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ON THE MOTION OF THE CLOSED FREE SURFACE IN THREE-DIMENSIONAL
INCOMPRESSIBLE IDEAL MHD WITH SURFACE TENSION

CHENGCHUN HAO AND SIQI YANG

ABSTRACT. We consider the three-dimensional free boundary incompressible ideal magnetohydrodynam-
ics (MHD) equations with surface tension in a bounded domain. The moving closed surface is param-
eterized by the height function, which is defined on a smooth and compact reference hypersurface. In
Eulerian coordinates, we establish a priori estimates for smooth solutions in the C*°-class without losing
any regularity. This approach allows us to avoid dealing with the spatial regularity of the flow map in
Lagrangian coordinates, which may lack maximal regularity and the geometric characteristics, such as
the curvature and normal velocity, of the evolutionary domain. The scaling 9; ~ V# motivates us to
formulate the energy functional, and the regularity estimates are driven by the curvature bound and the
regularity of the pressure. In the spirit of the Beale-Kato-Majda criterion, we propose a set of the a priori
assumptions to guarantee the possibility of extending the solution for a short period while preserving
the initial regularity within the time interval of existence. As far as we know, this is the first result in-
volving the blow-up of the free boundary incompressible ideal MHD equations with surface tension. It
is worth noting that the velocity and magnetic fields remain bounded in Sobolev’s space H, while the
second fundamental form remains bounded in H 5, throughout the time interval [0, 75]. The value of Tp
depends only on the HS norm of the initial velocity and magnetic fields, the initial domain, and the H®
norm of the mean curvature.
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1. INTRODUCTION

In this paper, we consider the following three-dimensional free boundary incompressible ideal mag-
netohydrodynamics (MHD) equations with surface tension in a bounded domain:

(

Dw+Vp=H-VH, in O,
D:H = H -V, in O,
dive=0, divH =0, in Qy, (1.1)
H-v=0, p=Ap,, vp,=V, only,
v(0,) =vo, H(0,-) = Hy, in Qg,

\

where the time t > 0, v = (v!,v2,03) T is the velocity field, H = (H', H?, H?) " is the magnetic field,
p is the scalar total pressure, and the domain €; C R3 is bounded with a closed surface I'; := 9.
v = (4,12, 1) 7 represents the unit outer normal to Ty, Ar, denotes the mean curvature of T,
v, = v - v is the normal velocity, and V' represents the normal velocity of I';. Additionally, H - V and
v - V are the directional derivatives, and D; := 0; + v - V represents the material derivative. {29, vg
and H are the prescribed initial data. We denote I'y := 9€)y, and have assumed that the coeflicient of
surface tension is 1 for simplicity.

In recent decades, there has been significant interest in studying the free boundary incompressible
Euler equations, and substantial advancements have been made. Extensive research has been achieved
for the irrotational case, especially, the water wave equations. We refer readers to [Lan05, Wu09,
Wull, GMS12, IP15] and the references therein. If the fluid flow exhibits vorticity, one may refer
to [CLOO, Lin03, Lin05, CSO7, SZ08a, ZZ08, DE14, Sch05, DE16, DK'T19] for results on a priori
estimates, local well-posedness with or without surface tension, the zero surface tension limit, the large
surface tension limit, and more.

The investigation of free boundary problems for MHD equations has emerged relatively recently
in comparison to the study of the Euler equations, mainly because of the strong interactions between
the magnetic and velocity fields. We focus on the incompressible MHD equations in this paper. Hao
and Luo [HL.14] obtained a priori estimates for free boundary problems of the incompressible ideal
MHD without surface tension under the Taylor-type sign condition. They considered the case where
the initial domain is bounded and homeomorphic to a ball. They also showed the ill-posedness of
the problem if the Taylor-type sign condition is violated in the two-dimensional case [[11.20]. Luo
and Zhang [[.Z20] derived a priori estimates for the lower regular initial data in the initial domain
of sufficiently small volume. In [GW19], a local existence result was given, with a detailed proof
provided in an initial flat domain T? x (0,1). The local well-posedness for the incompressible ideal
MHD equations with surface tension is established by Gu, Luo, and Zhang in [GLZ23], in the same
initial domain setting, namely, the flat domain T? x (0, 1). For the problem of the current-vortex sheet,
the nonlinear stability of the current-vortex sheet in the incompressible MHD equations was solved
by Sun, Wang and Zhang [SWZ 18] under the Syrovatskij stability condition, assuming that the free
boundaries are graphs in T? x (—1,1). Wang and Xin [\WX21] established the global well-posedness of
a free interface problem for the incompressible inviscid resistive MHD, taking into account magnetic
diffusion, under similar assumptions regarding the graph. We also refer to some related works [SW2Z 19,
HL21,Leel7, FHYZ23,HLZ23,HY24, GLZ22,MTTO08,LZ223, Tra05, Tra09, TW21] on the topics
of well-posedness, current-vortex sheets problem, breakdown criterion, viscous splash singularity, zero
surface tension limit, and compressible MHD.

It may be possible to reduce the problem of a general free boundary to the case of a graph by
selecting local coordinates that flatten the boundary near a point. However, this reduction will be
technically complicated with challenging difficulties. In the presence of surface tension, if we only
select a portion of the free boundary and flatten it near a point, there is a risk of losing certain geo-
metric characteristics of the free boundary, such as the evolution of its curvature. We discovered that
the blow-up of the curvature would result in the breakdown of a smooth solution in Sobolev spaces.
Additionally, the Lagrangian coordinate can be utilized to transform a moving domain into a fixed
one and the aforementioned well-posedness results for MHD equations are mainly derived from this
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methodology. Nevertheless, as indicated in [SZ08a, SZ11], the Lagrangian map lacks maximal reg-
ularity because all the variables are defined on an evolutionary domain. In fact, the moving surface
can also be described using alternative methods, such as the study of the Euler equations with surface
tension [Sch05], the fluid interface problem [SZ11], the surface diffusion flow with elasticity [F]M20],
the motion of charged liquid drop [JL.M22], and the plasma-vacuum problem [[.X23b], among others.

Different from the local well-posedness result in [ GL.Z23] for the flat domain employing Lagrangian
coordinates, we investigate system (1.1) in an arbitrary bounded domain by parameterizing the moving
boundary with the height function defined on a smooth and compact reference hypersurface. Addition-
ally, we eliminate the requirement for the initial velocity on the boundary (vg € H*?(Qq) N H5(T') is
assumed in [GL.Z23]). We establish a distinct energy functional by preserving the material derivative,
which avoids destroying the structure of system (1.1) when separating the time derivative 0;. Also,

we mention that the spatial-temporal scaling is different, i.e., 9y ~ V3 and the energy estimates are
driven by the second fundamental form together with the pressure, which is different from the strategy
used in [GLZ23]. For example, we cannot define the fractional derivative using the Fourier transform,
which makes calculating the time derivative of the energy challenging.

The curvature of the moving boundary is crucial for well-posedness. Roughly speaking, the blow-up
of curvature (|| B||jj14+5 — oo with § > 0 small) will result in the breakdown of a smooth solution
in H%(€;). We provide the a priori assumptions and prove higher-order energy estimates to ensure
the extension of a smooth solution without any loss of regularity. Moreover, we should avoid the
self-intersection of the free boundary, as indicated in [CS14].

1.1. Motivation for the Construction of Energy Functionals. Given any smooth initial domain €2
and any divergence-free initial velocity and magnetic fields vy, Hy € C°°(€) such that Hy-vp, = 0 on
Iy, we assume that system (1.1) has a smooth solution that exists for a short time interval throughout
the paper. In particular, the solution (v, H, p) is well-defined on I't, allowing us to define Vv, VH, Vp,
etc. on I['; by taking limits inside the domain.

It is well-known that the physical energy is conserved. Indeed, applying Lemmas A.2 and A.3 (see,
e.g., [LZ21]), one can verify that

% (% /Q [Jo(z, £)[2 + |H (x, )] dx—l—/rt 1dS> =0,

where dS denotes the measure on I';.
Motivated by [SZ08a, [LM22], we construct the higher-order energy functional as

1 _
alt) =3 </Q [|D§+1v|2 + |ng+1H|2] d:c+/r |V(D§v-y)|2ds>
1
+ 5/ [|VL%J curlv|? + |VL%J CUI‘IH|2} dx, (1.2)
o

for any [ > 1, and we denote the sum of the first three by é(¢), i.e.,

1 _
eW) =53 ([ [IPF e+ D HP] de+ | [V (DFv-v)Pds
20 Ve T

1
+ = Z / [|Vk curlv|? 4 |VF CUI‘IH|2} dx. (1.3)
2 k=2,3,5" S

Above, |-] denotes the integer part of a given number, and V denotes the tangential derivative. We
also define the following energy functional, taking into account the spatial regularity:
l

. I+1-k, (|2 +1—k 2 2
&m_§@m I gu g+ 1A g ) DI g,

+ HHHZ[%J(Q” +[IV (Do - V)H?ﬂ(rt) +1, (1.4)



4 CHENGCHUN HAO AND SIQI YANG

for any [ > 1. As before, we define
3

n — 4—k, 112 4—k 2
B0 = 3 (11 4l IPE A )
3 —
+ [0l ) + 1 H 7o (0, + > IIV(Dfv- )72, + 1, (1.5)
k=1
3 ~ 3
and we observe that Y E;(t) < CE(t) < C > Ei(t).
i=1 =1

Remark. Note that we define the energy functional preserving the material derivative in contrast to

the energy in [GLZ23].

The energy €(t) is specifically designed to cancel the leading terms on the free boundary I'; when
computing its time derivative. Since the evolution of the boundary contributes to the energy estimates
at higher orders, it is necessary to consider the divergence-free condition and the fact that the normal
component of the magnetic field vanishes on the free boundary. In addition, we need to include the term
sIV(Dlv-v)|2, (ry) in the energy. This term helps us eliminate the dominant terms that arise from the
material derivatives of the pressure on I'; (cf. Lemma 2.13). We exclude the term 3| Dlv-v||2, (r) since
it can be controlled by applying either the divergence theorem or the trace theorem (provided that the
a priori assumptions defined below hold). With this simplification, we will avoid the tedious proof
required when we close the energy estimates. It is worth mentioning that we define the energy starting
from HD?UH%Q(S%) and ||D?H\|%2(Qt). We make this choice because ||Dtv||%2(ﬂt) can be controlled by

the pressure (cf. Section 4 and Proposition 6.1), and HDtHH%Q(Qt) can be estimated by substituting

DiH = H - Vv. The curl part in ¢;(t) is used to control the energy E;(t) when applying the div-curl
estimates. Furthermore, it is essential to note that the region under consideration is neither a periodic
region nor the entire space. Consequently, it is not possible to define the fractional derivative using
the Fourier transform. Therefore, we shall choose the integer part of %l + %, which is a significant
difference.

The scaling % is revealed in [SZ08b] that a second-order time derivative can be roughly equated to
a third-order spatial differentiation. In other words, one-order time derivative 9; is associated with
spatial regularity of 3-order, indicating the regularizing effect of the surface tension. In the absence of
surface tension, however, two-order time derivatives are similar to one-order spatial differentiation, i.e.,

8y ~ V2. This point will be consistently used throughout the paper. Nevertheless, the improvement
in regularity of the free boundary I'; is geometric, as it is connected to the regularity of the mean
curvature (cf. Lemma A.4), and is not completely evident in the Lagrangian coordinates. Therefore,
we do not adopt the strategy of fixing the boundary, which has to deal with the spatial regularity of
the flow map. Instead, we choose a reference hypersurface to serve as a representation of the free
boundary by utilizing the height function. Then, it is more convenient to control the mean curvature
using the height function. The free boundary TI'; is specifically parameterized by a smooth and compact
hypersurface I' = 9. Here, Q is a smooth and compact subset of R? that satisfies the interior and
exterior ball condition with a radius R > 0. For any ¢ > 0, we represent the free boundary I'; as
[y = {z + h(z,t)vr(z) : © € I'} using the height function h(-,) : T' = R with ||h(-, )|z ) < R.
Note that the time derivative of h is equal to the normal velocity of the free boundary, i.e., Oth = v,,.
Given a solution (v, H, p, ;) to system (1.1), whose time interval of existence is [0, 7"), we define the
following quantity

Myp =R = sup [[h(t)]|Leo ). (1.6)

0<t<T

It is obvious that the height function is well-defined in the interval [0, T") as long as M7 > 0.

From the perspective of system (1.1), the scaling suggests that we can reduce “3-order” spatial
regularity if we substitute Dyv = —Vp + H - VH and D;H = H - V. In this sense, we can also
reduce “1-order” spatial regularity when the operators D; and curl are combined (cf. Lemma 2.5).
These observations are crucial in deriving the optimal expressions for div Div, curl Div, etc. based on
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the principle of “reducing derivatives” (see, e.g., Lemmas 2.8 and 2.10 in Section 2 for details). These
lemmas will play a vital role in our application of the div-curl estimates to control the higher-order
energy (cf. Lemma 6.2).

1.2. A Priori Assumptions. Having introduced the quantity M7 to ensure the well-definedness of
the height function, we then define the following quantity to ensure that the solution can be extended
and controlled by the initial data. Taking 0 > 0 to be sufficiently small, we define

Nr = (1RGO gss oy + l0C Ol a2y + IH GO 52020

+ lon (O 2 (ry))- (1.7)

It should be noted that in order to simplify the a priori assumptions, neither the pressure nor the
time derivative are included in A/7. Estimating certain pressure-related terms may become challenging

sup
0<t<T

as a consequence. For instance, in Section 4, it is not possible to directly control [|[VDyp||2(q,) using
N7 and the initial data. Instead, we need to utilize AD;p in €; along with D;p on I'; to control it.
Furthermore, the requirement for the height function i and the normal velocity v, is related to the
fact that the boundary T'; is moving and will be clarified in Section 4. The former will ensure that
the second fundamental form Br, is uniformly bounded, i.e., || Bz r,) < C, provided N7 < C.
Moreover, these two terms will be constrained by the curvature bound in Section 7.

In contrast to the Euler equations [JLM22], the presence of the magnetic field necessitates an en-
hancement in the regularity of the velocity and magnetic fields in both the a priori assumptions and the
initial data. It is challenging to assume that the initial velocity and magnetic fields belong to H?(€)
even for the flat domain (see, e.g., [[.Z21]). For this reason, in order to demonstrate that the initial data
in H* () controls the energy of the same order, we can assume that vg € H*()y) and Hy € H*(Qp)
in order to estimate Es(t). However, recalling that we select integer-order Sobolev spaces in the energy
functional to compute the time derivative, the floor function ({%J = 4) suggests that we do not have a
control over the first two terms in E2(t). To address this issue, we attempted to enhance the regularity
of E1(t). However, we encountered a challenging problem as the commutators consistently generated
uncontrollable terms of the highest order.

Ultimately, we are able to control the energy E(t) for arbitrary initial data in H®(Qg), provided
the following the a priori assumptions hold:

Nt < 00, and M7 > 0.

We expect the requirement of [|v[| ;4(q,) and || H || f74(q,) in the a priori assumptions to be crucial as it
allows us to control |[v|| s (q,) and || H || g (q,)-

1.3. Main Results. The following is the main result of this paper.

Theorem 1.1. Let Qg C R3 be a smooth domain, and assume that the boundary Ty = 08 can be
represented as To = {x + ho(x)vr(z) : © € T} with ||ho|| oo (ry < R. Let vy, Hy € C*°(Q0; R?) be any
divergence-free initial velocity and magnetic fields such that H - vr, = 0 on T'y. Assume that system (1.1)
has a smooth solution in [0, T') for some time T > 0, and the following the a priori assumptions hold

Nr < oo, and M > 0. (1.8)
Then, we have the following results:
(1) There exists a positive number T, which depends on T, N, M, ||[vo || g6 (030

| Holl z76 (00)> 41 || Ao || 115 (1 )» Sch that the solution exists in the time interval [0, T + 7).
(2) We have the following lower-order quantitative regularity estimates:

3
sup (E(6) + > 1D pl 4 +|B <C,
0§t<713+T ( ( ) kz—o H t p”H%k+1(Qt) H FtHH5(Ft)> =

where the constant C depends on T, N, M, ||voll g () [ Holl s (00)> @nd | Aro | 15 (r)-
(3) Forl > 4, we also have the higher-order regularity estimates:

sup  Ei(t) < Cy,
0<t<T+1
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where the constant Cy depends on |, T, N7, M1, and E;(0).

In particular, the smooth solution of system (1.1) can be extended and remains smooth (with respect to
both t and x), as long as the a priori assumptions (1.8) are satisfied.

Moreover, there exists some Ty > 0, which depends only on the quantities Mo, ||vol| 6 () | Holl 6 (020)
and || Ar, || g5 (ry)> Stch that the a priori assumptions (1.8) hold for T' = T,.

We will make a few remarks about the Main Theorem.

The first result is similar in spirit to the Beale-Kato-Majda criterion, which dates back to the remark-
able work [BKM84]. Roughly speaking, in order to ensure that the solution remains bounded in H3,
the L*-norm of the vorticity of the flow must be integrated over the entire time interval of existence.
However, the assumptions here regarding the velocity, magnetic field, and height function are stronger
in order to guarantee that the velocity and magnetic fields remain bounded in H%(€);). The a priori as-
sumption M7 > 0 is technical. If M7 = 0, we will select a different reference surface to parameterize
the free boundary. It is worth noting that we can always select the reference surface unless the boundary
self-intersects in at least one point (splash or splat singularity, see, e.g., [CS14]). The hypothesis of the
height function is roughly related to the singularity of the free boundary. In other words, the second
fundamental form remains uniformly bounded. The singularity || B|[ e (r,) = 0o suggests that the
curvature of the free boundary will blow up. Moreover, the volume-preserving property suggests that
the domain becomes exceedingly narrow as |A(+, t)| increases. The requirement for the normal velocity
of the free boundary is reasonable because we do not fix the boundary using Lagrangian coordinates,
and it also ensures the boundedness of the pressure.

The last statement highlights that the a priori estimates remain bounded until time 7 > 0, which
is determined by the initial height function, velocity, magnetic field, and the mean curvature, i.e.,

To = To (Mo, [[voll 6 (00)» 1 Holl s (020 AT | 175 (1)) -

On the time interval (0, 7j), our lower-order energy estimates yield

3
sup ( B(t) + 3 1D bl g0 g, + 1B <c,
0§t<pT0 < ( ) kz_o H t pHHgk‘H(Qt) H FtHH5(I‘t)> <

where the constant C' = C (Mo, [|vo | 776 (20 [ H0l| £76 (029) » | AT HH5(F0))- In particular, we bound the
velocity and magnetic fields in H%(;) and the second fundamental form in H?(I';) by the initial data
Mo, [[voll 6 () s [ o]l 6 (02> and || Ary || 75 () Without any loss of regularity. It is worth noting that
we only need the initial mean curvature to control the second fundamental form of the same order.

We also included the pressure || pHH Y well as the time derivatives of the velocity, magnetic field,
t

and pressure. -
In fact, from the definitions of the material derivative (D; = 0, +v- V) and E(t), it is easy to verify
that

3
3—k, |12 3—k 2
O§S;l<pTo kzz:l <H8t UHH%(k+1)(Qt) + Hat HHH%”““)(Qt)) <C,
3
su 937 Fp||? <
0§t<pTol; % pHH%kH(Qt) -

with the constant C' = C' (M, lvoll 76 () [ Hol| 6 (2) » [ ATy ||H5(F0)) defined above.

Furthermore, the higher-order energy Fj(t) can be controlled by its initial value F;(0) as long as
the a priori assumptions hold. The higher-order energy estimates also include the estimates for d}v,
0] H, 9 p, and the second fundamental form in appropriate Sobolev spaces. Therefore, the solution
can be extended while remaining smooth with respect to both the time and spatial variables, provided
that the a priori assumptions (1.8) hold.

1.4. Outline of the Proofs and the Structure of the Paper.
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1.4.1. Reduce the derivatives. The foundation of our energy estimates lies in the reduction of the deriva-
tives, which helps in formulating the error terms, div Div, curl Div, AD!p, Dip, etc. We will explain
this in detail below.

(1) Based on the structure of system (1.1), the equation D,H = H - Vv suggests that we can
replace the material derivative of the magnetic field by the gradient of the velocity. To be more
specific, the formulas (2.9) and (2.10) in Lemma 2.6 demonstrate that for any i,j € N, it is
true that

DIH= Y Y VDwx- xVD/"vxH,

1<m<j |B|<j—m
and

VIDIH= Y > VHuDlys.x Ve Dimy o
1Sm<j  |ol<i
|B1<i—m

where * denotes the contraction of certain indices of tensors with constant coefficients (see,
e.g., [[1am8&2]). In the above, at least one-order material derivative is substituted by the spatial
derivative at the cost of the expression containing more product terms. These enable us to con-
vert certain estimates for the magnetic field into those for the velocity field (e.g., Propositions
4.7,6.1 and 6.2).

(2) When the operators D; and curl join together, we can reduce spatial regularity by %-order.
For example, a straightforward calculation yields

curl Dy = (VH) " curl H + curl HVH + (H - V)(curl H),

where curl H := VH — (VH)". This demonstrates that the material derivative D; is replaced
by the spatial derivative V, while 0; ~ V3. This fact is essential for formulating the error
terms (e.g., Lemmas 2.8 and 2.10) to control the energy. It also indicates that we should reserve
the curl operator (rather than simply V) for the highest order term when seeking strategies to
reduce the derivatives.

(3) To compute —ADF !, we will calculate the divergence of DF(H - VH) (cf. Lemma 2.7).
The divergence-free condition ensures that when taking the divergence of DF(H - VH), the
order of derivatives does not increase and even “decreases by %-order”.

1.4.2. Estimates for the product of functions. To establish the energy estimates, we will estimate the time
derivative of the energy functional using the Kato-Ponce inequalities. We start with the estimates

d _ 2 —
() < C (14 [ 9pl3a(q, ) B0, (1.9)
and
Calt)y < CE®W), 124 (1.10)

for any 0 < t < T, provided that the a priori assumptions (1.8) hold for the time 7" > 0.

To estimate the time derivative of the higher-order energy ¢;(¢) (i.e., I > 4), we primarily rely on
induction arguments. However, when working with the estimates for %é(t), it is crucial to accurately
estimate the product (x product) of functions in the error terms. Our strategy involves controlling the
most challenging terms (at most two) in the product using pressure and energy E(t), while imposing
the a priori assumptions on the remaining terms. This helps us distribute the derivatives. In the end,
we only require ||Vp||z2(q,) in (1.9) to control %é(t).

At the end of the proof of (1.9) in Section 3, we could not simply integrate by parts when estimating
the integral of th div DI (H -V H)udz because the leading term in DY (H-V H), i.e., V?>Dlv , is out
of control (cf. Lemma 2.6). Fortunately, as Lemmas 2.6 and 2.7 show, the divergence-free condition
facilitates the substitution of one order material derivative with one order spatial derivative. Roughly
speaking, we reduce the 1-order derivative. Consequently, we can control th divD" Y H - VH)udz
using Lemma 2.7 and H - v = 0.
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1.4.3. Auxiliary functions to control the pressure. Since (1.10) is established using induction arguments,
it is necessary to demonstrate that

() < OB()

where C' shall depend only on the initial data. For this purpose, we need to estimate the pressure in
(1.9), and we apply an ad-hoc argument to show that

s ple,) < € (TN Mr, 9%l 9] e)- (1.11)
S )

In fact, to prove (1.11), we compute the evolution of the pressure in the domain {2, and obtain

d1
dt2

19l < € (14 1Vl + I9er) -

51Vl < C (1+1Vpl2q,)

dt2

Iy < O (14 19l + Iplrscry)-

As a result, we need to additionally consider the pressure (e.g., V2p and V3p) on the free boundary.
We study the following functions

Vp - V(Vov - v)dS, and V2p : V*(Vor - v)dS + 8/ |V2p|2ds,
I': Iy Iy

with e > O sufficiently small, which are designed based on the formula of the Beltrami-Laplace operator,
i.e.,

Apv = Au— (Vv -v) — Ad,v.

To estimate their time derivatives, we apply the estimates
2,112 2 217,12
I8l 20, < 1889l +C [ 1BPIVpEAS.
t

||vgp\|%2(rt) = HvABPH%?(Ft) + C||P\|%{2(rt),

considering the commutation of the tangential derivatives, that are proved by using Simon’s identity
(see, e.g., [F]M20]). Furthermore, we bound the spatial derivatives of p and D;p on the free boundary
by their tangential derivatives, || Ap|| 2, ), together with [|ADp|| g1(q, ). For example,

IV2Peplar,) < € (IADpI3 0 + 1IP0Iy )

193013500 < C (18P B 20 + 91 ) -

Also, we use the fact that [|v,||g4(p,) < C from the a priori assumptions.
Finally, we obtain

d

pr Vp V(Vov - v)dS < ——HvszLg(Ft) +C,
d < V2p: V3(Vov -v)dS + ¢ \?QZ?fzdS)
dt Iy

< _ZH?:SPH%Q(F,&) +C(IV?pl 72, + 1)
and deduce

sup 9%l /|w%m i< C.
t€[0,T]

Combined with the estimates in the domain €2, (1.11) follows. The initial quantities ||V2p|| 2 (r) and
Vol r2(0o) in (1.11) can be easily controlled by the initial data. In fact, we control the initial energy
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and pressure through the initial velocity, magnetic field, and mean curvature:

3

E(0) + Z HD{?%PHi{ng(QO) < C (Mo, [[voll 6 0oy, 1 Holl s (00)» 1Al 5 1) ) »
k=0

using (2.9) and (2.10), where Mg := R — ||ho|| Lo (r)- In the same way, it holds

<C,

3
n 3—k, |12
B+ Y IDF 1 g S
k=0
where the constant C' depends on R — || A(+, )| oo (1), [[V[| 76 (0, |1 || &6 (2,)> and || A[[ g5 (1, > provided
R — (e t) ) > 0.

1.4.4. Curvature, Kato-Ponce and div-curl estimates. Thanks to the pressure estimates, we are able to
bound the second fundamental form. As a result, we can extend the function to the entire space,
enabling us to apply the Kato-Ponce estimates to half-integer Sobolev spaces and control the constants
by the curvature bound. Indeed, the estimates in [JL.M22] for the Euler equations

J
I f1 - ..fjHH%(Qt) < Cz; 1 fill Lo (@) g ka”H%(Qt)

are not suitable for our case due to the existence of the magnetic field, and we shall apply (A.7) to
estimate the error terms, e.g.,

1o« VDl 3 ) < C(IV0l 20 | VD

Q UHH%(Qt)

1190l o IV Pl 23002 )

wis(Q,
Nevertheless, controlling the error associated with the magnetic tension H-V H (denoted as ROVQ )
turns out to be challenging. We shall control it by the curl of the magnetic field, i.e.,

)

0 2 2
IR 2,1 11 g,y < O Wl E I 15004

which is distinct from all other error terms.
To close the energy estimates, we define another energy functional containing curl v and curl H as

3

> <HDf+1UH%2(Qt) +[|DEF HII 2, + V(D - V)H%%rt))
k=1

é(t) ==

N | =

1
+ 3 <H curlvH%m(Qt) + | curlHqug(Qt)) +1,

- 1 _
at) =3 (HD#%H%%QQ + || D H|[7 20, + IV (Do - V)H%%rt))

1 2 2
+ 3 (H CurlUHHL%ﬂJ(Qt) + |l CurlHHHL%ﬂJ(Qt)> +1, [>4,

and apply the div-curl estimates to obtain

E(t) < Ce(t) <C(1L+¢&(t)), and By(t) < C&(t) < C(1+e(t), | > 4.
Finally, we deduce the desired energy estimates

%é(t) <C(1+é(t), and %el(t) <CO(1+e), >4
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1.4.5. Justification for the validity of the a priori assumptions. To show that the a priori assumptions
(1.8) hold for some time Tp > ¢¢ > 0, where the constant ¢y depends on the initial data, we define

I(t) = | Bl ry + 11 s, + 10l Fa @, + 1 H G + 1,

for t > 0. The curvature bound can recover the regularity of the free boundary (see, e.g., [SZ08a,
[.X23a]), and as a result, we can apply Proposition 6.1. It turns out that

% I(t) < CE(t)I(t) < CEO)I(D),

in a short period, and we can obtain a lower bound of 7). To ensure that the height function is
well-defined, we use the fundamental theorem of calculus and the fact that 9;h = v,,.

1.4.6. Organization of the paper. The rest of this paper is organized as follows.

In Section 2, we calculate the commutators (e.g., Lemmas 2.3 and 2.4, and (2.14)), the error terms
(e.g., Lemmas 2.6 and 2.8), and additional terms associated with the div-curl estimates (e.g., Lemmas
2.7 and 2.10) in order to establish the energy estimates. These calculations reveal that as the number
of terms multiplied in the formula of a commutator increases, the total number of derivatives for all
these terms decreases. This is extremely crucial in closing the energy estimates.

In Section 3, we compute the time derivative of the energy functional by canceling out the leading
terms. Under the a priori assumptions, we control %é(t) using ( 1+ HVQPH%Q(Qt)> E(t) in conjunc-
tion with some error terms. We further assume that sup E;_1(¢t) < C for ! > 4 to demonstrate

0<t<T
that £¢/(¢) can be bounded by E(t) along with some higher-order error terms using the induction
arguments.

In Section 4, we will show that ||p|| g3 (q,) can be uniformly bounded within the time interval of
existence by the time T' > 0, the a priori assumptions N7, Mr, and the initial data [[vol| g6 (qy),
[ Holl 6 (00)» [l z5(ry)- Furthermore, the initial data can additionally control the initial quantities

E(0) and HD;?*’“pIIfH § for 0 < k < 3.

Sk+1 ©

In Section 5, we utilize the Kato-Ponce inequalities to estimate the error terms appeared in Section
3. Due to the shared order of derivatives in the error formulas for the product terms, these error terms
can be bounded by the product

<1 + HVPH%W(QQ) E(t),

and the energy Ej(t) for | > 4, respectively.

In Section 6, we apply the div-curl estimates to close the energy estimates by incorporating another
energy functional that includes the curl of the velocity and magnetic fields.

Finally, we prove our main theorem in Section 7.

2. FORMULAS FOR THE ENERGY ESTIMATES

All notation will be defined as it is introduced, and a list of symbols will also be provided in Appendix
B for a quick reference. Throughout the paper, we will use the Einstein summation convention and
the notation S * T' from [Ham82, Man02] to denote a tensor formed by contracting certain indices
of tensors S and T with constant coefficients. In particular, for k,I € N, we denote VFf x Vig a
contraction of certain indices of tensors V' f and V7g for 0 < i < kand 0 < j < [ with constant
coefficients. Here, we denote N = {1,2,3,... } for the positive integers and Ny = {0,1,2,3,...}
for the non-negative integers. Note that f and g can be vector fields, and we include the lower-order
derivatives along with the function (or vector field) itself. However, we exclude the case of a single
term V' f.

Letu : T — Rand F : T' — R? be any sufficiently regular function and vector field, respectively.
Since the reference hypersurface I' is embedded in R3, it has a natural metric g induced by the Euclidean
metric. Then, (I, g) is a Riemannian manifold, and we denote the Riemannian connection on I" by
V. For a function u € C*(T') and a vector field F, it holds V ru = Fu.

We denote the normal part of F' on I" by F}, := F - vp, and the tangential part by F,, := F — F,,vp,
where “-” denotes the inner product of two vectors. If I is smooth, we can extend both u and F' to
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R3. Then, we define the tangential differential of u by Vu = (Vu), = Vu — (Vu-v)v, the tangential
gradient of F' by VI = VF — (VFv) ® v, i.e., (VF);; = 0;F — 0, F'v'vj, and the tangential
divergence by div, F' := Tr(VF), where Tr is the trace of a square matrix. It is easy to verify that
div, F' = 0;F7 — 0,FIv'v;. We remark that the tangential gradient and covariant gradient of u are

equivalent in the following sense: for any vector field F : I' — R3, F'- v = 0, we have @FU =Vu-F.
Additionally, the second fundamental form and the mean curvature can be written as

B = Vv, and A = div, v. 2.1

We also recall the divergence theorem

/ div, FdS = / Ap(F - vp)dS.
r r

The Beltrami-Laplacian of u is defined by Apgu = div,(Vu), and it holds
Apu = Au — (V2uy . 1/) — Ao, u, (2.2)

where 0, denotes the outer normal derivative.

We will fix our reference surface I', which is a boundary of a smooth, compact set {2 satisfying
the interior and exterior ball condition with radius R. We denote the tubular neighborhood of T" by
U(R,T), given by U(R,T) = {z € R3 : dist(x,T) < R}. Then themap ¥ : I' x (-R,R) —
U(R,T) defined as ¥(z, s) = z + svp(z) is a diffeomorphism. We say that a hypersurface I'; = 9,
(or Q) is H*(T')-regular, if it can be written as I'y = {x + h(z,t)vr(x) : x € T'}, for a H*(T")-regular
function h(-,t) : T' — R with [|A(-,t)|[zeo(r) < R. We say that T'; is uniformly H*(I")-regular if the
height-function satisfies ||A(-,t)||grs(r) < C and ||A(+,1)|[ (1) < ¢R for constants C and ¢ < 1 (see
[JLM22] for similar definitions).

We can express the unit outer normal and the second fundamental form by the tangential derivative

of the height function (cf. [Man11])
r, = a1 (h("t)’ vh(’t)) ) (2.3)
BFt = asz (h(’ t)’ vh(’ t)) vQh(" t)’ (24)

where a1 and ay are smooth functions.
Let us next fix the notation for the function spaces. We define the Sobolev space WHP(Q) (WHP(T))
in a standard way for p € [1,00] by V (V or V), and denote the Hilbert space H' = W2, We define

the space H? (T') via the harmonic extension: let u € L?(T),

HuHH%(F) = |Jull p2qry + inf {[|[Vw| p2q) - w € H'(Q)andw=wuonT}.

The spaces H~! and H =2 are defined by duality. For any index vector a = (a)¥_; € N&, we define
k
its norm by |a] = > «;.
=1

We extend the unit outer normal v to €2 using harmonic extension and denote it as 7. With a slight
abuse of notation, we sometimes still denote the extended one as v. From (1.8) and (2.3), we see that

<.

vl s
171550 <

Now, we recall the following results including some basic commutator formulas. As usual, we use
the Lie bracket to represent the commutators, i.e., [£1, Lo] = L1Lo — LoL.

Lemma 2.1. For a smooth function f, it holds
(D, VIf = =(Vo)' VS, [Dy,d)f =—02"0f, [Dy,V]f=—(Vv)'VF,
D, VA f = V20« Vf+VoxV2f, Dw=—(Vv)'v=—-Vu,+ Bu,,
Vo, = Vo' v+ Brus, [0,,01u=—Vu-0gv, [V,V|f=VfxVvry,
[Dy, Aglf = V2fx Vv —Vf-Apv+ BxVuxVf,
D;B = -V*vxv—VouxB.
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Proof. Most of the above formulas can be found in [SZ08b, Section 3.1] and the others follows from
direct calculations. U

From the definition of curl, namely, curl F = VF — (VF)T, a straightforward calculation yields
the following lemma.

Lemma 2.2. Let F and G be smooth vector fields. Then we have
curl(F - VG) = VGVF — (VF) T (VG)T + (F - V)(curl G),
[Dy, curl] F = (Vv) ' (VF)" — VFVu.
Let 1,k € Nand let  be a smooth function. Then we have
(DI, V) = Du[DL VH)f + (D, VDL
[Di, VEHf = [P, VIVEf + VD, V1.

To derive a general formula for the commutators, we need to apply the following results. It is easy
to verify that

Dia(v) = b(v)Vv, D;VDFv = VDI + Vo« VDFv,
D;VDfv = VDI + Vo x VDo,
for k € N, where a(v) and b(v) denote the finite x product of v.
As we shall see below, the commutator formulas involve the product of functions, and the total order

of derivatives decreases as more terms are multiplied. Thanks to this observation, we can control the
errors in Section 5 and establish the energy estimates in Section 6.

Lemma 2.3. Letl, k € Nsuch that | > 2 and k > 3. It holds
[D;, V2 f = Vox V2f + V2« V],
D1, VEf = ) VHewsviters,
o <k—1
AYTEEY S° VDM« VD] ux VD
2<m<I+1 |B|<l+1-m
and

[Di, V2]f — Z Z v1+a1DtBlU K% vlJram_lDtﬁm_lu

2<m<I+1  |al<1
|B|<I+1—m

K Vitempim g
Roughly speaking, the leading term is VD! ™! in the commutator [D!, V*].

Proof. A direct calculation yields the first claim and the second claim can be found in [JL.M22, Lemma
4.1].

We prove the third one by induction, and it is easy to verify the case of [ = 2. For the case of [ > 3,
from Lemma 2.2 and the above formulas, it follows that

(D}, V1S
= Dy[DS 1, Vf + Vo« VDI f
=D Y. Y VDMukx VD" x VD)) + Vux VDL f
2<m<l || <i—m
=Vux VD f+ Y N VDD vk x VD) VD) f
2<m<l || <l—m

bt Z Z VDI vk« VDI 1y« VDD f

2<m<l|B|<l—-m
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+ 3 > VuxVDuxx VDo x VD f

2<m<l |B|<l—m
oot S0 VDM uk e VD) 0k Vo x VD f
2<m<l |B|<l—m
= Z Z VD My - % VDI 1y % VDI £
2<m<I+1 |B|<i+1-m
Finally, we prove the last claim. Again by induction, for [ > 3, one has
(D}, V2 f
= DD}, VIS + [P, VD
=D Y. Y VD] k. x itamo DIty g yltanpin £

2<m<l |al<1
|B|<l—m

+ Vox VDI f + V2« VDI f

= > Y vHaplys...xyitenapinoiy gltenpin g

2<m<i+1  |af<1
1BI<I+1-m

O

Below, let ag(v) and a,, g(v, B) denote the finite * product of the tensors. The following lemma is
critical for our estimates, in which we provide a more precise formulation of the quantities than those

in [JLM22, Lemma 4.2].

Lemma 2.4. Let{ > 1, we have
AYEEEDY So VDM« VD) x VD
2<m<I+1 |8|<l+1-m

Dly = Z Z aﬁ(u)thﬁlv*---*?Dthv,
1<m<I |B|<i—-m

DiB= Y > aasv, B)VODMys ok VItam DIy, (2.5)
1<m<I|B|<l-m
o<1

and

(D}, V) f = Z Z aaﬁ(u,B)VHalDflv*---
2<m<I+1|B|<l+1-m
o<1

* VHO"”*lDth’IU * ?Ho‘memf.

Proof. To prove the first claim, we recall [Dy, V]f = —(Vv) "V f in Lemma 2.1. For the case of | > 2,
we have by induction that

[DL,V)f = DD, VI f + Dy, VIDLL f

=D Y. Y VD uk-x VD" wx VD" f)
2<m<1|B|<l-m

+ Vux VDI f

= Z Z ?Dtﬁlv*---*?Df’”‘lv*?Dtﬁmﬁ
2<m<I+1 |B|<i+1-m

Similarly, we can obtain the last claim.
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For the second claim, we recall D;v = Vv % v, and for [ > 2, it holds by induction that

Dlv = Dy( Z Z aﬁ(u)?Dflv*---*va’”v)
1<m<I—1|8|<l-1-m
= Z Z ag(u)thﬁlv*---*?Dtﬁmv.
1<m<l|B|<i-m
As for the third claim, we have for [ > 1 that
DiB = [D}, V]v + VDjv

1<m<l|B|<i-m
+ Z Z valv*...*vam—1v*vamy
2<m<I+1 ||<I+1-m
=1 + I,.
It is clear that
=Y > aasw,B)VTDys 5 VTemDmy,

1<m<I|B|<l-m
o<1

For I, it follows that
L= Y ST UDMux VD)
2<m<I+1|B|<l+1-m
* ( Z Z VIHNDMy s TIF DIy

1<n<Bm |AI<Bm—n
[vl<1

= Z Z Z a@)w(u,B)valv*---*?Dfmflv

2<m<I+1 1<n<Pm |A|<Pm—n
|B8|<l+1-m vI<1

* VIHNDMy 4o VT DAy,
which is also contained in
Z Z aaﬁ(l/,B)@H‘alDflv*---*?HO"”D?’”U.
1<m<l |a|<1,|B|<l-m
O
To estimate energy, it is necessary to determine the order of the material and spatial derivatives that

appear in the time derivative of the energy functional. Additionally, we will consider the magnetic

field. We denote the divergence of a matrix A = (A;;) as (div A); := >, 0;A;; and recall that the curl
of a vector field F is defined by curl F = VF — (VF)T.

We begin with the following basic results. By the divergence-free condition, it is clear that div D;v =
@Uj 8j?}i and

—Ap = 8ivj8jvi — @H](?]HZ (26)

The operators curl D; and D, curl can be represented in terms of spatial derivatives of lower orders,
suggesting that the curl operator should not be regarded merely as the gradient when considering the
velocity and magnetic fields. In fact, a direct calculation produces the following identities.

Lemma 2.5. For the velocity and magnetic fields, we have
curl Dy = (VH) " curl H + curl HVH + (H - V)(curl H),
Dicurly = — (Vo) " curlv — curloVo + (VH) " curl H + curl HVH
+ (H - V)(curl H),

[Dy, curljo = — (Vo) curlv — curl vV,
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curl D,H = VoVH — (VH) (Vo) " + (H - V)(curlw),
D;curl H = (Vo) (VH)" — VHVv + VoVH — (VH)" (Vo)
+ (H - V)(curlv),
[Dy, curl]H = (Vo) (VH)" — VHV.
Next, due to the presence of the magnetic tension H - VH in contrast to the Euler equations,
we introduce some error terms associated with the magnetic field. These will be necessary for the

subsequent computation of the quantities curl Df"'lv, [Df""l, V|]p, and —ADf‘Hp.
Denote ROVH,H =0, R%H,VH := VH x VH, and we define

R%H,H = Z Z aaﬁ(vv)vl-f-alptﬁlv x % v1+am72Dth72’U

3<m<k+2  |al<1
|8 <k+2-m

* Vo1l % H, (2.7)

k : m— /Bm—
RVH,VH = Z Z vlJralDtﬁlfU * ok vlJrCl QDt 2,

3<m<k+2 |a|<2,0:<1
|B|<k+2—m

* Vo1 H x Ve H, (2.8)
for k > 1, where ay 3(Vv) = Vo * Vv * - - - * Vv denotes the finite * product. In the case of §; = 0,

VDtBj can be absorbed into a,, g(Vv).
A direct calculation shows Dy (VH «VH) = V2vx H«VH +VuoxVH*VH and Dy(VH « H) =
V2vx H « H + Vv xVH % H, and the following is some results for higher-order material derivatives.

Lemma 2.6. Let k € N. It follows that
Dy (VH+VH) = RSy vy, D/(VH«xH)=REy .
Proof. It is sufficient to consider the case of k& > 2. We claim that given any k > 2, one has
Df(VH+VH)= > ST VDM uk- - x VD)0« VD H
2<m<k+2 |B|<k+2—m
* VD H,
Df(VH+H)= > S VDM« VDR« VD H
2<m<h+2 || <k+2—m
D/ H.
In fact, from Lemma 2.3, we see that
DF(VH «VH)
=VD/H«VH+[Df,VIHxVH+ Y [D]',V]H *[D}* V|H
\7\21?7’71,’7221
+ VD' H % [D}?,V|H + VD]"H « VD> H
= VDFH «VH
+ 0y ST VDM us -« VD) x VD H « VH
2<m<k+1|8|<k+1—m
+ 0y ST VDM k- % VD)0 VD) H % VD H
2<m<k+2 |B|<k+2—m
= > ST UDMus- % VD)0« VD H « VDM H,
2<m<k+2 |B|<k+2—m
and

DF(VH « H)
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=VD/H~H+[D},VIH«H+DfH+«VH+ > [D]',VIH*D}*H
+ VD) H »D)’H
= VDIH «H + DfH «VH
+ > ST VD wk - x VD) VD) H « H
2<m<k+1 |B|<k+1—m

+ > ST VDM uk- - x VD)0« VD H « D) H
2<m<k+2 |B|<k+2—m

= ) ST VD wk % VD20« VD) H « DY H.
2<m<k+2 |B|<k+2—m

By substituting D, H = H - Vv, we remove the material derivatives of the magnetic field. By induction,
it is readily verified that

DIH= > Y VD/wx- xVD/"vxH, 2.9)
1<m<j |B]<j—m

VIDIH= Y > VHuDfys. . xVItenpimny
1<m<j  |o|<i
|B|<i—m

* VOt | (2.10)
where 7,7 € N. These conclude the proof of the lemma. O

The above lemma shows that DF (H - VH) = RE, g, Due to the divergence-free condition, it can
be shown that taking the divergence does not increase the order of derivatives. This observation is
crucial for establishing the validity of Proposition 3.1 when dealing with —ADf .

Lemma 2.7. WehavedivDy(H - VH) = V?vxVHx H +VoxVH*VH +V?H x Vv H, and it
holds

divDf(H - VH) = 8;0,Df "' H'O;H + V3D 20+ Vox H* H +L.0.T.,
for any integer k > 2, where L. O. T stands for lower-order terms.
Proof. By Lemma 2.1, a direct calculation gives
divDy(H - VH) = 0;(D0; H' H' + 0; H'D,H")
= 0;([Dy, 0;|H H' + 9;D,H H® + 8; HI 90 H)
=V*xVHx H+VuxVHxVH+V?H Vv« H.
For k > 2, the condition div H = 0 implies that 8; D] 0;H’ = [0, D;]0;H’, and therefore
divDF(H - VH)
= 0;(DfOH'H') + 0;(0:; H'DFH') + 0;( > D0, H'D]*H’)
7=k, i<k
= 0;DfO,H'H' + Df0;H/0;H' + 0;H9; Df H'
+ D)'VH «VD*H
= 0;DFYH'0;H’ + [9;, D¥|0; H'H' + [DF,V|H xVH + VD}*H x VD;*H
+[D]', VIH*VD*H+ > [0;,D]"|0;H'D}*H".
IvI=kvi<k
In the above, it suffices to consider the most challenging term, i.e., 3ijHi8iHj. Note that

d;DFH* = 9;DF (o' HY)
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= 0;0,D; W' H' + > 9;0,D) v'D)* H'
+ Z aj[DZI, al]viD;/QHl,
Iy|=k—1
and we find that
divDF(H - VH)
= 0;0,DF W' H'9;H + [V, DfIVH  H + [Df,V|H x VH
+ > [V, D]'|VH «DI*H + VD]' H » VD}*H + [D]",\V|H » VD}* H

IvI=k
vi<k
+ > VDo« DPH*VH+ > VD], VjuxD*H«VH
\w\zllzfll |v|=k—1
YI<R—

= 0;0,DF W H'9;H + R.

Here, the highest-order term in R is V2DF ' H Vv + H, resulting from [V, Df]
V HxH. To complete the proof, we replace the material derivative with the spatial derivative, resulting
in V3Df_2?) * Vv * H x H, along with lower-order terms as shown in (2.10). O

To derive the energy estimates, we need to apply the div-curl estimates. Accordingly, it is inevitable
to compute div Div, div DéH ,curl Dév, and curl Div. The following lemma is crucial for computing
curl Dlv (see Lemma 2.10). Additionally, it indicates that we should reserve the curl operator (not
simply V) for the highest-order term, and seek opportunities to utilize Lemma 2.5.

Lemma 2.8. It holds
Dy((H - V)(curl H)) = V2 curlvx H x H + V?H « Vo x H + V20« VH « H,
and
DF(H - V) curl H)
=Vl curl H«Hx--x H+ > VAUE %% VO E,

k times |a| <k+2,0;<k+1
m<k+2,F;=v,H
+ > VADIy ke x VDI 1y VO s 5 VO

o +|B|<k+2
a;+Bi<k+1,8;<k—1
mﬁk‘-ﬁ-l,Fj:U,H

if the integer k > 2 is even. For an odd integer k > 3, we replace V¥ curl H x H % ---x H by
—_—

k times
Vit curlv « H % - - - % H in the above identity.
—_—

k times
Proof. First, we apply Lemma 2.5 to obtain
Dy[(H - V)(curl H)] = D;0; curl HH' 4 9; curl HD;H*
= [Dy, 8] curl HH' 4 8;D; curl HH® + 9; curl HOjv' HY
=V2curlvx H+ H+V?H «Vuox H+ V>0« VH * H.
In the case of k = 2, one has
DE((H - V)(curl H)) = D?0; curl HH + 9; curl HD} H' + D;0; curl HD, H'
= 0D} carl HH' + [D?,8;) curl HH' 4+ V*H « D} H
+D,V?H xVv* H
=11+ Ih+ I3+ I4.
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We denote
I = VD! curl Hx H = (Veurl Dy(H - Vo)) x H + V([D?,V]H) x H =: I1 + ©1a.
Again from Lemma 2.5, it holds
curl(H - VDw) = VH « VD + (H - V) curl Dy
= VH VD + (H-V)(VH x VH)
+(H-V)(H -V)curl H
= VDwxVH+V%curlH+Hx H + V?H «VH « H,
and using Lemma 2.1, it follows that
Iy = V(cewl(DiH - Vv)) x H + V(curl(H - D;Vv)) * H
= V(curl(H - VDw)) * H + V*(H % Vv Vo) x H
= V?curlH x H x H + V*Dyw « VH + VDw « V2 H
+ Z VAR %%V F,,.

o <4,0, <3,m<4
Fi,...Fpm=v,H

Applying Lemma 2.3, we have
Iio = V?Dyw«VH*H +VDwxV2H x H+ V?H «VuoxVox H
+V2uxVH«Vox H+V?H +xVuoxH+ Vv« VH « H,
and
Iy =VDw«V?H «H +V3uxVox HxH+V?HxVuoxVux H
+ V20« VH xVuox H+V?H «Vuv*H.
To control the last two terms, (2.9) implies that
I3 = VDwxV?H + H+ V?H Vo« Vox H+ V?H « Vv * H,
and Lemma 2.3 together with (1.1) yields
Iy = [Dy, V*H Vv« H 4+ V?*D;H « Vv x H
=V3uxVox HxH+V?H*xVuoxVox H+ V20« VHx Vv H.

We arrive at the following

D}(H-V)ewlH)=VPcwlHxHxH+ Y — VYFx---xV"F,

|| <4,0,;<3
m<4,Fj=v,H

+ > VD Y« V2 Fy % % VO F,

la|+]B]<4,0+8: <3
B:<1,m<3,F;=v,H

=J1 + Jo + Js.
As for k = 3, to calculate D;J1, we only focus on the most difficult term. Actually, it holds

D;V3 curl H = V3D, curl H + [Dy, V3] curl H
= V3(VuxVH + (H - V) curlv) + Z VA H V%2

|| <5,0,<4
=Vicurlv« H + E VA H % Vv,
|| <5, <4

from Lemmas 2.3 and 2.5. With the help of Lemma 2.3, D;J; and D;J3 can be treated in the same
fashion. Therefore, we obtain

DI ((H - V)curl H)
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—Vicurlvx Hx H+ H + Z VAE %% VO E

|| <5,0,<4
m<5,Fj=v,H
+ > VDI % V2 D2y x VS Fy % -+ % VO F
loo|+[8]<5,8:<2,0;+8; <4
m<4,Fj=v,H
The other cases can be shown in the same way. O
From now on, we denote
RYsy = (H-V)ewlH, Ry p=Df(H-V)culH), k>1. (2.11)

We proceed to introduce another two types of error terms that are related to div Dlv, curl Dlv and
[DIF1, V]p. The first one is written as the form

R} =VuxVo, Ri= Y Y VDlvus % VD" wx VD", (2.12)
2<m<i+1|8|<i+2-m

for any [ > 1. Recall that div Dyv = 9;v79;v" and curl Dyv = VH « VH + (H - V) (curl H). We will
show that it holds

divD!™ly = R}, curl DIy = R, + RlVHyH + RlV2H7H7
for I € Ny. The second error term is denoted by
RY; = Vux Dy + Vo * Vuxw,

Ryp= ) S a0 s(Vo)VD vk -k VD™ 5 VD, (2.13)
2<m<I+1 |BI<|o] <1

where [ > 1 and a, g(Vv) denotes the finite « product as before.
By applying Lemma 2.3 and (1.1), we arrive at the following result.

Lemma 2.9. Forl € Ny, we have

DI, Vip= 3 VDM v« VH « H + Ry + Ry . (2.14)
B1<l

Proof. We work by induction on [ € Ny. The case of [ = 0 can be obtained via a straightforward
calculation. As for ! > 1, by Lemmas 2.2 and 2.3, it holds

(DI, VIp = Dy([D}, Vp) + [Dy, VIDip = Dy([D}, Vip) — (Vo) ' VDip,
where
~VDip = [D},Vlp+ D)(Dw — H - VH) = [D},V]p + D, v — Di(H - VH).

A direct computation also shows that DtRlﬁl = RZI ;and DtRlV_I_lL = Rlv HH" These, combined with
[DLVp= VDtﬁ 'vx VH x H + Rll}l + RlV* flL y from the induction argument, yield that

B1<i-1
DI VIp =D Y VD vxVH » H+ Ry + R ) + Riy + R
Br<i—1
=Dy( Y. VD'oxVHxH)+ R+ R5p
Br<i—1
=" VD'« VH* H + R + Ropy g,
pr<l
where in the last step, the lower-order terms have been absorbed into R}, and Rlv HH U

The following lemma will also be used to prove Propositions 3.1, 6.1 and 6.2.
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Lemma 2.10. Lerl € N. We have
D,V curlv = (H - V)V curl H + Vo x Vi curlv + Vo« curl v
+ Z VA H « VP2 curl H
18=t
+ Z Vitary « vitez curlo,

o <I—1,02<1-2
D;Vicurl H = (H - V)V (curlv) + Vo + V! curl H
+ Y Vv g
18=t
+ Z ViTaiy « vITez curl H.

la] <I—1,02<1-2
Moreover, div Div and curl Div can be written as the form
div Dlv = lel, curl Dl = lel + ngéyH + RIYSQIHJ{.
We may also write div D\ v = div div(v ® Djv) + div R
Proof. The first claim is an immediate consequence of Lemmas 2.3 and 2.5. Indeed, one has
Dtvl curlwv
= [Dy, V] curlv + V'D; curlw
= V! [ (Vo) curlv — curlvoVo + (VH) " curl H + curl HVH

+ (H -V)(curl H)] + Z vitery « vitez curly
lal<i-1

= (H - V)V'curl H + Vo x V! curlv + VI y % curl v
+ Z VI H « V2 curl H + Z Vit x vitez curl,

8=t la] <I-T,as<1-2

and D; V' curl H can be computed in the same way.
Regarding curl Dlv and divDlv for [ > 2. Noting that (D!Vu)" = DL[(Vu)'] and applying
Lemmas 2.3 and 2.8, together with Lemma 2.5, we obtain

curl Dl = VDI YD) — (VD YD) T
= [V, D H(Dw) — ([V, DY (D)) T + DL curl Dyw
= Z Z VDtBlv*---*VD?’””U*VD?’”Hy

2<m<l|8|<l—m
+ DY VH «VH) + DY (H - V) (curl H))
=R+ Rygon + Rysy e
Similarly, it follows that div Dlv = lel thanks to divv = 0.
For the last statement, we need to apply
Dy, div]F = — div(VuF), and divdiv(v ® Do) = div(VDlww), for [ > 1,
both of which can be easily computed. Then, we have
div D?v = Dy div Dyv — [Dy, div| Dy

= D, div(Vov) + div(VoDyw)

= div Dy(Vov) — div(VoVov) + div RY,

= div(Dy(Vo)v) — div(VoVuv) + div RY,
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= div(VDwv) + div([Dy, V]vw) — div(VoVuv) + div RY,
= divdiv(v ® D) + div RY;.
As for | > 2, we argue by induction, i.c.,
div DIy = D, div Dlv — [Dy, div]Dlw
= Dy(div div(v ® DL ') + div RY7?) + div(VeDlv)
= D, div(VD! o) + Dy div RY,? + div(VoDlo).
A straightforward calculation yields D; div R};? = div Rt div(VuDlv) = div RY;', and therefore
D, div(VDI Low)
= divDy(VD!  ov) + [Dy, div)(VD! o)
= div(Dy(VD! o)) + div(VD (D)) + div(v x Vo x VDI 1)
= div(([Ds, V]DL o 4+ VDLw)v) + div(Dyw « VDL Lo + v % Vo x VDI 1)
= div(Vox VD! Lo+ v) + div(VDlow 4+ Dy x VDL Lo + v x Vo x VDL 1)
= div(VDlov) + div RL,!
= divdiv(v ® Dlv) + div R}; .
O

The following lemma will be used to establish Proposition 3.1 and the pressure estimates in Section

4.
Lemma 2.11. We have
~ADyp = divdiv(v ® Dw) + div(RY, + Vox HxVH + H - V(H - Vv))
= —divdiv(v ® Vp) +div RY; + V2ux VH « H + V2H x Vo x H
+V2H «VH v+ VoxVHxVH,
and for | > 1, it holds
—ADHp = divdiv(v ® D) — div Rlv'ng,H

+div(>_ VD'« VH « H + Ry + Ry ).
B1<l

Proof. From the divergence-free condition, Lemma 2.10 and (2.14), —AD;p can be written as
— ADsp
= —divD;Vp + div[Dy, V]p
= —divDy(H - VH) + divD?v — div(Vo ' (H - VH)) + div(Ve ' Dyw)
= divdiv(v ® D) + div RY; — divDy(H - VH) — div(Vo" (H - VH))
= —divdiv(v ® Vp) +divRY; + V2o x VH x H + Vux VH x VH
+V?H «Vux H+vxV2HxVH.
The second claim follows by applying (2.14) that
—ADin = —div DiHVp + div[DiH, Vip
= divD/?y — divDIT (H - VH) 4 div RY;
+div() " VD ox VH  H + Ry )
p1<i

= divdiv(v ® Djtv) — div R,
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+div(>" VD v« VH « H + Ry + Ry py).
p1<l
O

Remark. In the above formula, the term div Rlv'ng ;7 appears to be more challenging than the other
+1

error terms (e.g., div RlI 7). However, taking the divergence (div Rlv2 17 ) does not increase the order
of derivatives, as indicated in Lemma 2.7 due to the divergence-free condition. The key observation
will enable us to conclude the proof of Proposition 3.1.

To establish the energy estimates, it is necessary to derive the formula for Dlp on the free boundary.
It is important to note that the solution is well-defined on I'; due to our assumption of the local
existence result. Furthermore, it is important to mention that the following formulas do not include
the magnetic field.

Lemma 2.12. On the free-boundary T, it holds

Dip = —Apv-v—2B:Vv=—Apv, — |B]*v, + Vp-v. (2.15)
Proof. We recall that p = A and from the identities (e.g., [SZ08b, Section 3.1])
DyA = —Apv, — |BPv, +VA-v, Agv=—|B*v+ VA, (2.16)

it is clear that
Dip = —Apgv, — |B|2vn + (Apv + |B|21/) -V
= —-Apgv, + Agr-v
=—Apgv-v—2B: V.

Finally, we introduce the error term an as described in [JL.M22]. We define
Rllj = —|B]*Dw - v+ Vp - D + a1 (v, Vo) * V20 + az(v, Vo) x B,
RIQ) = —|B]*D?v-v + Vp-D?v + az(v, Vo) x V2D
+ a4(v, Vo) * VD « V2 + as(v, Vo) x VDw + B
+ ag(v, Vv) x Vv + a7 (v, Vo) * B,
and
R} = — |B*D}v-v+ Vp - Djv
+ ag(v, Vv) x V2D2v + ag (v, Vv) x VD2v V20
+ a10(v, Vo) x VD?v x B + a11 (v, Vo) x V2D x VD
+ a12(v, Vo) * V2Dyw + B + ay3(v, Vo) x VD x VD + V20
+ a14(v, Vo) x VDw * VDwx B+ L.O. T,
where a;(v, Vv) denotes the finite x product of v and Vv. For | > 4, we define
RfD: —|B|*Dlv - v+ Vp - Dl + Z aaﬁ(u,B)VHalDflv*...
|a|<1,|8|<l-1
x Vitaiplitly,
where a, (v, B) also denotes the finite * product.
Lemma 2.13. On the free-boundary T, we have
D;"'p=—Ap(Dp-v) + R,
forl e N.
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Progﬁ For [ = 1, we differentiate (2.15) to obtain D?p = —D;Apv-v—Apv-Dyw—2D;B : Vu—2B :
D¢Vv. Recalling the formulas for [D;, Ag|, D;v and DB in Lemma 2.1, it holds
Dip= — ApDw -v — 2B : VDw + a1 (v, Vv) % V2v + as(v, Vo) x B.

where a; and ag are finite x product of v and V.

As | = 2, we differentiate D?p and calculate [D;, Ag|Dyv = V2D x Vv — VD - Agv + Br
VuxVDw, DB = a1(v, Vu)x B+ as(v, Vo) x V20, D,V Dw = VD + Vux VD, Dya(v, Vu) =
b(v, Vv) x VD, Dy V20 = V20 % Vo + V2D to obtain

Dip= — ApDiv-v — 2B : VD?v + a3(v, Vv) x VEDw + ay(v, V) x VD
* V20 + a5 (v, Vv) * VD + B + ag(v, Vo) * V20 + az(v, Vo) x B.
Similarly, it holds
Dip= — AgD}v-v —2B: VD
+ ag(v, Vv) « V2D?v + ag (v, Vo) x VD2 « Vv
+ ayo(v, Vo) x VD?U * B+ ay1(v, Vu) * V2D x VD
+ a19(v, Vo) * V2D % B + ay3(v, Vu) « VD + VD x V2
+ a14(v, Vo) x VDw « VDyw + B+ L. 0. T,
for I = 3. Asin[JLM22, Lemma 4.7], we can show that

Dip=—ApD, v v—2B: VD, v+ Y aqs(v, B)VHUDM v

o <1
1Bl<i-1

* VHO‘ZHDEHW,

for! > 5. Combined with (2.2) and (2.16), the remaining proof is similar to [[LM22, Lemma 4.7]. O

3, TmME DERIVATIVES OF THE ENERGY FUNCTIONALS

In this section, we compute the time derivative of the energy functional ¢;(¢) by applying Lemmas
A.2 and A.3. The main result in this section is the following proposition.

Proposition 3.1. Assume that the a priori assumptions (1.8) hold for some T' > 0. Then, we have
3
d_
%e(t) < C; (HRZIHZ%(Qt) + ||RIH||%2(Qt) + HRZVH,HH%%Qt)

IR )+ C (14 19 ) B,

where the constant C' depends on T, N7, and M.

Moreover, we further assume that sup E;_1(t) < C forl > 4. Then, it holds
0<t<T

d
a0 < OB+ IR, -+ IRl + 1ol

SR )

forl > 4, where the constant C' depends on T, N, M, and sup E;_1(t).
0<t<T

When computing the time derivative of ¢;(t), we denote
1 1 1 _
et) == / DY) 2da + = / DI H |2 dx + = / \V(Dlv - v)[?dS
2 Q 2 Q 2 Ty

5
1 1
Lglgljcurlv\deJri/ !VLglglqurlH]de = E 1N,
& i=1
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and we will apply Lemmas A.2 and A.3 several times.
We begin by considering the material derivative of the velocity field. From equation (1.1) and
applying the divergence theorem, we obtain
d

— It
p 1(1)

:/ D2y . D lydy
Q

= — [ DIF'Vp Dilwdz 4 | DIYH - VH) - Diode
Qt Qt

= — VD#lp.Di“udx—/ (DI Vp - D wda
Qt Qt

+ [ DIYHI9;H) D vida
Q¢

= —/ div(DinDiHv)d:U—k/ DI p div D udz
Qt Qt

- /Q (DI Vp - D lwdx + /Q DY (HI0;H;) DL vl de
t t

< | Hoy(DiM H)D Wde — | D p(Di e - v)dS 41D ol 7z )
Qt Pt

=JL(t) =Kl

A Dy pdiv Dy ode + | [DEF, Vipl 720,
t

—1[, =120

l
+Y | DyHIDIR 0, HyD v da
k=0 %

::153(15)
I+1 ' ‘
+>° | DFH 9D R H D v da,
k=1

=1{,(t)
where we have used the fact that
DIYY(HI0;H;) DL !

l
= H/0;(D{ " H;)D{* v’ + Y " DFHI DM, 0,1 H Do’

k=0
I+1
+Y  DyH 9D R H DI
k=1

Similarly, for the magnetic field, it follows that

d
— Ikt
g 2(t)

_ / DI*2H - DI Hdx
Q¢

= [ DY HI9;0NDIT Hydx
Q¢
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l
— A H]a] (DlngrlUi)DiJrlHid-T + Z A DfH] [Di‘l’l*k’ a]]vZDi+ledx
t k=0 t

=50 =1k (1)

I+1
+> | DrH 9D R D Hyda

/

=1 (1)
Recalling that div H = 0 in €; and H - v = 0 on Iy, it is clear that
Ji(t) + J5(t) =
and we obtain

d
a0 ([1( t) + I5(t) > < Ki(t) +Z[11 + Iy (£) + Iy (t) + HDiH”H%%Qt)-

To control the third term, we apply Lemma 2.1 to deduce

d
I

_ _ 1 _
= / Dy, V](Dlv - v) - V(D - v)dS + 3 V(D - v)|? divy vdS
Iy Iy

VDy(Dw - v) - V(D - v)dS
s

= / —(Vo)'V(Dlv - v) - V(D - v)dS + % / V(D - v)|? divy vdS
It Tt
V(DI -v) - V(Dlv-v)dS + | V(D -Dw) - V(D -v)dS
I I

/(Dz+1v v) - Ap(Dpv - v)dS + ||V (D - Dyv)l[72(r,)
I

/

| /\

/

P =110

+ C (V|| oo (ry) + DIIV(Dfw - V)H%%rt)-

25

Finally, to compute the last two terms involving the curl, we denote y; = L% (3l+1)|. We then utilize

the divergence-free condition and the fact that H - v = 0 on I'; to obtain

/ Z (H-V)V®curlH : V% curlv + Z (H-V)V©curlv : V¥curl Hdz = 0.
Q

t o=l |ee]=1
Therefore, from Lemma 2.10, it follows that

i[i(t)—/ Z(H V)Vcurl H : V¥ curlvdz

Q| o)=t

= Vo« VA curl v x V# curl v + VA x curl v « V# curl v

Q¢
+ Z VI H « VP2 curl H « V# curl v
\5|=Hl
+ Z V) % V2 curl o « VA4 curl vda

lo| <py—1,00<py —2
< OVl ) + DIV )72 + IVHI oo (ol 0] H [ F )
+ || curl H ([ F oo o) IV H 70 0y + V011700 ) IV 011 (02
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and

%Ié(t) - /Qt lZZ(H -V)V%curlv : V* curl Hdz

< C(IVvll gy + DIV carl H[72q,) + V0l @) IVH 7 0,
+ IV H |G 0 V0l (-
Proof of Proposition 3.1. Since we assume the local existence of smooth solution, by (1.8), one has

H?UHLOO(F)E) < C||Vv| pe(q,) < C. This, combined with the above calculations, and applying Lemma
2.13, [VH|| 1 (q,) < C by (1.8), together with the definition (1.5), we obtain

Kit) + KL(t) = — /F R;(D,i“v-u)ds,
t

and

3 4
d = n l I+1 l l
—e(t) <CE+ cy (- /F RL(D v -v)dS + > Thi(t) + I (t)

=1 i=1
+ I (t) + IéQ@)) .

As for [ > 4, it follows that

4
iel(t) < CEt) + C< — / RL(D/Mv - v)dS + Z It + 14 (b)
dt T, g

+ I (t) + Iéz@)) .

We divide the remaining proof into six steps.
Step 1. We control Ii,(t) and IL,(t). Let I = 1 and assume F' = v,G = Hoor ' = H,G = v
respectively. From (1.8), it holds

2
> | DFHIO D} FEDIG dx
=1

2
< CY |IDFHI 9D Fl[72(0,) + CIID; G320,
k=1
< C(E1(t) + | DeH 7200 VPl e 00y + 1PF HI72(00) IV F 17 (02)))
< CE(t).
In the case of [ = 2, from the fact that
||VDtH||%2(Qt) < [IV(H - VU)H%%Qt) <C, 3.1)
IVDw|20, < IVH - VH)|Z20,) + IVPll7200)
< C(L+ V2Dl 72, (3.2)
it follows that
3
> | DfHIO D} *FD}G dx
k=1
3 .
< CY |IDFH 0D} Fl[72(q,) + CIDIGI 20,
k=1
< C(Bao(t) + ||H - Vol 220 I DEF | Hs 0y + IDEH 20, IV DeF | 720
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DY H 20, IVF (10 (62,))
< C(1+ V2|22 ) B (1),
As for | = 3, again by (3.1) and (3.2), we obtain
4
> | DfHI9;D} FFDIG d
=1

4
< CY |y H 0D} Fl[72(,) + CIDIGl 20,
k=1
2 3 2 2 2 2 2
< C(Es(t) + [|H - VUHLG(Qt)HDtFHH%(Qt) + D7 Hl[72(0,)I1P; F'll3 0,

+ 1D (H - V)| Zoe () IVDE 720, + IDFH | 20 IV F [0 ()
< C(L+[IV?pl 72, E (),
where we have used
1D Hl[72(0) < CIDH % Vo|[72(,) + ClIH x DiVo|72(q,
< CO+ 198 (.3
and
HD?HH%oo(Qt)
<D (H - V)| 70
<|DFH * Vol 7o) + IPeH * DVl o) + 1 H * D V|7
< C(HD?H”%OO(Q” + H[DtaV]UH%w(Qt) + ”VDtUH%oo(Qt)
+ H[DtQaV]UH%OO(Qt) + HVDtQUH%OO(Qt))
< CE(t),

by utilizing (1.8), Lemmas 2.1 and 2.3. Additionally, one order material derivative has been substituted
with the spatial derivative of the velocity field.
Asl > 4, we use the hypotheses Ej_1(t) < C to obtain

+1
Z / DFHI 9, DIk DI Gldy
o

141
< CY IIDFH D T Fl|Taq,) + CID Gl g,
k=1
l
CO_NDEH| G ) 1D kF||2 a0 T 1D H 9D F |72(q,)) + CEi(t)
k=2
< CE()Ei-1(t) + CE(t) + C|DeH | 75, I VDL F 730,y < CEI(2).

Step 2. We control I15(¢) and IL, (t). As before, we assume F = v,G = H or F = H,G = v. We
only consider the cases in which | = 2 and [ = 3, since the case for [ = 1 is simpler. In fact, from the

commutator formula of [Dg, V] in Lemma 2.3, (3.1), (3.2) and (3.3), it holds
Z / DFHI[D3* 9,|F, D3 G dx
Oy
< CZ IDEEI D} F, 01|25 ) + CEa(t)

k=0
< C(IDFH? [Dy, 01F 120, + IDeH? [DF, 051 F 1720y + I1H [DF, 01 F |72
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+ Es (1))
< C(E(t) + | DIH! 0;0* 0, F |1 720,
+ |DiH * (Vo VF + VDo % VF + Vux VD F + Vo Vox VF)|[72(q,
+ ||H % (VD?v x VF + VD +x VD F 4 Vv « VD?F + VD x Vux VF
+ Vux Vo VDiF 4+ L.0.T.)|[72(q,))
< C(L+(IV?pl72(,) E(®),
and
3
> | DrHIDIF, 0;|FD{G dx
k=0
< C(Bs(t) + | DPHI 00" 0 F[72 g,
+ ||D?H * (Vv x VF 4+ VDyw x VF + Vv « VD F + Vv x Vo x VF)H%Q(Qt)
+ | D H % (VD?v x VF + VD « VDF + Vo « VD?F + VD x Vv
*VF + Vux Vox VDiF +L.0.T.)|72q,
+ ||H « (VD}v x VF 4+ VD?v x VD,F + VD« VD?F + Vv « VD F
+L.0.T)|%2(,))
< C(L+[IV?plZ2 () E ().
For [ > 4, from Lemma 2.3 and the assumption E;_1(t) < C, we deduce

l
> | DEHI[D 0, FiDi Glda

=0
< C(|DH D1, 05)F |20,y + O IDEHI DI, 051 F |72,y + Eu(1))
k=0
< C(Ey(t) + | DLH 90" 0k F |72
-1
+>3IpkE S Y S VDM uxe - x VD Ny
k=0 2<m<I+2—k |B|<l+2—k—m

*VDthFH%Q(Qt))
< CElfl(t)El(t) + CEl(t) < CEl(t).

Step 3. To estimate [}, Rﬁ,(folv -v)dS, we apply Lemmas 2.10 and A.12 to obtain

I I .
1D vl g ) < CUD oll 2 () + I div Dol -1(g,))-

(Te)
Therefore, it follows that

| [ RL(Di'v-v)dS| < C(E() + | Ri|1Z2(q,) + HRLHZ% ), 1<3,
T+ (T')

l I+1 L2 12
[ BP0 0)dS| < CBE) + IR oy + IRy ) 124

It should be noted that later on, we must estimate HRLHQ L
HZ(Ty)
Step 4. We estimate 4, (). We only present estimates for | = 3, and the cases of [ < 2 are similar
or easier. Actually, by the a priori assumption (1.8) and the trace theorem, one has

IV(D{v - Do)l 72,
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=13 2 3 2
< |IVD{v* D2, + D70 x VDw |72
2 3, 112 3, o2 2
< CUDw 700y ID; U||Hg(9t) +[[D}v* Vv * v p,

+ [ Dvx Vo x vV||%2(Ft))

::Lg1 ()
< CE(t).

Above, we have applied the Sobolev embedding, i.e., for p~' + ¢! =271, p = 267! with § > 0 small
enough, it holds
L3,0) < D000 19202000y < PPl s o |20
and ||D} V2 D] 4
rem.
As for [ > 4, it follows that

IV (Do - D) Z2ryy
< C(HDtVH%OO(Pt)”DiUH?ql(Ft) + HDtV”%/VlA(Ft)HDiUH%‘l(Ft))
! I
< C(HDtUHiI%(Qt) + El—l(t)HDthfql(Qt)) < CE(t),

< CE(t), by using the trace theo-

Wy < IDEI g 01 g

-5y

where we have used the fact that Dyv = Vv % v from Lemma 2.1 and vl g2+ (r,y < C by (1.8)
together with (2.3).

Step 5. For It,(t), we recall that it holds [DI™, V]p = 3 VDflv *VH*H+ R+ RIVH,H by
p1<l

(2.14). Clearly, we have | >_ VDBIU*VH*HHLQ(Q < CE(t)forl <3,and || 3 VDEIU*VH*
B1<l pi<l
HHLQ(Qt) < CEy(t) as | > 4. We leave the estimates for | R}, |2, @) and HRIVH’HH%Q(Q” to Section

5 (cf. Lemmas 5.3 and 5.4).
Step 6. Finally, controlling Ii,(t) is trickier and necessitates the application of Lemmas 2.7 and
2.10. Let u be a solution to
—Au=divDly,  inQ,
u =0, on I,
where [ > 1, and we integrate by parts to obtain

L) =- i ADH  pude — /F D pd,udS = Iy (1) + I 5 ().
t t

Again by integration by parts, Lemma 2.11 and the divergence theorem, it follows that
l
Illl (t)

= /Q (divdiv(v ® Dy ™) + div(Ry; + Y VD/'ox VH x H + Ry ) Juda
t 61<l

- / div DI (H - VH)udz
Q¢

:/(U®Dl+1) V2u— (Ri;+ R+ Y VD/'wx VH * H) - Vudz
Q
B1<l

- / div DY (H - VH)udx — / v DI 9uv;dS
Qt Ft
< C(H“H%ﬁ(m) + Ei(t) + HRZHH%%Q,g + HRZVH,HH%2(Q,5))

—|—/ div(viDiJrlv(?iu)dx—/ div DI (H - VH)udz .
Qt Qt

::Lluu(t) ::Ll1112(t)
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We estimate the first term by using Lemma 2.10. Indeed, it holds
ILY, ()] = / Vo + DIy« Vu + v * div D o « Va
Q

+ v % Di“v * V2udac|
< Ol + Bi0) + 1R ooy

To control LY, 5(t), it is important to note that the integration by parts method used previously
is not applicable. However, as indicated in Lemmas 2.6 and 2.7, one-order material derivative can be
substituted for one-order spatial derivative due to the divergence-free condition. Roughly speaking, we
reduce the spatial derivative of %-order , which enables us to close the energy estimates.

In fact, we have from Lemma 2.7 that

divD!"Y(H - VH) = 8;0,, D0, H"H' + V3D lvx Hx H+ L.O.T.,
t t J t
and
L0l <1 [ 00,0k, H" Hiudsl + Clulfaqa,
t
+C|IVPDy v H % HH%Q(Qt) + Mipa(t)
< CH“H?{I(Qt) + CE(t) + Miy5(t),

where we have used H - v = 0, and

| | 9;0mDiv?0; H™ H udx|
Q
== O D1 9;(0; H™ H'w)dx| + | A Oy Dl 0; H™ Huv;dS)|
t t
=| [ 0mDi0;0; H™H'u + 0,,Div’ 0; H™ H' 9;udx|
Q

< CE(t) + Cllull3 q,)

by integration by parts. Also, M!,,(t) contains lower-order terms (at most V>D!™1) which can be
controlled in the same fashion as before. These, together with

[ullFrz 0, < Il div D oll72 0,y < CIRIIZ2 00
it follows that
I (1) < C(E(t) + HRZIH%Q(QQ + HRIHH%%Qt) + HRZVH,HH%2(Q,5))7
for ! < 3, and
L (1) < CE() + 1R |20, + IR T 200 + 1RS m1 1172 (00)s

for [ > 4.
We are left with I!,(t). Applying Lemma 2.13 and by integration by parts, one has

D, pd,dSu = / (—Ap(Djv - v) + R.)d,udS

Iy Tt

= [ V(D -v)-Vo,udS + / Ré(?,,udS.
Ft Ft
Then, we use Lemmas A.9 and A.17 to deduce

T2 (O] < CUNV(Dw - D)2,y + IVOullZay + 1R 72(r,)

= . I+1 112 12

C(BW) + [ div DIl ) IRy,
- 1112 12

CEW + IR o+ 1B ey):
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for I < 3. Similarly, it holds |Il,,(t)] < C(E(t) + HRZIHZ%( : + HRLH%%I})) for I > 4. This

Q4
completes the proof of the proposition. O
4. ESTIMATES FOR THE PRESSURE

In this section, we treat the pressure and will show that

sup ||pllg3,) < C, (4.1)
t€[0,T]

where the constant C' depends on the time 7' > 0, the a priori assumptions A7, M, and the initial

data [|vol| s (cag)» [[ ol 26 (09) and [ Arg || 275 (-
For this purpose, we assume the a priori assumptions (1.8) for some T" > 0. As a result, it follows

that sup |[|h||gs+sry < Cand sup |[|Blgi+s(r,) < C. In particular, we have ||p|| gj1+5p,) < C and
o<t<T 0<t<T

T
/o P11} (p,ydt < C (N7, M) T. (4.2)

Recalling we define H 2 (T';) via the harmonic extension. From Lemma A.15 and (A.4), we obtain
HaupH%?(rt) SC(vaH%?(Ft) + HVPH%Q(Qt) + HAPH%?(Qt))
<C(IVplZ2r, + lelfq%(m +14p172(q,)
SC(”PH%I(Q) + HAPH%%Q))
<CNp, Mp)(1+T). (4.3)
For higher-order derivatives, we have the following results.

Proposition 4.1. Assume that Ty is uniformly H37°(T)-regular for 6 > 0 sufficiently small. For smooth
function f, it holds

19271220y < € (18 B + 1 Braqry) (4.4)
IV oy < € (1AF By + 11, ) - (4.5)
In particular, we have
19201220 < C (18013030, + 1Py ) - (4.6)
IV2Dipl3 0,y < C (18P0, + 1P I3nr,) (47)
19012200 < C (180820 + P13 ) - (4.8)

Proof. For any k € {1, 2,3}, it follows that
VOl Zeir,y < CUNOF T2,y + IV FIIZ20, + IVAFIT2000)s
by applying Lemma A.15. Recall that we extend the unit outer normal v to €; by the harmonic
extension and [[7] 3.5, < C- This, combined with Lemmas 2.1 and A.15 implies that
VOS2 < CUVY 2,y + IVF * VI x 0l[72p,)
< C(\szH%%rt) + HV?fH%%Qt) + HAfo%%Qt)
+ HVfH%ﬂ(Qt))
< IV flI2wy) + IVAF 720 + IV £ )
IV * Vo x V|2 + IV2f % Vil2q,)
< CUIV f 2wy + IV A T2 + IV £ )
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and therefore,
IVORf 172,y < CUNVF T2,y + IVAF 200, + IV I 0)-
Next, we apply (A.4) and Lemma A.16 to find that
IV £l 0 < C 10y f||2 ey T IV £ 117200, + 1A 1172(0,))

SOOIy g, + 11,y )+ 1A e

To control ||(9,,f||2% )’ using Lemma A.15 and by interpolation, one has
t
1011,y 1 < V0 ey + Col iy

< 5(HV2JCH%2(Q) +IVIn @)

+ C(IVFIZeqr,) + 112 4

P + HAfH%%Qt))a

where € > 0 is sufficiently small. We conclude that
IV ) < V2 FI2y + CUF G ) + 1A 200): (4.9)

and then (4.4) follows.
To prove the second claim, by Lemma A.15 again with k£ € {1, 2,3}, it holds

VORI T2r,y < CUNVORDf T2,y + IV T2, + IVEAFII2(q,)-
To estimate ||V3f||%2(ﬂt), from Lemma A.16, we obtain

10: 122y < CURDSI y ) + IV 2y + IV AL IE2(c)

for i € {1,2,3}, and by interpolation, we see that
Hayalfui{%(rt) S 5“vavazf“%2(l“t) + C{fHaya’ifH%Q(Ft)’

where £ > 0 is small enough. These, combined with (4.4), (A.4) and the fact that HDHH%+6(9 | <C,
yield
IV 2, < €UV FIZaqy + IV % VolTaw,) + 1 ey
+ 1A f 7m0
< eIV f T2y + 1 ey + IAF I 00 (4.10)

Then, we control HV@k({“)lfHLQ(F by Lemma A.15 and the fact that Av = 0, i.e.,

IV Ok f 1|72,
< ClowNaf 2y + CIVf % V% 0| 2o
< CUV?f e, + IVVV fliZa,) + 1AV FII2 g + IV £ 2(r,))
< C(HanlfH%%rt) + HVQfH%rl(Qt) + HAfH%T?(Qt) + HfH%ﬁ(rt))-
Again by (4.4) and Lemma A.15, we obtain
IV?0uf 72,
<NV oy + V2 % Vol Zay + IV f % VD72,
+ ||Vf*Vﬂ*V17||%2(Ft)
<V fllZ2wy) + VP FlZ2 ) + IV F % VOl T2, + IV % VT2,
IV AL 2, + IV F * V22|20, + IV FllZ2r,)

FIV2 L% VPl + IV g
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< CU sy + IV 200 + 1AF 12 00)-
Recalling (4.10), we conclude that
IV £z < elVPFllZe,) + CU s, + 18FI2q,)-
This completes the proof. O

We will proceed with the estimates for the pressure.

Lemma 4.2. Assume that (1.8) holds for some T' > 0. Then, we have

sup HVPHB < eC(NT,MT)(1+T) <1 + HVPH%Q(QO)) .
te[0,T

Proof. From Lemmas 2.1 and A.2, and the divergence-free condition, we differentiate as follows
= D
7o) / \Vp] dx = o Vp - Vpdz

= VDp - Vpdzx + Vv xVp*x Vpdx
Qt Qt

= [1(t) + Ig(t).

Clearly, the a priori assumptions (1.8) imply that | I5(¢)| < C'HV;D||L2(Q For the first term, by (2.15),
(4.3), and the divergence theorem, we have

L(t) < / div(DpVp) — DipApdz
Q¢

Dip0,pdS — DipApdzx
It Q

< CO+ i) - [ Dpdpie
To control th DipApdz, we consider the following elliptic equation
{ —Au = Ap, inQy,
u =0, on I';.
Then, we see that

— DipApdx = AD;pudr + Dipd,udS =: Ill(t) + I (t)
Qy Q¢ Tt
Note that (2.6) implies [Ap| < C, and we have |[ul|g1(q,) < C. Also, from Lemma A.15, we get
HVUH%Q(I}) < C and

[L2(8)] < Depllr,) + 10ullfe(r,y < CA+ Pl r,))-

We are left Wlth I1(t), for which one can repeat the argument in [JLM22, Propsition 6.3] to deduce
HuH Qt) <C(1+ HpHH1 r, )) Then, by (1.1), (1.8), Lemma 2.11, (2.13) and (4.3), we integrate by

parts to obtain
() < COA+ IpllZn e, + IVPI72q,)-
Combining the above calculations, it follows that

Li(t) + I(t) < OO+ IplFn ey + 1VPI17200)-

With the help of estimate (4.2), the proof is complete since we have

d
(1 + 1 9p132q,) < CO+ Ipl3nr)-
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Lemma 4.3. Assume that (1.8) holds for some T' > 0. Then, we have
T
/ 192022 1 dt < CNp, My)(1+T),
0

Proof. We define

I(t) = [ Vp-V(Vov-v)dS,
It
and from the hypothesis (1.8) and (4.2), we see that

|I(t)| < CvaH%Q(Ft) + CHV2UH%2(Ft) + CHVU*BH%Q(Ft) < C.

Again by (1.8) and applying the divergence theorem, Lemmas 2.1 and A.3, we deduce for sufficiently
small € > 0 that

d _ _ _ _
@I(t) < C|I(t)] + / DNVp-V(Vov -v) + Vp-D;V(Vov - v)dS
Iy

< Cg + €Hthp||%2(Ft) + /F ?p . th(V’UV . I/)dS
t

<C:+e¢ H?DtpH%g(Ft) - /F AppDi(Vov - v)dsS .
N—— t
::Il(t)

/

::Ig(t)
By (1.8), (2.15) and (4.2), it holds
IL(#6)] < CL+ [lonllisr,y + VB * BxvalZary + VP r,)
< CL+ IVl Z2(ryy)-

For the second term, from (1.8), Lemma (2.1) and the divergence theorem, we have

(L) < — [ App(VDwv - v)dS + C||Vpllpyr,)
I
= — [ App(V(-Vp+H -VH)v- I/)dS—FEH?%?H%Q(Ft) +C;
I
< [ App(V?pv-1v)dS — [ Appx V2 H «VH v vdS
Ft Ft

el e
< App(V3pr -v)dS + EH?ZPH%%F,E) +C..
I’
Recalling |Ap| < C and by (2.2), (4.3), the divergence theorem, for ¢ > 0 small enough, we deduce

App(Vipr -v)dS = AppAp — AppApp — AppAd,pdS
It Tt

€= _
<C+ §\|V2P\|i2(rt) + Cellpll ey —/ IV2p[*dS
Iy

+ HABpHL?(Ft)HaI/pHL?(Ft)HpHL“’(Ft)
3
< - Z\|V2p||%2(rt) + C-.
Above, we have applied the results in [F]M20, Remark 2.4] that

I8l 0, < 1880l +C [ 1BPIVaLAS.

Combining the above calculations, it follows that

d Lig2 2
510 = =5 IVoplle ) + C.
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Integrating over [0, 7], we obtain

T
| Il de < OO T 4+ 1(0) < O, Ma) (14 7).
0

Lemma 4.4. Assume that (1.8) holds for some T' > 0. Then, we have

s IV?pl 72,y < “NTMDUID (A 1 |1V%p) 72 q,)).
te(0,T

Proof. We differentiate and apply Lemma 2.3 to obtain

/ V2 / |V2p|2 d1v vdr + [ DiV?p: Vipdx
dt2 QO
= V2Dyp : Vpdx
Q
+ V20 x Vp * V2p + Vo « V2 « Vpda

Q
=1 (t) + I (t)
From (1.8), (2.6) and using Lemma 4.2, we have
(t) < / Z 0;(0;Dyp0;0ip)dx — VD:p - VApdx
Q o

P
Z7j

§/ Zathpal,(?jpdS+/ ADtpApd:c—/ 0, DipApdS
Ft . Qt Ft
J

<C>y 1850501122 (r,) + CllOPep|l72(r,) + ClIADD 720,
J
=t I11(t) + L2(t) + L13(2),

L(t) < C(|lv ”22(9 VDl 76 + IV?PlZ2(0)

< C(L+[IV?plZ2(qy))-

35

We apply Lemmas 2.11 and 4.2, and (4.6) to obtain |I15(t)] < C(1 + ||V2p||%2(gt)) and |I11(t)| <

C(L+ [[pl%2 r,)- Finally, (1.8), Lemmas 2.11 and A.15, and (A.4) imply that
1L ()] < CUIVDwplZ2r, + IVPplI72(0,) + 12D 720,))
< C(IVDplZr,y + HDtPHZ%(Ft) +|ADp|72q,)
< O+ lpllzr,) + IV?Pl7200)-
Combined with (4.2) and Lemma 4.3, the proof is complete, since

d1
%5/ ‘VQ]D‘ dx <ZIh +IQ( )

1=1
§0(1 + HVQPH%Q(Qt) + HpH%JQ(Ft))

We move on to higher-order pressure estimates.
Lemma 4.5. Assume that (1.8) holds for some T' > 0. Then, we have
T
sup [|V?pl 22, + / V222, dt
te[0,7
< C (T, Nr, M1, [IVpll 200, 1 VDl 11 (020 ) -
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Proof. We define

I(t) = | V?p:V3(Vov-v)dS +¢e | |V?p|?dS = I,(t) + (1),
Ft Ft

where £ > 0 will be chosen later. From (1.8), (4.2), Lemmas 4.3 and A.11, we have
e
1 (t)] < §HV2PH%2(Q) + Ce(IIV0[[ 22, + [IV20 % B ()
+[[Vox VB|Z2(r,)
E —
< §HV2PH%Q(D) + C,

and I(t) > —C. + gHva(-, I3, (ry)- We differentiate and use (1.8), (4.2), the divergence theorem,

Lemmas 2.1 and A.11 to obtain

d _ _ _ _

Ell (t) < CIL()| + | DiV?*p:Vi(Vov-v) + V2p: DV (Vv - v)dS
I

<C.+ 5(\|62P\|i2(rt) + ||vZDtPH%2(Pt))
+ [ V% :V*Dy(Vov - v)dS
Iy

< 6”?2]9“%2([*” + C

+ € Hv2Dtp||%2(Ft) —/ ?ABp . th(V’UV . I/)dS
—_——— s

=T111(t) —Na(t)

The first term can be controlled by (1.8), (2.15), (4.2) and Lemma A.11, i.e.,
1L ()] < Cllonllzar,y + 1P1sr,) + 1B E2r,)
< CA+ V2Pl + IVoPIZr,)-
As for I15(t), applying (1.8), Lemma (2.1) and the divergence theorem, it follows that

Lia(t) < — g VApp-V(VDuwv - v)dS + C(HvQPH%%Ft) +1)
=) VApp-V(V(-=Vp+H -VH)v v)dS + C(HWpH%g(Ft) +1)
< VAgp-V(Vipv-v)dS — | VApp -V(V?Hx H xv*v)dS
Ft Ft

+CO(IV?pll2p, + 1)
< g VAgp-V(Vpr - v)dS + 8\\6319”%2@) + C(\WQPH%%F,&) +1).
t

To estimate th VAgp-V(V2pr-v)dS, by (1.8), (2.2), (2.6), (4.3), Lemma A.16 and the divergence
theorem, it holds

/ VAgp-V(Vipv-v)dS
s
- / T App- VApdS — / VApp-VARpdS — | VApp- V(Ad,p)dS
Iy Iy Iy
_ 7 _
2 3,112 2 3,12
< CEHAPHH%(Q” +ellV pHLQ(Ft) + CEHPHHQ(Ft) ) /Ft IVp7dS

+ \W?’PHB(H)(Hvaupﬂw(n)HPHLw(Ft) + Hal/pHL‘l(Ft)vaHL‘l(Ft))

3 - _
<Ce— 1 . [Vop[*dS + CEHWVPH%Q(H) + HV?’P”B(R)HVPH%H(QQ
t
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1 - _
<C.— §HV3PH%Q(D) + CHV2PH%Q(D)'
Above, we have used Lemma 2.1 and (4.6) to deduce
190,10 < CUBTB a0y + V05 V52200,
< O+ [Pl ry) + 1P )
and the following result in [F]M20, Lemma 2.3]
IV?pll72r,) < IVABDIT2r,) + Clpll2r,)-

Similarly, we can obtain

d 2. 112 3.2
5 2(0) = CA+VPllz2ry + IVPlLr,))-

Combined the above calculations and by choosing suitable £ > 0, it follows that

d
S1(0) < 51 9°8lscy + CIF e, + C:

Integrating the above over [0,¢] with 0 < ¢ < T and recalling (4.2) together with I(t) > —C. +
Skves 2 .
§HV (-, t)HL?(Ft)’ it follows that

t
V2Pl Zr,) +/0 V222 p,yds < C (T, Ny Mo, V2Dl L2 o) 1Vl 11 ) -

Lemma 4.6. Assume that (1.8) holds for some T' > 0. Then, we have

ts[tlp]HVngLQ 0 < C N, M, V2l 20, VPl 2 (00 T) -
€0

Moreover, we have

tS[up P30y < C (N M, V2Dl L2005 1V 12(020): T) -
€[0

Proof. We differentiate and apply Lemma 2.3 to obtain

dt2/ ]Vg \ doe = = / ZDt 0ijkpOijkpdx

2 ijk

/Qt %}; 0;j1 Dyp0;jipdx + o V30 x Vp+ V3p
+ V20 %« V2 V3 4+ Vo« V3p « Vipdz
=:11(t) + I2(t).
From (1.8), (2.6) and Lemma 2.11, we have

/Q Z@ (0jxDp0sjip)dx —/ ZBJthpajkApdx

tijk
< / ZajkptpayajkpdSJr / Z@kADtpakApdm
Ft . Qt k
/ > 8,0k Dipd ApdS
It L

<CY 005kl 720, + C D10 Depll72r,) + ClIVADsp| L1
ik ik
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<O 0005l 72 ) +C D _ N0 Pepll72 0y +C (1L + VP52 (0
i i

::flrl (t) ::Ilg(t)

and
IL(0)] < CUIV0l 20 V21300, + 117201130 (0 9202200,
V922 0)
< OO+ VDI,
Applying (4.7) and (4.8), we obtain

ZIH < C( HAPHHQ(Qt + HADtPHIﬁ (%) + H,DtpHHQ(Ft) + HpHH?’(Ft )

< C(HAPH?p(Qt) + HVPH?TJQ(QQ + HDtPH?ﬁ(Ft) + HPH?{?:(Q))
<C(l+ HvPH?ﬁ(Qt) + HPH?W(FQ)-
The first claim follows from (4.2), Lemmas 4.2, 4.3, 4.4 and 4.5, since

3 | IV < €O 190l + Iy

This, together with the previous pressure estimates and Lemma A.16, yields the second claim. O

We conclude this section by stating the following result: the initial quantities £(0) and Z D~ kPHQ $r+1(0p)
can be controlled by the initial velocity, magnetic field and mean curvature.

Proposition 4.7. Assume that Qg is a smooth domain such that ||ho || o (ry < R. Then, we have

)+ 3 IDF 0, g0 < C

where the constant C depends on Mg =R — || hol| oo (1), |voll z6 (20> | Ho ll 116 (02> 47 || Al 115 (1)

Remark. It should be noted that the result remains valid for any ¢ € (0,7), provided ||A(-, )|l oo (1) <
R, i.e.,

3—k_ 12
+Z||D P e

<C(R- Hh(-, ) oo ), 1011 a6 () 1 H s () 1Al s ry)) - (4.11)
Proof of Proposition 4.7. We divide the proof into three steps.
Step 1. We control HD?ikHHZ%k(QO) by the lower-order velocity terms using (2.9) and (2.10). For
k = 0, we apply (2.9) to obtain
1D} H 172

<C| Z Z VDflv*---*VDthv*HH%Q(QO)
1<m<4 |8|<4—m

< ClH G o000y (D IVD0l1F200) + D VD 0] F5(00) VD20l 760
1B1<3 1B1<2

+ 3 IVD 0l s 00) VD201 6 000 VD06 ) + 01375 )
1BI<1
< CID}v3 g + CO+ D7) (00)) (1 + 1Pl q))-
— t H(Qo) t H2(Q0) tHQ(QO)
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We claim that

3
ZHD4 "HIP o,
— H3* ()

C(llv ||H4(Qo IH || r4(020))

(1+ Z D}~ kHH2 tao T V] 6 (o) + 1 || 26 () )-
=1

Indeed, by (2.9), it follows that
IDZH|?

B3 (9Q0)
< Z Z VD?%*---*VDE’”@*HHZ%

1<m<3|B|<3-m

<C D IVDRE g IH ey + C D IVD vl
|81<2 18I<1

: HVDE%H%MQO)HH|@I2(QO> + Cll0 s () 1 H 137220

Cllolrsinys 1 s )L+ (PP g o+ D00l g ).

(S0)

As for ||D?HH%{3(QO), again from (2.9), we see that

IDEH s <CIL Y. Y. VD ke x VD v+ H| 35
1<m<2 |8|<2—m
< CIIVD s o) HH 1773 00y + CIV Ol 313 (000) 1 113 20

< C([[vll za(00)s 1H 12 020)) (1 + HDth%{‘l(QO))a

and
2 2 2 2 2
DI g ) < CUHENL= @) 101531 o )+ I g 101 )
2 2
< ol 8 el +IHIE )
by using Lemma A.9.
Step 2. We control ||1)4sz}||2 by the pressure terms, i.e., |[p|> .
" () H2 (Q0)
VPl VDRI, and [V}l g, Note that
0
2 < 2 2 2
Dl g, < cnpuH% ot C”H”H% o lHP g0
2
< ClplR,y g +C

and by Lemma 2.8, we have
2,112 2 2
1D 0l 00) < IPeVDI g3 (0g) + 1D (H - VH) |55
< IVDeplHs () + I1Pe V1Dl F3 00y + C
< CHVDtpH%{?)(QO) + CHPH%#(QO) +C.
Similarly, applying Lemma 2.8 and (2.14), we obtain

D2 < D2p|? Dyp> ; 1
H t”HH%(QO) (v p” QO)+HV tpHH%(QO +HPHH§(Q)+ )

and

1D} 017200y < CUNVDIDIZ2 () + IVDEDIZ2(00) + I VDDl 120

2
Pl )

39

(4.12)
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3
Step 3. We show that > HDf’_kPHZ < C. Consider the following elliptic equation
k=0

(@)

—Ap = @Ujaj?}i — 3iHj3jHi, in QQ,
b= Aroa on FO.

From the standard elliptic estimates, we find that

< C(|0iv7 00" — 0;H' 9; H'| + 1Al 5 (1)) < C.

Again by the elliptic estimates and by Lemma A.17, it holds

1Depllra(00) < CUIAD:P m2(020) + HDtPHHg(FO)%
and

D20l < CUADDI 0 + D30l ry).
Also, by (A.5), we obtain

ID0lim ey < CUAD Ny + D301 13 )

The calculations of the remaining terms on the right-hand side are straightforward applications of

Lemmas 2.11 and 2.13, and (2.15), since we have ||pHH1271(Q ) <C.
0
Finally, for 1 < j < 3, ||[V(D]v - l/)H%Q(FO) can be estimated by the trace theorem due to the

regularity of the boundary. In fact, using the mean curvature bound, we apply Lemma A.11 to obtain
| B r2(r) < C and therefore

IV(Dfv- )72y < CUVDIvx VT2 + ID{v % BlF2(ry)

< CIDfol g €

This concludes the proof of the proposition. O

5. ESTIMATES FOR THE ERROR TERMS

In this section, we estimate the error terms by the energy functional and the pressure. We will

assume the a priori assumptions hold for some 7' > 0, and sup Ej;_;(t) < Cforl > 4.
0<t<T

Lemma 5.1. Assume that (1.8) holds for T > 0. Then, we have HB”H%(B) < C,and || B grr,) <

O (14 Iy fork € Bk < %

Assume further that sup E;_1(t) < C forl > 4. Then, it holds | B|| 3, ,
0<t<T H27 (I

< Cyand | B gir,) < C (1 + Hp||Hk(pt)>fork el r<ditu

)

Proof. We recall (4.1) that ||p|| g3 (q,) < C by the results in Section 4. Since I'; is uniformly H3+9(T)-
regular, it holds || B[ zeo(r,) + [|Blla1(r,) < C. Applying Lemma A.11, for k € g,k < 3, we see
that
1Bl ey < CL+ [[Allgrr,)) < CA+ Ipllarr,)),
and ||BHH%(F ) < C. Again by Lemma A.11, the first claim follows. As for [ > 4, the assumption
t

implies that

2 <C1+|Vpl? s
HPHH%Ll(Ft)— (1+ PHH3<121>(Qt))

< C(1+||Dwl? 50 H . -VH|? < C.
<CA+| WHHsu2 D o) +H-V HHL%flj (Qt)) S
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For | = 4, we have ||p||gsr,) < C and HB||H% < C by the first claim. Moreover, by Lemma

( t)
A1, ivimplies || B| gsr,) < C(1+ [|pllgsr,)) < C,i ||BHH%_1 < C'in this case. Therefore,

(T'¢)
it holds N 5
1Bllgrr,y < CL+ [|Algrry,)) < X+ [Iplgrr,), k€ 3 k< 51 + 1.
Using a similar argument, the second claim follows for [ > 5. O

Now we begin estimating the error terms.

Lemma 5.2. Assume that (1.8) holds for T > 0. For | < 3, we have
12 2,112 -
IR g, <€ (1419012, ) B

Assume further that sup E;_1(t) < C forl > 4, then we have

0<t<T
L2
< .
HRIHH%(Q” < CE(t), (5.1)
and for k € N, 1 < k <, it holds
HRZI_k”ngfl(Qt) <eE(t) + C, (5.2)

with some & > 0 small enough.

Proof. Thanks to Lemmas 5.1 and A.10, it is feasible to extend functions in H?(§);) to the entire
space R? and then apply (A.7). To simplify the notation, we will not distinguish between the original
function and its extension. It suffices to estimate R? defined in (2.12) since R} and R% are easier to
handle. In fact, we need to control

3112 _ 51 ﬁmfl ﬁm 2
1By g =1 22 D0 VDMose ok VDI o x VDI
2<m<4 |5/ <5—m

()

We deal with the case of m = 2, i.e., Z|5\§3 VDflv * V'DEQU and we only show the estimates when
|B] = 3. From (1.8) and (A.7), we see that

||VU*VD3U||
H3(Q0)
< Gl @l VDl 3 g + 1900 [ TP )
3 = 1
< COITim @ 9Dl ) + 1005 D01 ) < CECD,
and
VD2v x VD
VDR« VD3
< C(IVDwl 3 HVDtQUHLOO(Qt) + HVDtUHLS(Qt)HVDtQUHW%,s(Qt))
2 — 1
<0+ v pumm B

If I > 4, the assumption E;_;(t) < C also ensures that the functions in H %lJrl(Qt) can be extended
by Lemma 5.1 and the extension Theorem A.10. Then, it follows that

l
Vv * VDth b

MIH

< OVl p @ IV DRl 4 )+l Dl g ) < CE(1)?.

H2(Q)H H? (9))

For1 <j<l—j<Il-—1,wehavej < Lij Sl—?duetolzél,andobtain

IVD]v« VD, o]y o)

l
< C(| VDo o wuw ol 1P 0 19D P00
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1
< CE(t)z,

where we have used the fact that |D/v|| < E;_4(t) < C. Again from the hypothesis

5
H2te(Q) —
E;_1(t) < C, the terms involving the product of more than three items can be controlled since we
will have fewer material derivatives in this case. For example,if 1 < j <1 —1—j <[ — 2, we see that
Jj< Ll_TlJ <l —3and

: 1
Vv VDJv* VD, JUHH%(Qt)

< C(IVDIoll@n VDIl g + V0 * VD]

!
a3 Hg(gt)HDthHg(Qt))

< C(||VvallLoo(Qt) + HVDzUHH%(Qt))HDiUHH%(Qt)

< CE (1) E(t)
1
< CE(t)z.
To prove (5.2), we first consider the estimate of || R? Hi{%l—l(gt)' The definition (2.12) yields
02 2 2 2
IBIE, g ) < ONTe im0, g o < NP g
By interpolation, it holds

IRIIS 400, < B0 +Cer 1=57,9,-,

and

HR?H;%I,IW <CE_()<C, 1=4,68, .
Then we control the case of k = 1. When [ > 5, applying the previous estimates, it follows that
IRY2, oy < CBi1(1) < C. 161 = 4, we have by the defnition of E(1) tha
t

HlelHi{%(Qt) <C(+ ||V2p||2%(gt))El—1(t) <C,

where we use the fact that |V?p|?, < |V(H-VH-Dw)|?>, <C.
HZ () H2 ()

We are left with the case of 2 < k <[ — 1. Note that (2.12) gives

R = Z Z VDI vk VDI y % VD,
2<m<l—k+1|8|<l—k+2-m

We only estimate the case of k = m = 2, i.e., VDi_Q_j v * VDg v and the others are similar or easier.
As before, we assume that 0 < j <[ —2 — j <[ — 2 and it holds

-2 -2
We deal with the first case, i.e., || VDyox VD, |2, @t HVD?U*VUH%{Q(S%), since the same arguments
work for [ > 5 (j < | — 3 in this case). We deduce that
IV % VD732 0
2 2112 2 2112
< C(IVl[fee @) VDo llg2q,) + ”VU”H3(Qt)”VDtUHHg(Qt))
< CIVDRIL 5 ) < VDOl + CIVD Yl < SBi(t) + C,

and
IV Dyo % VDl[312q,) < CIVD[|7 (0, I VPe0[I3120) < CE1-1(t) < C.

We proceed to bound RZVH7H, RZVHyH and RZV2H7H.
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Lemma 5.3. Assume that (1.8) holds for T > 0. For | < 3, we have

! I
IR al? ) o+ IR g vl + ||RV2H,H||2%(Q

H3 () NVHI S Q)

<C (14 V?p|? )Et.
(141920125, ) B

Assume further that sup E;_1(t) < C forl > 4, then we have

t)

0<t<T
! 2 ! 2 ! 2
HRVH,HHH%(Qt) + ||RVH,VH||H%(Q0 + HRVZH’HHH%(QQ < CE(t), (5.3)
HROVH,HHZgH(Qt) + |1RY vl a1, <eE(t) +C, (5.4)
0 2
HRVQH,HHH%k—l(Q ) < CH CurlHH g3 31 () (5.5)
and
!
H VHHHHgk 1(Q ) + HRVHVHHHQk I(Qt) H V2HH||H§7€ 1
<eb(t) +C, (5.6)

fork € N,1 < k < . In the above, ¢ > (0 is a constant small enough.

Proof. We note that Rlng 57 contains all the highest-order terms in RlVH,H and RlVH,VH> since [|v|| g, +

| H|| r4(02,) < C. We focus on the estimate for RVQH o

To control Rvg HH in the case of [ < 3, we recall that

3
R g i
=Vicurl H+x H « H « H + Z VYUF %%V F,
m<5,Fj=v,H
+ 3 VD sk VD) % VU k- VO F

|| +[B1<5,0i+8; <4
Bi<2,m<4,Fj=v,H

From (1.8), we have
IV et B x B x B2y < Ol < OB(D),
and

272 2 n
HV Dt’U*VFQ*F:gHH%(Qt) < CE(t),

as in Lemma 5.2. The leading terms in R%Q o have been controlled, and the estimates of the lower-
order terms follow from the same arguments as in Lemma 5.2.
As for | > 4, to prove (5.3), it is sufficient to bound V! curlv x H % - - - H and V**! curl H *
—_—

[ times
H - - - x H since the other terms are either simpler or have already been estimated in Lemma 5.2.
—_—

[ times

From the assumption E;_1(t) < C, we have ||v|| + || H|| < C. As before, we extend

L3 ()
the functions and estimate as in Lemma 5.2 to obtain
IV curlox H % -+« H ||
‘,_/
[ times
+1
< C(IH x5 H g IV curlo]

[ times

H[ lJ Q)

H3 ()

()

+1
+|H % xH HW%ﬁ(Qt)Hv Curl’UHLS(Qt))
[ times

< Cllv| < CE(t):.

"3 ()
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In the last step, the condition [ > 4 implies | + 2 < |3(l + 1)] and therefore, it holds HUHH”% @) <
t
HUHHL (l+1)J(Q )
Next, to verify (5.6) for k € N with 1 < k < [, we show how to control | R For

VQHHHHgk 1(Qt).

this purpose, we concentrate on the estimate for the product ||V =**! curlv« H % - - - x H ||?
—_—

H3 ()
|—k times
This time we obtain for 1 < k < [ that
I—k+1 2
v Tleurlox H * - *x HJ| T 1(Q) HUHHHH%(Q < Cv| i %(Qt)'
I—Fk times
By interpolation, it holds
2
02 g1 g S IO, g+ CEIOI 5 S FRE 4 €

Finally, to obtain (5.4) and (5.5), we need to bound the most difficult term, i.e., ROVQHH = (H -
V) curl H. Since [ > 4, we have

1Rl = IO el HIZ
iy, janH 2 o
<C||H||HL31J ||curlH|| TSR
< O curl H|? idd o)
and the proof is complete. O

For the error R}, we have the following results.

Lemma 5.4. Assume that (1.8) holds for T > 0. For | < 3, we have

Bl < € (1419012, ) B
Assume further that sup E;_1(t) < C forl > 4, then we have
0<t<T
IR 11720,y < CE(1),
and fork € N1 < k <1 — 1, it holds

IR g g, < C

Proof. To prove the first claim, we show the estimate of
Rip= ). S aap(VO)VD k% VD) VDR,

1<m<4 |B|<3,|al<1
B1sesBm—121

If m = 1, we consider the case of |3| = 81 = 3 and |a| = 1. We should control a(Vv)D}v +
b(Vv)VD}v. From the hypothesis (1.8), it is clear that

la(Vo)Diol 72, + 16(V0) VD[ F2q,) < CE().

For m = 2,|B8] = 3 and |a| = 1, we show the estimates of a(Vv)VDv x Djv and b(Vv)VD?v *
D?v. Choosing 1/p + 1/q = 1/2,p = 3/6 with § > 0 small enough, we see that HVQHH%Q(Qt) <

2
U g

la(Vo) VDo Djv|72 (g,
< CIIVDwI 740 1 P70l 7 )

< C|V?*p+VH~*VH + H*VQHH%q(Qt)HD ||i,2(Q )
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2 112 2 112 I
< OO+ 9%l a0 Ba) < CO+ 9%,y E)

and
la(V0) VDo * Divl|Za g,
< C’W®§”H%w(m)”®?”“é ) < ClID; UH%Q(Qt)E(t)'
To control ||Dfv|72 g, s from | Apl|s1(q,) < C and using (2.6), (2.11), (2.13), together with (A.4),
we obtain
1D 0ll72 (0
< HDtva%%Qt) + [|De(H - VH)H%Q(Qt)
< VD72 + D6, VPl 20, + IDH * VH + H x DV H [ 2(q,)
< |ADpl[72(q,) + ”Dtp”i{%(rt) + (Vo Vpll72a,)
+|[H*x Vo VH + HxVoxVH + Hx Vv H| 72,
< || divdiv(v @ Vp)|[72(q,) + IVPll72(0, + C
+ || divRY; + V2o« VH « H + Vox VH x VH
+ V2H xVox H + v V?H x VH| 720,
< 10;0: (' 95p) 720,y + IVENFr (0 + C
< C(L+[IVpl3 qy)-
In the case of m = 3 and m = 4, we estimate in the same fashion, and obtain

1Rl (0 < CQL+ VD2 4 13 ))E(t),

as desired.

To control R}, for I > 4, we still focus on the case of || = [ and |a| = 1. If m = 1, it holds
|a(Vv)Dly + b(VU)VDiUH%Q(Qt) <CE_i(t) < C.

Next, we handle the product of functions as follows. We simply assume ag = 1 since the material
derivative D; is %—higher than the spatial derivative. If 1 < 5 < 14+ 1 — 5 < [, it follows that
1<5< LHTlJ <[ — 2, and we have

j l+1—j5 j I+1—35
la(Vo)VD]v Dy ol 720,y < CUIVDI 0| il vl72(0)
J o112 +1—j
< O .. I
< CEi1(t)Ei(t)
< CE(t).

2
vl 72 (00

Fi<i+1-j<j<l, WeﬁndthatL Ll +1<jand1 <1+1—j <I—2. Then, we obtain

1 [4+1—7
la(Vo)VDlv Dy o7,
1 [+1—7
< CIVD{v |32 1P 0l3 e

12 I+1—j 112
< Dl D 0l < OB
The others can be estimated in the same way.

We are left with the last claim. For k = 1, it follows by applying the above estimates with [ — 1 if
[ >5.Ask =1and !l =4, it follows from the hypothesis that E3(¢) < C. Therefore, HVpH%{l(Qt) <

C||H-VH — DtUHHl(Q < C. This concludes the proof for k = 1.
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Assume that 2 < k <[ — 1 and we shall control HRlﬁkHz 3 defined in (2.13):
H2F-D(Qp)
Z Z aa,ﬁ(Vv)VDtBlv*---*VDE’"*IU*VO“D?QJF&”U.
1<m<i—k+1 |B|<l—k,|a|<1
BissBm—121

If m=1,|8| =1— kand |a|] = 1, it is clear that

la(Vo)DEH o + b(T0) VDL o2 <CE () <C.

3 =
f(kfl) (Qt)

To bound the product of functions, e.g., m = 2, |f| =l—k,|a| =1and 1 < j <I—-k—j <Il—k—1,
we note that 1 < j < {%J and

la(Vo) < CIVllEe(qy) - VOl 7000y 10l C.

2 2
lse-3 0 @) S

This, combined with the Sobolev embedding and (A.7), we deduce that

7 az+l—k—1, |12
la(Vo)VDjvx VD2 UHH%(k—l)(Qt)

< Clla(Vo) | VDI VD

2
HW%(kﬂ),e

2 j +l—k—1, (12
+ Clla(V0) [ | VD0 5 VDA 2y

7 oy yoe+i—k—=1, 112
< C||VDJv x VDS vHHg(kfl)(Qt)

j l—k—1
< CIVDII gy g IV DF 0 0,

: I—k—1
+ OV D0 oo o IV DE2F UHZ <C,

3D () =
where we have used the fact that

112 112
HVDI?UHH%;C_%(Q” VDol ()

< OUDIVIE 3oy g, + DIV e, ) < €

3 1 5
2R (Q 275(Q)

for € > 0 small enough. Thus, the proof is complete since the other terms can be estimated by using
the similar arguments. U

For the error term R;, on the free boundary, we shall control it using || Vpl| g2(q,) for I < 3.

Lemma 5.5. Assume that (1.8) holds for T > 0. For | < 3, we have
B2y 0, <€ (1 190 1e(0,) ECO)

Assume further that sup E;_1(t) < C forl > 4, then we have
0<t<T

[ 112 <
IR ) ., < CEAO)

and fork € N1 < k <1 — 1, it holds

IRSHP 5, < 2Ei(t) + C,

k-1
(T'e)
for some € > 0 small enough.

Proof. It is sufficient to show the estimate for [ = 3, since the other cases are easier. Recall the definition
of Rf’,, and we denote

Rf’, = —|B|*D}v-v+Vp-Div+as(v, Vo) x« VD20 + ag(v, Vv) x VD?v x B
—_—— —— v v
ESR =1 =13 ESN
+ a10(v, V) x VD20 « V20 4 a1 (v, Vv) % V>Dyv + VD

=ZI5 ::16
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+ a12(v, Vo) x V2D B + a13(v, Vv) x VD x VDo x vy
+ a14(v, Vo) x VDyw x VDw+x B+ L. O.T..

To control the second term, we estimate as follows

2 v 2 3,,112 v 2 3,.112
1212y 1) < CUTRIZ, 0 [P aqey + CIVPIE sy D2,

< C|IVpll3 ) Bs(t)
< C||VPHZg(Qt)E(t),

t)

where we have used the fact that
IV?pl 220,y < IV(VD = Vp-v)|l72p,

< CUIVPlin e, + VP * Bll72(r,)

< C|IVplin g,
and the trace theorem. Similarly, for 11, we obtain by (1.8) that

1D} - vl[2r,) < CIDPOl (o, < CE®),

and
< CIIBP|E e IP7v - vIfip ) < CL+ VDI 0, E().

2
1002y s

Again from (1.8), it follows that

2 < 212,112 2 212,112
115123 ) < CIVPDRIRy o+ Cllas. Vo2, VD2,
< CE(),
Hall? 4 < CIVDivx BI? 4
H?Z(Ty) H2(Ty)
< CHVD?vHiV%A(mHBH%(M + CHBHZ%(MHVD?vH%oo(m
< CE(1),
2 < 2 2112
1512, 3 ) < CIVDRO R P02,
2112 2112 2,112
<CIVP g o (VDR 19Dl ry)
< CE(t),
2 < . ) 2
62y ) < CIV(-Vp+ H-VH)2,
: (HVD?vHiV%A(m + VDol feo )

< C(L+(IVplFn ) E (1),

47

and the other terms can be estimated in the same way. For [ > 4, the proof is similar to [JLM22,

Lemma 5.8], so we omit the details.

O

Applying the above error estimates and recalling Proposition 3.1 as well as (4.1), we conclude this

section by presenting the following improved version of Proposition 3.1.

Proposition 5.6. Assume that (1.8) holds for T > 0. Then, we have
d _
—e(t) < CFE
Do) < @),
where C depends on T, N7, M, |[vol| re () > | Holl r6 (02> @7 || Ao || 115 (1)

Forl > 4, assume further that sup E;_1(t) < C, then we have
0<t<T

d
Selt) < CE(1),
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where the constant C' depends on T, N7, My, and sup E;_1(t).
0<t<T

6. CLOSING THE ENERGY ESTIMATES
In this section, we will close the energy estimates, and we introduce the following energy functional
3
- 1 k41,112 k+1 7712 = (Tyk 2
é(t) =5 > <HDt+ V|72 + D Hl[720, + IV (DFv - V)\\L2(rt)>
k=1

1
+ 5 (Il ewrlvldea,) + lleurl H|fag,) ) + 1,
- 1 _
a(t) =5 (IDF ol3aq, + IDF H (g, + IV Dk - 03,
5 () () ()

1 2 2
- > 4.
+ 5 <H CuﬂvHHLLSrlJ(Qt) + | curlHHngl;lj(Qt) +1, [>4
Note that from the a priori assumptions (1.8), it holds

I curlvH%Q(Qt) + | curlHH%g(Qt) <C.

By interpolation, we have é(t) < C'(é+ 1) and &(t) < C(ei(t) + 1) for I > 4.
We first control the energy functional E(t) by €(t) under a slightly different hypothesis compared
with the a priori assumptions (1.8). In fact, we have the following result.

Proposition 6.1. Assume that Ty € H**(T') with § > 0 small enough. Assume that the pressure, velocity
and magnetic field satisfy

1Pl 3020 + 10100 + 1 H 1400 < Co-

Then we have

E(t) < C(1+et)), (6.1)
and
HBHZ%(M <C(1+e(), (6.2)

where the constant C depends on My, [|h(-,t)|| gs+s 0y, 1Pl 3 (020)s 101 3 (020)> a7 | H || r2.02,)-

Proof. We shall show that E(t) < Cé(t). For this purpose, we need to control ||D} % v|2 ,

HEM(S0)’
HD?*’CHHZ%IE(Q” with 1 < k < 3, HUH%TG(Qt) and HHH%{(i(Qt)‘ Recall that we have already deduced

the estimates for HDf_kHHZEk(Q : in (4.12), thanks to (2.9) and (2.10). Then, it is sufficient to control
2 t

3..112 2 2 2 2 2
D302 3.+ IDE0 ey DI g o Nl and 1 e

We divide the proof into three steps.

Step 1. We control HD?UH?J%(QJ Recalling that HﬂHH%“( < C and by the definition of é(t),

Q)
we have

ID3v - w2y = /F (DYv - v)D3] - vdS

t

<| [ (D}v-v)divDjvdx| +| | VD}v*D}vdal
Qt Qt

+| | Divx Vv Divdz|
Q

< C(IDfo]1 720, + I div Djv|32 (0,
+ IVDEll 20 1P| 22 (0))
<&l VD vllZz (o) + Cee(t) + Cll div Div][ Lz q,).
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This, combined with Lemmas 2.10, 5.2 and A.13, it follows that
D212 3., < U vl + 1DBolagq + 1l div DRl

3 112
+ chrlDthH%(Qt)),

and therefore,

HD?UHZ%@ < C(e(t) + |IR7I% )+HR2VH,VHHZ%(

) H2(Q )

=le(t) =ZIQ(t)

FIRS el )

=13 (t)

To control the second term, using (2.8), we estimate as follows. Indeed, by the assumption, applying
Young’s inequality and Lemma A.8, we obtain
V*Duwx VH x H|? 4 ||[VDw* VZH « H||? ,
H?2 (Qt) H?2 (Qt)
< CHDtUH%ﬁ*(Qt)”HH%C“(Qt)

<elDwl? g+ CellPeolZaqa,

Q)
< eE(t) + Cellpl3p o) + CllH - VH 32 g,

<eE(t)+C..
As for I3(t), we recall Lemma (2.11), and we handle the most difficult term, i.e.,

3 2 2 ~
v curlH*H*H*H”H%(Qt) < Ol curl H |34 (q,) < Ce(t).

The other terms can be estimated using the same argument. Again by the Young’s inequality and
Lemma A.8, we can control [ (t). In fact, we have

VD20« Vou|? y 4+ ||[VDw VDw|? .

H2 () H2 ()

< Cllvlltz o, 1P 1 20, + C||VDtU||%3(Qt)||VDtU||2g(Qt)

S EHID?UH?{?,(Q)E) + CgHD?U”%Q(gt)
el g o )+ CellPeolizao) ) IV Plia) + IV H - VEDIlLs(0,)
< CLé(t) + eE(t).

Combining the above estimates, it follows that

IDEvll? 4

2 3y S B0+ Celld).

Step 2. We estimate HD?UH%S(Q” and HDtUHi{%(Qt). Applying Lemmas 2.10 and A.14, it holds

2 2 2 : 2
HDtUHHg(Qt) < C([AB(Dw - )2, + P02, + |l leDthH%(Qt)

+ || curlDthiI%(m))

< Ce(t) + C(|Ap(Dev - v)|[F2r,) + Vo % vafH%(Qt)

+|VH*VH|?; +|HxVeulH|?; )
HZ2 () H2 (1)

< Cé(t) + C|ABDw )|}
and

D20l < CUABDE- IR,y |+ (Dol + [l div Dol

[
H2(Ty
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+ [l ewrl D] 3z )

< Ce) + C(lan(Div- V|2,

IR0 + IR 1wl 2 (0,) + 1 By2 a1 F200):

=:14(t) =:I5(t) =:I6(t)
We control I4(t) by the bilinear inequality, i.e.,
IV Deo % VolFra(,) < ClDwllis i 101130, < €E(t) + CeE(t).
For I5(t), it holds that
V20 % VH % H|/ 20,y + Vo x VH x VH| 31200,y < Cllol 340 1 H 7730y < €
from the assumption. The estimate for I4(t) follows since
V2 curlv x H * HH%JQ(S%) + [|[V2H % Vv x HH%IQ(S%)
+ |V2u * VH * HH%{Q(Qt)
< (| CUﬂU||%I4(Qt)HHH§{2(Qt) + HHH%I‘l(Qt)HUH%{?’(Qt)HHH%{?’(Qt)
ol |l ) < CEC)
We are left with ||Ap (D?U.V)Hil%(l}) and || Ag(Dyv- I/)HHQ(F We focus on the estimate of || A g(DZv-

v) Hi{l - since the other one is similar. Recalling that from Lemma 2.13, we have Djp = —Apg(D?v-
2 (It
v) + RZQ,. Since HRI%H?{l(F : is easier to control than || D; pH2 )’ we only bound || D; pH2 ) . By
2 (I I I
(A.3), it holds

HD?sz%( < CIDEpl 72, + CIIVDEDI T2 = Tr(t) + Is(1).
Applying (2.5), for the first term, we have
I(t) < C|DYBlli2r,
<c| > Y aapv, BV D vk VIO D3,

1<m<3 |8|<3—m,|a|<1

In the above, if m = 1, from || B[ (r,) < C, we control a(v, B)V*D}v by the trace theorem and
by interpolation:

<eB(t) + Cee(t).

lolo, BV Dol < CIDRI g < <F
The other cases are either simpler or similar. As for Ig(t), it follows that
Is(t) < C|ID;VplZ2iq, + CIIV. Dilpll72(q,
< Cé(t) + CIDHH - TH) By + CIIT- Dol
To control || D} (H - VH)H%Q(Qt), again by interpolation, we see that
IV*Difv x H % H|[72(q,) + VD H x H|[72q
< O|DPoll 2, + ClIDwllf2(q,) < €E(1) + Ceé(t),

and we estimate ||[V, Dg]pH%Q(Qt) as follows

IVDFv * Vpl 72, + IVDw x VDpl[720, + V0 % VD;p[72 (0

< D7l P13 3 g, IV VH) * VDl Fa(q,

+ V2% VDl 720, + VD7D T2(0,)
< CHD%Hm(m + C||VDyp|17s @)t C|IVD?pl7» ()



MOTION OF FREE SURFACE IN INCOMPRESSIBLE IDEAL MHD WITH SURFACE TENSION 51

We note that ||[VD?p||? 12(0) and ||V Dypl2, @) have fewer material derivatives than || VD}p||2, @)

Therefore, it can be estlmated as I3(t) in the same fashion, and we can obtain
Dip|? < Ce E(t).
DI,y < Co) + Bt

Similarly, it holds
1D p|3 o) < CE(t) + E(t).
Combining the above estimates, we conclude that

D30l + Doy, < CF(0) + )

Step 3. Finally, we bound HUH%Iﬁ(Qt) and ||H||2H6(Qt). From Lemma A.14, we see that
lolFs 0,y < CEE) + 1ABvAl? why TIB s )

H3(T)
2 2
1B o0, < CEO+IBIE )>

Recalling Lemma 5.1 and by the trace theorem, it follows that

2 < 2
IBIZ g0, < CO+ 02, )

<C(L+||H - VH = Dl ,)
< C+ |Hl}p ) + €\|Dtv||2g(ﬂt) + Ce|| D720y

<eE(t) + | Hl3s(q,) + C--

Again by Lemma A.14, we can estimate in H?(€;) and deduce ||H||H5(Q < Cé(t) + HBHZ% -

Similarly, it holds
HB”Z%(F <eE(t) + |HGa(q, + Ce < eE(t) + Ce.

Thus, we see that

2 < eE 2 < ek
B2, < B@+Cer by, < B +Ce,

and HHH%G(Q” < eE(t) + C.. To obtain the desired estimate, we are left with HABUTLHZ%

r)
From (2.15) and by the above calculations, it follows that

9 < 9 2 2 1) - 2
IAsvally g ) < CIPIL g L+ ClIBPwll g o+ CIVE -0l g

< Cllolfpan 1Bl IBI g, +<BW) +Ce
<eE(t) +C.,

where we have used the fact that

| tPHZQ(F = (HDtpHL%Ft) + HthpHH?’(Qt )
< O+ |DiolFs(q,) + IP:(H - VH) |} (0,
+ Vo x (H - VH = D)7 q,))
< Cé(t) + 5 B(t) + CIIVDH s ) 1 H 1 0
< Cé(t) +eE(t),
since [|DyH |%4(q,) and [ DF]|%s g, have already been controlled. This completes the proof. [

Now we prove the higher-order energy estimate.
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Proposition 6.2. Let | > 4. Assume that (1.8) holds for some T' > 0 and sup
0<t<T

E_1(t) < C. Then we have
Ei(t) < C(1+el(),

where the constant C' depends on 1, T, N7, M and sup E;_1(t).

o<t<T
Proof. We will show that Ej(t) < C¢(t) and we divide the proof into three steps.
Step 1. We claim that it is sufficient to bound ||fo17/k”‘v||fq§k(Q : withk € {1,2,...,1}, ||v|| g
2 t t
and HHHZL%J(Q,&)' Indeed, for k € {1,2,...,1}, we can control HDé"‘l—kHHi{jk(Qt) by the sum of
I+1-k, (12 2
IDE R g1 I s and VIR,

Starting with the case of 2 < k < [ — 1, from the hypothesis E;_1(t) < C, (2.9) and (2.10), we

have

HDH—l k H2
H3* ()

<Ol 33 VPMuse s VDUl o
1<m<it1—k |B|<i+1—k—m '

< D512 L vDPmy|12 2

<c > |vp UHH%k(Qt) VD, UHH%k(Qt)H HH%k(Q)
1<m<l+1—k
BI<I+1—k—m

If m = 1, we see that

I+1-k 2 I—k_ 112
IDF A g, < CAVDIF o2y, 4 B ()

I+1— k+1
< (D2 +1),

3041 0,)

since HHH2 8 ) < CE;_4(t) <C.
Form 2 2, it holds

IIDiH%HHZ%k(Qt) S CE_(t)...E1(t) < C.
finite product
Next, we deal with the case of k = 1, and it follows that
HDI{HHZ%(Q < ol Yo Y VDM vk« VDm0 H|? 4
¢ 1<m<l |B|<l—m

B1,.112 2
<C 30 VDR y o I e,
Bi1<i—1

(%)

1O S VD - IVDE 0 e I H e

2<m<l
|B]<l—m

< C(HVDi_lvHZ%(Qt) +1) < C(IDF0ll3ps 0y + -

Finally, for even integer k = [, from E;_;(t) < C, one has

2 2 2
DI g0, < I 306, 101 3100 g,

< CHHHQ LglJ H HHLglJrlJ
<
= CHUHHLSLQﬁJ(Qt)’

and if £ = [ is odd, we have by Lemma A.9 that

2 2 2 2
HDtHIIH%l(Qt) < C(1H 1 Foe (g 0] ‘|H‘|H%Z(Qt)”v”L°°(Qt))

3l+1(Q )
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2 2
<Ol g, o+ CIHIZ g

Step 2. We claim that HID%UH?{%(QQ < eE(t) + Cé¢(t). Note that from ”V”H%+5(Qt) < C and the

assumption Ej_1(t) < C, we have

| Dl - yH%Q(Ft) = /F [(Dlv - v)Dl] - vdS
t

<| [ (Dw-v)divDlwde| +| | VDl Dvdz|
Qt Qt

+| | Dlvx Vv« Dlvdz|
Q
< C(IDfl72qy + 1 div Diol 72 (o,
+ VDl 20, 1P| 22(0,))
<C(| diVDiUH%%Qt) + 5HVD£UH%2(Q,5) + CeEp1 (1))
< €HV’D£UH%2(Qt) + C(1+ || div Div”%g(gt)).
This, combined with Lemma A.13, we see that

9 1 2 l 2 1 l 2
DI 3., < CUDI vl + IDlolagey + v Dol )

+ chﬂDlvH2 )
2 ()

<C(e HDtUHHl(Qt) +1+ B () + V(Do - V)H%Q(Ft)
+ | divDévHi{%(Q ) + || CurlDivHi{%(Q )).
t t
Then, it follows that

1112 < (5 o112 1,12 ‘
1Pl g, = C@E +lIdivDoly o+ el Dol o)

= )

=4

—L(t) —I2(t)
Applying Lemmas 2.10, 5.2 and 5.3, we arrive at

1—12 2
Li(t) + Ix(t) < C(||R; ||H%(Qt + ||RVHVH||H2(Q

< EEl(t) + C€7

where € > 0 is sufficiently small. This concludes the claim.
Step 3. We claim that for 2 < k <[, it holds

I+1-k [ k ~
1D 50l g g,y < CIPETMI g1 g+ B0 + Ceta(D), (63)

Once we have these estimates, it follows that || DI U||H3(Qt) < eF(t) + C.€;. This, combined with
. +1—-k, (12
Step 2, will control ||D; UHH%’“(Qt) forany 3 <k <.
To prove (6.3), from Lemmas 2.10, 5.2, 5.3 and A.14, it holds

IRl )

||Dl+1 k: ||j{2 0
()
< OUABDE 02 ss  +IDF i,
+HdivD§+1*%H? a2 —|—chrlDi+1’kuH2 o)
H™ 7 () H™ 7 ()
<C AB Dl‘i’l*k 2 + l k2
L L T
l 2 -k 2
+ HRVH VHH Q(Qt) + HRV2HHH %T_Q(Qt) + El—l(t))

< AN TP .
< CIAnDE 0 V)1 s +<Filt) +C
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Lemmas 2.13 and 5.5 imply that Di+2_kp = —AB(Df"l_kU-I/)—i-Rylfk aswell as HRéJrlfk 1% s <
H™Z ()

||R1lvi(k71) ||2 < eEy(t) + C.. Then, we obtain

%(k—l)—l(rt)
DiHI=ky12 <(C Dit2=kp2 +eE(t) + C..
H t U”H%k(ﬂt) = H t pHH3k2 5(Ft) € l( ) €

By (A.4), we see that

l+2—Fk, (12 l+2—k, 112
D502 s < D522

+ VD2 p)1? e
) 1*s

(It ()

=: I3(t) + 14(t).

The first term can be controlled by using Lemma 2.4 as in Proposition 6.1, and we have I3(t) <
eEy(t) + C.. For the second term, by (1.1), Lemmas 5.3 and 5.4, it holds

< 12—k, 112 I4+3—k, 12
L4(t) < NIV DE Mol e+ IDE 02 e

+ |DH2RH - VH)|? 506
H 2 (Qt)

< (|3 k|12 B 2
<Dy U\‘Hw + | 5<l+zlk VD, U*VH*HHHy

41—k 2 42— k)2
IR s )+ I m ] st

< l+3—k, |12 )
<DL e+ Ei(E) + e

(%) (%)

()

Combining the above estimates, (6.3) follows.
Finally, it remains to verify that ||v||? 4., + 1 HII? 48 < eE(t) + C.¢(t). Note that
HT27 Q) H 2 l(Q

from Lemma 5.1 with [ > 4, it follows that || B|| < Cand || Bl grr,) < CA+ [plaxr,))

3
Hil*l(rt)
for ka g, k< %l. Then, we can apply the same argument as in Proposition 6.1. This completes the
proof. (]

7. PROOF OF THE MAIN THEOREM

We are ready to prove the main theorem.

Proof of Theorem 1.1. We divide the proof into three parts.
Step 1. Assume that the quantities N and M, defined in (1.7) and (1.6) respectively, satisfy the
a priori assumptions (1.8) for some 7' > 0. We claim that

3
sup <E<t> # 31D g + HBnuHs(m)

0<t<T
< C (T, N, Mo, [[voll s (00) 1 Holl s (020 AT | 115 (10 ) » 7.1)
and
sup Ey(t) < Oy (TN, M, E(0)), 1> 4. 7.2)
0<t<T

These estimates quantify the regularity of the flow, provided that the a priori assumptions are bounded.
Recalling the estimates in Section 4 that

E(0) + sup |pll3si0, < C,
0<t<T

where C' depends on T', N, M, [[vo | s () [ ol 6 (00)»> and [|Arg || 15 (1) Then, the assumptions
of Proposition 6.1 hold for any 0 < ¢ < T, and Propositions 5.6 and 6.1 allow us to obtain

9 e(t) < OB() < 00+ et 7.3)
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for 0 < t < T Integrating over (0, ), we have

sup &(t) < C(1+&(0))e“T.
0<t<T

Again by Proposition 6.1, we see that

sup E(t) < C+C(1+e(0)eT < ¢+ CE(0)e“T < Cy, (7.4)
0<t<T

where C depeniis on T, Np, Mrp, HUOJ’HG(QO)7 HHQHHa(QO), and HAFOHH5(F0)-
With sup (E(t) + Hp||%]3(ﬂt)) < Cp, applying Lemma 5.1 and the trace theorem, it follows that
0<t<T

2 2 2 ~
B2y, < CO+Iply . )< CO+IH-VH=Dluq,) < C(C),

t)

which means HBHZ%(D) + Hp”ﬁﬁ(m) < C(Cp). We proceed to find that

2 2 ) _ 2 ~
P23y ) < CO+ VB ) < CO+IH-VH =Dl ) < C(Co),

and utilize Lemma A.11 to obtain
1Bl 7y < COLA+ 2l r,) < C(Co).
In particular, it follows that [|.A||%; T < C(Cy), and (4.11) yields

3
3—k, 112
kZ_OHDt pHH%k‘H(Qt) < C7

where C' depends on R —[|h(+, t)[| Lo 1y, |V 56 (0)> | H || 6 (02,)5 and [ A| 5 (r,)- Combining the above
estimates, we conclude that

3
sup | E(f) + D} Fp| s +||B <C,
OStET < ( ) kzz(:) H t p“H§k+l(Qt) ” FtHH5(Ft)> <

where C' depends on T, N, M, [[vol| g6 (y)s [ Holl 6 00)s and [ Aro || 5 (ry)-
To verify the second claim, for I > 4, we apply Propositions 5.6 and 6.2 by induction: if sup E;_1(t) <

o<t<T
C, then it follows that
d
%el(t) < CE(t) S C(1+¢ft)).
Similarly, we integrate over (0, ) and use Proposition 6.2 again to obtain
sup e(t) < C(1+4 ¢(0))e“T,
0<t<T
and
sup Fy(t) < C+C(1+¢(0)e’T <, (7.5)
0<t<T
where the constant C; depends on |, T, N, Mp, sup E;_1(t), and ¢;(0). However, the induction

o<t<T
argument implies that (7.5) holds for all [ and the constant C; which depends on I, T, N, M7, ¢;(0)
and €(0) from (7.4). Note that €(0) + ¢;(0) < CE;(0), and the constant C; in fact depends on
I, T,Np, M, and E;(0). This completes the proof of our claim.
Step 2. We prove the last statement in Theorem 1.1, i.e., the a priori assumptions (1.8) hold
for some time Ty > c¢o > 0, where the constant ¢y depends on Mo, |[vol| 6 () | Holl 6 () and
| Arg || 75 (ng)- To this aim, we define

I(t) = HB”%w(rt) + HpH%ﬂ*(Qt) + HUH%M(Q,&) + HHH%{‘l(Qt) +1, ¢>0.

Suppose that it holds I(t) < 2I(0) and M; > My/2 for some time ¢ > 0, where My = R —
Aol oo (ry- Then we have ||Ar, H%JS(D) < C(1(0)). Therefore, applying Lemma A.4, it follows that

|h (s )| gs+sry < C, for 6 > 0 small enough, where the constant C' depends on || Ar, || g1+5(p,), and
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hence on I(0). An application of Proposition 6.1 allows us to obtain that there exists a constant C,

which depends on I(0) and M such that

E(t) < C(1+eé(t)). (7.6)
From the above argument, we define Tj) € (0, 1] to be the largest number such that
1
[0,Tp] C {t e 0,1]: I(t) > %,Mt > %, ande(t) <1+ é(O)} . (7.7)

Here, we make the assumption that Ty < 1, since the claim would be trivial otherwise. We note that
the last condition together with (7.6) implies that

Jsup () < C(L+2() < C(2+2(0)) < CE(0). (7.8)

Also, we observe that the N7 defined in (1.7) satisfies

,/\/721O <C sup E(t),
0<t<To

thanks to the curvature bound || B| s,y < 21(0). Indeed, from Vv, = Vv-v —v* B, we can bound

|vnll 4 (r,) by using ||v]| gra(r,) and || B|| g3 r,)-

The estimate (7.8) ensures that the a priori assumptions (1.8) hold for time 7' = T}, and the claim
follows once we show that the time T} specified in (7.7) has a lower bound ¢y > 0, depending only on
the initial data.

According to the definition of Tp, at least one of the three conditions has equality. Assume that
I(Ty) = 2I(0). Then, it holds E(t) < CE(0), for all t < Tj by (7.8). We will show that

%I(t) < CE(t)I(t) < CE(0)I(t). (7.9)

We focus on the computation of the highest-order terms. In fact, Lemma 2.3 yields
d
= (V%120 + IV*H 2,
= [ DV'*V+ DV H « V' Hdx
Q
< [ V'Dw*Viudz + / D VI VT2 ke Vigda

e @ |al<3

+ / VD H «V Hdo + | Y V'« VT H « V Hdx
Qt Qt
lal<3

< IVA*De|| 3o IV 0l s ) + IV DeH || 13 IV H | 160y
+ HUH%W(Q,E)HUHH‘*(QQ + HHH%WQQHHHH‘*(QQ
< CE(t)I(t).
Applying Lemmas 2.3 and 2.6, we see that

d
a||v3p||%2(9t)

= D V3p « V3pda
Q¢

= . V2D, Vp x V3pdz + ; V20 x V2 x V3 + Vo« V3p « V3p
t t + Vo * V2p x Vipda
<| i (V2D2v + V2(V2u« Hx H) + V*(Vux VH) « H) % V3pdz|
t
+CHUHH3(Q,5)HPH§{3(Q,5)
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< CE#)I(t).
Similarly, we obtain by Lemma 2.1 that
d -
7 IV? B2 (ry
|V3B|?div, vdS + [ D;V?BxV*BdS
Ft Ft

< 1Bl IVl ooy + / V3(V20 x v+ Vu* B)x V2 BdS
It

/ > VM« VI B« VP BdS
Tt |a\<2
< CE@)I(t).
By integrating (7.9) over (0, To) and using I(7Tp) = 21(0), we obtain
In2 =1In1(Tp) — In1(0) < CTHE(0).
Then we have

Tp > —L
£(0)
where the constant ¢y depends on 1(0), Mg, and E(0). Moreover, by Lemma 5.1 and Proposition
4.7, the constant ¢y depends only on Mo, ||vo || g6 (), | Holl s (y) and [|Ar || 5 ()
A similar argument applies if we have an equality in the third condition, i.e., €(Ty) = 1 + €(0). In
fact, it follows that

= Cp,

%é(t) < CE(t) < CE(0),
by (7.3) and (7.8), and we integrate the above over (0, Tj) to obtain
1 =e(Ty) —e(0) < CE(0)Ty

This results in Ty > ¢o > 0 again, with the constant ¢y depending on the same initial data.
Finally, we assume that M7, = M/2. Recalling that

Mp =R~ sup [h(-t)]|Le ),
0<t<T

and My > 0, we define 0 < 77 < Tj by
Mgy =R — [[h(-, T1) || oo (1)

It is clear that HU"H%O"(Qt) < CE(t) < CE(0) by using (7.8). Recalling the fact that %h = Vp, We
have by the fundamental Theorem of calculus that

Mr, =R = ||h(, T1) || oo (1)

T1
>R — ol gy — /O ol 2y
> My — CE(0)2T,

which means Ty > T7 > CMy/E (0)% > (. This concludes the claim.

Step 3. We prove the first three statements of Theorem 1.1. According to the a priori assumptions,
the estimates (7.1) and (7.2) hold. In particular, we conclude by Lemmas 5.1 and A.4 that the regu-
larity of the curvature implies the regularity of the free boundary, i.e., I'r € C*. Additionally, the
quantitative regularity estimates show that v(-,T"), H(-,T) € C*°(Qr).

Then, we apply the results in Step 2 to the domain {27 and conclude that system (1.1) is well-defined
and the a priori assumptions hold for some time 7 > 0. Moreover, by (7.7) and (7.8), it follows that

sup FE(t) < CE(T),and My, > &
T<t<T+T 2
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Therefore, applying the same argument as in Step 1 yields

3
su _|_ D3 k LB < C_”
O§t<713+r ( kzo H pHH§k+1(9 H FtHH5 (T ) >

where C' depends on T, N7, M, [voll 6 (0)» [ Holl 6 () > and [ Ary [ 5 (ry)- Again by induction as

in (7.2), we obtain

sup  Ei(t) < Cy,
0<t<T+r

where the constant C; depends on I, T, N, M7, and E;(0). This completes the proof of the theorem.
U

APPENDIX A. SOME ESTIMATES AND FORMULAS

Lemma A.1 ((BM18]). Let Q be a standard domain, i.e., Q) is either R™ or a half-space or a Lipschitz
bounded domain in R™. For real numbers s1,s9,5 > 0,0 € (0,1) and 1 < py,pa2,p < 00, satisfy the
relations

s=10s1+ (1 —0)sa, 1:£_|_ 1_9.
p n b2
(1) Ifs1 < s < s9,
£ llwsr@) < CIf s oyl iy ams g (A.1)
holds, if and only if

1 1
s9€NT pp=1,8— — > 5 — — (A.2)

p1 P2

fails. More precisely, if (A.2) fails then, for every 6 € (0, 1), there exists a constant C depending on
51,89, p1, p2, 0 and Q such that

1Fllws@) < ClLF ISy snm ) 1 T iam

If (A.2) holds, there exists some f € WSLPL(Q) MW 52:P2(Q) such that f ¢ W*P(Q),V0 € (0,1).
(2) If s1 = so, it is simply Holder’s inequality.

Lemma A.2 (Reynolds transport theorem). For all smooth function f(-,t) : Q — R, it holds

d
fdx — | D fde.
dt a,

Lemma A.3 ((SZ08b]). Forall smoot/afunctzon f(,t) : Ty — R, it holds
/ faS = | Dif + fdivg vds:
I

Lemma A.4 ([SZ08b, Proposition A.2]). Let Q2 C ]R3 be a domain such that 00 € H* sq > 2. Suppose
||.A||Hs—2(pt) < C with s > sq, then 92 € H®.
Definition A.5. Let I' = 9 and © be a smooth domain. Let u € L?*(T"). We say u € He (I") if

||| = |lullz2(ry + nf{[|Vwl|p2q) : w € H'(Q)and w = uon T}

H3(T)
= [ullp2ry + VYl 2 (),
where v € H'() such that v|p = u in the trace sense and Av = 0 in the weak sense.

We note that for u € H(€), it holds

ull 1 < llullzzey + [[Vullz2@)- (A.3)

HE (D)

Moreover, since we define the space H3 (T') via the harmonic extension, foru € H?(2) andv € H*(Q)
such that u|r is the trace of v on I, we have

IVallZ20y <IV(w=0)I720) + V]2
<[[(u = v)Aull o) + [Vl 720
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<ellu = v]|72(gy + CellAulZ2(q) + [IV0l 720
<el|V(u = 0)[[2(q) + CellAulZ2(q) + VUl Z2(q)
<e||Vull72(q) + CellAul72q) + ClIV[172q

<Vl + CllAula @) + ul,y )

where we have used the fact that v — u € H}({2) and Poincaré’s inequality. Therefore, we see that

IVl ) < € (I1Aull 2@ + llul (A4)

o (r))
Furthermore, if v is the harmonic extension of u|r, it follows that |[v|[1(q) < CHUHH% o and we

can obtain

Il < € (I Aulz@) + llul ) - (A.5)

Lemma A.6 ((Man02, Proposition 6.5]). Assumel’ C R3 is a compact hypersurface which is C**-regular
and || B[y < C. Then for k,1 € No,0 < k < I,p,r € [1,00), and q € [1, 00|, we have for all tensor

fields T tlmt

(1-6
15Tl oy < CIT e I T )

where p, 0 € [0,1] aregiven by 1/p = k/2+6(1/r —1/2) + (1 — 0)/q.
In particular, for k,1 € No,0 < k < [, q € [1, 00|, we have

9% ull 2y < Cllulfgr el s,
where § € [0,1] aregivenbyl =k +6 (1 —1)+ (2 —20)/q.

LemmaA.7 (JLM22, Corollary 2.9]). Letm € NoandT' C R3 bea compact 2-dimensional bypersurface
which is CY“-regular such that T = 0S) and satisfies the condition (H,,), i.e.,

[Bllpary < Cyifm =2, ||Blreery + | Bllgm-—2@) < C, if m > 2. (A.6)
Then for all k,1 € & with k < | < m and for q € [1, oc], it holds
lellzeqry < Clluly Nl
where§ € [0,1] isgivenbyl =k —0(1 — 1) + (2 —260)/q, and
ull 70y < Clll G llull ol

where § € [0,1] is given by 1/2 = k/3+6(1/2—-1/3) + (1 —6)/q.
Moreover, for k,l € Ng withk <1 < mand forp € [1,00),q € [1,00], it holds

IV ull o) < Cllull Gy llull oqy:

where§ € [0,1] isgivenby 1/p =k/3+6(1/2—1/3)+ (¢ —0)/q.
Lemma A.8 ((CS17, JLM22]). For f,g € C§°(R™) and numbers 2 < p1,q2 < 00,2 < pa,q1 < 00

with 1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/2, then we have for all k € §,
1fallzr@ny < Clfllwrrr @y 19l Lo @n) + Cllgllwr.az @oy | f1 2 ey (A7)

Lemma A.9 ([JLM22, Proposition 2.10]). Let m € N and assume T’ = 0$) is CV“-regular and satisfies
the condition (H,,) defined in (A.6). Then forall k € 5,k < m, it holds

19l (ry < CHfHHk(r)HgHLoo(r) + Cl fllzoe ) gl e ry
and

1f 9l ) < Clflam@llgllze @) + Cllf I ree @) 9]l e ()

Moreover, assume that HBHL4 < Cand let k € Ny. Then for p1,p2,q1,q2 € [2,00] with p1,qa < 00
satisfying 1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/2, we have

19l ey < Cllf lwron oy gl Lar @0y + ClLF ze2 oy g lwra (ry-
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Lemma A.10 ([JLM22, Proposition 2.1]). Letm € N,m > 2, and let ) be a smooth domain, which
is uniformly C'“%-regular and satisfies the condition (H,,) defined in (A.6). Then, there is an extension
operator T : H™(Q)) — HJ'(R3) such that

1T (w) |5 3y < Cmllull gm (o)
Lemma A.11 ([JLM22, Proposition 2.12]). Assume that T" is C**-regular. Then for every p € (1, 00)
it holds
IBr|lrry < C (14l Arll o)) -
If in addition || Br| 4y < C, then for k = % 1,2, it holds

1Brllars ) < € (1+ [ Arllery ) -

Finally, let m € 5§, m > 3, and assume that T satisﬁes additionally || B|| o () + || Bl gm—2(ry < C. Then
the above estimate holds for all half-integers k € 5 with k < m.

Lemma A.12 ([CCS08, Theorem 3.1],[CLS10, Lemma 5.1]). Let Q C R3 be a bounded domain such
that 0 € H? or Q) € C?, then

[[uo | C (lull 2y + Il curlull g-1(q)) ,

) <
H_?(aﬂ) =

[u- v C (lull 2@y + 1 divull g-1(9)) »

o3 (aQ)
for some constant C' independent of u. In particular, we have

HUHHﬁ(aQ) C (lull 2y + Il div ull g-1(qy + || curlul| g-1(0y) -

Lemma A.13 ((JLM22, Theorem 3.1]). Let | > 2 be an integer and let Q2 be a smooth domain with
= 08, such that HBF”H% 1 < C. Then for all smooth vector fields F : Q — R3 and every

(D)
ke{3,5,3,1,4,3 ... 31}, it holds

1| gy < C(HFnH 1Pl 2 ) + Il div Fl -1 (g

"3 (1)
+ | curlFHkal(Q)>.
Moreover, for k = | 3(1 + 1)|, it holds

1F k(@) < C(IVFull g gy + L+ 1Bl g0 IF e

+ (| div || gr—1qy + || CurlFHHk:—l(Q)>.
Lemma A.14 ([JLM22, Proposmon 3, 2]) Let | and ) be as in Lemma A. 13. Then for all smooth vector
fields F : Q — R3 and k € {2,3, 5,4, Sy ,%l}, it holds

H*
+ leurl F s o) ).
Moreover, for k = | 3(1 + 1), it holds

1E k(@) < C(IABElyug gy + O+ 1Bl g1 IF e

)
+ (| div || ge—1(qy + |l CuI'lFHHIc—l(Q)).

Lemma A.15 ([JLM22, Lemma 3.3]). Let Q C R3 with " = 02 be C'-regular. Then for all vector fields
F : Q — R3 such that |V F || 12(q) + || F || s () < 00, it holds

IF| 720y < C (HFnHL2(F) +[1F (172 + | div FlIZ2(q) + | CuﬂFH%am) ;
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and
172y < C (”FUH%Q(F) I F 20y + 1 div FlI 7o) + | CuﬂFH%?(Q)) :
Note that Q) may be unbounded, but its boundary is compact.

Lemma A.16 ([JLM?22, Lemma 3.5]). Assume that Q), with ' = 9, is C-regular and | Br|;+ < C
and u : Q — R is a smooth function. Then it holds

lull ey < € (100l ) + IVl + IAulie))
lull ey < € (190l 3 0y + Il + 1Aul 2y )

Lemma A.17 ([JLM22, Proposition 3.8]). AssumeQ, withT' = 9, is C*-regular and || Br HH% o < C.
Then the solution of the following Dirichlet problem

Au=f, ze€Q,
u =0, rzel,

satisfies
19wl ey + HVUHH%(Q) = CHf”H%(Q)'

APPENDIX B. NOTATIONS

. N: positive integers {1,2,... }

. &: positive half-integers {£ : k € N}

. Ny := N U {0}: non-negative integers

+ |-]: integer part of a given number

« [-,-] : Lie bracket

. a = (a)k_, € NE: an index vector, |a| = Zle o

. Q C R3: reference domain

. I' = 02: reference surface

. R: the interior and exterior ball radius of ) (or I" = 012)

. Ur: unit outer normal to a compact hypersurface I' C R?

. O: differentiation with respect to spatial variables

. O,: outer normal derivative

. V: gradient operator

. V: Riemannian connection, V pu = Fu for a vector field F' and a function u

« D, = 0, + v - V: material derivative along the particle path

. div F' = 0, F": divergence of a vector field F

. (divA); = 2, 0;Aij: divergence of a matrix A = (4;)

. curl F = VF — (VF)T: curl of a vector field F

. Vu = (Vu),: tangential differential of a function v : I' — R, V,u = d;u — duv'y;

. VF = VF — (VFv) ® v: tangential gradient of a vector field F' : T' — R3

. Tr: trace of a square matrix

. div, F = Tr(VF): tangential divergence of a vector field F : ' — R3

. Ar = div, vr: mean curvature of T’

. Ap = div, V: Beltrami-Laplace operator on T

. v-Vand H - V: directional derivatives

« h(-,t) : T — R, ¢ > 0: height function of 'y, hy(:) = h(-,0)

. A= (A;;): a3 X 3 matrix (i-row, j-column)

. AT: transpose of a matrix

. A:B= Zi,j A;;B;j: inner product of two matrices

. = -y: inner product of two vectors x,y € R?

. S % T: a tensor formed by contraction on some indexes of tensors S and T with constant
coeflicients

« a(ug, ..., uy): finite x product of uy, ..., up,
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. F,, = F - v: normal part of a vector field F’

. F, = F — F,v: tangential part of a vector field '

. Br = Vur: second fundamental form of I’

. VFu « Vi (VFu % V'): contraction on some indexes of tensors Viu (Viu) and VZv (VIv)
for any ¢ < k and j < (including the lower-order derivatives)

. WHP(Q),p € [1, 00]: usual Sobolev space, H'(Q) = WhH2(Q)

. WHP(T),p € [1, 00]: Sobolev space defined on I', H/(T") = WH2(I")

Acknowledgements. Both authors were partially supported by NSF of China under Grants 12171460.

Hao was also partially supported by the CAS Project for Young Scientists in Basic Research under
Grant YSBR-031 and the National Key R&D Program of China under Grant 2021YFA 1000800.

REFERENCES

[BKM84] ]J.T.Beale, T. Kato, and A. Majda. Remarks on the breakdown of smooth solutions for the 3-D Euler equations.
Comm. Math. Phys., 94(1):61-66, 1984.

[BM18]  Haim Brezis and Petru Mironescu. Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Ann.
Inst. H. Poincaré C Anal. Non Linéaire, 35(5):1355-1376, 2018.

[CCS08] Ching-Hsiao Arthur Cheng, Daniel Coutand, and Steve Shkoller. On the motion of vortex sheets with surface
tension in three-dimensional Euler equations with vorticity. Comm. Pure Appl. Math., 61(12):1715-1752, 2008.

[CLO0] Demetrios Christodoulou and Hans Lindblad. On the motion of the free surface of a liquid. Comm. Pure Appl.
Marh., 53(12):1536-1602, 2000.

[CLS10]  Daniel Coutand, Hans Lindblad, and Steve Shkoller. A priori estimates for the free-boundary 3D compressible
Euler equations in physical vacuum. Comm. Math. Phys., 296(2):559-587, 2010.

[CS07] Daniel Coutand and Steve Shkoller. Well-posedness of the free-surface incompressible Euler equations with or
without surface tension. J. Amer. Math. Soc., 20(3):829-930, 2007.

[CS14] Daniel Coutand and Steve Shkoller. On the finite-time splash and splat singularities for the 3-D free-surface
Euler equations. Comm. Math. Phys., 325(1):143-183, 2014.

[CS17] C. H. Arthur Cheng and Steve Shkoller. Solvability and regularity for an elliptic system prescribing the curl,
divergence, and partial trace of a vector field on Sobolev-class domains. J. Math. Fluid Mech., 19(3):375-422,
2017.

[DE14] Marcelo M. Disconzi and David G. Ebin. On the limit of large surface tension for a fluid motion with free
boundary. Comm. Partial Differential Equations, 39(4):740-779, 2014.

[DE16] Marcelo M. Disconzi and David G. Ebin. The free boundary Euler equations with large surface tension. J.
Differential Equations, 261(2):821-889, 2016.

[DKT19] Marcelo M. Disconzi, Igor Kukavica, and Amjad Tuffaha. A Lagrangian interior regularity result for the incom-
pressible free boundary Euler equation with surface tension. SIAM J. Math. Anal., 51(5):3982-4022, 2019.

[FHYZ23] Jie Fu, Chengchun Hao, Siqi Yang, and Wei Zhang. A Beale-Kato-Majda criterion for free boundary incom-
pressible ideal magnetohydrodynamics. J. Math. Phys., 64(9):Paper No. 091505, 16, 2023.

[FJM20]  Nicola Fusco, Vesa Julin, and Massimiliano Morini. The surface diffusion flow with elasticity in three dimen-
sions. Arch. Ration. Mech. Anal., 237(3):1325-1382, 2020.

[GLZ22] Xumin Gu, Chenyun Luo, and Junyan Zhang. Zero surface tension limit of the free-boundary problem in
incompressible magnetohydrodynamics. Nonlinearity, 35(12):6349-6398, 2022.

[GLZ23] Xumin Gu, Chenyun Luo, and Junyan Zhang. Local well-posedness of the free-boundary incompressible mag-
netohydrodynamics with surface tension. Journal de Mathématiques Pures et Appliquées, 2023.

[GMS12] P. Germain, N. Masmoudi, and J. Shatah. Global solutions for the gravity water waves equation in dimension
3. Ann. of Math. (2), 175(2):691-754, 2012.

[GW19]  Xumin Gu and Yanjin Wang. On the construction of solutions to the free-surface incompressible ideal magne-
tohydrodynamic equations. J. Math. Pures Appl. (9), 128:1-41, 2019.

[Ham82] Richard S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geometry, 17(2):255-306,
1982.

[HL14] Chengchun Hao and Tao Luo. A priori estimates for free boundary problem of incompressible inviscid magne-
tohydrodynamic flows. Arch. Ration. Mech. Anal., 212(3):805-847, 2014.

[HL20]  Chengchun Hao and Tao Luo. Ill-posedness of free boundary problem of the incompressible ideal MHD. Comm.
Math. Phys., 376(1):259-286, 2020.

[HL21] Chengchun Hao and Tao Luo. Well-posedness for the linearized free boundary problem of incompressible ideal
magnetohydrodynamics equations. J. Differential Equations, 299:542-601, 2021.

[HLZ23] Guangyi Hong, Tao Luo, and Zhonghao Zhao. On the splash singularity for the free-boundary problem of the
viscous and non-resistive incompressible magnetohydrodynamic equations in 3d. Preprint, arXiv:2309.09747,
2023.

[HY24]  Chengchun Hao and Siqi Yang. Splash singularity for the free boundary incompressible viscous MHD. J. Dif-
ferential Equations, 379:26-103, 2024.



[IP15]
[JLM22]

[Lan05]
[Leel7]

[Lin03]
[Lin05]
[LX23a]
[LX23b]
[LZ20]
[LZ21]
[LZ23]

[Man02]
[Man11]

[MTTO8]
[SchO5]
[SWZ18]
[SWZ19]
[SZ08a]
[SZO8b)]
[SZ11]
[Tra05]
[Tra09]
[TW21]
[Wu09]
[Wull]

[WX21]

[ZZ08]

MOTION OF FREE SURFACE IN INCOMPRESSIBLE IDEAL MHD WITH SURFACE TENSION 63

Alexandru D. Ionescu and Fabio Pusateri. Global solutions for the gravity water waves system in 2d. Invent.
Math., 199(3):653-804, 2015.

Vesa Julin and Domenico Angelo La Manna. A priori estimates for the motion of charged liquid drop: A dynamic
approach via free boundary euler equations. Preprint, arXiv:2111.10158, 2022.

David Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605-654, 2005.
Donghyun Lee. Uniform estimate of viscous free-boundary magnetohydrodynamics with zero vacuum magnetic
field. SIAM J. Math. Anal., 49(4):2710-2789, 2017.

Hans Lindblad. Well-posedness for the linearized motion of an incompressible liquid with free surface boundary.
Comm. Pure Appl. Math., 56(2):153-197, 2003.

Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of
Math. (2), 162(1):109-194, 2005.

Sicheng Liu and Zhouping Xin. Local well-posedness of the incompressible current-vortex sheet problems.
Preprint, arXiv:2309.03534, 2023.

Sicheng Liu and Zhouping Xin. On the free boundary problems for the ideal incompressible mhd equations.
Preprint, arXiv:2311.06581, 2023.

Chenyun Luo and Junyan Zhang. A regularity result for the incompressible magnetohydrodynamics equations
with free surface boundary. Nonlinearity, 33(4):1499-1527, 2020.

Chenyun Luo and Junyan Zhang. A priori estimates for the incompressible free-boundary magnetohydrody-
namics equations with surface tension. SIAM J. Math. Anal., 53(2):2595-2630, 2021.

Hans Lindblad and Junyan Zhang. Anisotropic regularity of the free-boundary problem in compressible ideal
magnetohydrodynamics. Arch. Ration. Mech. Anal., 247(5):Paper No. 89, 94, 2023.

C. Mantegazza. Smooth geometric evolutions of hypersurfaces. Geom. Funct. Anal., 12(1):138-182, 2002.
Carlo Mantegazza. Lecture notes on mean curvature flow, volume 290 of Progress in Mathematics.
Birkhiuser/Springer Basel AG, Basel, 2011.

Alessandro Morando, Yuri Trakhinin, and Paola Trebeschi. Stability of incompressible current-vortex sheets. J.
Math. Anal. Appl., 347(2):502-520, 2008.

Ben Schweizer. On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann.
Inst. H. Poincaré C Anal. Non Linéaire, 22(6):753-781, 2005.

Yongzhong Sun, Wei Wang, and Zhifei Zhang. Nonlinear stability of the current-vortex sheet to the incom-
pressible MHD equations. Comm. Pure Appl. Math.,71(2):356-403, 2018.

Yongzhong Sun, Wei Wang, and Zhifei Zhang. Well-posedness of the plasma-vacuum interface problem for ideal
incompressible MHD. Arch. Ration. Mech. Anal., 234(1):81-113, 2019.

Jalal Shatah and Chongchun Zeng. Geometry and a priori estimates for free boundary problems of the Euler
equation. Comm. Pure Appl. Math., 61(5):698-744, 2008.

Jalal Shatah and Chongchun Zeng. A priori estimates for fluid interface problems. Comm. Pure Appl. Math.,
61(6):848-876, 2008.

Jalal Shatah and Chongchun Zeng. Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal.,
199(2):653-705, 2011.

Yuri Trakhinin. Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Ra-
tion. Mech. Anal., 177(3):331-366, 2005.

Yuri Trakhinin. The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch.
Ration. Mech. Anal., 191(2):245-310, 2009.

Yuri Trakhinin and Tao Wang. Well-posedness of free boundary problem in non-relativistic and relativistic ideal
compressible magnetohydrodynamics. Arch. Ration. Mech. Anal., 239(2):1131-1176, 2021.

Sijue Wu. Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177(1):45-135, 2009.
Sijue Wu. Global wellposedness of the 3-D full water wave problem. Invent. Math., 184(1):125-220, 2011.
Yanjin Wang and Zhouping Xin. Global well-posedness of free interface problems for the incompressible inviscid
resistive MHD. Comm. Math. Phys., 388(3):1323-1401, 2021.

Ping Zhang and Zhifei Zhang. On the free boundary problem of three-dimensional incompressible Euler equa-
tions. Comm. Pure Appl. Math., 61(7):877-940, 2008.

HLM, INSTITUTE OF MATHEMATICS, ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCI-
ENCES, BEIJING 100190, CHINA

SCcHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, BEIJING 100049, CHINA
Email address: hcc@amss.ac.cn
Email address: yangsiqi@amss.ac.cn



	1. Introduction
	1.1. Motivation for the Construction of Energy Functionals
	1.2. A Priori Assumptions
	1.3. Main Results
	1.4. Outline of the Proofs and the Structure of the Paper

	2. Formulas for the Energy Estimates
	3. Time Derivatives of the Energy Functionals
	4. Estimates for the Pressure
	5. Estimates for the Error Terms
	6. Closing the Energy Estimates
	7. Proof of the Main Theorem
	Appendix A. Some Estimates and Formulas
	Appendix B. Notations
	References

