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1. Introduction

In the present paper, we study the global existence and uniqueness of solutions for the

initial value problem to the (pure state) bipolar Schrodinger-Poisson systems

O = —Ay + Vp, (1.1a)
6 = —Ad -V, (1.1b)
~ AV =[p* - ¢, (1.1c)
$(0,z) = o, ¢(0,7) = o, (1.1d)

where ¥ = ¥(t,z) and ¢ = ¢(t, 1) : R*3 o C, A is the Laplacian operator on R?,
and the electrostatic potential V = V (%, ¢) is a real function. This system appears in
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quantum mechanics, semi-conductor and plasma physics. A large amount of interesting
works has been devoted to the study for the Schrodinger-Poisson systems (see [1-4] and
references therein). In [3], Castella proved the global existence and uniqueness of solu-
tions in H™(m € Z, m > 0) for the mixed-state unipolar Schrédinger-Poisson systems.
And in (4], Jingel and Wang discussed the combined semi-classical and quasineutral

limit in the bipolar defocusing nonlinear Schrédinger-Poisson system in the whgle space.
1 1 1

— =5z

7(p) 2 p

S(t) denotes the unitary group generated by iA in L%(R?). For p € (1,00, we denote

First, we introduce some notations. For any p € [2, 00), we denote

by p' the conjugate exponent of p, defined by 1/p + 1/p’ = 1. Z denotes the conjugate
of the complex number z. H or H; (resp. Bj, or B;,Q) denotes the inhomogeneous
or homogeneous Sobolev (Besov) space respectively.
Now we state the main result of this paper as follows.
Theorem 1.1 Lets €R, s> 0. Let a € (2, ?] Assume that v, ¢o € H*(R®).
Then, there ezists a unique solution of the IVP (1.1) such that (¢, ¢)
%,¢ € C(R; H*(R%)) N {37 (R; B ,(RY)). (1.2)

loc

Moreover, when s is an integer, the result in (1.2) also holds with the Besov space B; ,
replaced by Hj.

Remark The result that we prove here for the single bipolar Schrodinger-Poisson
system can be extended to the mixed-state bipolar Schrodinger-Poisson system within
the same framework.

2. Global Existence

By (1.1c), we have the potential
V(o) = 5= = x (9 =14 @
VU 4n ’ '
where r := |z|. Now we recall the lemma needed to estimate V (1, #)y and V (¥, ¢)¢.
Lemma 2.1([5, Lemma 1.1]) Let 0 € s < 00, 1 € 1’ < 00. Assume that
Uks Mk, iy g > 0 satisfy
1 1 1 1 1
—=—+—=—+4—, k=0,1,..,][s]. 2.2
ol Mk pr gk 3 232)
Then there ezists a constant C' > 0 dependent only on r’, n, s such that
(s}

luvllgs, | < Ckz_o(“U“Hgk [oll ot + lull s ol ) (2.3)
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where [s] denotes the mazimal integer that is less than or equal to s.

If 5 is an integer, we also have

s
”uU“H:, < CkZ_O ”u”H{;k ”vH}'{gk—"a (24)
with . . .
- =—+—, k=0,1,..,s. (2.5)
r Pk 4k

Notice that if s > 0, we have By, = L' N BTS,Z and H® = L' N H%, we can obtain the
following |

Remark 2.2 Both (2.3) and (2.4) hold true if we replace the homogeneous space
by the corresponding inhomogeneous space.

By the equivalent norm of Bﬁ,2 (ct. [5, 6])

1/2
o dt
bo = ¢~ 2s=(s1) sup |An D%t — | 2.6
lull g, ( | la§|=:[s][h£tn AD%ul’? t) (2:6)

where Apu(-) = u(- + h) — u(-) and the Hardy-Littlewood-Sobolev inequality, we get
Lemma 2.3 Letr =|z|, 0 < s < 0o. Assume that ¢ > 0 satisfies

1 1 1
-=-+=--1 2.7
5173 (27)
Then, we have
) 1
() 1> +ulsg, < Clul, (28)
. 1
(i) 1= ullmg < Cllullsg. (2.9)
We have the following estimates
Lemma 2.4 Let % _3 + % ~1, u,v,w € LY9)(0,T; BS ,(R®)). Then we have
a )

1
2

1
”(; * ’u‘U)’UJ”Lv(P)’ (O,T;B;Ilz) g CT ”u”Lv(a)(O'T;B;J)

(2.10)
' ”v”L7(°)(0,T;B;_2)|lelL’r(a)(o,T;B;J)-

Proof By Remark 2.2 and Lemma 2.3, we have

[s]
I+ wulss,, < CY° (n}, wutlgg [l + 11~ vl nwnH;k)
k=0
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s
<0 (Il bl s + ol )

<C Znun o ol gs-n -l gy

k=0 (k1=
[s]-k

£ 3 (Il 190y + gyl kz)||w||Hj;k
Tk

ko=0
[s] k

<CY Y lullmg, Nollag, Nwllsg,,

k=0 § k1=0

[s]—-
'y (g ol + Il ol ) ||w||H;k}

ko=0

1 1 1 1
where—I:——+-—,—=——+——1.
r Pk G pf gk {
Let g = 2rx = a, 1. 17 = + 3 1. By the Sobolev embedding, we obtain

I ey, < Clllls vl e,
Since
_{_ _1 3. 1 1 _ 3,3 1 1
v(p)’ 2y 2
we have the desired result.
We will use the following Strichartz’ estimates derived in [5, 7, 8 ].
Lemma 2.5 Let2<r, q<6, S(t) = e*®t. Then there exists a constant C > 0
such that

IS8l Lrerrgo,00,8 ) S Cllellrrs, (2.11)

\ / tS(t - T)f(T)dTHL‘v(r)(o,T;B: 2) < CHf“L'v(q)' (O,T;B;, )’ (2.12)
T< ! '

for all p € H¥, f € LY9'(0,T; B, ;) and any 0 < T < oo, where 1/p +1/p' = 1. Both
(2.11) and (2.12) hold true if we replace the homogeneous space with the corresponding
inhomogeneous space when s is an integer. And the constant C in (2.11) and (2.12) 1s
independent of r, q € [2,6] (cf. [5, 7, 8] ).

Proof of Theorem 1.1 We first prove the local existence. It is sufficient to

consider the integral equations

t
P(t) = S(tho + i/O S(t = 1)V (¥(r), ¢(r))e(r)dr, (2.13)
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¢(t) = S(t)do - Z/O S(t =)V (¥(r), o(r))¢(7)dr. (2.14)
Define the workspace (£, d)

L= {(1/),¢) L 9,0 € L0, T; B} ,), 1%, @) Lrearo,r; 2,y S M}

with the metric

d((lpv(t))a (d)l, ¢1)) = ||(¢ - ¢1,¢ - ¢1)||L7(“)(0,T;B;|2)’

which is obviously a Banach space. Consider the mapping 7 =T, ® T, : £ — L such
that

Ti: ¥ — S(t)ho + z/o S(t — 1)V (4, p)dr, (2.15)

¢
Tos o S(tdo—i [ S(t=rIV(b.¢)odr (2.16)
By Lemmas 2.4-2.5, we have

1T, D)l z-@r07;82 ) = 1T T2 Lriarior, e )
<T@z ) + 128l @ )

1/2 2
< Cll(%o, #o) s + CTY (||1/’||Lv<a><0,T;B;,2) (2.17)

+101E ooz ) ) 109 B w00
< M/2 + CTl/ZMZ”('Lp’ ¢)||L7(a)(o,T;B;‘2)
<M,
where M := 2C||(vo, ¢o)ll g+ and [|(¥, d)x := [l¥llx + ¢llx. Here we take T so small
that CT/2M? < % Furthermore, a straightforward computation shows that it holds

”V(w, d>)¢ - V(wlv d)l)wl”p(p)’(o,T;B;,‘Z) < CTI/ZMZ“W’ - d)la d) - d)l)”m(a)(o,T;lez)

and

||V(¢, ‘{b)d) - V(d’l, ¢1)¢1”L7(P)'(0,T;B;, 2) < CT1/2M2”(¢ - "pla ¢ - qsl)”L’/(a)(O,T;B;YZ)’

from which, we obtain

||T(¢, ‘{b) - T(’/’h ¢1)“L7(a)(0:T;Bé,2) = ”(Tld’ - Tl'd)l, T2¢ —- 75¢’1||L7(a)(0,T;B;‘2)
<OV (. 809 V(1,001 v o5,
+CIV (5.8)8 = V1,808l 01,55,
< OMPTY2) (Y = 1.6 = 80) o rime )

1
< §||(¢ - 'Ll)l, ¢ - ¢l)”L‘Y(“)(0,T;Bé|2)'
(2.18)
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Hence, T is a contracted mapping from the Banach space (£, d) to itself. By the
Banach contraction mapping principle, we know that there exists a unique solution
(%,¢) € L79(0,T; Bs 5) x L"9)(0,T; B ,) to (2.13) and (2.14). Once we obtain the
local existence of solutions, we can use the standard argument to extend it to a global
one satisfying

¥(t,), 8(t,z) € C(R; HA®RY) N LI (R; BS,(R%),

loc

and prove the uniqueness of the global solution.
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