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1. Introduction

The nonlinear Schrödinger–Poisson system is used to simulate the transport of

charged particles in semiconductor science and plasma physics.22 In the present

paper, we study the asymptotic behavior in time and the existence of the modified

scattering operator of the solutions to the Cauchy problem for the bipolar nonlinear

Schrödinger–Poisson equations of two carriers

iψ̇j = −
1

2
∆ψj + (qjV (ψ1, ψ2) + a2

j |ψj |
p)ψj , (1.1)
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V =
1

4π|x|
∗ (|ψ1|

2 − |ψ2|
2) , (1.2)

ψj(0, x) = φj(x), x ∈ R3 , (1.3)

where ∆ denotes the Laplacian on R3 and ψ̇j = ∂ψj/∂t. The wave function ψj =

ψj(t, x): R1+3 → C, j = 1, 2, describes the state of the particle in the position

space under the action of the electrostatic potential V = V (t, x) at every instant

t. The charges of the particles described by the wave functions ψj are defined by

q1 = 1, q2 = −1, respectively. We also assume that 4/3 < p < 4 in the nonlinear

self-interaction potential a2
j |ψj |

p where aj ∈ R.

A large amount of interesting work has been devoted to the mathemati-

cal analysis for the bipolar Schrödinger–Poisson system13,17 or for the unipolar

Schrödinger–Poisson system, the Hartree equation3,4,8–10,19,21 and the Schrödinger

equation.2,5,7–12,16,23–25

In the unipolar case, Castella4 proved the global existence (of L2-solution, in

particular) and the asymptotic behavior of solutions in the function space L2 for

the mixed-state unipolar Schrödinger–Poisson systems without the defocusing non-

linearity. López and Soler20 discussed the large-time behavior of the solutions to the

unipolar Schrödinger–Poisson equations without nonlinearities, by using an appro-

priate scaling group and the equivalence between the Schrödinger formalism and

the Wigner representation of quantum mechanics. They proved that, when time

went to infinity, the limit of the rescaled self-consistent potential can be identified

as the Coulomb potential. With the help of WKB-ansatz, Li and Lin19 discussed

the unipolar nonlinear Schrödinger–Poisson system with frictional damping subject

to the rapidly oscillating (WKB) initial data and obtained the semiclassical conver-

gence to the compressible Euler–Poisson equations for smooth solutions in a finite

time interval. Based on the techniques of scattering theory, Hayashi and Naumkin14

established the modified scattering theory for nonlinear Schrödinger equations and

Hartree equations respectively.

Concerning bipolar equations, by applying the estimates of a modulated en-

ergy functional and the Wigner measure method, Jüngel and Wang17 discussed the

combined semiclassical and quasineutral limit of the solutions to the bipolar non-

linear Schrödinger–Poisson equations in the whole space where a1 = a2 provided

that there exists a solution to the Cauchy problem. By using the pseudo-conformal

conservation law of the bipolar nonlinear Schrödinger–Poisson system and apply-

ing the time-space Lp − Lp
′

estimate method, Hao and Hsiao13 have established

the global existence and uniqueness and large-time behavior of the solution to

the bipolar defocusing nonlinear Schrödinger–Poisson system with initial data in

Σ := {φ ∈ H1(R3) : |x|φ ∈ L2(R3)} and proved that the solution (ψ1, ψ2, V )

satisfies

ψj ∈ C(R; Σ(R3)) ∩ L∞(R; H1(R3)) ∩ L
γ(ρ)
loc (R; H1

ρ (R
3)), for j = 1, 2,

where ρ ∈ [2, 6), 1
γ(ρ) = 3

2 ( 1
2 − 1

ρ ) and H1
ρ is the usual Sobolev space. And in
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large time, the wave function and the potential decay, for any ρ1 ∈ (2, 6), ρ2 ∈

( 3
2 ,∞), ρ3 ∈ (3,∞), as follows

‖ψj(t)‖ρ1 ≤ C|t|
− 1

γ(ρ1) , ‖∇V (t)‖ρ2 ≤ C|t|−(1− 3
2ρ2

), ‖V (t)‖ρ3 ≤ C|t|−
1
2 (1− 3

ρ3
) ,

where the norm ‖ · ‖ρ denotes ‖ · ‖Lρ , C is a positive constant depending only

on p, ‖φj‖H1 and ‖|x|φj‖2. But there is no result of the existence of scattering

operator since the decay estimates obtained are not enough to prove the existence

of scattering operator.

It is well known that nontrivial solution of the Hartree equation, say,

iu̇ = −
1

2
∆u+ λ|x|−1 ∗ |u|2 (1.4)

does not approach any free solution as time tends to infinity15 where λ ∈ R. But

we need some modification in the phase to approximate the solutions, which is

described by the modified wave operators.7 There are at least three kinds of ap-

proximation in the literature, namely

v∗1(t) = S(t)e
i
2V (ϕ) ln tϕ, (1.5)

v∗2(t) = e
i
2V (ϕ) ln tϕ, (1.6)

v∗3(t) = e
i
2V (ϕ) ln tS(t)ϕ, (1.7)

which correspond to v1, v2, v3 respectively in (2.8)–(2.10)8 where S(t) = e
1
2 i∆t as

defined below. The first one turns out to be the best to avoid the derivative loss

which cause unpleasant mismatch of the topologies for asymptotic states.24

In the scattering theory of nonlinear Schrödinger equations, there have been a

lot of important works.2,5,11,12,16,23 Ginibre and Velo gave the general scattering

theory.11,12 Lin and Strauss16 used a Morawetz inequality to obtain an a priori

estimate. Bourgain introduced the localize Morawetz estimates and decomposition

in low and high frequency.2 Nakanishi23 used methods which were based on the

separation of the localized energy argument. And the method used by Tao et al.5

was similar in spirit to the induction-on-energy strategy of Bourgain,2 but the

authors performed the induction analysis in both frequency space and physical space

simultaneously, and replaced the Morawetz inequality by an interaction variant.

Although there are already many results on the large-time behavior for the

solutions to the nonlinear Schrödinger–Poisson equations and the scattering theory

for the nonlinear Schrödinger equation6,15,25,26 or the Hartree equation,6,8–10,14,15

we cannot find the scattering theory for the bipolar Schrödinger–Poisson system

with the power nonlinearity from the previous known results. In the present paper,

we will establish the scattering theory for the bipolar Schrödinger–Poisson system.

We try to explain what the scattering operator will be in the bipolar case and to

find the modification caused by the power nonlinearity. It turns out that we can

roughly neglect the affection of the power contribution from the view of scattering

analysis when the power is noncritical. The main difficulty is how to deal with the

Coulomb potential which is critical for scattering analysis. With the help of the



2nd Reading
October 6, 2004 15:59 WSPC/103-M3AS 00368

1484 C. C. Hao, L. Hsiao & H. L. Li

argument developed by Hayashi and Naumkin,14 we can overcome this difficulty,

provided the data are small.

We consider the Cauchy problem to the Schrödinger–Poisson equations (1.1)–

(1.2) under the following condition on initial data

φj ∈ Hγ,0 ∩H0,γ , with γ > 3/2, j = 1, 2

and the norm
∑
j=1,2 ‖φj‖γ,0 + ‖φj‖0,γ is sufficiently small, where the space Hγ,ν

is the usual weighted Sobolev space defined by

Hγ,ν := {u ∈ L2 : ‖u‖γ,ν = ‖(1 + |x|2)ν/2(1 − ∆)γ/2u‖2 <∞}, γ, ν ∈ R. (1.8)

For convenience, we first introduce some notations. S(t) denotes the uni-

tary group generated by 1
2 i∆ in L2(R3). (D(t)u)(x) = (it)−3/2u(x/t), D(t)−1 =

i3D(1/t), M = M(t) = e
i|x|2

2t , J = S(t)xS(−t) and |J |β = S(t)|x|βS(−t),

β ∈ [0,∞). z̄ denotes the conjugate of the complex number z. Fu or û (F−1u,

respectively) denotes the Fourier (inverse, respectively) transform of u. In this pa-

per, the constant C might be different from each other in the different position.

We now state our results on global existence and modified scattering in large

time as follows.

Theorem 1.1. We assume that φj ∈ Hγ,0∩H0,γ and
∑
j=1,2[‖φj‖γ,0+‖φj‖0,γ ] =:

ε1 ≤ ε, where ε is sufficiently small and 3/2 < γ ≤ 5/3. Then there exists a unique

global solution (ψ1, ψ2, V ) of (1.1)–(1.2) with the initial data (1.3) such that for

j = 1, 2

ψj ∈ C(R;Hγ,0 ∩H0,γ), ‖ψj(t)‖∞ ≤ Cε1(1 + |t|)−3/2 ,

‖V (t)‖∞ ≤ Cmin{ε1
2(1 + |t|)−1, ε1|t|

−α+C(ε21+ε
p
1)}, t ∈ R ,

where C(ε21 + εp1) < Cε < α < 1, 4/3 < p < 4 and C is a finite number which is

independent of ε and ε1.

Theorem 1.2. Let (ψ1, ψ2) be the solution of (1.1)–(1.2) with (1.3) obtained in

Theorem 1.1. Then for any φj ∈ Hγ,0 ∩H0,γ , j = 1, 2, there exist a unique pair of

functions (W1,W2)
± with W±

j ∈ L∞, j = 1, 2, and a real-valued function Λ± ∈ L∞

for t→ ±∞, respectively, such that
∥∥∥F(S(−t)ψj(t))e

−iqj

∫ ∨(t)

∧(t)
V (ψ̂1,ψ̂2)

dτ
|τ| −W±

j

∥∥∥
∞

≤ Cε1|t|
−α+C(ε21+εp

1) , (1.9)

and∥∥∥∥∥

∫ ∨(t)

∧(t)

V (ψ̂1, ψ̂2)|τ |
−1 dτ − V (W±

1 ,W
±
2 ) ln |t| − Λ±

∥∥∥∥∥
∞

≤ Cε1|t|
θ(−α+C(ε21+ε

p
1)) ,

(1.10)

where

∧(t) =

{
1, t ≥ 1

t, t ≤ −1
,∨(t) =

{
t, t ≥ 1

−1, t ≤ −1
, 0 < θ < 2/3, Cε < α < 1
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and γ > 3/2 + 2α. We recall that ε1 is defined in Theorem 1.1. Furthermore, we

have the estimate for t→ ±∞ that
∥∥∥F(S(−t)ψj) −W±

j e
iqj (V (W±

1 ,W
±
2 ) ln |t|+Λ±)

∥∥∥
∞

≤ Cε1|t|
θ(−α+C(ε21+ε

p
1)) . (1.11)

2. Proofs of the Main Theorems

We define the following function space

XT := {u ∈ C([−T, T ]; S′) : ‖u‖XT
<∞} , (2.1)

where S′ denotes the space of tempered distributions and

‖u‖XT
= sup

t∈[−T,T ]

(1 + |t|)−C(ε21+εp
1)(‖u(t)‖γ,0 + ‖S(−t)u(t)‖0,γ)

+ sup
t∈[−T,T ]

(1 + |t|)
3
2 ‖u(t)‖∞ . (2.2)

We first recall some estimates which will be used to prove our results.

Lemma 2.1. (Lemma 2.214) Let u(t, x) be a smooth function. Then we have

‖u(t)‖∞ ≤ C|t|−3/2‖FS(−t)u(t)‖∞

+C|t|−3/2−α‖S(−t)u(t)‖0,γ, for |t| ≥ 1 ,

where α ∈ [0, 1), γ > 3/2 + 2α.

Proof. (cf. Lemma 2.214) We have the identity

u(t, x) = S(t)S(−t)u(t, x) = (2πit)−n/2
∫
ei|x−y|

2/2tS(−t)u(t, y) dy . (2.3)

The identity (2.3) can be written as follows:

u(t, x) =
ei|x|

2/2t

(2πit)n/2

∫
e−ixy/tS(−t)u(x, y){1 + (ei|y|

2/2t − 1)} dy

=
ei|x|

2/2t

(it)n/2
(FS(−t)u(t))

(
t,
x

t

)
+R(t, x) , (2.4)

where

R(t, x) =
ei|x|

2/2t

(2πit)n/2

∫
e−ixy/t(ei|y|

2/2t − 1)S(−t)u(t, y) dy .

Let us state a basic inequality which will be used in our argument. Let α ∈ (0, 1)

be a fixed number, then we have

|M(−t) − 1| =

∣∣∣∣e
i |x|2

2t − 1

∣∣∣∣ ≤ C

(
|x|2

2|t|

)α
. (2.5)
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In fact, it is clear that (2.5) holds for |x|2

2|t| ≥ 21/α. Now, we assume that |x|2

2|t| < 21/α.

Thus,

|M(−t) − 1| =

∣∣∣∣e
i
|x|2

2t − 1

∣∣∣∣ =
∣∣∣∣cos

|x|2

2t
+ i sin

|x|2

2t
− 1

∣∣∣∣ =
(

2 − 2 cos
|x|2

2t

)1/2

= 2

∣∣∣∣sin
|x|2

4t

∣∣∣∣ ≤ 2

∣∣∣∣
|x|2

4t

∣∣∣∣ ≤ 2
1−α

α

(
|x|2

2|t|

)α
≤ C

(
|x|2

2|t|

)α
. (2.6)

Hence we have by the Schwartz inequality

‖R(t)‖∞ ≤ C|t|−3/2−α‖|y|2αS(−t)u(t, y)‖1

≤ C|t|−3/2−α‖S(−t)u(t)‖0,γ, for |t| ≥ 1 , (2.7)

where γ > 3/2 + 2α. From (2.4) and (2.7), the lemma follows.

Lemma 2.2. (cf. Lemma 2.414) Let γ > 0. Then we have

|Im(|x|γS(−t)(|x|−1 ∗ |u|2)v(t), |x|γS(−t)v(t))|

≤ C‖u‖1/3
∞ ‖u‖

2/3
2 ‖v‖1/3

∞ ‖v‖
2/3
2 ‖|x|γS(−t)u‖2‖|x|

γS(−t)v‖2 ,

where the (·, ·) denotes the inner product in L2.

Proof. We prove the case 0 < γ < 1. By the relation M(t)(−t2∆)γ/2M(−t) =

S(t)|x|γS(−t), the results about fractional derivatives in Ref. 18 and Young’s in-

equality, we have, for g = M(−t)v and the real function f = |x|−1 ∗ |u|2, that

|Im(|x|γS(−t)(|x|−1 ∗ |u|2)v(t), |x|γS(−t)v(t))|

= |Im((−t2∆)γ/2(fg), (−t2∆)γ/2g)|

= |Im((−t2∆)γ/2(fg) − f(−t2∆)γ/2g, (−t2∆)γ/2g)|

≤ C‖g‖3‖(−t
2∆)γ/2f‖6‖(−t

2∆)γ/2g‖2

≤ C‖g‖3‖|x|
−1 ∗ (−t2∆)γ/2|u|2‖6‖(−t

2∆)γ/2g‖2

≤ C‖g‖3‖(−t
2∆)γ/2|u|2‖6/5‖(−t

2∆)γ/2g‖2

≤ C‖g‖3‖(−t
2∆)γ/2M(−t)u‖2‖u‖3‖(−t

2∆)γ/2g‖2

≤ C‖v‖1/3
∞ ‖v‖

2/3
2 ‖|x|γS(−t)u‖2‖u‖

1/3
∞ ‖u‖

2/3
2 ‖|x|γS(−t)v‖2.

In the same way as in the case 0 < γ < 1, we have the first estimate for

general γ.

The proof of our theorems consists of short time existence theorem and the

a priori estimates of local in time solutions. Since the local existence of solutions

(ψ1, ψ2) of (1.1)–(1.2) with (1.3) can be done in the framework,4,13,14 we just list

it below and omit the proof.
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Lemma 2.3. Let
∑

j=1,2[‖φj‖γ,0 + ‖φj‖0,γ ] =: ε1 ≤ ε, where ε is sufficiently small

and 3/2 < γ ≤ 5/3. Then there exists a finite time interval [−T, T ] with T > 1 and

a unique solution (ψ1, ψ2) of (1.1)–(1.2) with (1.3) such that

‖ψj‖XT
≤ Cε ,

where the constant C is independent of T and ε.

What is left for us is to establish the a priori estimates of the local solutions to

the Schrödinger–Poisson equations (1.1)–(1.2). In fact, we can obtain the following

a priori estimates on the local solutions.

Lemma 2.4. Let ψj be the local solutions to (1.1)–(1.2) with (1.3) stated in

Lemma 2.3. Then we have for any t ∈ [−T, T ] and 3/2 < γ ≤ 5/3

(1 + |t|)−C(ε2+εp)
∑

j=1,2

(‖ψj(t)‖γ,0 + ‖S(−t)ψj(t)‖0,γ)

≤ C
∑

j=1,2

(‖φj‖γ,0 + ‖φj‖0,γ) ≡ Cε1 ,

where the constant C is independent of T, ε and ε1.

Proof. Multiplying both sides of (1.1) by |J |γ = S(t)|x|γS(−t) and using the

commutation relation [L, |J |γ ] = 0 with L = i∂t + 1
2∆, we obtain

L|J |γψj = |J |γ [qjV (ψ1, ψ2)ψj + a2
j |ψj |

pψj ] .

Multiplying both sides of the above equation by |J |γψj and integrating the resulting

equation, we have from Lemma 2.2

‖|J |γψj(t)‖
2
2 ≤ ‖|x|γφj‖

2
2 + C Im

∫ t

0

∫

R3

|J |γ [qjV (ψ1, ψ2)ψj + a2
j |ψj |

pψj ]|J |γψj dx dτ

≤ ‖|x|γφj‖
2
2 + C

∫ t

0

(
ε4/3

∑

j=1,2

‖ψj(τ)‖
2/3
∞ + a2

j‖ψj(τ)‖
p
∞

)
‖|J |γψj‖

2
2 dτ

≤ ‖|x|γφj‖
2
2 + C(ε2 + εp)

∫ t

0

(1 + τ)−1‖|J |γψj‖
2
2 dτ .

Applying the Gronwall inequality, we get

‖|J |γψj‖
2
2 ≤ ‖|x|γφj‖

2
2(1 + t)C(ε2+εp) ,

which implies

(1 + t)−C(ε2+εp)
∑

j=1,2

‖S(−t)ψj(t)‖0,γ ≤ C
∑

j=1,2

‖φj‖0,γ ≤ Cε1 .

In the same way as in the proof of the above, we have

(1 + |t|)−C(ε2+εp)
∑

j=1,2

‖ψj(t)‖γ,0 ≤ C
∑

j=1,2

(‖φj‖γ,0 + ‖φj‖0,γ) ≡ Cε1 .
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Lemma 2.5. Let ψ1, ψ2 be the local solutions to (1.1)–(1.2) with (1.3). Then we

have for t ∈ [−T, T ]

(1 + |t|)
3
2 ‖ψj(t)‖∞ ≤ C

2∑

j=1

(‖φj‖γ,0 + ‖φj‖0,γ) ≡ Cε1 , (2.8)

where the constant C is independent of T and ε1.

Proof. It is clear that (2.8) holds for |t| ≤ 1 due to the Sobolev embedding.1 Let

us turn to |t| > 1 next. By Lemmas 2.1 and 2.4, we can get

‖ψj(t)‖∞ ≤ C|t|−
3
2−α+C(ε21+ε

p
1)(‖φj‖γ,0 + ‖φj‖0,γ)

+C|t|−
3
2 ‖FS(−t)ψj(t)‖∞ , (2.9)

where 0 < α < 1 and γ > 3
2 + 2α. We now deal with the last term of the R.H.S. of

(2.9). Multiplying both sides of (1.1) by S(−t), we have

iS(−t)ψ̇j = −
1

2
S(−t)∆ψj + S(−t)(qjV + a2

j |ψj |
p)ψj . (2.10)

Let vj = S(−t)ψj . Noticing that S(−t) = M(−t)F−1D(t)−1M(−t) and

(f ∗ g)(tx) =

∫

R3

f(tx− y)g(y) dy

=

∫

R3

f(tx− tz)g(tz)t3 dz

= t3f(tx) ∗ g(tx) , (2.11)

we have the identity

S(−t)V ψj = M(−t)F−1D(t)−1M(−t)V ψj

= M(−t)F−1D(t)−1V (M(−t)ψ1,M(−t)ψ2)M(−t)ψj

= M(−t)F−1i3D

(
1

t

)
V (M(−t)ψ1,M(−t)ψ2)M(−t)ψj

= M(−t)F−1i3(it−1)−
3
2

[
Ct3

|tx|
∗ (|(M(−t)ψ1)(tx)|

2

−|(M(−t)ψ2)(tx)|
2)

]
(M(−t)ψj)(tx)

= M(−t)F−1t−1

[
C

|x|
∗ (|D(t)−1M(−t)ψ1|

2

−|D(t)−1M(−t)ψ2|
2)

]
D(t)−1M(−t)ψj

= t−1M(−t)F−1[V (D(t)−1M(−t)ψ1, D(t)−1M(−t)ψ2)D(t)−1M(−t)ψj ]

= t−1M(−t)F−1[V (M̂(t)v1, M̂(t)v2)M̂(t)vj ]
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= t−1
{
(M(−t) − 1)F−1[V (M̂(t)v1, M̂(t)v2)M̂(t)vj ]

+ F
−1[V (M̂(t)v1, M̂(t)v2)M̂(t)vj −V (v̂1, v̂2)v̂j ]

}
+ t−1

F
−1V (v̂1, v̂2)v̂j .

(2.12)

Thus, we obtain

iv̇j − qjt
−1F−1[V (v̂1, v̂2)v̂j ] = qjF

−1t−1(I1 + I2) +Qj

and

i ˙̂vj − qjt
−1[V (v̂1, v̂2)v̂j ] = qjt

−1(I1 + I2) + Q̂j ,

where

I1 = F(M(−t) − 1)F−1V (M̂(t)v1, M̂(t)v2)M̂(t)vj ,

I2 = V (M̂(t)v1, M̂(t)v2)M̂(t)vj − V (v̂1, v̂2)v̂j ,

Qj = a2
jS(−t)|ψj |

pψj .

Let Bj(t) = exp(iqj
∫ t
1 V (v̂1, v̂2)

dτ
τ ) and ŵj = Bj v̂j . Then, we have

i ˙̂wj = Bj(t)[qj t
−1(I1 + I2) + Q̂j(t)] .

Integrating over [1,t] with respect to the time variable t, we can get

ŵj(t) = ŵj(1) − i

∫ t

1

Bj(t)[qjτ
−1(I1 + I2) + Q̂j(τ)] dτ . (2.13)

Let hj = M(t)vj , then, by the Hausdorff–Young inequality, we have

‖I1‖∞ = ‖F(M(−t) − 1)F−1V (ĥ1, ĥ2)ĥj‖∞ ,

≤ ‖(M(−t) − 1)F−1V (ĥ1, ĥ2)ĥj‖1 .

Using the inequality (2.5), it can be shown for γ ′ > 3/2 and ε′ ∈ (0, 2α], that

‖I1‖∞ ≤ |t|−α‖|x|2αF
−1V (ĥ1, ĥ2)ĥj‖1 ≤ C|t|−α‖V (ĥ1, ĥ2)ĥj‖γ,0

≤ C|t|−α‖[(−∆)−1(|ĥ1|
2 − |ĥ2|

2)]ĥj‖γ,0

≤ C|t|−α(‖ĥ1‖
2
γ′+ε′,0 + ‖ĥ2‖

2
γ′+ε′,0)‖ĥj‖γ,0

≤ C|t|−α(‖h1‖
2
0,γ′+ε′ + ‖h2‖

2
0,γ′+ε′)‖hj‖0,γ

≤ C|t|−α(‖v1‖
2
0,γ′+ε′ + ‖v2‖

2
0,γ′+ε′)‖vj‖0,γ (2.14)

and

‖I2‖∞ = ‖V (ĥ1, ĥ2)ĥj − V (v̂1, v̂2)v̂j‖∞

= C
∥∥∥
[
|x|−1 ∗ (|ĥ1|

2 − |ĥ2|
2)
]
ĥj −

[
|x|−1 ∗ (|v̂1|

2 − |v̂2|
2)
]
v̂j

∥∥∥
∞

≤ C
{∥∥∥(|x|−1 ∗ |ĥ1|

2)ĥj − (|x|−1 ∗ |v̂1|
2)v̂j

∥∥∥
∞
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+
∥∥∥(|x|−1 ∗ |ĥ2|

2)ĥj − (|x|−1 ∗ |v̂2|
2)v̂j

∥∥∥
∞

}

≤ C
{∥∥∥(|x|−1 ∗ |ĥ1|

2)(ĥj − v̂j) + (|x|−1 ∗ (|ĥ1|
2 − |v̂1|

2))v̂j

∥∥∥
∞

+ ‖(|x|−1 ∗ |ĥ2|
2)(ĥj − v̂j) + (|x|−1 ∗ (|ĥ2|

2 − |v̂2|
2))v̂j‖∞

}

≤ C
{
‖|x|−1 ∗ |ĥ1|

2‖∞‖ĥj − v̂j‖∞ + ‖(|x|−1 ∗ (ĥ1 − v̂1))
¯̂
h1‖∞‖v̂j‖∞

+‖(|x|−1 ∗ (
¯̂
h1 − ¯̂v1))v̂1‖∞‖v̂j‖∞ + ‖|x|−1 ∗ |ĥ2|

2‖∞‖ĥj − v̂j‖∞

+ ‖(|x|−1 ∗ (ĥ2 − v̂2))
¯̂
h2‖∞‖v̂j‖∞ + ‖(|x|−1 ∗ (

¯̂
h2 − ¯̂v2))v̂2‖∞‖v̂j‖∞

}
.

To continue the above estimate, we introduce the following lemma.

Lemma 2.6. Let u ∈ Lq(R3) ∩ Lr(R3) for 1 < r < 3 < q <∞ and 1/q + 1/r = 1.

Then, we have

‖|x|−1 ∗ u‖∞ ≤ C(‖u‖q + ‖u‖r) .

Proof. By Hölder’s inequality, we have

‖|x|−1 ∗ u‖∞ = sup
x

∣∣∣∣
∫

|y|−1u(x− y) dy

∣∣∣∣

≤ sup
x

∣∣∣∣∣

∫

|y|<1

|y|−1u(x− y) dy

∣∣∣∣∣+ sup
x

∣∣∣∣∣

∫

|y|≥1

|y|−1u(x− y) dy

∣∣∣∣∣

≤

(∫

|y|<1

|y|−r dy

)1/r

‖u‖q +

(∫

|y|≥1

|y|−q dy

)1/q

‖u‖r

≤ C(‖u‖q + ‖u‖r) .

With the help of Lemma 2.6, we obtain

‖I2‖∞ ≤ C{((‖ĥ1‖2q + ‖v̂1‖2q)‖ĥ1 − v̂1‖2q + (‖ĥ1‖2r + ‖v̂1‖2r)‖ĥ1 − v̂1‖2r)‖v̂j‖∞

+ (‖ĥ1‖
2
2q + ‖ĥ1‖

2
2r)‖ĥj − v̂j‖∞ + (‖ĥ2‖

2
2q + ‖ĥ2‖

2
2r)‖ĥj − v̂j‖∞

+ ((‖ĥ2‖2q + ‖v̂2‖2q)‖ĥ2 − v̂2‖2q + (‖ĥ2‖2r + ‖v̂2‖2r)‖ĥ2 − v̂2‖2r)‖v̂j‖∞}

≤ C{(‖ĥ1‖3/2,0 + ‖v̂1‖3/2,0)‖F(M(t) − 1)v1‖3/2,0‖v̂j‖∞

+ (‖ĥ1‖
2
3/2,0 + ‖ĥ2‖

2
3/2,0)‖(M(t) − 1)vj‖0,1

+ (‖ĥ2‖3/2,0 + ‖v̂2‖3/2,0)‖F(M(t) − 1)v2‖3/2,0‖v̂j‖∞}

≤ C|t|−α
∑

j=1,2

‖vj‖
3
0,γ . (2.15)
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Analogous to the estimate (2.14), we also have for γ ′ > 3/2

‖Q̂j(t)‖∞ = a2
j |t|

− 3p
2 ‖FM(−t)F−1|ĥj |

pĥj‖∞

≤ C|t|−
3p
2 ‖F−1|ĥj |

pĥj‖1 ≤ C|t|−
3p
2 ‖|ĥj |

pĥj‖γ′,0

≤ C|t|−
3p
2 ‖ĥj‖

p
∞‖ĥj‖γ′,0 ≤ C|t|−

3p
2 ‖hj‖

p
1‖hj‖0,γ′

≤ C|t|−
3p
2 ‖hj‖

p+1
0,γ′ . (2.16)

By (2.14)–(2.16), we can get

‖FS(−t)ψj(t)‖∞ = ‖v̂j‖∞ = ‖B−1
j ŵj‖∞

≤ ‖ŵj(1)‖∞ +

∫ t

1

τ−1(‖I1‖∞ + ‖I2‖∞) + ‖Q̂j‖∞ dτ

≤ ‖ŵj(1)‖∞ + C

∫ t

1

|τ |−1|τ |−α((1 + |τ |)C(ε2+εp)ε1)
3

+ |τ |−
3p
2 ((1 + |τ |)C(ε2+εp)ε1)

p+1 dτ

≤ ‖ŵj(1)‖∞ + Cε1

∫ t

1

|τ |−1−α+C(ε2+εp) + |τ |−
3p
2 +C(ε2+εp) dτ

≤ ‖ŵj(1)‖∞ + Cε1 ,

and

‖ŵj(1)‖∞ = ‖v̂j(1)‖∞ = ‖FS(−1)ψj(1)‖∞

≤ ‖FS(−1)ψj(1)‖γ,0 = ‖S(−1)ψj(1)‖0,γ .

Thus, we obtain

‖FS(−t)ψj(t)‖∞ ≤ Cε1 .

Therefore, we have the following estimate

‖ψj‖∞ ≤ Cε1|t|
− 3

2

which implies the desired result (2.8). �

Similar to Lemma 2.4, we can obtain the following lemma in view of Lemma 2.5.

Lemma 2.7. Let ψj be the local solutions to (1.1)–(1.2) with (1.3) stated in

Lemma 2.3. Then we have for any t ∈ [−T, T ] and 3/2 < γ ≤ 5/3

(1 + |t|)−C(ε21+εp
1)
∑

j=1,2

(‖ψj(t)‖γ,0 + ‖S(−t)ψj(t)‖0,γ)

≤ C
∑

j=1,2

(‖φj‖γ,0 + ‖φj‖0,γ) ≡ Cε1 ,

where the constant C is independent of T and ε1.
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Proof of Theorems 1.1–1.2. We now prove our main results — Theorems 1.1

and 1.2. Following the ideas of Hayashi et al,13,14 with the help of Lemmas 2.5 and

2.7, we can easily obtain the results in Theorem 1.1. We omit the details.

We prove Theorem 1.2 next. We only consider the case t > 0 since the opposite

case can be treated analogously. From (2.13), (2.14), (2.15) and (2.16), we have

|ŵj(t) − ŵj(s)| ≤ C

∫ t

s

[τ−1(‖I1(τ)‖∞ + ‖I2(τ)‖∞) + ‖Q̂j(τ)‖∞] dτ

≤ Cε1

∫ t

s

[τ−1−α+C(ε21+εp
1) + τ−

3p
2 +C(ε21+ε

p
1)] dτ

≤ Cε1(s
−α+C(ε21+εp

1) − t−α+C(ε21+ε
p
1)

+ s1−
3p
2 +C(ε21+εp

1) − t1−
3p
2 +C(ε21+εp

1)) (2.17)

and we find that {ŵj(t)} is such a Cauchy sequence that there exist a unique pair

of functions (W1,W2)
+ with W+

1 , W+
2 ∈ L∞ such that

‖W+
j − ŵj(t)‖∞ ≤ Cε1(t

−α+C(ε21+ε
p
1) + t1−

3p
2 +C(ε21+ε

p
1)), for j = 1, 2 .

Let

Γ+(t) =

∫ t

1

[V (ŵ1(τ), ŵ2(τ)) − V (ŵ1(t), ŵ2(t))]
dτ

τ
.

Then, we have

Γ+(t) − Γ+(s) =

∫ t

s

[V (ŵ1(τ), ŵ2(τ)) − V (ŵ1(t), ŵ2(t))]
dτ

τ

+ [V (ŵ1(t), ŵ2(t)) − V (ŵ1(s), ŵ2(s))] ln s . (2.18)

By the Hölder inequality, we have for 1 < r < 3 < q

‖V (ŵ1(t), ŵ2(t)) − V (ŵ1(s), ŵ2(s))‖∞

≤ C[‖|ŵ1(t)|
2 − |ŵ2(t)|

2 − |ŵ1(s)|
2 + |ŵ2(s)|

2‖q

+ ‖|ŵ1(t)|
2 − |ŵ2(t)|

2 − |ŵ1(s)|
2 + |ŵ2(s)|

2‖r]

≤ C
∑

j=1,2

[‖ŵj(t) − ŵj(s)‖
2−2/q
∞ (‖ŵj(t)‖

2/q + ‖ŵj(s)‖
2/q)

+ ‖ŵj(t) − ŵj(s)‖∞(‖ŵj(t)‖
1−2/r
∞

+ ‖ŵj(s)‖
1−2/r
∞ )(‖ŵj(t)‖

2/r
∞ + ‖ŵj(s)‖

2/r
∞ )] .

With (2.17), the above yields

‖V (ŵ1(t), ŵ2(t)) − V (ŵ1(s), ŵ2(s))‖∞ ≤ Cε1(s
−α+C(ε21+εp

1) − t−α+C(ε21+εp
1)

+ s1−
3p
2 +C(ε21+ε

p
1) − t1−

3p
2 +C(ε21+ε

p
1))θ ,

(2.19)

for certain constant 0 < θ < 2/3.
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Hence, by (2.18), we see that there exists a unique function Λ+ ∈ L∞ satisfying

‖Λ+ − Γ+(t)‖∞ ≤ Cε1(t
−α+C(ε21+ε

p
1 ) + t1−

3p
2 +C(ε21+ε

p
1 ))θ. (2.20)

By (2.20) and the identity
∫ t

1

qjV (ŵ1(τ), ŵ2(τ))
dτ

τ
= qjV (W+

1 ,W
+
2 ) ln t+ Λ+ + (Γ+(t) − Λ+)

+ qj(V (ŵ1(τ), ŵ2(τ)) − V (W+
1 ,W

+
2 )) ln t , (2.21)

we obtain the desired result (1.10) from the restriction stated for α and p. By (1.9)

and (1.10), we have (1.11). Thus, we have completed the proof of Theorem 1.2. �
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Poincaré Phys. Theor. 43 (1985) 321–347.
26. Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrod̈inger

equations, Bull. Amer. Math. Soc. 11 (1984) 186–188.


