2(Γt)
+ ‖∇2p‖2L2(Ωt)

).

Combined with (4.2) and Lemma 4.3, the proof is complete, since

d

dt

1

2

∫

Ωt

|∇2p|2dx ≤
3∑

i=1

I1i(t) + I2(t)

≤C(1 + ‖∇2p‖2L2(Ωt)
+ ‖p‖2H2(Γt)

).

�

We move on to higher-order pressure estimates.

Lemma 4.5. Assume that (1.8) holds for some T > 0. Then, we have

sup
t∈[0,T ]

‖∇̄2p‖2L2(Γt)
+

∫ T

0
‖∇̄3p‖2L2(Γt)

dt

≤ C
(
T,NT ,MT , ‖∇̄

2p‖L2(Γ0), ‖∇p‖H1(Ω0)

)
.
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Proof. We define

I(t) :=

∫

Γt

∇̄2p : ∇̄2(∇vν · ν)dS + ε

∫

Γt

|∇̄2p|2dS =: I1(t) + εI2(t),

where ε > 0 will be chosen later. From (1.8), (4.2), Lemmas 4.3 and A.11, we have

|I1(t)| ≤
ε

2
‖∇̄2p‖2L2(Γt)

+ Cε(‖∇
3v‖2L2(Γt)

+ ‖∇2v ⋆ B‖2L2(Γt)

+ ‖∇v ⋆ ∇̄B‖2L2(Γt)
)

≤
ε

2
‖∇̄2p‖2L2(Γt)

+ Cε,

and I(t) ≥ −Cε +
ε

2
‖∇̄2p(·, t)‖2

L2(Γt)
. We differentiate and use (1.8), (4.2), the divergence theorem,

Lemmas 2.1 and A.11 to obtain
d

dt
I1(t) ≤ C|I1(t)|+

∫

Γt

Dt∇̄
2p : ∇̄2(∇vν · ν) + ∇̄2p : Dt∇̄

2(∇vν · ν)dS

≤ Cε + ε(‖∇̄2p‖2L2(Γt)
+ ‖∇̄2Dtp‖

2
L2(Γt)

)

+

∫

Γt

∇̄2p : ∇̄2Dt(∇vν · ν)dS

≤ ε‖∇̄2p‖2L2(Γt)
+ Cε

+ ε ‖∇̄2Dtp‖
2
L2(Γt)

︸ ︷︷ ︸

=:I11(t)

−

∫

Γt

∇̄∆Bp · ∇̄Dt(∇vν · ν)dS

︸ ︷︷ ︸

=:I12(t)

.

The first term can be controlled by (1.8), (2.15), (4.2) and Lemma A.11, i.e.,

|I11(t)| ≤ C(‖vn‖
2
H4(Γt)

+ ‖p‖2H3(Γt)
+ ‖B‖2H2(Γt)

)

≤ C(1 + ‖∇̄2p‖2L2(Γt)
+ ‖∇̄3p‖2L2(Γt)

).

As for I12(t), applying (1.8), Lemma (2.1) and the divergence theorem, it follows that

I12(t) ≤ −

∫

Γt

∇̄∆Bp · ∇̄(∇Dtvν · ν)dS + C(‖∇̄2p‖2L2(Γt)
+ 1)

= −

∫

Γt

∇̄∆Bp · ∇̄(∇(−∇p+H · ∇H)ν · ν)dS + C(‖∇̄2p‖2L2(Γt)
+ 1)

≤

∫

Γt

∇̄∆Bp · ∇̄(∇2pν · ν)dS −

∫

Γt

∇̄∆Bp · ∇̄(∇2H ⋆ H ⋆ ν ⋆ ν)dS

+ C(‖∇̄2p‖2L2(Γt)
+ 1)

≤

∫

Γt

∇̄∆Bp · ∇̄(∇2pν · ν)dS + ε‖∇̄3p‖2L2(Γt)
+ C(‖∇̄2p‖2L2(Γt)

+ 1).

To estimate
∫

Γt
∇̄∆Bp · ∇̄(∇2pν · ν)dS, by (1.8), (2.2), (2.6), (4.3), Lemma A.16 and the divergence

theorem, it holds
∫

Γt

∇̄∆Bp · ∇̄(∇2pν · ν)dS

=

∫

Γt

∇̄∆Bp · ∇̄∆pdS −

∫

Γt

∇̄∆Bp · ∇̄∆BpdS −

∫

Γt

∇̄∆Bp · ∇̄(A∂νp)dS

≤ Cε‖∆p‖2
H

3
2 (Ωt)

+ ε‖∇̄3p‖2L2(Γt)
+ Cε‖p‖

2
H2(Γt)

−
7

8

∫

Γt

|∇̄3p|2dS

+ ‖∇̄3p‖L2(Γt)(‖∇̄∂νp‖L2(Γt)‖p‖L∞(Γt) + ‖∂νp‖L4(Γt)‖∇̄p‖L4(Γt))

≤ Cε −
3

4

∫

Γt

|∇̄3p|2dS + Cε‖∇∂νp‖
2
L2(Γt)

+ ‖∇̄3p‖L2(Γt)‖∇p‖2H1(Ωt)
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≤ Cε −
1

2
‖∇̄3p‖2L2(Γt)

+ C‖∇̄2p‖2L2(Γt)
.

Above, we have used Lemma 2.1 and (4.6) to deduce

‖∇∂νp‖
2
L2(Γt)

≤ C(‖∂ν∇p‖2L2(Γt)
+ ‖∇p ⋆∇ν̃‖2L2(Γt)

)

≤ C(1 + ‖p‖2H2(Γt)
+ ‖∆p‖2H1(Ωt)

),

and the following result in [FJM20, Lemma 2.3]

‖∇̄3p‖2L2(Γt)
≤ ‖∇̄∆Bp‖

2
L2(Γt)

+ C‖p‖2H2(Γt)
.

Similarly, we can obtain

d

dt
I2(t) ≤ C(1 + ‖∇̄2p‖2L2(Γt)

+ ‖∇̄3p‖2L2(Γt)
).

Combined the above calculations and by choosing suitable ε > 0, it follows that

d

dt
I(t) ≤ −

1

4
‖∇̄3p‖2L2(Γt)

+ C‖∇̄2p‖2L2(Γt)
+ C.

Integrating the above over [0, t] with 0 < t ≤ T and recalling (4.2) together with I(t) ≥ −Cε +
ε

2
‖∇̄2p(·, t)‖2

L2(Γt)
, it follows that

‖∇̄2p‖2L2(Γt)
+

∫ t

0
‖∇̄3p‖2L2(Γs)

ds ≤ C
(
T,NT ,MT , ‖∇̄

2p‖L2(Γ0), ‖∇p‖H1(Ω0)

)
.

�

Lemma 4.6. Assume that (1.8) holds for some T > 0. Then, we have

sup
t∈[0,T ]

‖∇3p‖2L2(Ωt)
≤ C

(
NT ,MT , ‖∇̄

2p‖L2(Γ0), ‖∇p‖H2(Ω0), T
)
.

Moreover, we have

sup
t∈[0,T ]

‖p‖2H3(Ωt)
≤ C

(
NT ,MT , ‖∇̄

2p‖L2(Γ0), ‖∇p‖H2(Ω0), T
)
.

Proof. We differentiate and apply Lemma 2.3 to obtain

d

dt

1

2

∫

Ωt

|∇3p|2dx =
1

2

∫

Ωt

∑

ijk

Dt∂ijkp∂ijkpdx

=

∫

Ωt

∑

ijk

∂ijkDtp∂ijkpdx+

∫

Ωt

∇3v ⋆∇p ⋆∇3p

+∇2v ⋆∇2p ⋆∇3p+∇v ⋆∇3p ⋆∇3pdx

=:I1(t) + I2(t).

From (1.8), (2.6) and Lemma 2.11, we have

I1(t) ≤

∫

Ωt

∑

ijk

∂i(∂jkDtp∂ijkp)dx−

∫

Ωt

∑

jk

∂jkDtp∂jk∆pdx

≤

∫

Γt

∑

jk

∂jkDtp∂ν∂jkpdS +

∫

Ωt

∑

k

∂k∆Dtp∂k∆pdx

−

∫

Γt

∑

k

∂ν∂kDtp∂k∆pdS

≤ C
∑

jk

‖∂ν∂jkp‖
2
L2(Γt)

+C
∑

jk

‖∂jkDtp‖
2
L2(Γt)

+ C‖∇∆Dtp‖L1(Ωt)
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≤ C
∑

jk

‖∂ν∂jkp‖
2
L2(Γt)

︸ ︷︷ ︸

=:I11(t)

+C
∑

jk

‖∂jkDtp‖
2
L2(Γt)

︸ ︷︷ ︸

=:I12(t)

+C(1 + ‖∇p‖2H2(Ωt)
),

and

|I2(t)| ≤ C(‖∇3v‖2L3(Ωt)
‖∇p‖2L6(Ωt)

+ ‖∇2v‖2L∞(Ωt)
‖∇2p‖2L2(Ωt)

+ ‖∇3p‖2L2(Ωt)
)

≤ C(1 + ‖∇p‖2H2(Ωt)
).

Applying (4.7) and (4.8), we obtain

2∑

i=1

I1i(t) ≤ C(‖∆p‖2H2(Ωt)
+ ‖∆Dtp‖

2
H1(Ωt)

+ ‖Dtp‖
2
H2(Γt)

+ ‖p‖2H3(Γt)
)

≤ C(‖∆p‖2H2(Ωt)
+ ‖∇p‖2H2(Ωt)

+ ‖Dtp‖
2
H2(Γt)

+ ‖p‖2H3(Γt)
)

≤ C(1 + ‖∇p‖2H2(Ωt)
+ ‖p‖2H3(Γt)

).

The first claim follows from (4.2), Lemmas 4.2, 4.3, 4.4 and 4.5, since

d

dt

1

2

∫

Ωt

|∇3p|2 ≤ C(1 + ‖∇p‖2H2(Ωt)
+ ‖p‖2H3(Γt)

).

This, together with the previous pressure estimates and Lemma A.16, yields the second claim. �

We conclude this section by stating the following result: the initial quantities Ē(0) and
3∑

k=0

‖D3−k
t p‖2

H
3
2 k+1(Ω0)

can be controlled by the initial velocity, magnetic field and mean curvature.

Proposition 4.7. Assume that Ω0 is a smooth domain such that ‖h0‖L∞(Γ) < R. Then, we have

Ē(0) +

3∑

k=0

‖D3−k
t p‖2

H
3
2 k+1(Ω0)

≤ C,

where the constant C depends onM0 := R− ‖h0‖L∞(Γ), ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖A‖H5(Γ0).

Remark. It should be noted that the result remains valid for any t ∈ (0, T ), provided ‖h(·, t)‖L∞(Γ) ≤
R, i.e.,

Ē(t) +

3∑

k=0

‖D3−k
t p‖2

H
3
2k+1(Ωt)

≤ C
(
R− ‖h(·, t)‖L∞(Γ), ‖v‖H6(Ωt), ‖H‖H6(Ωt), ‖A‖H5(Γt)

)
. (4.11)

Proof of Proposition 4.7. We divide the proof into three steps.
Step 1.We control ‖D4−k

t H‖2
H

3
2 k(Ω0)

by the lower-order velocity terms using (2.9) and (2.10). For

k = 0, we apply (2.9) to obtain

‖D4
tH‖2L2(Ω0)

≤ C‖
∑

1≤m≤4

∑

|β|≤4−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆ H‖2L2(Ω0)

≤ C‖H‖2L∞(Ω0)
(
∑

|β|≤3

‖∇Dβ1
t v‖2L2(Ω0)

+
∑

|β|≤2

‖∇Dβ1
t v‖2L3(Ω0)

‖∇Dβ2
t v‖2L6(Ω0)

+
∑

|β|≤1

‖∇Dβ1
t v‖2L6(Ω0)

‖∇Dβ2
t v‖2L6(Ω0)

‖∇Dβ3
t v‖2L6(Ω0)

+ ‖v‖8H3(Ω0)
)

≤ C‖D3
t v‖

2
H1(Ω0)

+ C(1 + ‖D2
t v‖

2
H2(Ω0)

)(1 + ‖Dtv‖
2
H2(Ω0)

).
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We claim that
3∑

k=1

‖D4−k
t H‖2

H
3
2 k(Ω0)

≤ C(‖v‖H4(Ω0), ‖H‖H4(Ω0))

· (1 +
3∑

k=1

‖D4−k
t H‖2

H
3
2k(Ω0)

+ ‖v‖H6(Ω0) + ‖H‖H6(Ω0)). (4.12)

Indeed, by (2.9), it follows that

‖D3
tH‖2

H
3
2 (Ω0)

≤ C‖
∑

1≤m≤3

∑

|β|≤3−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆ H‖2
H

3
2 (Ω0)

≤ C
∑

|β|≤2

‖∇Dβ1
t v‖2

H
3
2 (Ω0)

‖H‖2H2(Ω0)
+ C

∑

|β|≤1

‖∇Dβ1
t v‖2H2(Ω0)

· ‖∇Dβm

t v‖2H2(Ω0)
‖H‖2H2(Ω0)

+ C‖v‖6H3(Ω0)
‖H‖2H2(Ω0)

≤ C(‖v‖H4(Ω0), ‖H‖H4(Ω0))(1 + ‖D2
t v‖

2

H
5
2 (Ω0)

+ ‖Dtv‖
2

H
5
2 (Ω0)

).

As for ‖D2
tH‖2

H3(Ω0)
, again from (2.9), we see that

‖D2
tH‖2H3(Ω0)

≤ C‖
∑

1≤m≤2

∑

|β|≤2−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆ H‖2H3(Ω0)

≤ C‖∇Dtv‖
2
H3(Ω0)

‖H‖2H3(Ω0)
+C‖∇v‖4H3(Ω0)

‖H‖2H3(Ω0)

≤ C(‖v‖H4(Ω0), ‖H‖H4(Ω0))(1 + ‖Dtv‖
2
H4(Ω0)

),

and

‖DtH‖2
H

9
2 (Ω0)

≤ C(‖H‖2L∞(Ω0)
‖v‖2

H
11
2 (Ω0)

+ ‖H‖2
H

9
2 (Ω0)

‖v‖2L∞(Ω0)
)

≤ C(‖v‖H4(Ω0), ‖H‖H4(Ω0))(‖v‖
2

H
11
2 (Ω0)

+ ‖H‖2
H

9
2 (Ω0)

),

by using Lemma A.9.
Step 2. We control ‖D4−k

t v‖2
H

3
2k(Ω0)

by the pressure terms, i.e., ‖p‖2
H

11
2 (Ω0)

,

‖∇Dtp‖
2
H3(Ω0)

, ‖∇D2
t p‖

2

H
3
2 (Ω0)

, and ‖∇D3
t p‖

2
L2(Ω0)

. Note that

‖Dtv‖
2

H
9
2 (Ω0)

≤ C‖p‖2
H

11
2 (Ω0)

+ C‖H‖2
H

11
2 (Ω0)

‖H‖2
H

9
2 (Ω0)

≤ C‖p‖2
H

11
2 (Ω0)

+ C,

and by Lemma 2.8, we have

‖D2
t v‖

2
H3(Ω0)

≤ ‖Dt∇p‖2H3(Ω0)
+ ‖Dt(H · ∇H)‖2H3(Ω0)

≤ ‖∇Dtp‖
2
H3(Ω0)

+ ‖[Dt,∇]p‖2H3(Ω0)
+C

≤ C‖∇Dtp‖
2
H3(Ω0)

+ C‖p‖2H4(Ω0)
+ C.

Similarly, applying Lemma 2.8 and (2.14), we obtain

‖D3
t v‖

2

H
3
2 (Ω0)

≤ C(‖∇D2
t p‖

2

H
3
2 (Ω0)

+ ‖∇Dtp‖
2

H
3
2 (Ω0)

+ ‖p‖2
H

9
2 (Ω0)

+ 1),

and

‖D4
t v‖

2
L2(Ω0)

≤ C(‖∇D3
t p‖

2
L2(Ω0)

+ ‖∇D2
t p‖

2
L2(Ω0)

+ ‖∇Dtp‖
2
H2(Ω0)

+ ‖p‖2
H

9
2 (Ω0)

).
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Step 3. We show that
3∑

k=0

‖D3−k
t p‖2

H
3
2k+1(Ω0)

≤ C. Consider the following elliptic equation

{

−∆p = ∂iv
j∂jv

i − ∂iH
j∂jH

i, in Ω0,

p = AΓ0 , on Γ0.

From the standard elliptic estimates, we find that

‖p‖
H

11
2 (Ω0)

≤ C(‖∂iv
j∂jv

i − ∂iH
j∂jH

i‖
H

7
2 (Ω0)

+ ‖A‖H5(Γ0)) ≤ C.

Again by the elliptic estimates and by Lemma A.17, it holds

‖Dtp‖H4(Ω0) ≤ C(‖∆Dtp‖H2(Ω0) + ‖Dtp‖
H

7
2 (Γ0)

),

and

‖D2
t p‖H

5
2 (Ω0)

≤ C(‖∆D2
t p‖H

1
2 (Ω0)

+ ‖D2
t p‖H2(Γ0)).

Also, by (A.5), we obtain

‖D3
t p‖H1(Ω0) ≤ C(‖∆D3

t p‖L2(Ω0) + ‖D3
t p‖H

1
2 (Γ0)

).

The calculations of the remaining terms on the right-hand side are straightforward applications of
Lemmas 2.11 and 2.13, and (2.15), since we have ‖p‖

H
11
2 (Ω0)

≤ C.

Finally, for 1 ≤ j ≤ 3, ‖∇̄(Dj
t v · ν)‖2

L2(Γ0)
can be estimated by the trace theorem due to the

regularity of the boundary. In fact, using the mean curvature bound, we apply Lemma A.11 to obtain
‖B‖H2(Γ0) ≤ C and therefore

‖∇̄(Dj
t v · ν)‖

2
L2(Γ0)

≤ C(‖∇̄Dj
t v ⋆ ν‖

2
L2(Γ0)

+ ‖Dj
t v ⋆ B‖2L2(Γ0)

)

≤ C‖Dj
t v‖

2

H
3
2 (Ω0)

≤ C.

This concludes the proof of the proposition. �

5. Estimates for the Error Terms

In this section, we estimate the error terms by the energy functional and the pressure. We will
assume the a priori assumptions hold for some T > 0, and sup

0≤t<T

El−1(t) ≤ C for l ≥ 4.

Lemma 5.1. Assume that (1.8) holds for T > 0. Then, we have ‖B‖
H

5
2 (Γt)

≤ C, and ‖B‖Hk(Γt) ≤

C
(

1 + ‖p‖Hk(Γt)

)

for k ∈ N

2 , k ≤ 9
2 .

Assume further that sup
0≤t<T

El−1(t) ≤ C for l ≥ 4. Then, it holds ‖B‖
H

3
2 l−1(Γt)

≤ C, and ‖B‖Hk(Γt) ≤ C
(

1 + ‖p‖Hk(Γt)

)

for k ∈ N

2 , k ≤ 3
2 l + 1.

Proof. We recall (4.1) that ‖p‖H3(Ωt) ≤ C by the results in Section 4. Since Γt is uniformlyH3+δ(Γ)-

regular, it holds ‖B‖L∞(Γt) + ‖B‖H1(Γt) ≤ C. Applying Lemma A.11, for k ∈ N

2 , k ≤ 3, we see
that

‖B‖Hk(Γt) ≤ C(1 + ‖A‖Hk(Γt)) ≤ C(1 + ‖p‖Hk(Γt)),

and ‖B‖
H

5
2 (Γt)

≤ C. Again by Lemma A.11, the first claim follows. As for l ≥ 4, the assumption

implies that

‖p‖2
H

3l
2 −1(Γt)

≤ C(1 + ‖∇p‖2
H

3(l−1)
2 (Ωt)

)

≤ C(1 + ‖Dtv‖
2

H
3(l−1)

2 (Ωt)
+ ‖H · ∇H‖2

H⌊ 3l
2 −1⌋(Ωt)

) ≤ C.
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For l = 4, we have ‖p‖H5(Γt) ≤ C and ‖B‖
H

9
2 (Γt)

≤ C by the first claim. Moreover, by Lemma

A.11, it implies ‖B‖H5(Γt) ≤ C(1 + ‖p‖H5(Γt)) ≤ C, i.e., ‖B‖
H

3l
2 −1(Γt)

≤ C in this case. Therefore,

it holds

‖B‖Hk(Γt) ≤ C(1 + ‖A‖Hk(Γt)) ≤ (1 + ‖p‖Hk(Γt)), k ∈
N

2
, k ≤

3

2
l + 1.

Using a similar argument, the second claim follows for l ≥ 5. �

Now we begin estimating the error terms.

Lemma 5.2. Assume that (1.8) holds for T > 0. For l ≤ 3, we have

‖Rl
I‖

2

H
1
2 (Ωt)

≤ C

(

1 + ‖∇2p‖2
H

1
2 (Ωt)

)

Ē(t).

Assume further that sup
0≤t<T

El−1(t) ≤ C for l ≥ 4, then we have

‖Rl
I‖

2

H
1
2 (Ωt)

≤ CEl(t), (5.1)

and for k ∈ N, 1 ≤ k ≤ l, it holds

‖Rl−k
I ‖2

H
3
2 k−1(Ωt)

≤ εEl(t) +Cε, (5.2)

with some ε > 0 small enough.

Proof. Thanks to Lemmas 5.1 and A.10, it is feasible to extend functions in H2(Ωt) to the entire
space R3 and then apply (A.7). To simplify the notation, we will not distinguish between the original
function and its extension. It suffices to estimate R3

I defined in (2.12) since R
1
I and R2

I are easier to
handle. In fact, we need to control

‖R3
I‖

2

H
1
2 (Ωt)

= ‖
∑

2≤m≤4

∑

|β|≤5−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇Dβm

t v‖2
H

1
2 (Ωt)

.

We deal with the case of m = 2, i.e.,
∑

|β|≤3∇Dβ1
t v ⋆∇Dβ2

t v and we only show the estimates when

|β| = 3. From (1.8) and (A.7), we see that

‖∇v ⋆∇D3
t v‖H

1
2 (Ωt)

≤ C(‖∇v‖L∞(Ωt)‖∇D3
t v‖H

1
2 (Ωt)

+ ‖∇v‖
W

1
2 ,6(Ωt)

‖∇D3
t v‖L3(Ωt))

≤ C(‖∇v‖L∞(Ωt)‖∇D3
t v‖H

1
2 (Ωt)

+ ‖v‖
H

5
2 (Ωt)

‖D3
t v‖H

3
2 (Ωt)

) ≤ CĒ(t)
1
2 ,

and

‖∇D2
t v ⋆∇Dtv‖

H
1
2 (Ωt)

≤ C(‖∇Dtv‖
H

1
2 (Ωt)

‖∇D2
t v‖L∞(Ωt) + ‖∇Dtv‖L3(Ωt)‖∇D2

t v‖W
1
2 ,6(Ωt)

)

≤ C(1 + ‖∇2p‖
H

1
2 (Ωt)

)Ē(t)
1
2 .

If l ≥ 4, the assumption El−1(t) ≤ C also ensures that the functions in H
3l
2
+1(Ωt) can be extended

by Lemma 5.1 and the extension Theorem A.10. Then, it follows that

‖∇v ⋆∇Dl
tv‖H

1
2 (Ωt)

≤ C(‖∇v‖L∞(Ωt)‖∇Dl
tv‖H

1
2 (Ωt)

+ ‖v‖
H

5
2 (Ωt)

‖Dl
tv‖H

3
2 (Ωt)

) ≤ CEl(t)
1
2 .

For 1 ≤ j ≤ l − j ≤ l − 1, we have j ≤ ⌊ l
2⌋ ≤ l − 2 due to l ≥ 4, and obtain

‖∇Dj
t v ⋆∇Dl−j

t v‖
H

1
2 (Ωt)

≤ C(‖∇Dj
t v‖L∞(Ωt)‖∇Dl−j

t v‖
H

1
2 (Ωt)

+ ‖Dj
t v‖H

5
2 (Ωt)

‖∇Dl−j
t v‖

H
3
2 (Ωt)

)
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≤ CEl(t)
1
2 ,

where we have used the fact that ‖Dj
t v‖H

5
2+ε(Ωt)

≤ El−1(t) ≤ C. Again from the hypothesis

El−1(t) ≤ C, the terms involving the product of more than three items can be controlled since we
will have fewer material derivatives in this case. For example, if 1 ≤ j ≤ l− 1− j ≤ l− 2, we see that
j ≤ ⌊ l−1

2 ⌋ ≤ l − 3 and

‖∇v ⋆∇Dj
t v ⋆∇Dl−1−j

t v‖
H

1
2 (Ωt)

≤ C(‖∇Dj
t v‖L∞(Ωt)‖∇Dl

tv‖H
1
2 (Ωt)

+ ‖∇v ⋆∇Dj
t v‖H

5
2 (Ωt)

‖Dl
tv‖H

3
2 (Ωt)

)

≤ C(‖∇Dj
t v‖L∞(Ωt) + ‖∇Dj

t v‖H
5
2 (Ωt)

)‖Dl
tv‖H

3
2 (Ωt)

≤ CEl−1(t)
1
2El(t)

1
2

≤ CEl(t)
1
2 .

To prove (5.2), we first consider the estimate of ‖R0
I‖

2

H
3
2 l−1(Ωt)

. The definition (2.12) yields

‖R0
I‖

2

H
3
2 l−1(Ωt)

≤ C‖∇v‖2L∞(Ωt)
‖∇v‖2

H
3
2 l−1(Ωt)

≤ C‖∇v‖2
H

3
2 l−1(Ωt)

.

By interpolation, it holds

‖R0
I‖

2

H
3
2 l−1(Ωt)

≤ εEl(t) + Cε, l = 5, 7, 9, · · · ,

and

‖R0
I‖

2

H
3
2 l−1(Ωt)

≤ CEl−1(t) ≤ C, l = 4, 6, 8, · · · .

Then we control the case of k = 1. When l ≥ 5, applying the previous estimates, it follows that
‖Rl−1

I ‖2
H

1
2 (Ωt)

≤ CEl−1(t) ≤ C. If l = 4, we have by the definition of E3(t) that

‖Rl−1
I ‖2

H
1
2 (Ωt)

≤ C(1 + ‖∇2p‖2
H

1
2 (Ωt)

)El−1(t) ≤ C,

where we use the fact that ‖∇2p‖2
H

1
2 (Ωt)

≤ ‖∇(H · ∇H −Dtv)‖
2

H
1
2 (Ωt)

≤ C.

We are left with the case of 2 ≤ k ≤ l − 1. Note that (2.12) gives

Rl−k
I =

∑

2≤m≤l−k+1

∑

|β|≤l−k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇Dβm

t v.

We only estimate the case of k = m = 2, i.e., ∇Dl−2−j
t v ⋆∇Dj

t v and the others are similar or easier.
As before, we assume that 0 ≤ j ≤ l − 2− j ≤ l − 2 and it holds

j ≤ ⌊
l − 2

2
⌋ ≤ l − 2, l = 4, and j ≤ ⌊

l − 2

2
⌋ ≤ l − 3, l ≥ 5.

We deal with the first case, i.e., ‖∇Dtv⋆∇Dtv‖
2
H2(Ωt)

+‖∇D2
t v⋆∇v‖2

H2(Ωt)
, since the same arguments

work for l ≥ 5 (j ≤ l − 3 in this case). We deduce that

‖∇v ⋆∇D2
t v‖

2
H2(Ωt)

≤ C(‖∇v‖2L∞(Ωt)
‖∇D2

t v‖
2
H2(Ωt)

+ ‖∇v‖2H3(Ωt)
‖∇D2

t v‖
2

H
5
2 (Ωt)

)

≤ C‖∇D2
t v‖

2

H
5
2 (Ωt)

≤ ε‖∇D2
t v‖

2
H3(Ωt)

+ C‖∇D2
t v‖

2
H2(Ωt)

≤ εEl(t) + Cε,

and

‖∇Dtv ⋆∇Dtv‖
2
H2(Ωt)

≤ C‖∇Dtv‖
2
L∞(Ωt)

‖∇Dtv‖
2
H2(Ωt)

≤ CEl−1(t) ≤ C.

�

We proceed to bound Rl
∇H,H , Rl

∇H,∇H and Rl
∇2H,H

.
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Lemma 5.3. Assume that (1.8) holds for T > 0. For l ≤ 3, we have

‖Rl
∇H,H‖2

H
1
2 (Ωt)

+ ‖Rl
∇H,∇H‖2

H
1
2 (Ωt)

+ ‖Rl
∇2H,H‖2

H
1
2 (Ωt)

≤ C

(

1 + ‖∇2p‖2
H

1
2 (Ωt)

)

Ē(t).

Assume further that sup
0≤t<T

El−1(t) ≤ C for l ≥ 4, then we have

‖Rl
∇H,H‖2

H
1
2 (Ωt)

+ ‖Rl
∇H,∇H‖2

H
1
2 (Ωt)

+ ‖Rl
∇2H,H‖2

H
1
2 (Ωt)

≤ CEl(t), (5.3)

‖R0
∇H,H‖2

H
3
2 l−1(Ωt)

+ ‖R0
∇H,∇H‖2

H
3
2 l−1(Ωt)

≤ εEl(t) +Cε, (5.4)

‖R0
∇2H,H‖2

H
3
2 k−1(Ωt)

≤ C‖ curlH‖2
H

⌊ 3
2 l+1

2 ⌋(Ωt)
, (5.5)

and

‖Rl−k
∇H,H‖2

H
3
2 k−1(Ωt)

+ ‖Rl−k
∇H,∇H‖2

H
3
2k−1(Ωt)

+ ‖Rl−k
∇2H,H

‖2
H

3
2 k−1(Ωt)

≤ εEl(t) + Cε, (5.6)

for k ∈ N, 1 ≤ k < l. In the above, ε > 0 is a constant small enough.

Proof. We note thatRl
∇2H,H

contains all the highest-order terms inRl
∇H,H andRl

∇H,∇H , since ‖v‖H4(Ωt)+

‖H‖H4(Ωt) ≤ C. We focus on the estimate for Rl
∇2H,H

.

To control R3
∇2H,H

in the case of l ≤ 3, we recall that

R3
∇2H,H

= ∇4 curlH ⋆H ⋆H ⋆ H +
∑

|α|≤5,αi≤4
m≤5,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇
αmFm

+
∑

|α|+|β|≤5,αi+βi≤4
βi≤2,m≤4,Fj=v,H

∇α1Dβ1
t v ⋆ · · · ⋆∇αl−1D

βl−1
t v ⋆∇αlFl ⋆ · · · ⋆∇

αmFm.

From (1.8), we have

‖∇4 curlH ⋆ H ⋆ · · · ⋆ H‖2
H

1
2 (Ωt)

≤ C‖H‖H6(Ωt) ≤ CĒ(t),

and
‖∇2D2

t v ⋆∇F2 ⋆ F3‖
2

H
1
2 (Ωt)

≤ CĒ(t),

as in Lemma 5.2. The leading terms in R3
∇2H,H

have been controlled, and the estimates of the lower-

order terms follow from the same arguments as in Lemma 5.2.
As for l ≥ 4, to prove (5.3), it is sufficient to bound ∇l+1 curl v ⋆ H ⋆ · · · ⋆ H

︸ ︷︷ ︸

l times

and ∇l+1 curlH ⋆

H ⋆ · · · ⋆ H
︸ ︷︷ ︸

l times

since the other terms are either simpler or have already been estimated in Lemma 5.2.

From the assumption El−1(t) ≤ C, we have ‖v‖
H⌊ 3

2 l⌋(Ωt)
+ ‖H‖

H⌊ 3
2 l⌋(Ωt)

≤ C. As before, we extend

the functions and estimate as in Lemma 5.2 to obtain

‖∇l+1 curl v ⋆ H ⋆ · · · ⋆ H
︸ ︷︷ ︸

l times

‖
H

1
2 (Ωt)

≤ C(‖H ⋆ · · · ⋆ H
︸ ︷︷ ︸

l times

‖L∞(Ωt)‖∇
l+1 curl v‖

H
1
2 (Ωt)

+ ‖H ⋆ · · · ⋆ H
︸ ︷︷ ︸

l times

‖
W

1
2 ,6(Ωt)

‖∇l+1 curl v‖L3(Ωt))

≤ C‖v‖
Hl+5

2 (Ωt)
≤ CEl(t)

1
2 .
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In the last step, the condition l ≥ 4 implies l + 5
2 ≤ ⌊32(l + 1)⌋ and therefore, it holds ‖v‖

H
l+5

2 (Ωt)
≤

‖v‖
H

⌊ 3
2 (l+1)⌋(Ωt)

.

Next, to verify (5.6) for k ∈ N with 1 ≤ k < l, we show how to control ‖Rl−k
∇2H,H

‖2
H

3
2k−1(Ωt)

. For

this purpose, we concentrate on the estimate for the product ‖∇l−k+1 curl v ⋆H ⋆ · · · ⋆ H
︸ ︷︷ ︸

l−k times

‖2
H

3
2k−1(Ωt)

.

This time we obtain for 1 ≤ k < l that

‖∇l−k+1 curl v ⋆ H ⋆ · · · ⋆ H
︸ ︷︷ ︸

l−k times

‖2
H

3
2 k−1(Ωt)

≤ C‖v‖
Hl+1+ k

2 (Ωt)
≤ C‖v‖

H
3
2 l+1

2 (Ωt)
.

By interpolation, it holds

‖v‖2
H

3
2 l+1

2 (Ωt)
≤ ε‖v‖2

H⌊ 3
2 (l+1)⌋(Ωt)

+ Cε‖v‖
2

H⌊ 3
2 l⌋(Ωt)

≤ εEl(t) + Cε.

Finally, to obtain (5.4) and (5.5), we need to bound the most difficult term, i.e., R0
∇2H,H

= (H ·

∇) curlH. Since l ≥ 4, we have

‖R0
∇2H,H‖2

H
3
2 l−1(Ωt)

= ‖(H · ∇) curlH‖2
H

3
2 l−1(Ωt)

≤ C‖H‖2
H

3
2 l−1(Ωt)

‖ curlH‖2
H

3
2 l(Ωt)

≤ C‖H‖2
H

⌊ 3
2 l⌋(Ωt)

‖ curlH‖2
H

⌊ 3
2 l+1

2 ⌋(Ωt)

≤ C‖ curlH‖2
H⌊ 3

2 l+1
2 ⌋(Ωt)

,

and the proof is complete. �

For the error Rl
II , we have the following results.

Lemma 5.4. Assume that (1.8) holds for T > 0. For l ≤ 3, we have

‖Rl
II‖

2
L2(Ωt)

≤ C

(

1 + ‖∇p‖2
H

3
2 (Ωt)

)

Ē(t).

Assume further that sup
0≤t<T

El−1(t) ≤ C for l ≥ 4, then we have

‖Rl
II‖

2
L2(Ωt)

≤ CEl(t),

and for k ∈ N, 1 ≤ k ≤ l − 1, it holds

‖Rl−k
II ‖2

H
3
2 (k−1)(Ωt)

≤ C.

Proof. To prove the first claim, we show the estimate of

R3
II =

∑

1≤m≤4

∑

|β|≤3,|α|≤1
β1,...,βm−1≥1

aα,β(∇v)∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1
t v ⋆∇α1Dα2+βm

t v.

If m = 1, we consider the case of |β| = β1 = 3 and |α| = 1. We should control a(∇v)D4
t v +

b(∇v)∇D3
t v. From the hypothesis (1.8), it is clear that

‖a(∇v)D4
t v‖

2
L2(Ωt)

+ ‖b(∇v)∇D3
t v‖

2
L2(Ωt)

≤ CĒ(t).

For m = 2, |β| = 3 and |α| = 1, we show the estimates of a(∇v)∇Dtv ⋆ D3
t v and b(∇v)∇D2

t v ⋆
D2

t v. Choosing 1/p + 1/q = 1/2, p = 3/δ with δ > 0 small enough, we see that ‖∇2H‖2
Lq(Ωt)

≤

C‖H‖2
H

5
2+δ(Ωt)

,

‖a(∇v)∇Dtv ⋆D
3
t v‖

2
L2(Ωt)

≤ C‖∇Dtv‖
2
Lq(Ωt)

‖D3
t v‖

2
Lp(Ωt)

≤ C‖∇2p+∇H ⋆∇H +H ⋆∇2H‖2Lq(Ωt)
‖D3

t v‖
2

H
3
2 (Ωt)
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≤ C(1 + ‖∇2p‖2Lq(Ωt)
)E3(t) ≤ C(1 + ‖∇2p‖2

H
1
2 (Ωt)

)Ē(t),

and

‖a(∇v)∇D2
t v ⋆D

2
t v‖

2
L2(Ωt)

≤ C‖∇D2
t v‖

2
L∞(Ωt)

‖D2
t v‖

2
L2(Ωt)

≤ C‖D2
t v‖

2
L2(Ωt)

Ē(t).

To control ‖D2
t v‖

2
L2(Ωt)

, from ‖∆p‖H1(Ωt) ≤ C and using (2.6), (2.11), (2.13), together with (A.4),

we obtain

‖D2
t v‖

2
L2(Ωt)

≤ ‖Dt∇p‖2L2(Ωt)
+ ‖Dt(H · ∇H)‖2L2(Ωt)

≤ ‖∇Dtp‖
2
L2(Ωt)

+ ‖[Dt,∇]p‖2L2(Ωt)
+ ‖DtH ⋆∇H +H ⋆Dt∇H‖2L2(Ωt)

≤ ‖∆Dtp‖
2
L2(Ωt)

+ ‖Dtp‖
2

H
1
2 (Γt)

+ ‖∇v ⋆∇p‖2L2(Ωt)

+ ‖H ⋆∇v ⋆∇H +H ⋆∇v ⋆∇H +H ⋆∇2v ⋆ H‖2L2(Ωt)

≤ ‖div div(v ⊗∇p)‖2L2(Ωt)
+ ‖∇p‖2L2(Ωt)

+ C

+ ‖divR0
II +∇2v ⋆∇H ⋆H +∇v ⋆∇H ⋆∇H

+∇2H ⋆∇v ⋆ H + v ⋆∇2H ⋆∇H‖2L2(Ωt)

≤ ‖∂j∂i(v
i∂jp)‖

2
L2(Ωt)

+ ‖∇p‖2H1(Ωt)
+ C

≤ C(1 + ‖∇p‖2H1(Ωt)
).

In the case of m = 3 and m = 4, we estimate in the same fashion, and obtain

‖Rl
II‖

2
L2(Ωt)

≤ C(1 + ‖∇p‖2
H

3
2 (Ωt)

)Ē(t),

as desired.
To control Rl

II for l ≥ 4, we still focus on the case of |β| = l and |α| = 1. If m = 1, it holds

‖a(∇v)Dl+1
t v + b(∇v)∇Dl

tv‖
2
L2(Ωt)

≤ CEl−1(t) ≤ C.

Next, we handle the product of functions as follows. We simply assume α2 = 1 since the material
derivative Dt is

1
2 -higher than the spatial derivative. If 1 ≤ j ≤ l + 1 − j ≤ l, it follows that

1 ≤ j ≤ ⌊ l+1
2 ⌋ ≤ l − 2, and we have

‖a(∇v)∇Dj
t v ⋆D

l+1−j
t v‖2L2(Ωt)

≤ C‖∇Dj
t v‖

2
L∞(Ωt)

‖Dl+1−j
t v‖2L2(Ωt)

≤ C‖Dj
t v‖

2

H
5
2+ε(Ωt)

‖Dl+1−j
t v‖2L2(Ωt)

≤ CEl−1(t)El(t)

≤ CEl(t).

If 1 ≤ l + 1− j < j ≤ l, we find that ⌊ l+1
2 ⌋+ 1 ≤ j and 1 ≤ l + 1− j ≤ l − 2. Then, we obtain

‖a(∇v)∇Dj
t v ⋆D

l+1−j
t v‖2L2(Ωt)

≤ C‖∇Dj
t v‖

2
L2(Ωt)

‖Dl+1−j
t v‖2L∞(Ωt)

≤ C‖Dj
t v‖

2
H1(Ωt)

‖Dl+1−j
t v‖2

H
3
2+ε(Ωt)

≤ CEl(t).

The others can be estimated in the same way.
We are left with the last claim. For k = 1, it follows by applying the above estimates with l − 1 if

l ≥ 5. As k = 1 and l = 4, it follows from the hypothesis that E3(t) ≤ C. Therefore, ‖∇p‖2
H1(Ωt)

≤

C‖H · ∇H −Dtv‖
2
H1(Ωt)

≤ C. This concludes the proof for k = 1.
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Assume that 2 ≤ k ≤ l − 1 and we shall control ‖Rl−k
II ‖2

H
3
2 (k−1)(Ωt)

defined in (2.13):

∑

1≤m≤l−k+1

∑

|β|≤l−k,|α|≤1
β1,...,βm−1≥1

aα,β(∇v)∇Dβ1
t v ⋆ · · · ⋆∇D

βm−1

t v ⋆∇α1Dα2+βm

t v.

If m = 1, |β| = l − k and |α| = 1, it is clear that

‖a(∇v)Dl+1−k
t v + b(∇v)∇Dl−k

t v‖2
H

3
2 (k−1)(Ωt)

≤ CEl−1(t) ≤ C.

To bound the product of functions, e.g.,m = 2, |β| = l−k, |α| = 1 and 1 ≤ j ≤ l−k−j ≤ l−k−1,
we note that 1 ≤ j ≤ ⌊ l−k

2 ⌋ and

‖a(∇v)‖2
H

3
2 k− 1

2 (Ωt)
≤ C‖∇v‖2L∞(Ωt)

. . . ‖∇v‖2L∞(Ωt)
‖v‖2

⌊ 3l
2
⌋(Ωt)

≤ C.

This, combined with the Sobolev embedding and (A.7), we deduce that

‖a(∇v)∇Dj
t v ⋆∇

α1Dα2+l−k−1
t v‖2

H
3
2 (k−1)(Ωt)

≤ C‖a(∇v)‖2
W

3
2 (k−1),6(Ωt)

‖∇Dj
t v ⋆∇

α1Dα2+l−k−1
t v‖2L3(Ωt)

+ C‖a(∇v)‖2L∞(Ωt)
‖∇Dj

t v ⋆∇
α1Dα2+l−k−1

t v‖2
H

3
2 (k−1)(Ωt)

≤ C‖∇Dj
tv ⋆∇

α1Dα2+l−k−1
t v‖2

H
3
2 (k−1)(Ωt)

≤ C‖∇Dj
tv‖

2

H
3
2 k− 1

2 (Ωt)
‖∇α1Dα2+l−k−1

t v‖2L3(Ωt)

+ C‖∇Dj
t v‖

2
L∞(Ωt)

‖∇α1Dα2+l−k−1
t v‖2

H
3
2 (k−1)(Ωt)

≤ C,

where we have used the fact that

‖∇Dj
t v‖

2

H
3
2 k−1

2 (Ωt)
+ ‖∇Dj

t v‖
2
L∞(Ωt)

≤ C(‖Dj
t v‖

2

H
3
2 k+1

2 (Ωt)
+ ‖Dj

t v‖
2

H
5
2+ε(Ωt)

) ≤ C,

for ε > 0 small enough. Thus, the proof is complete since the other terms can be estimated by using
the similar arguments. �

For the error term Rl
p on the free boundary, we shall control it using ‖∇p‖H2(Ωt) for l ≤ 3.

Lemma 5.5. Assume that (1.8) holds for T > 0. For l ≤ 3, we have

‖Rl
p‖

2

H
1
2 (Γt)

≤ C
(

1 + ‖∇p‖2H2(Ωt)

)

Ē(t).

Assume further that sup
0≤t<T

El−1(t) ≤ C for l ≥ 4, then we have

‖Rl
p‖

2

H
1
2 (Γt)

≤ CEl(t),

and for k ∈ N, 1 ≤ k ≤ l − 1, it holds

‖Rl−k
p ‖2

H
3
2k−1(Γt)

≤ εEl(t) + Cε,

for some ε > 0 small enough.

Proof. It is sufficient to show the estimate for l = 3, since the other cases are easier. Recall the definition
of R3

p, and we denote

R3
p = −|B|2D3

t v · ν
︸ ︷︷ ︸

=:I1

+ ∇̄p · D3
t v

︸ ︷︷ ︸

=:I2

+ a8(ν,∇v) ⋆∇2D2
t v

︸ ︷︷ ︸

=:I3

+ a9(ν,∇v) ⋆∇D2
t v ⋆ B

︸ ︷︷ ︸

=:I4

+ a10(ν,∇v) ⋆∇D2
t v ⋆∇

2v
︸ ︷︷ ︸

=:I5

+ a11(ν,∇v) ⋆∇2Dtv ⋆∇Dtv
︸ ︷︷ ︸

=:I6
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+ a12(ν,∇v) ⋆∇2Dtv ⋆ B + a13(ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆∇
2v

+ a14(ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆ B + L.O.T. .

To control the second term, we estimate as follows

‖I2‖
2

H
1
2 (Γt)

≤ C‖∇̄p‖2
W

1
2 ,4(Γt)

‖D3
t v‖

2
L4(Γt)

+ C‖∇̄p‖2L4(Γt)
‖D3

t v‖
2

W
1
2 ,4(Γt)

≤ C‖∇̄p‖2H1(Γt)
E3(t)

≤ C‖∇p‖2
H

3
2 (Ωt)

Ē(t),

where we have used the fact that

‖∇̄2p‖2L2(Γt)
≤ ‖∇̄(∇p−∇p · νν)‖2L2(Γt)

≤ C(‖∇p‖2H1(Γt)
+ ‖∇p ⋆ B‖2L2(Γt)

)

≤ C‖∇p‖2H1(Γt)
,

and the trace theorem. Similarly, for I1, we obtain by (1.8) that

‖D3
t v · ν‖

2
L2(Γt)

≤ C‖D3
t v‖

2
H1(Ωt)

≤ CĒ(t),

and
‖I1‖

2

H
1
2 (Γt)

≤ C‖|B|2‖2H1(Γt)
‖D3

t v · ν‖
2
H1(Γt)

≤ C(1 + ‖∇p‖2H1(Ωt)
)Ē(t).

Again from (1.8), it follows that

‖I3‖
2

H
1
2 (Γt)

≤ C‖∇2D2
t v‖

2

H
1
2 (Γt)

+ C‖a8(ν,∇v)‖2
W

1
2 ,4(Γt)

‖∇2D2
t v‖

2

H
1
2 (Γt)

≤ CĒ(t),

‖I4‖
2

H
1
2 (Γt)

≤ C‖∇D2
t v ⋆ B‖2

H
1
2 (Γt)

≤ C‖∇D2
t v‖

2

W
1
2 ,4(Γt)

‖B‖2L4(Γt)
+ C‖B‖2

H
1
2 (Γt)

‖∇D2
t v‖

2
L∞(Γt)

≤ CĒ(t),

‖I5‖
2

H
1
2 (Γt)

≤ C‖∇D2
t v ⋆∇

2v‖2
H

1
2 (Γt)

≤ C‖∇2v‖2
H

1
2 (Γt)

(‖∇D2
t v‖

2

W
1
2 ,4(Γt)

+ ‖∇D2
t v‖

2
L∞(Γt)

)

≤ CĒ(t),

‖I6‖
2

H
1
2 (Γt)

≤ C‖∇(−∇p+H · ∇H)‖2
H

1
2 (Γt)

· (‖∇D2
t v‖

2

W
1
2 ,4(Γt)

+ ‖∇D2
t v‖

2
L∞(Γt)

)

≤ C(1 + ‖∇2p‖2H1(Ωt)
)Ē(t),

and the other terms can be estimated in the same way. For l ≥ 4, the proof is similar to [JLM22,
Lemma 5.8], so we omit the details. �

Applying the above error estimates and recalling Proposition 3.1 as well as (4.1), we conclude this
section by presenting the following improved version of Proposition 3.1.

Proposition 5.6. Assume that (1.8) holds for T > 0. Then, we have

d

dt
ē(t) ≤ CĒ(t),

where C depends on T,NT ,MT , ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0).
For l ≥ 4, assume further that sup

0≤t<T

El−1(t) ≤ C, then we have

d

dt
el(t) ≤ CEl(t),
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where the constant C depends on T,NT ,MT , and sup
0≤t<T

El−1(t).

6. Closing the Energy Estimates

In this section, we will close the energy estimates, and we introduce the following energy functional

ẽ(t) :=
1

2

3∑

k=1

(

‖Dk+1
t v‖2L2(Ωt)

+ ‖Dk+1
t H‖2L2(Ωt)

+ ‖∇̄(Dk
t v · ν)‖

2
L2(Γt)

)

+
1

2

(

‖ curl v‖2H5(Ωt)
+ ‖ curlH‖2H5(Ωt)

)

+ 1,

ẽl(t) :=
1

2

(

‖Dl+1
t v‖2L2(Ωt)

+ ‖Dl+1
t H‖2L2(Ωt)

+ ‖∇̄(Dl
tv · ν)‖

2
L2(Γt)

)

+
1

2

(

‖ curl v‖2
H

⌊ 3l+1
2 ⌋(Ωt)

+ ‖ curlH‖2
H

⌊ 3l+1
2 ⌋(Ωt)

)

+ 1, l ≥ 4.

Note that from the a priori assumptions (1.8), it holds

‖ curl v‖2L2(Ωt)
+ ‖ curlH‖2L2(Ωt)

≤ C.

By interpolation, we have ẽ(t) ≤ C(ē+ 1) and ẽl(t) ≤ C(el(t) + 1) for l ≥ 4.
We first control the energy functional Ē(t) by ē(t) under a slightly different hypothesis compared

with the a priori assumptions (1.8). In fact, we have the following result.

Proposition 6.1. Assume that Γt ∈ H3+δ(Γ) with δ > 0 small enough. Assume that the pressure, velocity
and magnetic field satisfy

‖p‖H3(Ωt) + ‖v‖H4(Ωt) + ‖H‖H4(Ωt) ≤ C0.

Then we have
Ē(t) ≤ C(1 + ē(t)), (6.1)

and
‖B‖2

H
9
2 (Γt)

≤ C(1 + ē(t)), (6.2)

where the constant C depends onMt, ‖h(·, t)‖H3+δ (Γ), ‖p‖H3(Ωt), ‖v‖H4(Ωt), and ‖H‖H4(Ωt).

Proof. We shall show that Ē(t) ≤ Cẽ(t). For this purpose, we need to control ‖D4−k
t v‖2

H
3
2 k(Ωt)

,

‖D4−k
t H‖2

H
3
2 k(Ωt)

with 1 ≤ k ≤ 3, ‖v‖2
H6(Ωt)

and ‖H‖2
H6(Ωt)

. Recall that we have already deduced

the estimates for ‖D4−k
t H‖2

H
3
2 k(Ωt)

in (4.12), thanks to (2.9) and (2.10). Then, it is sufficient to control

‖D3
t v‖

2

H
3
2 (Ωt)

, ‖D2
t v‖

2
H3(Ωt)

, ‖Dtv‖
2

H
9
2 (Ωt)

, ‖v‖2H6(Ωt)
, and ‖H‖2H6(Ωt)

.

We divide the proof into three steps.
Step 1. We control ‖D3

t v‖
2

H
3
2 (Ωt)

. Recalling that ‖ν̃‖
H

5
2+δ(Ωt)

≤ C and by the definition of ẽ(t),

we have

‖D3
t v · ν‖

2
L2(Γt)

=

∫

Γt

[(D3
t v · ν)D

3
t v] · νdS

≤ |

∫

Ωt

(D3
t v · ν) divD

3
t vdx| + |

∫

Ωt

∇D3
t v ⋆D

3
t vdx|

+ |

∫

Ωt

D3
t v ⋆∇ν ⋆D3

t vdx|

≤ C(‖D3
t v‖

2
L2(Ωt)

+ ‖divD3
t v‖

2
L2(Ωt)

+ ‖∇D3
t v‖L2(Ωt)‖D

3
t v‖L2(Ωt))

≤ ε‖∇D3
t v‖

2
L2(Ωt)

+ Cεẽ(t) +C‖divD3
t v‖

2
L2(Ωt)

.
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This, combined with Lemmas 2.10, 5.2 and A.13, it follows that

‖D3
t v‖

2

H
3
2 (Ωt)

≤ C(‖D3
t v · ν‖

2
H1(Γt)

+ ‖D3
t v‖

2
L2(Ωt)

+ ‖divD3
t v‖

2

H
1
2 (Ωt)

+ ‖ curlD3
t v‖

2

H
1
2 (Ωt)

),

and therefore,

‖D3
t v‖

2

H
3
2 (Ωt)

≤ C(ẽ(t) + ‖R2
I‖

2

H
1
2 (Ωt)

︸ ︷︷ ︸

=:I1(t)

+ ‖R2
∇H,∇H‖2

H
1
2 (Ωt)

︸ ︷︷ ︸

=:I2(t)

+ ‖R2
∇2H,H‖2

H
1
2 (Ωt)

︸ ︷︷ ︸

=:I3(t)

).

To control the second term, using (2.8), we estimate as follows. Indeed, by the assumption, applying
Young’s inequality and Lemma A.8, we obtain

‖∇2Dtv ⋆∇H ⋆ H‖2
H

1
2 (Ωt)

+ ‖∇Dtv ⋆∇
2H ⋆ H‖2

H
1
2 (Ωt)

≤ C‖Dtv‖
2
H3(Ωt)

‖H‖4H3(Ωt)

≤ ε‖Dtv‖
2

H
9
2 (Ωt)

+ Cε‖Dtv‖
2
L2(Ωt)

≤ εĒ(t) + Cε‖p‖
2
H1(Ωt)

+ Cε‖H · ∇H‖2L2(Ωt)

≤ εĒ(t) + Cε.

As for I3(t), we recall Lemma (2.11), and we handle the most difficult term, i.e.,

‖∇3 curlH ⋆H ⋆ H ⋆ H‖2
H

1
2 (Ωt)

≤ C‖ curlH‖2H4(Ωt)
≤ Cẽ(t).

The other terms can be estimated using the same argument. Again by the Young’s inequality and
Lemma A.8, we can control I1(t). In fact, we have

‖∇D2
t v ⋆∇v‖2

H
1
2 (Ωt)

+ ‖∇Dtv ⋆∇Dtv‖
2

H
1
2 (Ωt)

≤ C‖v‖2H2(Ωt)
‖D2

t v‖
2
H2(Ωt)

+C‖∇Dtv‖
2
L3(Ωt)

‖∇Dtv‖
2

H
3
2 (Ωt)

≤ ε‖D2
t v‖

2
H3(Ωt)

+ Cε‖D
2
t v‖

2
L2(Ωt)

+ (ε‖Dtv‖
2

H
9
2 (Ωt)

+ Cε‖Dtv‖
2
L2(Ωt)

)(‖∇2p‖2L3(Ωt)
+ ‖∇(H · ∇H)‖2L3(Ωt)

)

≤ Cεẽ(t) + εĒ(t).

Combining the above estimates, it follows that

‖D3
t v‖

2

H
3
2 (Ωt)

≤ εĒ(t) + Cεẽ(t).

Step 2. We estimate ‖D2
t v‖

2
H3(Ωt)

and ‖Dtv‖
2

H
9
2 (Ωt)

. Applying Lemmas 2.10 and A.14, it holds

‖Dtv‖
2

H
9
2 (Ωt)

≤ C(‖∆B(Dtv · ν)‖
2
H2(Γt)

+ ‖Dtv‖
2
L2(Ωt)

+ ‖divDtv‖
2

H
7
2 (Ωt)

+ ‖ curlDtv‖
2

H
7
2 (Ωt)

)

≤ Cẽ(t) + C(‖∆B(Dtv · ν)‖
2
H2(Γt)

+ ‖∇v ⋆∇v‖2
H

7
2 (Ωt)

+ ‖∇H ⋆∇H‖2
H

7
2 (Ωt)

+ ‖H ⋆∇ curlH‖2
H

7
2 (Ωt)

)

≤ Cẽ(t) + C‖∆B(Dtv · ν)‖
2
H2(Γt)

,

and

‖D2
t v‖

2
H3(Ωt)

≤ C(‖∆B(D
2
t v · ν)‖

2

H
1
2 (Γt)

+ ‖D2
t v‖

2
L2(Ωt)

+ ‖divD2
t v‖

2
H2(Ωt)
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+ ‖ curlD2
t v‖

2
H2(Ωt)

)

≤ Cẽ(t) + C(‖∆B(D
2
t v · ν)‖

2

H
1
2 (Γt)

+ ‖R1
I‖

2
H2(Ωt)

︸ ︷︷ ︸

=:I4(t)

+ ‖R1
∇H,∇H‖2H2(Ωt)

︸ ︷︷ ︸

=:I5(t)

+ ‖R1
∇2H,H‖2H2(Ωt)

︸ ︷︷ ︸

=:I6(t)

).

We control I4(t) by the bilinear inequality, i.e.,

‖∇Dtv ⋆∇v‖2H2(Ωt)
≤ C‖Dtv‖

2
H3(Ωt)

‖v‖2H3(Ωt)
≤ εĒ(t) + Cεẽ(t).

For I5(t), it holds that

‖∇2v ⋆∇H ⋆H‖2H2(Ωt)
+ ‖∇v ⋆∇H ⋆∇H‖2H2(Ωt)

≤ C‖v‖2H4(Ωt)
‖H‖4H3(Ωt)

≤ C,

from the assumption. The estimate for I6(t) follows since

‖∇2 curl v ⋆ H ⋆ H‖2H2(Ωt)
+ ‖∇2H ⋆∇v ⋆ H‖2H2(Ωt)

+ ‖∇2v ⋆∇H ⋆ H‖2H2(Ωt)

≤ C(‖ curl v‖2H4(Ωt)
‖H‖4H2(Ωt)

+ ‖H‖2H4(Ωt)
‖v‖2H3(Ωt)

‖H‖2H3(Ωt)

+ ‖v‖2H4(Ωt)
‖H‖4H3(Ωt)

) ≤ Cẽ(t).

We are left with ‖∆B(D
2
t v·ν)‖

2

H
1
2 (Γt)

and ‖∆B(Dtv·ν)‖
2
H2(Γt)

. We focus on the estimate of ‖∆B(D
2
t v·

ν)‖2
H

1
2 (Γt)

since the other one is similar. Recalling that from Lemma 2.13, we haveD3
t p = −∆B(D

2
t v ·

ν) + R2
p. Since ‖R

2
p‖

2

H
1
2 (Γt)

is easier to control than ‖D3
t p‖

2

H
1
2 (Γt)

, we only bound ‖D3
t p‖

2

H
1
2 (Γt)

. By

(A.3), it holds

‖D3
t p‖

2

H
1
2 (Γt)

≤ C‖D3
t p‖

2
L2(Γt)

+ C‖∇D3
t p‖

2
L2(Ωt)

=: I7(t) + I8(t).

Applying (2.5), for the first term, we have

I7(t) ≤ C‖D3
tB‖2L2(Γt)

≤ C‖
∑

1≤m≤3

∑

|β|≤3−m,|α|≤1

aα,β(ν,B)∇̄1+α1Dβ1
t v ⋆ · · · ⋆ ∇̄1+αmDβm

t v‖2L2(Γt)
.

In the above, if m = 1, from ‖B‖L∞(Γt) ≤ C, we control a(ν,B)∇̄2D2
t v by the trace theorem and

by interpolation:

‖a(ν,B)∇̄2D2
t v‖

2
L2(Γt)

≤ C‖D2
t v‖

2

H
5
2 (Ωt)

≤ εĒ(t) + Cεẽ(t).

The other cases are either simpler or similar. As for I8(t), it follows that

I8(t) ≤ C‖D3
t∇p‖2L2(Ωt)

+ C‖[∇,D3
t ]p‖

2
L2(Ωt)

≤ Cẽ(t) + C‖D3
t (H · ∇H)‖2L2(Ωt)

+ C‖[∇,D3
t ]p‖

2
L2(Ωt)

.

To control ‖D3
t (H · ∇H)‖2

L2(Ωt)
, again by interpolation, we see that

‖∇2D2
t v ⋆ H ⋆ H‖2L2(Ωt)

+ ‖∇2Dtv ⋆ H ⋆ H‖2L2(Ωt)

≤ C‖D2
t v‖

2
H2(Ωt)

+ C‖Dtv‖
2
H2(Ωt)

≤ εĒ(t) +Cεẽ(t),

and we estimate ‖[∇,D3
t ]p‖

2
L2(Ωt)

as follows

‖∇D2
t v ⋆∇p‖2L2(Ωt)

+ ‖∇Dtv ⋆∇Dtp‖
2
L2(Ωt)

+ ‖∇v ⋆∇D2
t p‖

2
L2(Ωt)

≤ C(‖D2
t v‖

2
H2(Ωt)

‖p‖2
H

3
2 (Ωt)

+ ‖∇(H · ∇H) ⋆∇Dtp‖
2
L2(Ωt)

+ ‖∇2p ⋆∇Dtp‖
2
L2(Ωt)

+ ‖∇D2
t p‖

2
L2(Ωt)

)

≤ C‖D2
t v‖

2
H2(Ωt)

+ C‖∇Dtp‖
2
L3(Ωt)

+ C‖∇D2
t p‖

2
L2(Ωt)

.
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We note that ‖∇D2
t p‖

2
L2(Ωt)

and ‖∇Dtp‖
2
L3(Ωt)

have fewer material derivatives than ‖∇D3
t p‖

2
L2(Ωt)

.

Therefore, it can be estimated as I8(t) in the same fashion, and we can obtain

‖D3
t p‖

2

H
1
2 (Γt)

≤ Cẽ(t) + εĒ(t).

Similarly, it holds

‖D2
t p‖

2
H2(Γt)

≤ Cẽ(t) + εĒ(t).

Combining the above estimates, we conclude that

‖D2
t v‖

2
H3(Ωt)

+ ‖Dtv‖
2

H
9
2 (Ωt)

≤ Cẽ(t) + εĒ(t).

Step 3. Finally, we bound ‖v‖2
H6(Ωt)

and ‖H‖2
H6(Ωt)

. From Lemma A.14, we see that

‖v‖2H6(Ωt)
≤ C(ẽ(t) + ‖∆Bvn‖

2

H
7
2 (Γt)

+ ‖B‖2
H

9
2 (Γt)

),

‖H‖2H6(Ωt)
≤ C(ẽ(t) + ‖B‖2

H
9
2 (Γt)

).

Recalling Lemma 5.1 and by the trace theorem, it follows that

‖B‖2
H

9
2 (Γt)

≤ C(1 + ‖p‖2
H

9
2 (Γt)

)

≤ C(1 + ‖H · ∇H −Dtv‖
2
H4(Ωt)

)

≤ C + ‖H‖2H5(Ωt)
+ ε‖Dtv‖

2

H
9
2 (Ωt)

+Cε‖Dtv‖
2
L2(Ωt)

≤ εĒ(t) + ‖H‖2H5(Ωt)
+ Cε.

Again by Lemma A.14, we can estimate in H5(Ωt) and deduce ‖H‖2
H5(Ωt)

≤ Cẽ(t) + ‖B‖2
H

7
2 (Γt)

.

Similarly, it holds

‖B‖2
H

7
2 (Γt)

≤ εĒ(t) + ‖H‖2H4(Ωt)
+ Cε ≤ εĒ(t) + Cε.

Thus, we see that

‖B‖2
H

9
2 (Γt)

≤ εĒ(t) + Cε, ‖p‖2
H

9
2 (Γt)

≤ εĒ(t) + Cε,

and ‖H‖2
H6(Ωt)

≤ εĒ(t) + Cε. To obtain the desired estimate, we are left with ‖∆Bvn‖
2

H
7
2 (Γt)

.

From (2.15) and by the above calculations, it follows that

‖∆Bvn‖
2

H
7
2 (Γt)

≤ C‖Dtp‖
2

H
7
2 (Γt)

+ C‖|B|2vn‖
2

H
7
2 (Γt)

+ C‖∇̄p · v‖2
H

7
2 (Γt)

≤ C‖v‖2H4(Ωt)
‖B‖2L∞(Γt)

‖B‖2
H

7
2 (Γt)

+ εĒ(t) + Cε

≤ εĒ(t) + Cε,

where we have used the fact that

‖Dtp‖
2

H
7
2 (Γt)

≤ C(‖Dtp‖
2
L2(Γt)

+ ‖∇Dtp‖
2
H3(Ωt)

)

≤ C(1 + ‖D2
t v‖

2
H3(Ωt)

+ ‖Dt(H · ∇H)‖2H3(Ωt)

+ ‖∇v ⋆ (H · ∇H −Dtv)‖
2
H3(Ωt)

)

≤ Cẽ(t) +
ε

2
Ē(t) + C‖∇DtH‖2H3(Ωt)

‖H‖2H3(Ωt)

≤ Cẽ(t) + εĒ(t),

since ‖DtH‖2
H4(Ωt)

and ‖D2
t v‖

2
H3(Ωt)

have already been controlled. This completes the proof. �

Now we prove the higher-order energy estimate.
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Proposition 6.2. Let l ≥ 4. Assume that (1.8) holds for some T > 0 and sup
0≤t<T

El−1(t) ≤ C. Then we have
El(t) ≤ C(1 + el(t)),

where the constant C depends on l, T,NT ,MT and sup
0≤t<T

El−1(t).

Proof. We will show that El(t) ≤ Cẽl(t) and we divide the proof into three steps.
Step 1.We claim that it is sufficient to bound ‖Dl+1−k

t v‖2
H

3
2 k(Ωt)

with k ∈ {1, 2, . . . , l}, ‖v‖2
H

⌊ 3l+3
2 ⌋(Ωt)

and ‖H‖2
H

⌊ 3l+3
2 ⌋(Ωt)

. Indeed, for k ∈ {1, 2, . . . , l}, we can control ‖Dl+1−k
t H‖2

H
3
2k(Ωt)

by the sum of

‖Dl+1−k
t v‖2

H
3
2 k(Ωt)

, ‖v‖2
H⌊ 3l+3

2 ⌋(Ωt)
, and ‖H‖2

H⌊ 3l+3
2 ⌋(Ωt)

.

Starting with the case of 2 ≤ k ≤ l − 1, from the hypothesis El−1(t) ≤ C, (2.9) and (2.10), we
have

‖Dl+1−k
t H‖2

H
3
2k(Ωt)

≤ C‖
∑

1≤m≤l+1−k

∑

|β|≤l+1−k−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆ H‖2
H

3
2k(Ωt)

≤ C
∑

1≤m≤l+1−k
|β|≤l+1−k−m

‖∇Dβ1
t v‖2

H
3
2 k(Ωt)

. . . ‖∇Dβm

t v‖2
H

3
2k(Ωt)

‖H‖2
H

3
2 k(Ωt)

.

If m = 1, we see that

‖Dl+1−k
t H‖2

H
3
2k(Ωt)

≤ C(‖∇Dl−k
t v‖2

H
3
2k(Ωt)

+ El−1(t))

≤ C(‖D
l+1−(k+1)
t v‖2

H
3
2 (k+1)(Ωt)

+ 1),

since ‖H‖2
H

3
2k(Ωt)

≤ CEl−1(t) ≤ C.

Form ≥ 2, it holds

‖Dl+1−k
t H‖2

H
3
2 k(Ωt)

≤ C El−1(t) . . . El−1(t)
︸ ︷︷ ︸

finite product

≤ C.

Next, we deal with the case of k = 1, and it follows that

‖Dl
tH‖2

H
3
2 (Ωt)

≤ C‖
∑

1≤m≤l

∑

|β|≤l−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆ H‖2
H

3
2 (Ωt)

≤ C
∑

β1≤l−1

‖∇Dβ1
t v‖2

H
3
2 (Ωt)

‖H‖2H2(Ωt)

+ C
∑

2≤m≤l
|β|≤l−m

‖∇Dβ1
t v‖2H2(Ωt)

. . . ‖∇Dβm

t v‖2H2(Ωt)
‖H‖2H2(Ωt)

≤ C(‖∇Dl−1
t v‖2

H
3
2 (Ωt)

+ 1) ≤ C(‖Dl+1−2
t v‖2H3(Ωt)

+ 1).

Finally, for even integer k = l, from El−1(t) ≤ C, one has

‖DtH‖2
H

3
2 l(Ωt)

≤ C‖H‖2
H

3
2 l(Ωt)

‖v‖2
H

3
2 l+1(Ωt)

≤ C‖H‖2
H

⌊ 3
2 l⌋(Ωt)

‖v‖2
H

⌊ 3
2 l+1⌋(Ωt)

≤ C‖v‖2
H

⌊ 3l+3
2 ⌋(Ωt)

,

and if k = l is odd, we have by Lemma A.9 that

‖DtH‖2
H

3
2 l(Ωt)

≤ C(‖H‖2L∞(Ωt)
‖v‖2

H
3
2 l+1(Ωt)

+ ‖H‖2
H

3
2 l(Ωt)

‖v‖2L∞(Ωt)
)
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≤ C‖v‖2
H⌊ 3l+3

2 ⌋(Ωt)
+ C‖H‖2

H⌊ 3l+3
2 ⌋(Ωt)

.

Step 2. We claim that ‖Dl
tv‖

2

H
3
2 (Ωt)

≤ εEl(t) +Cẽl(t). Note that from ‖ν‖
H

5
2+δ(Ωt)

≤ C and the

assumption El−1(t) ≤ C, we have

‖Dl
tv · ν‖

2
L2(Γt)

=

∫

Γt

[(Dl
tv · ν)D

l
tv] · νdS

≤ |

∫

Ωt

(Dl
tv · ν) divD

l
tvdx|+ |

∫

Ωt

∇Dl
tv ⋆D

l
tvdx|

+ |

∫

Ωt

Dl
tv ⋆∇ν ⋆Dl

tvdx|

≤ C(‖Dl
tv‖

2
L2(Ωt)

+ ‖divDl
tv‖

2
L2(Ωt)

+ ‖∇Dl
tv‖L2(Ωt)‖D

l
tv‖L2(Ωt))

≤ C(‖divDl
tv‖

2
L2(Ωt)

+ ε‖∇Dl
tv‖

2
L2(Ωt)

+ CεEl−1(t))

≤ ε‖∇Dl
tv‖

2
L2(Ωt)

+ C(1 + ‖divDl
tv‖

2
L2(Ωt)

).

This, combined with Lemma A.13, we see that

‖Dl
tv‖

2

H
3
2 (Ωt)

≤ C(‖Dl
tv · ν‖

2
H1(Γt)

+ ‖Dl
tv‖

2
L2(Ωt)

+ ‖divDl
tv‖

2

H
1
2 (Ωt)

+ ‖ curlDl
tv‖

2

H
1
2 (Ωt)

)

≤ C(ε‖Dl
tv‖

2
H1(Ωt)

+ 1 +El−1(t) + ‖∇̄(Dl
tv · ν)‖

2
L2(Γt)

+ ‖divDl
tv‖

2

H
1
2 (Ωt)

+ ‖ curlDl
tv‖

2

H
1
2 (Ωt)

).

Then, it follows that

‖Dl
tv‖

2

H
3
2 (Ωt)

≤ C(ẽl(t) + ‖divDl
tv‖

2

H
1
2 (Ωt)

︸ ︷︷ ︸

=:I1(t)

+ ‖ curlDl
tv‖

2

H
1
2 (Ωt)

︸ ︷︷ ︸

=:I2(t)

).

Applying Lemmas 2.10, 5.2 and 5.3, we arrive at

I1(t) + I2(t) ≤ C(‖Rl−1
I ‖2

H
1
2 (Ωt)

+ ‖Rl−1
∇H,∇H‖2

H
1
2 (Ωt)

+ ‖Rl−1
∇2H,H

‖2
H

1
2 (Ωt)

)

≤ εEl(t) + Cε,

where ε > 0 is sufficiently small. This concludes the claim.
Step 3. We claim that for 2 ≤ k ≤ l, it holds

‖Dl+1−k
t v‖2

H
3
2 k(Ωt)

≤ C‖Dl+3−k
t v‖2

H
3
2k−3(Ωt)

+ εEl(t) + Cεẽl(t). (6.3)

Once we have these estimates, it follows that ‖Dl−1
t v‖2

H3(Ωt)
≤ εEl(t) + Cεẽl. This, combined with

Step 2, will control ‖Dl+1−k
t v‖2

H
3
2 k(Ωt)

for any 3 ≤ k ≤ l.

To prove (6.3), from Lemmas 2.10, 5.2, 5.3 and A.14, it holds

‖Dl+1−k
t v‖2

H
3
2 k(Ωt)

≤ C(‖∆B(D
l+1−k
t v · ν)‖2

H
3k−5

2 (Γt)
+ ‖Dl+1−k

t v‖2L2(Ωt)

+ ‖divDl+1−k
t v‖2

H
3k−2

2 (Ωt)
+ ‖ curlDl+1−k

t v‖2
H

3k−2
2 (Ωt)

)

≤ C(‖∆B(D
l+1−k
t v · ν)‖2

H
3k−5

2 (Γt)
+ ‖Rl−k

I ‖2
H

3k−2
2 (Ωt)

+ ‖Rl−k
∇H,∇H‖2

H
3k−2

2 (Ωt)
+ ‖Rl−k

∇2H,H
‖2
H

3k−2
2 (Ωt)

+ El−1(t))

≤ C‖∆B(D
l+1−k
t v · ν)‖2

H
3k−5

2 (Γt)
+ εEl(t) +Cε.
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Lemmas 2.13 and 5.5 imply thatDl+2−k
t p = −∆B(D

l+1−k
t v·ν)+Rl+1−k

p as well as ‖Rl+1−k
p ‖2

H
3k−5

2 (Γt)
≤

‖R
l−(k−1)
p ‖2

H
3
2 (k−1)−1(Γt)

≤ εEl(t) + Cε. Then, we obtain

‖Dl+1−k
t v‖2

H
3
2 k(Ωt)

≤ C‖Dl+2−k
t p‖2

H
3k−5

2 (Γt)
+ εEl(t) + Cε.

By (A.4), we see that

‖Dl+2−k
t p‖2

H
3k−5

2 (Γt)
≤ ‖Dl+2−k

t p‖2
H

3k−6
2 (Γt)

+ ‖∇Dl+2−k
t p‖2

H
3k−6

2 (Ωt)

=: I3(t) + I4(t).

The first term can be controlled by using Lemma 2.4 as in Proposition 6.1, and we have I3(t) ≤
εEl(t) + Cε. For the second term, by (1.1), Lemmas 5.3 and 5.4, it holds

I4(t) ≤ ‖[∇,Dl+2−k
t ]p‖2

H
3k−6

2 (Ωt)
+ ‖Dl+3−k

t v‖2
H

3k−6
2 (Ωt)

+ ‖Dl+2−k
t (H · ∇H)‖2

H
3k−6

2 (Ωt)

≤ ‖Dl+3−k
t v‖2

H
3k−6

2 (Ωt)
+ ‖

∑

β≤l+1−k

∇Dβ
t v ⋆∇H ⋆H‖2

H
3k−6

2 (Ωt)

+ ‖Rl+1−k
II ‖2

H
3k−6

2 (Ωt)
+ ‖Rl+2−k

∇H,H ‖2
H

3k−6
2 (Ωt)

≤ ‖Dl+3−k
t v‖2

H
3k−6

2 (Ωt)
+ εEl(t) + Cε.

Combining the above estimates, (6.3) follows.
Finally, it remains to verify that ‖v‖2

H
⌊ 3l+3

2 ⌋(Ωt)
+ ‖H‖2

H
⌊ 3l+3

2 ⌋(Ωt)
≤ εEl(t) + Cεẽl(t). Note that

from Lemma 5.1 with l ≥ 4, it follows that ‖B‖
H

3
2 l−1(Γt)

≤ C and ‖B‖Hk(Γt) ≤ C(1 + ‖p‖Hk(Γt))

for k ∈ N

2 , k ≤ 3
2 l. Then, we can apply the same argument as in Proposition 6.1. This completes the

proof. �

7. Proof of the Main Theorem

We are ready to prove the main theorem.

Proof of Theorem 1.1. We divide the proof into three parts.
Step 1. Assume that the quantities NT and MT , defined in (1.7) and (1.6) respectively, satisfy the

a priori assumptions (1.8) for some T > 0. We claim that

sup
0≤t<T

(

Ē(t) +

3∑

k=0

‖D3−k
t p‖

H
3
2k+1(Ωt)

+ ‖BΓt‖H5(Γt)

)

≤ C̄
(
T,NT ,MT , ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), ‖AΓ0‖H5(Γ0)

)
, (7.1)

and

sup
0≤t<T

El(t) ≤ Cl (T,NT ,MT , El(0)) , l ≥ 4. (7.2)

These estimates quantify the regularity of the flow, provided that the a priori assumptions are bounded.
Recalling the estimates in Section 4 that

Ē(0) + sup
0≤t<T

‖p‖2H3(Ωt)
≤ C,

where C depends on T,NT ,MT , ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0). Then, the assumptions
of Proposition 6.1 hold for any 0 ≤ t < T , and Propositions 5.6 and 6.1 allow us to obtain

d

dt
ē(t) ≤ CĒ(t) ≤ C(1 + ē(t)) (7.3)
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for 0 ≤ t < T . Integrating over (0, t), we have

sup
0≤t<T

ē(t) ≤ C(1 + ē(0))eCT .

Again by Proposition 6.1, we see that

sup
0≤t<T

Ē(t) ≤ C + C(1 + ē(0))eCT ≤ C + CĒ(0)eCT ≤ C̄0, (7.4)

where C̄0 depends on T,NT ,MT , ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0).

With sup
0≤t<T

(Ē(t) + ‖p‖2
H3(Ωt)

) ≤ C̄0, applying Lemma 5.1 and the trace theorem, it follows that

‖B‖2
H

9
2 (Γt)

≤ C(1 + ‖p‖2
H

9
2 (Γt)

) ≤ C(1 + ‖H · ∇H −Dtv‖
2
H4(Ωt)

) ≤ C(C̄0),

which means ‖B‖2
H

9
2 (Γt)

+ ‖p‖2
H5(Ωt)

≤ C(C̄0). We proceed to find that

‖p‖2
H

11
2 (Ωt)

≤ C(1 + ‖∇p‖2
H

9
2 (Ωt)

) ≤ C(1 + ‖H · ∇H −Dtv‖
2

H
9
2 (Ωt)

) ≤ C(C̄0),

and utilize Lemma A.11 to obtain

‖B‖2H5(Γt)
≤ C(1 + ‖p‖2H5(Γt)

) ≤ C(C̄0).

In particular, it follows that ‖A‖2
H5(Γt)

≤ C(C̄0), and (4.11) yields

3∑

k=0

‖D3−k
t p‖2

H
3
2k+1(Ωt)

≤ C,

whereC depends onR−‖h(·, t)‖L∞(Γ), ‖v‖H6(Ωt), ‖H‖H6(Ωt), and ‖A‖H5(Γt). Combining the above
estimates, we conclude that

sup
0≤t<T

(

Ē(t) +
3∑

k=0

‖D3−k
t p‖

H
3
2 k+1(Ωt)

+ ‖BΓt‖H5(Γt)

)

≤ C̄,

where C̄ depends on T,NT ,MT , ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0).
To verify the second claim, for l ≥ 4, we apply Propositions 5.6 and 6.2 by induction: if sup

0≤t<T

El−1(t) ≤

C, then it follows that
d

dt
el(t) ≤ CEl(t) ≤ C(1 + el(t)).

Similarly, we integrate over (0, t) and use Proposition 6.2 again to obtain

sup
0≤t<T

el(t) ≤ C(1 + el(0))e
CT ,

and
sup

0≤t<T

El(t) ≤ C + C(1 + el(0))e
CT ≤ Cl, (7.5)

where the constant Cl depends on l, T,NT ,MT , sup
0≤t<T

El−1(t), and el(0). However, the induction

argument implies that (7.5) holds for all l and the constant Cl which depends on l, T,NT ,MT , el(0)
and ē(0) from (7.4). Note that ē(0) + el(0) ≤ CEl(0), and the constant Cl in fact depends on
l, T,NT ,MT , and El(0). This completes the proof of our claim.
Step 2. We prove the last statement in Theorem 1.1, i.e., the a priori assumptions (1.8) hold

for some time T0 ≥ c0 > 0, where the constant c0 depends on M0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0) and
‖AΓ0‖H5(Γ0). To this aim, we define

I(t) := ‖B‖2H3(Γt)
+ ‖p‖2H3(Ωt)

+ ‖v‖2H4(Ωt)
+ ‖H‖2H4(Ωt)

+ 1, t ≥ 0.

Suppose that it holds I(t) ≤ 2I(0) and Mt ≥ M0/2 for some time t > 0, where M0 = R −
‖h0‖L∞(Γ). Then we have ‖AΓt‖

2
H3(Γt)

≤ C(I(0)). Therefore, applying Lemma A.4, it follows that

‖h(·, t)‖H3+δ (Γ) ≤ C, for δ > 0 small enough, where the constant C depends on ‖AΓt‖H1+δ(Γt), and
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hence on I(0). An application of Proposition 6.1 allows us to obtain that there exists a constant C,
which depends on I(0) andM0 such that

Ē(t) ≤ C(1 + ē(t)). (7.6)

From the above argument, we define T0 ∈ (0, 1] to be the largest number such that

[0, T0] ⊂

{

t ∈ [0, 1] : I(t) ≥
I(0)

2
,Mt ≥

M0

2
, and ē(t) ≤ 1 + ē(0)

}

. (7.7)

Here, we make the assumption that T0 < 1, since the claim would be trivial otherwise. We note that
the last condition together with (7.6) implies that

sup
0≤t≤T0

Ē(t) ≤ C(1 + ē(t)) ≤ C(2 + ē(0)) ≤ CĒ(0). (7.8)

Also, we observe that the NT defined in (1.7) satisfies

N 2
T0

≤ C sup
0≤t<T0

Ē(t),

thanks to the curvature bound ‖B‖H3(Γt) ≤ 2I(0). Indeed, from ∇̄vn = ∇̄v ·ν−v ⋆B, we can bound
‖vn‖H4(Γt) by using ‖v‖H4(Γt) and ‖B‖H3(Γt).
The estimate (7.8) ensures that the a priori assumptions (1.8) hold for time T = T0, and the claim

follows once we show that the time T0 specified in (7.7) has a lower bound c0 > 0, depending only on
the initial data.
According to the definition of T0, at least one of the three conditions has equality. Assume that

I(T0) = 2I(0). Then, it holds Ē(t) ≤ CĒ(0), for all t ≤ T0 by (7.8). We will show that

d

dt
I(t) ≤ CĒ(t)I(t) ≤ CĒ(0)I(t). (7.9)

We focus on the computation of the highest-order terms. In fact, Lemma 2.3 yields

d

dt

(

‖∇4v‖2L2(Ωt)
+ ‖∇4H‖2L2(Ωt)

)

=

∫

Ωt

Dt∇
4v ⋆∇4v +Dt∇

4H ⋆∇4Hdx

≤

∫

Ωt

∇4Dtv ⋆∇
4vdx+

∫

Ωt

∑

|α|≤3

∇1+α1v ⋆∇1+α2v ⋆∇4vdx

+

∫

Ωt

∇4DtH ⋆∇4Hdx+

∫

Ωt

∑

|α|≤3

∇1+α1v ⋆∇1+α2H ⋆∇4Hdx

≤ ‖∇4Dtv‖L3(Ωt)‖∇
4v‖L6(Ωt) + ‖∇4DtH‖L3(Ωt)‖∇

4H‖L6(Ωt)

+ ‖v‖2H5(Ωt)
‖v‖H4(Ωt) + ‖H‖2H5(Ωt)

‖H‖H4(Ωt)

≤ CĒ(t)I(t).

Applying Lemmas 2.3 and 2.6, we see that

d

dt
‖∇3p‖2L2(Ωt)

=

∫

Ωt

Dt∇
3p ⋆∇3pdx

=

∫

Ωt

∇2Dt∇p ⋆∇3pdx+

∫

Ωt

∇2v ⋆∇2p ⋆∇3p+∇v ⋆∇3p ⋆∇3p

+∇v ⋆∇2p ⋆∇3pdx

≤ |

∫

Ωt

(∇2D2
t v +∇2(∇2v ⋆ H ⋆ H) +∇2(∇v ⋆∇H) ⋆ H) ⋆∇3pdx|

+ C‖v‖H3(Ωt)‖p‖
2
H3(Ωt)
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≤ CĒ(t)I(t).

Similarly, we obtain by Lemma 2.1 that

d

dt
‖∇̄3B‖2L2(Γt)

=

∫

Γt

|∇̄3B|2 divσ vdS +

∫

Γt

Dt∇̄
3B ⋆ ∇̄3BdS

≤ ‖B‖2H3(Γt)
‖∇v‖L∞(Γt) +

∫

Γt

∇̄3(∇̄2v ⋆ ν + ∇̄v ⋆ B) ⋆ ∇̄3BdS

+

∫

Γt

∑

|α|≤2

∇̄1+α1v ⋆ ∇̄1+α2B ⋆ ∇̄3BdS

≤ CĒ(t)I(t).

By integrating (7.9) over (0, T0) and using I(T0) = 2I(0), we obtain

ln 2 = ln I(T0)− ln I(0) ≤ CT0Ē(0).

Then we have

T0 ≥
C

Ē(0)
= c0,

where the constant c0 depends on I(0),M0, and Ē(0). Moreover, by Lemma 5.1 and Proposition
4.7, the constant c0 depends only onM0, ‖v0‖H6(Ω0), ‖H0‖H6(Ω0) and ‖AΓ0‖H5(Γ0).
A similar argument applies if we have an equality in the third condition, i.e., ē(T0) = 1 + ē(0). In

fact, it follows that
d

dt
ē(t) ≤ CĒ(t) ≤ CĒ(0),

by (7.3) and (7.8), and we integrate the above over (0, T0) to obtain

1 = ē(T0)− ē(0) ≤ CĒ(0)T0.

This results in T0 ≥ c0 > 0 again, with the constant c0 depending on the same initial data.
Finally, we assume thatMT0 = M0/2. Recalling that

MT = R− sup
0≤t<T

‖h(·, t)‖L∞(Γ),

andM0 > 0, we define 0 < T1 ≤ T0 by

MT0 = R− ‖h(·, T1)‖L∞(Γ).

It is clear that ‖vn‖2L∞(Ωt)
≤ CĒ(t) ≤ CĒ(0) by using (7.8). Recalling the fact that d

dt
h = vn, we

have by the fundamental Theorem of calculus that

MT0 = R− ‖h(·, T1)‖L∞(Γ)

≥ R− ‖h0‖L∞(Γ) −

∫ T1

0
‖vn‖L∞(Ωt) dt

≥ M0 − CĒ(0)
1
2T1,

which means T0 ≥ T1 ≥ CM0/Ē(0)
1
2 > 0. This concludes the claim.

Step 3. We prove the first three statements of Theorem 1.1. According to the a priori assumptions,
the estimates (7.1) and (7.2) hold. In particular, we conclude by Lemmas 5.1 and A.4 that the regu-
larity of the curvature implies the regularity of the free boundary, i.e., ΓT ∈ C∞. Additionally, the
quantitative regularity estimates show that v(·, T ),H(·, T ) ∈ C∞(ΩT ).
Then, we apply the results in Step 2 to the domain ΩT and conclude that system (1.1) is well-defined

and the a priori assumptions hold for some time τ > 0. Moreover, by (7.7) and (7.8), it follows that

sup
T≤t<T+τ

Ē(t) ≤ CĒ(T ), andMT+τ ≥
MT

2
.
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Therefore, applying the same argument as in Step 1 yields

sup
0≤t<T+τ

(

Ē(t) +

3∑

k=0

‖D3−k
t p‖

H
3
2 k+1(Ωt)

+ ‖BΓt‖H5(Γt)

)

≤ C̄,

where C̄ depends on T,NT ,MT , ‖v0‖H6(Ω0), ‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0). Again by induction as
in (7.2), we obtain

sup
0≤t<T+τ

El(t) ≤ Cl,

where the constant Cl depends on l, T,NT ,MT , and El(0). This completes the proof of the theorem.
�

Appendix A. Some Estimates and Formulas

Lemma A.1 ([BM18]). Let Ω be a standard domain, i.e., Ω is either Rn or a half-space or a Lipschitz
bounded domain in R

n. For real numbers s1, s2, s ≥ 0, θ ∈ (0, 1) and 1 ≤ p1, p2, p ≤ ∞, satisfy the
relations

s = θs1 + (1− θ)s2,
1

p
=

θ

p1
+

1− θ

p2
.

(1) If s1 < s < s2,
‖f‖W s,p(Ω) ≤ C‖f‖θW s1,p1 (Ω)‖f‖

1−θ
W s2,p2(Ω) (A.1)

holds, if and only if

s2 ∈ N
+, p2 = 1, s1 −

1

p1
≥ s2 −

1

p2
(A.2)

fails. More precisely, if (A.2) fails then, for every θ ∈ (0, 1), there exists a constant C depending on
s1, s2, p1, p2, θ and Ω such that

‖f‖W s,p(Ω) ≤ C‖f‖θW s1,p1 (Ω)‖f‖
1−θ
W s2,p2 (Ω).

If (A.2) holds, there exists some f ∈ W s1,p1(Ω)∩W s2,p2(Ω) such that f /∈ W s,p(Ω),∀θ ∈ (0, 1).
(2) If s1 = s2, it is simply Hölder’s inequality.

Lemma A.2 (Reynolds transport theorem). For all smooth function f(·, t) : Ωt → R, it holds

d

dt

∫

Ωt

fdx =

∫

Ωt

Dtfdx.

Lemma A.3 ([SZ08b]). For all smooth function f(·, t) : Γt → R, it holds

d

dt

∫

Γt

fdS =

∫

Γt

Dtf + f divσ vdS.

Lemma A.4 ([SZ08b, PropositionA.2]). LetΩ ⊂ R
3 be a domain such that ∂Ω ∈ Hs0 , s0 > 2. Suppose

‖A‖Hs−2(Γt) ≤ C with s ≥ s0, then ∂Ω ∈ Hs.

Definition A.5. Let Γ = ∂Ω and Ω be a smooth domain. Let u ∈ L2(Γ). We say u ∈ H
1
2 (Γ) if

‖u‖
H

1
2 (Γ)

:= ‖u‖L2(Γ) + inf{‖∇w‖L2(Ω) : w ∈ H1(Ω) and w = u on Γ}

= ‖u‖L2(Γ) + ‖∇v‖L2(Ω),

where v ∈ H1(Ω) such that v|Γ = u in the trace sense and ∆v = 0 in the weak sense.

We note that for u ∈ H1(Ω), it holds

‖u‖
H

1
2 (Γ)

≤ ‖u‖L2(Γ) + ‖∇u‖L2(Ω). (A.3)

Moreover, since we define the spaceH
1
2 (Γ) via the harmonic extension, for u ∈ H2(Ω) and v ∈ H1(Ω)

such that u|Γ is the trace of v on Γ, we have

‖∇u‖2L2(Ω) ≤‖∇(u− v)‖2L2(Ω) + ‖∇v‖2L2(Ω)

≤‖(u− v)∆u‖L1(Ω) + ‖∇v‖2L2(Ω)
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≤ε‖u− v‖2L2(Ω) + Cε‖∆u‖2L2(Ω) + ‖∇v‖2L2(Ω)

≤ε‖∇(u− v)‖2L2(Ω) + Cε‖∆u‖2L2(Ω) + ‖∇v‖2L2(Ω)

≤ε‖∇u‖2L2(Ω) +Cε‖∆u‖2L2(Ω) + C‖∇v‖2L2(Ω)

≤ε‖∇u‖2L2(Ω) +C(‖∆u‖2L2(Ω) + ‖u‖2
H

1
2 (Γ)

),

where we have used the fact that v − u ∈ H1
0 (Ω) and Poincaré’s inequality. Therefore, we see that

‖∇u‖L2(Ω) ≤ C
(

‖∆u‖L2(Ω) + ‖u‖
H

1
2 (Γ)

)

. (A.4)

Furthermore, if v is the harmonic extension of u|Γ, it follows that ‖v‖H1(Ω) ≤ C‖u‖
H

1
2 (Γ)

and we

can obtain

‖u‖H1(Ω) ≤ C
(

‖∆u‖L2(Ω) + ‖u‖
H

1
2 (Γ)

)

. (A.5)

LemmaA.6 ([Man02, Proposition 6.5]). AssumeΓ ⊂ R
3 is a compact hypersurface which isC1,α-regular

and ‖B‖L4(Γ) ≤ C. Then for k, l ∈ N0, 0 ≤ k < l, p, r ∈ [1,∞), and q ∈ [1,∞], we have for all tensor
fields T that

‖∇̄kT‖Lp(Γ) ≤ C‖T‖θ
W l,r(Γ)‖T‖

(1−θ)
Lq(Γ),

where p, θ ∈ [0, 1] are given by 1/p = k/2 + θ(1/r − l/2) + (1− θ)/q.
In particular, for k, l ∈ N0, 0 ≤ k < l, q ∈ [1,∞], we have

‖∇̄ku‖L2(Γ) ≤ C‖u‖θHl(Γ)‖u‖
(1−θ)
Lq(Γ),

where θ ∈ [0, 1] are given by 1 = k + θ (1− l) + (2− 2θ)/q.

LemmaA.7 ([JLM22, Corollary 2.9]). Letm ∈ N0 andΓ ⊂ R
3 be a compact 2-dimensional hypersurface

which is C1,α-regular such that Γ = ∂Ω and satisfies the condition (Hm), i.e.,

‖B‖L4(Γ) ≤ C, ifm = 2, ‖B‖L∞(Γ) + ‖B‖Hm−2(Γ) ≤ C, ifm > 2. (A.6)

Then for all k, l ∈ N

2 with k < l ≤ m and for q ∈ [1,∞], it holds

‖u‖Hk(Γ) ≤ C‖u‖θHl(Γ)‖u‖
1−θ
Lq(Γ),

where θ ∈ [0, 1] is given by 1 = k − θ(l − 1) + (2− 2θ)/q, and

‖u‖Hk(Ω) ≤ C‖u‖θHl(Ω)‖u‖
1−θ
Lq(Ω),

where θ ∈ [0, 1] is given by 1/2 = k/3 + θ(1/2− l/3) + (1− θ)/q.
Moreover, for k, l ∈ N0 with k < l ≤ m and for p ∈ [1,∞) , q ∈ [1,∞], it holds

‖∇ku‖Lp(Ω) ≤ C‖u‖θ
Hl(Ω)‖u‖

1−θ
Lq(Ω),

where θ ∈ [0, 1] is given by 1/p = k/3 + θ(1/2 − l/3) + (q − θ)/q.

Lemma A.8 ([CS17, JLM22]). For f, g ∈ C∞
0 (Rn) and numbers 2 ≤ p1, q2 < ∞, 2 ≤ p2, q1 ≤ ∞

with 1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/2, then we have for all k ∈ N

2 ,

‖fg‖Hk(Rn) ≤ C‖f‖W k,p1(Rn)‖g‖Lq1 (Rn) + C‖g‖W k,q2 (Rn)‖f‖Lp2 (Rn). (A.7)

Lemma A.9 ([JLM22, Proposition 2.10]). Letm ∈ N and assume Γ = ∂Ω is C1,α-regular and satisfies
the condition (Hm) defined in (A.6). Then for all k ∈ N

2 , k ≤ m, it holds

‖fg‖Hk(Γ) ≤ C‖f‖Hk(Γ)‖g‖L∞(Γ) + C‖f‖L∞(Γ)‖g‖Hk(Γ),

and
‖fg‖Hk(Ω) ≤ C‖f‖Hk(Ω)‖g‖L∞(Ω) + C‖f‖L∞(Ω)‖g‖Hk(Ω).

Moreover, assume that ‖B‖L4 ≤ C and let k ∈ N0. Then for p1, p2, q1, q2 ∈ [2,∞] with p1, q2 < ∞
satisfying 1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/2, we have

‖fg‖Hk(Γ) ≤ C‖f‖W k,p1(Γ)‖g‖Lq1 (Γ) + C‖f‖Lp2(Γ)‖g‖W k,q2 (Γ).
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Lemma A.10 ([JLM22, Proposition 2.1]). Let m ∈ N,m ≥ 2, and let Ω be a smooth domain, which
is uniformly C1,α-regular and satisfies the condition (Hm) defined in (A.6). Then, there is an extension
operator T : Hm(Ω) → Hm

0 (R3) such that

‖T (u)‖Hm(R3) ≤ Cm‖u‖Hm(Ω).

Lemma A.11 ([JLM22, Proposition 2.12]). Assume that Γ is C1,α-regular. Then for every p ∈ (1,∞)
it holds

‖BΓ‖Lp(Γ) ≤ C
(
1 + ‖AΓ‖Lp(Γ)

)
.

If in addition ‖BΓ‖L4(Γ) ≤ C, then for k = 1
2 , 1, 2, it holds

‖BΓ‖Hk(Γ) ≤ C
(

1 + ‖AΓ‖Hk(Γ)

)

.

Finally, letm ∈ N

2 ,m ≥ 3, and assume that Γ satisfies additionally ‖B‖L∞(Γ) + ‖B‖Hm−2(Γ) ≤ C. Then

the above estimate holds for all half-integers k ∈ N

2 with k ≤ m.

Lemma A.12 ([CCS08, Theorem 3.1],[CLS10, Lemma 5.1]). Let Ω ⊂ R
3 be a bounded domain such

that ∂Ω ∈ H3 or ∂Ω ∈ C2, then

‖uσ‖
H

− 1
2 (∂Ω)

≤ C
(
‖u‖L2(Ω) + ‖ curl u‖H−1(Ω)

)
,

‖u · ν‖
H

− 1
2 (∂Ω)

≤ C
(
‖u‖L2(Ω) + ‖div u‖H−1(Ω)

)
,

for some constant C independent of u. In particular, we have

‖u‖
H− 1

2 (∂Ω)
≤ C

(
‖u‖L2(Ω) + ‖div u‖H−1(Ω) + ‖ curl u‖H−1(Ω)

)
.

Lemma A.13 ([JLM22, Theorem 3.1]). Let l ≥ 2 be an integer and let Ω be a smooth domain with
Γ = ∂Ω, such that ‖BΓ‖

H
3
2 l−1(Γ)

≤ C. Then for all smooth vector fields F : Ω → R
3 and every

k ∈ {3
2 ,

5
2 , 3,

7
2 , 4,

9
2 , · · · ,

3
2 l}, it holds

‖F‖Hk(Ω) ≤ C
(

‖Fn‖
Hk− 1

2 (Γ)
+ ‖F‖L2(Ω) + ‖divF‖Hk−1(Ω)

+ ‖ curlF‖Hk−1(Ω)

)

.

Moreover, for k =
⌊
3
2(l + 1)

⌋
, it holds

‖F‖Hk(Ω) ≤ C
(

‖∇̄Fn‖
Hk− 3

2 (Γ)
+ (1 + ‖BΓ‖

H
3
2 l(Γ)

)‖F‖L∞(Ω)

+ ‖divF‖Hk−1(Ω) + ‖ curlF‖Hk−1(Ω)

)

.

Lemma A.14 ([JLM22, Proposition 3.2]). Let l and Ω be as in Lemma A.13. Then for all smooth vector
fields F : Ω → R

3 and k ∈ {5
2 , 3,

7
2 , 4,

9
2 , · · · ,

3
2 l}, it holds

‖F‖Hk(Ω) ≤ C
(

‖∆ΓFn‖
Hk− 5

2 (Γ) + ‖F‖L2(Ω) + ‖divF‖Hk−1(Ω)

+ ‖ curlF‖Hk−1(Ω)

)

.

Moreover, for k = ⌊32 (l + 1)⌋, it holds

‖F‖Hk(Ω) ≤ C
(

‖∆BFn‖
H

k− 5
2 (Γ)

+ (1 + ‖B‖
H

3
2 l(Γ)

)‖F‖L∞(Ω)

+ ‖divF‖Hk−1(Ω) + ‖ curlF‖Hk−1(Ω)

)

.

Lemma A.15 ([JLM22, Lemma 3.3]). LetΩ ⊂ R
3 with Γ = ∂Ω beC1-regular. Then for all vector fields

F : Ω → R
3 such that ‖∇F‖L2(Ω) + ‖F‖L6(Ω) < ∞, it holds

‖F‖2L2(Γ) ≤ C
(

‖Fn‖
2
L2(Γ) + ‖F‖2L2(Ω) + ‖divF‖2L2(Ω) + ‖ curlF‖2L2(Ω)

)

,
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and
‖F‖2L2(Γ) ≤ C

(

‖Fσ‖
2
L2(Γ) + ‖F‖2L2(Ω) + ‖divF‖2L2(Ω) + ‖ curlF‖2L2(Ω)

)

.

Note that Ω may be unbounded, but its boundary is compact.

Lemma A.16 ([JLM22, Lemma 3.5]). Assume that Ω, with Γ = ∂Ω, is C1-regular and ‖BΓ‖L4 ≤ C
and u : Ω → R is a smooth function. Then it holds

‖u‖H2(Ω) ≤ C
(

‖∂νu‖
H

1
2 (Γ)

+ ‖∇u‖L2(Ω) + ‖∆u‖L2(Ω)

)

,

‖u‖H2(Ω) ≤ C
(

‖∂νu‖
H

1
2 (Γ)

+ ‖u‖L2(Ω) + ‖∆u‖L2(Ω)

)

.

LemmaA.17 ([JLM22, Proposition 3.8]). AssumeΩ, withΓ = ∂Ω, isC1-regular and ‖BΓ‖
H

1
2 (Γ)

≤ C.

Then the solution of the following Dirichlet problem
{

∆u = f, x ∈ Ω,

u = 0, x ∈ Γ,

satisfies
‖∂νu‖H1(Γ) + ‖∇u‖

H
3
2 (Ω)

≤ C‖f‖
H

1
2 (Ω)

.

Appendix B. Notations

� N: positive integers {1, 2, . . . }
�

N

2 : positive half-integers {
k
2 : k ∈ N}

� N0 := N ∪ {0}: non-negative integers
� ⌊·⌋: integer part of a given number
� [·, ·] : Lie bracket

� α = (α)ki=1 ∈ N
k
0: an index vector, |α| =

∑k
i=1 αi

� Ω ⊂ R
3: reference domain

� Γ = ∂Ω: reference surface
� R: the interior and exterior ball radius of Ω (or Γ = ∂Ω)
� νΓ: unit outer normal to a compact hypersurface Γ ⊂ R

3

� ∂: differentiation with respect to spatial variables
� ∂ν : outer normal derivative
� ∇: gradient operator
� ∇̂: Riemannian connection, ∇̂Fu = Fu for a vector field F and a function u
� Dt = ∂t + v · ∇: material derivative along the particle path
� divF = ∂iF

i: divergence of a vector field F
� (divA)i =

∑

j ∂jAij : divergence of a matrix A = (Aij)

� curlF = ∇F − (∇F )⊤: curl of a vector field F
� ∇̄u = (∇u)σ: tangential differential of a function u : Γ → R, ∇̄ju = ∂ju− ∂luν

lνj
� ∇̄F = ∇F − (∇Fν)⊗ ν: tangential gradient of a vector field F : Γ → R

3

� Tr: trace of a square matrix
� divσ F = Tr(∇̄F ): tangential divergence of a vector field F : Γ → R

3

� AΓ = divσ νΓ: mean curvature of Γ
� ∆B = divσ ∇̄: Beltrami-Laplace operator on Γ
� v · ∇ and H · ∇: directional derivatives
� h(·, t) : Γ → R, t ≥ 0: height function of Γt, h0(·) = h(·, 0)
� A = (Aij) : a 3× 3 matrix (i-row, j-column)
� A⊤: transpose of a matrix
� A : B =

∑

i,j AijBij : inner product of two matrices

� x · y: inner product of two vectors x, y ∈ R
3

� S ⋆ T : a tensor formed by contraction on some indexes of tensors S and T with constant
coefficients

� a(u1, . . . , um): finite ⋆ product of u1, . . . , um
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� Fn = F · ν: normal part of a vector field F
� Fσ = F − Fnν: tangential part of a vector field F
� BΓ = ∇̄νΓ: second fundamental form of Γ
� ∇ku ⋆∇lv (∇̄ku ⋆ ∇̄lv): contraction on some indexes of tensors ∇iu (∇̄iu) and ∇jv (∇̄jv)
for any i ≤ k and j ≤ l (including the lower-order derivatives)

� W l,p(Ω), p ∈ [1,∞]: usual Sobolev space, H l(Ω) = W l,2(Ω)
� W l,p(Γ), p ∈ [1,∞]: Sobolev space defined on Γ,H l(Γ) = W l,2(Γ)
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