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Abstract

In the present paper, we prove the a priori estimates of Sobolev norms for
a free boundary problem of the incompressible inviscid magnetohydrodynamics
equations in all physical spatial dimensions n = 2 and 3 by adopting a geometrical
point of view used in Christodoulou and Lindblad (Commun Pure Appl Math
53:1536-1602, 2000), and estimating quantities such as the second fundamental
form and the velocity of the free surface. We identify the well-posedness condition
that the outer normal derivative of the total pressure including the fluid and magnetic
pressures is negative on the free boundary, which is similar to the physical condition
(Taylor sign condition) for the incompressible Euler equations of fluids.
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Notations

xh) Eulerian coordinates

b)) Lagrangian coordinates
Spatial derivative in x
Covariant derivative in y
The velocity field in Eulerian coordinates
The velocity field in Lagrangian coordinates
The magnetic field in Eulerian coordinates
The magnetic field in Lagrangian coordinates
Fluid pressure

p+ g|BI* Total pressure
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The Riemannian metric defined by gzp = D ; ; &i; ox’ 0x/

i.j 015 5y7 5,8
The induced metric on the tangent space of the boundary
which can be extended to be 0 on the orthogonal complement
of the tangent space of the boundary. Also, it can be extended
to be a pseudo-Riemannian metric in the whole domain

I Orthogonal projection to the tangent space of the boundary
The second fundamental form of the boundary

Lo The injectivity radius of the normal exponential map

X =

>

1. Introduction

1.1. Formulation of the Problem and Main Results

In the present paper, we consider the following incompressible inviscid mag-
netohydrodynamics (MHD) equations

1 1
vt—l—v»av—i-ap:E(B-&B—EEHBF), in 2, (1.1a)
Bi+v-9B=B-dv, in2, (1.1b)
divv=0, divB=0, in9, (1.1c)

describing the motion of conducting fluids in an electromagnetic field, where the
velocity field of the fluids v = (vy, ..., v,), the magnetic field B = (By, ..., By),
the fluid pressure p and the domain Z C [0, T] x R" are the unknowns to be
determined. Here n € {2, 3} is the spatial dimension, ﬁB - 0B is the magnetic
tension, 8% |B|2 is the magnetic pressure, p + % |B|2 is so called total pressure
which will be denoted by P in this paper, and | B| = (Z?zl BJZ.) 1/2 is the modulus of
B.d = (9, ...,0d,) and div are the usual gradient operator and spatial divergence
under Eulerian coordinates.

Given a simply connected bounded domain 2y C R”" and the initial data vg
and By satisfying the constraints div vgp = 0 and div By = 0, we want to find a set
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2 C [0, T] x R" and the vector fields v and B solving (1.1) and satisfying the
initial conditions:

{x:(0,x) e 9} =%y, (v,B)=(vg,By) on {0} x Y. (1.2)

Throughout the paper, we use the Einstein summation convention, that is, when
an index variable appears twice in both the subscript and the superscript of a single
term it implies summation of that term over all the values of the index.

Let ; = {x € R" : (t,x) € 2}, we also require the following boundary
conditions on the free boundary 9 %;:

vy =k ond%, (1.3a)
p=0 ond%, (1.3b)
|[IBl=¢and B- A4/ =0 ond%, (1.3¢)

for each t € [0, T] with T > 0, where .4 is the exterior unit normal to 9%,
vy = A 'v;, and k is the normal velocity of 8%, ¢ is a non-negative constant.
Condition (1.3c) should be understood as the constraints on the initial data. Indeed,
we will verify that the condition B - 4" = 0 on d%; holds for all ¢ € [0, T] if it
holds initially. We remark here on the physical meaning of the boundary conditions.
Condition (1.3a) means that the boundary of &, moves with the fluids, (1.3b) means
that outside the fluid region &, is the vacuum, the condition B - .4 =0 on 0%,
comes from the assumption that the boundary 97 is a perfect conductor. Indeed,
if we use E to denote the electric field induced by the magnetic field B, then the
boundary condition B - .4 = 0 on 0%, gives rise to E x .4/ = 0 on 9%;. The
boundary condition |B| = const on d%; (the magnetic strength is constant on the
boundary) is needed to guarantee that the total energy of the system is conserved,
that is,

4 (1|v|2 + L|B|2) (t,x) dx = 0.

dt g, \2 8

Condition (1.3c) includes the widely used (e.g., [12]) zero magnetic field boundary

condition as the special case, but it is much more general and physically reasonable.
In the classical plasma—vacuum interface problem (cf. [10,23]), suppose that

the interface between the plasma region §2),(7) and the vacuum region £2,(¢) is

I" (r) which moves with the plasma, then it requires that (1.1) holds in the plasma

region §2,(¢), while in the vacuum region £2, (), the vacuum magnetic field %

satisfies

VxAB=0 V- -B=0. (1.4)
On the interface I'(¢), it holds that
p=0, |B|=|4|, B-N =B - N&N=0, (1.5)

where ./ is the unit normal to I"(¢). Therefore, the boundary conditions in (1.3)
also model the plasma—vacuum problem for the case when || is constant.
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We will prove a priori bounds for the free boundary problem (1.1)—(1.3) in
Sobolev spaces under the following condition

1
% (p + 8—|B|2) <—e<0 ond%, (1.6)
T

where V_y = .4/19;. We assume that this condition holds initially, and will verify
that it holds true within a period. For the free boundary problem of the motion
of incompressible fluids in vacuum, without magnetic fields, the natural physical
condition (cf. [2,4,5,8,15-17,21,24,25,27]) reads that

Vyp<—e<0 ond%, (1.7)

which excludes the possibility of the Rayleigh—Taylor type instability (see [8]). In
this paper, we find that the natural physical condition is (1.6) when the equations of
magnetic field couple with the fluids equation. In fact, the quantity p + % |B|?, the
total pressure of the system, will play an important role in our analysis. Roughly
speaking, the velocity tells the boundary where to move, and the boundary is the
level set of the total pressure that determines the acceleration.

The free surface problem of the incompressible Euler equations of fluids has
attracted much attention in the recent decades. Important progress has been made
for flows with or without vorticity, and with or without surface tension. We refer
readers to [1,4,5,8,15-17,21,24,25,27].

On the other hand, there have been only few results on the interface problems
for the MHD equations. This is due to the difficulties caused by the strong coupling
between the velocity fields and magnetic fields. In this direction, the well-posedness
of a linearized compressible plasma—vacuum interface problem was investigated in
[23], and a stationary problem was studied in [9]. The current-vortex sheets problem
was studied in [3] and [22]. For the incompressible viscous MHD equations, a free
boundary problem in a simply connected domain of R? was studied by a lineariza-
tion technique and the construction of a sequence of successive approximations in
[18] with an irrotational condition for magnetic fields in a part of the domain.

In this paper, we prove the a priori estimates for the free boundary problem (1.1)—
(1.3) in all physical spatial dimensions n = 2, 3 by adopting a geometrical point
of view used in [4], and estimating quantities such as the second fundamental form
and the velocity of the free surface. Denote the material derivative D; = d; +v - 0
and the total pressure P = p + §|B |2, we can write the free boundary problem
as

Dy +d;P = %B"akBj in 2, (1.8a)
D/Bj = B*3v; in 2, (1.8b)
3jv/ =0 in2; 3;B/ =0 on{t=0}x %, (1.8¢)
vy =k on[0,T]x 0%, (1.8d)
|[Bl=¢ ondZ, B.,u/Vj =0 on{r=0}x0%, (1.8e)
p=0 ond2, (1.8f)

VyP<—e<0 on{t=0}x039%. (1.8g)
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We will derive the energy estimates from which the Sobolev norms of H¥(%;)
(N > s < n+1)of solutions will be derived. For this purpose, we define the energy
norms as follows: the zeroth-order energy, Eq(?), is defined as the total energy of
the system, that is,

(1 1
Eo(t) :/@, 54 (Evivj + gBiBj) dx, (1.9)
which is conserved, that is,
Eo(t) = Eg(0), for 0<t<T. (1.10)

The higher order energy norm has a boundary part and an interior part. The boundary
part controls the norms of the second fundamental form of the free surface, the inte-
rior part controls the norms of the velocity, magnetic fields and hence the pressure.
We will prove that the time derivatives of the energy norms are controlled by them-
selves. A crucial point in the construction of the higher order energy norms is that
the time derivatives of the interior parts will, after integrating by parts, contribute
some boundary terms that cancel the leading-order terms in the corresponding time
derivatives of the boundary integrals. To this end, we need to project the equations
for the total pressure P = p + %IBI2 to the tangent space of the boundary. The
orthogonal projection I7 to the tangent space of the boundary of a (0, ) tensor o
is defined to be the projection of each component along the normal:
(Ma)i,.i = 1'1[?" ...Hl{’ajl_“j,, where [T/ = 8/ — A/, (1.11)
with AT =8 A = ;.
Let 8; = Hi] 0; be a tangential derivative. If ¢ = const on 9%, it follows that
9ig = 0 there and
(IT9%q)ij = 6;;V._xq. (1.12)
where 6;; = 5,-% is the second fundamental form of 9 Z;.
The higher order energies are defined as: for r > 1

. 1 p -
E, (1) :/@t si (Q (a’vi,arvj)+EQ(3 B;, 0 Bj)) dx

A

+ I(r)/ 0 (3"P, 3" P) ¥ dsS, (1.13)
6@,

eurtaf 4
" tcurlv| +
4

2
8r_lcurlB‘ ) dx

where I(r) = 0ifr = 1 and I(r) = 1 if r > 1, so we do not need the boundary
integral for r = 1, and

9 =(=V yP)" L

Here Q is a positive definite quadratic form which, when restricted to the boundary,
is the inner product of the tangential components, that is, Q(«, ) = ([Ta, I18),
and in the interior Q(a, o) increases to the norm |« |2. To be more specific, let

O, B) =q"" ...q" e, i Bjy..jy (1.14)
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where
q7 =8 —n@? NN, d(x) =dist(x,0%), A =-8U3;d. (1.15)

Here n is a smooth cutoff function satisfying 0 < n(d) < 1, n(d) = 1 when
d < dy/4 and n(d) = 0 when d > dy/2. dy is a fixed number that is smaller than
the injectivity radius of the normal exponential map ¢y, defined to be the largest
number (¢ such that the map

09, x (—ip,10) — {x e R" : dist (x, 9%;) < 19} (1.16)
given by
(x,1) > x =x + 1/ (X)

is an injection.
The main theorems in this paper are as follows:

Theorem 1.1. For any smooth solution of the free boundary problem (1.8) for
0 <t < T satisfying

[0P| < M, |dv|< M, in%, 1.17)
|9|+|8v|+%<l{, on 3%, (1.18)
we have fort € [0, T]
E1(t) < 2¢“M E(0) + CK? (Vol 2, + Eo(0)) (eCM’ _ 1) L (1.19)
for some positive constants C and M.

Theorem 1.2. Let r € {2,...,n + 1}, then there exists a T > 0 such that the
following holds: For any smooth solution of the free boundary problem (1.8) for
0 <t < T satisfying

|B| < My forr =2, in %, (1.20)
0P| < M, |dv|< M, |dB|< M, in2, (1.21)
0] + 1/1 < K, on 3%, (1.22)
—VyP>e>0, on 3%, (1.23)
0P| + |V 4D, P| < L, ond;, (1.24)

we have, fort € [0, T],
E (1) < €V E,(0) + Cs (ec” - 1) , (1.25)

where the positive constants C1 and Ca depend on K, K1, M, M1, L, 1/, Vol %,
E(0), E(0), ..., and E,_1(0).
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Most of the a priori bounds (1.20)—(1.24) can be obtained from the energy
norms by the elliptic estimates which are used to control all components of 9" v,
0" B and 9" p from the tangential components /79" P in the energy norms, and a
bound for the second fundamental form of the free boundary

2
for r > 2, which controls the regularity of the free boundary.

Since Eg(t) = Ep(0) and Vol Z; = Vol %, recursively we can prove the
following main theorem from Theorems 1.1, 1.2.

1
vog S € (K’ Lo M, 2 B, Vol @’) Er

Theorem 1.3. Let

H(0) = max (16(0, )l L= » 1/10(0)) , (1.26)
&0) = 11/ (VN PO, D@z = 1/(0) > 0. (1.27)

There exists a continuous function 7 > 0 such that if
T < 7(x(0), 80, Eg(0), ..., Ext1(0), Vol %), (1.28)

then any smooth solution of the free boundary problem for MHD equations (1.8)
for 0 <t < T satisfies

n+1 n+1
ZEs(t) gzZES(O), 0<t<T. (1.29)
s=0 s=0

In order to prove the above theorems, we need to use the elliptic estimates of the
pressure p. However, the time derivative of Ap involves a third-order term of the
velocity which needs to be controlled by higher order energies. In order to overcome
this difficulty, we work on the equations for the total pressure P = p + Siﬂ |B|?,
instead of those for the fluid pressure p.

Before we close this introduction, we mention here some studies on viscous or
inviscid MHD equations, including the Cauchy problem or initial boundary value
problems for the fixed boundaries [6,7,11-14,18-20,26] and the references therein.

The rest of this paper is organized as follows. In Section 1.2 we give more
remarks on the motivations of the construction of the higher order energy func-
tional E,(¢) in (1.13) and outline of the proof of our theorems. In Section 2, we
use the Lagrangian coordinates to transform the free boundary problem to a fixed
initial boundary problem. The Lagrangian transformation induces a Riemannian
metric on %, for which we recall the time evolution properties derived in [4] and
prove some new identities which will be used later. We also write the equations in
Lagrangian coordinates, by using the covariant spatial derivatives with respect to
the Riemannian metric induced by the Lagrangian transformation, instead of using
the ordinary derivatives. In Section 3, we prove the conservation of the zeroth order
energy Eo(t), from which one can see that the boundary conditions on the mag-
netic fields B is necessary for this energy conservation. We also prove in Section
3 that the condition B - .4~ = 0 on the boundary propagates along the boundary.
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Section 4 is devoted to the first order energy estimates. In Section 5, we prove
the higher order energy estimates by using the identities derived in Section 2, the
time evolution property of the metric on the boundary induced by the above men-
tioned Riemannian metric induced by the Lagrangian transformation, the projection
properties and the elliptic estimates. In the derivation of the higher order energy
estimates in Section 5 some a priori assumptions are made which will be justified
in Section 6. We also give an appendix on some estimates used in the previous
sections, which are basically proved in [4].

1.2. Motivation of the Construction of Higher Order Energy Functional and
Outline of the Proofs

We give more remarks on the motivations of the construction of the higher
order energy functional E,(¢) in (1.13) and outline of the proof of our theorems
here. First, for divergence free vector fields, the L? norms of curl and tangential (or
normal) derivatives control the L2 norms of the derivatives of the vector fields [cf.
(A.15)]. Therefore, the interior integral part in (1.13) controls the L? norms of 9" v
and 8" B. The reason for using 8" ~'curl v and 8" ~'curl B in the interior integral
part of (1.13) is that it is relatively easy to obtain the estimates of the Sobolev
norms of curl v and curl B by using the equations for them. The time derivative
of the interior integral part of E,(f) produces a boundary integral term after the
integration by parts, which cannot be bounded by the interior integral part of E, (¢)
directly. We need a boundary integral to cancel the leading term of it. The time
derivative of the boundary integral fa 2, Q" P,d"P)? dS (r = 2)in (1.13) which
involves the projection of the r-th derivatives of the total pressure P = p + 8% |B|?
to the tangent space of the boundary is constructed for this purpose, for example,
when r = 2, we make use of the following second-order equations for the velocity
and the total pressure

D?v; — ok P = —8,~DtP+$Bk8kD,B,~, (1.30)

D39 P+ P)3; ;0" =9;0; D, P — (8;v")3d; P— (3,05)3d; P, (1.31)
restricted to the boundary together with the boundary condition

D;P =0 ond%, (1.32)

since P is constant on d Z;. Equations (1.30) and (1.31) can be derived from (1.8a)
and (1.8b), with the help of the following commutator formula:

(D, 3] = — (a,-v") . (1.33)

One can use elliptic estimates to control all components of 3" v, 9" B and 3" P from
the energy functional E, (), by the Dirichlet problems of the elliptic equations for
the total pressure P and its Lagrangian time derivative D, P for which one has the
boundary conditions P = const and D; P = 0 on d%; [the elliptic equation for
P can be obtained by taking the divergence of (1.8a), and the elliptic equation for
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D; P can be obtained by taking D; of the elliptic equation for P and using (1.33)].
It should be noted that a bound of the higher order energy functional E, (¢) also
gives the bound of [|3" 26| 12(92,) by using a higher-order version of the projection
formula (1.12) and the physical condition (1.6). Once we have the bounds for the
second fundamental form ||3* =26 || 209, 2 < s £ r), we can get estimates for
solution of the Dirichlet problems for the elliptic equations of P and D;P. We
outline the proof of the main theorem as follows. For r = 2, integration by parts
gives:

d
— E,(t) < lower order terms

ar
1 .
| (q”quF) 0710 ug BCDh, BY dx (1.34)
T Dy ’
+2/ 0 (a/a*") 05 0 0%0, M0, P dx (1.35)
7

1
+2/9 q“ q"ta,, P (D,a;f.P - 5Nb8}f-vb) 9 ds, (1.36)
0% ' '

where A = (ay,...,a,—1) and F = (f1,..., fr—1), qAF = q‘”f1 ...q“rflfffl,
dpr =09p ... 05,0y, the definitions for others such as 82_1 are similar.

From the Sobolev lemma (cf. [4]), the Holder inequality and the assumption of
Theorem 1.1, one can estimate the term (1.34) for »r = 2 and r > 3 separately.

The integral (1.35) can be bounded CK E}/*(1)[|3” P25, by the Holder
inequality. The estimate for ||0" P|| 2(¢,) can be obtained by the elliptic estimates,
a higher-order version of the projection formula (1.12) and the physical condition
(1.6). For the estimate of the boundary integral (1.36), we notice that the tangential
derivative P on 0%, vanishes to infer that

1
/ qaquFazap (Dta;'fp - ENba;'be) 0 dS
9%,

can be bounded by C 1?11,/ () Er'(t) T (D (3" P) + 8"v - 0 P)l 1237,y On
the other hand, we can have

D;0"P +93"v-9P = 98" D; P + lower order terms. (1.37)

Since D; P = 0 on 9%, one can use the elliptic estimates to bound [|0" D; P |2,
in terms of [|[770"D;Pll;259, and >, » 10°AD;P|| 25, under the a pri-
ori assumptions in Theorem 1.2. The estimate for || /10" D,P ||L2(39r) can be
obtained from the higher-order version of the projection formula (1.12), in terms of
101l Lo 32, Zkgr—a || 9k ||L2(a%) and Zkgr || E)kD,P“LZ(%). The estimate for
10° AD, P|| 125, can be obtained by the elliptic equation for D, P together with
the boundary condition D; P = 0 on 9 %;.

Once we have the above estimates, the justification of a priori assumptions in
Theorems 1.1 and 1.2 can mainly follow the argument in [4].
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It is clear from the above discussion to see the role played by the total pressure
P =p+ #|B|2, where the magnetic field B comes in for which additional
estimates are needed.

We will prove the above estimates by using the Lagrangian coordinates. One
of the advantages of doing so is that we can work on a fixed domain.

2. Reformulation in Lagrangian Coordinates

Assume that we are given a velocity vector field v(z, x) defined in a set 2 C
[0, T] x R”" such that the boundary of ¥, = {x : (t,x) € Z} moves with the
velocity, that is, (1, v) € T(0%) which denotes the tangent space of 2. We will
now introduce Lagrangian or co-moving coordinates, that is, coordinates that are
constant along the integral curves of the velocity vector field so that the boundary
becomes fixed in these coordinates (cf. [4]). Let x = x(¢,y) = f;(y) be the
trajectory of the fluid given by

[ & =@, x(t,y), @,y €l0,TIx L, 2.1

x(0,y) = foy), ye&

where, when t = 0, we can start with either the Euclidean coordinates in 2 = 2
or some other coordinates fp : 2 — %y where fy is a diffeomorphism in which the
domain £2 becomes simple. For each 7, we will then have a change of coordinates
fi : 2 — 9, taking y — x(t, y). The Euclidean metric §;; in Z; then induces a
metric

Axt x/
8ab(t,y) = 5ijﬁm (2.2)
and its inverse
ay° Byd
gt y) =88 TR 2.3)

in £2 for each fixed 7.

We will use covariant differentiation in £2 with respect to the metric g, (¢, ),
since it corresponds to differentiation in %; under the change of coordinates
23y — x(t,y) € %, and we will work in both coordinate systems. This also
avoids possible singularities in the change of coordinates. We will denote covariant

differentiation in the y,-coordinates by V,,a = 0, .. ., n, and differentiation in the
x;-coordinates by 9;,i = 1, ..., n. The covariant differentiation of a (0, r) tensor
k(t,y) is the (0, r 4+ 1) tensor given by
0ky,..a,
Vakal..‘a, = # - F,z“ka'..‘a, el F,zlrkal.‘.dv (24)

where the Christoffel symbols Fadb are given by

pe 8 (O8a | 9%aa  Ogap) _ 0y° 0%
ab — a b d - i 2 b*
2 \ 9y dy dy 0xt dy®dy

2.5)
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If w(z, x) is the (0, r) tensor expressed in the x-coordinates, then the same tensor
k(t, y) expressed in the y-coordinates is given by

9xi dxir
oy By

ka|...a,«(tv Y) = wi|..‘ir(t’-x)1 X :x(tv )’), (26)

and by the transformation properties for tensors,

ox' ox' ox' dwj, i,

Vakay..ar = Way“l T 9yar Qxi

2.7)

Covariant differentiation is constructed so the norms of tensors are invariant under
changes of coordinates,

b b i1 j i
g g kay akpy. by = 8wy Wiy (2.8)

Furthermore, expressed in the y-coordinates,
9 ay* 0

Tox ax aye’

i (2.9)
Since the curvature vanishes in the x-coordinates, it must do so in the y-coordinates,
and hence

[Va, V] = 0. (2.10)

Let us introduce the notation k. ” .= gbdka“_dmc, and recall that covariant differ-
entiation commutes with lowering and rising indices: gV kp.c..qa = Vagkpee..a-
Let us also introduce a notation for the material derivative

0 0 i 0
= — = — —. 2.11
ot ot T ( )

D
! dxk

y=const x=const

Then we have, from [4, Lemma 2.2], that

9xil dxir

Dtkalu.a, = ay_al . 8}]7

v’ v’
Dyw;, ., + ax—ilwe...i, +...+ mwili..e .
(2.12)
Now we recall a result concerning time derivatives of the change of coordinates

and commutators between time derivatives and space derivatives (cf. [4, Lemma
2.17).

Lemma 2.1. Let x = f;(y) be the change of variables given by (2.1), and let gqp
be the metric given by (2.2). Let v; = 8;jv/ = v', and set

ax!
aya’

1 :
hap = thgab, h* = g%h.4g%. (2.14)

ug(t,y) = v;(t, x) u® = g%uy,, (2.13)
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Then

ax! . axk avl ay  9y* dvk
Taya  ayaaxk’ !

axi  axk axi’ 2.15)

Digap=Vatty + Vpta, Dig"" =—2h"", Dydpy = ghapdpg,  (2.16)
DI = VaVput, (2.17)

where dig is the Riemannian volume element on §2 in the metric g.

Proof. The proof is the same as that of [4, Lemma 2.1] except that we need to
make some modification due to the difference of the definition of h,;. Indeed,
the proof of (2.15), (2.17) and the first part of (2.16) is the same as the men-
tioned. The second part of (2.16) follows from (2.14) since 0 = D, (g% g4c) =
(D18 gac+8° Dy gac = (D;g*®)gac+28"hye and then D, g% = (D, g*?)s}) =
(D8 gac8? = —2g%h.g" = —2h“". The last part of (2.16) follows since in
local coordinates dj, = +/det gdy and D, (det g) = (det §)g* Dy gup- i

We now recall the estimates of commutators between the material derivative
D; and space derivatives 9; and covariant derivatives V.

Lemma 2.2. ([4, Lemma 2.3]) Let 0; be given by (2.9). Then

(D, 5] = — (a,-u") . (2.18)
Furthermore,
r—1 ,
D, 3" =— altsy)y. 9", 2.19
[Dy, 9" g(Hl)( v) (2.19)

where the symmetric dot product is defined to be in components

1
I4+s ) . qr—s — I+s kY qr—s )
((3 v) 9 )il‘..ir r! (al"l“‘l“l+s v ) ak’%+2““ffr’ (2.20)
oEX,
and Zr denotes the collection of all permutations of {1,2, ..., r}.
Lemma 2.3. (cf. [4, Lemma 2.4]) Let Ty, .4, be a (0, r) tensor. We have
[Di. ValTay..ar = =V, Vatt) Taay..a, = - - = Vo, Vatt) Tay.ap_ya- (2.21)
If A = gV .V, and q is a function, we have
[Dt, g“bva] Ty = — 2%V, Ty, — (Au®)T,, (2.22)
[Dy, Vig =0, (2.23)
[Dr. Alg = — 20"V Vg — (Au“)Veq. (2.24)
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Furthermore,
r—1
[D:, Vg = Z — (s Jrr 1) (VsHu) . v g, (2.25)
s=1
where the symmetric dot product is defined to be in components
(1) v q,)a1 = rl' (Vi ) Vi g 226)
oeX,

Proof. The proof is similar to that of [4, Lemma 2.4]. We only need to verify
(2.22) and (2.24) since they involve the term D; g“b . Now from (2.16) and (2.21),
it follows that

(D1 8Va] T = Dug™VaTh) = ¢ VuDiTy
= (Dig™) VaTy + g DV Ty — gV DI Ty
= —2h"V,T, + g“°[D;, V1T,
= —2h"V, T, — g’V VuT,
= —2h’V, T} — (Au)T,.
From (2.12) and (2.18), we have

ax! ax! avt
D,Vaq = Dt WZ),q = 8ya Dtaiq -+ 8{@

o’ v’
= oy ([Dz, dilq + 0 Diq + deq ﬁ)
ax’

= 3y (—3ivkakq +9;Dq + a,-veagq) = %&th = V,Duq,
namely, (2.23) follows. Then, (2.24) follows from (2.22) and
D1, Alg = DiAq — ADiq = Dy (8°*VaVsa) — 8™ VaVsDig
=[P 8™V Voa + g Vul Di, Vilg
= [D,, g“bVa] Viq.

Therefore, we complete the proof.

Denote
Jj i dx/ a ab 2 a
BZZSI]B =B > ,Ba =B‘]Wa IB =8 ﬂbv and |ﬂ| Zﬂdﬂ . (227)
It follows, from (2.8), that
ay“ 1
B> =1|BI>, Bj=-—Ba. P=p+—IB" (2.28)
ox/ 8

Then P = g-¢2 on the boundary 952.



818 CHENGCHUN Hao & Tao Luo

From (2.13), (1.8a), (2.28), (2.15), (2.7), we have

ax7\  ox/ dx/
Dﬂ/laZD[ Vi— D[U]+U]Dl

Taya ) T gya dy4
ax/ P ax* v/
= aya —3]P+4—B 3kBj +U]a—aa7
. 1 ax/ ski ayP By ay¢ ayP ljayc
= VP gy G Pk g Vet e Vate
_ L ec bc
= VaP+47_[g gaeg BoVaPBe + & upVaiic
1 d c
=-V,P + Elg VaBa +u"Vauc.
Similarly, we get

dx/ ax/  axs axk av/

Dl,Ba = 8 D[B +B Dla " = 8yaB ak'l)j +BJWW

= ,3 Vattg + B Valic.

Thus, the system (1.1) can be written in the Lagrangian coordinates as

1

Diug + Vo P = uVau, + E,dedﬁaa (2.29a)
Dy Ba = BVauy + BVu,, (2.29b)
“—0 in[0,T]x 2; V=0 in{t =0} x 2, (2.29)

Bl =¢ and BN =0 on[0,T] x 352, (2.29d)
p=0 on[0,T] x ds2. (2.29%¢)

3. The Energy Conservation and Some Conserved Quantities

Firstly, the divergence free property of g, that is, div 8 = 0, is preserved for all
times under the Lagrangian coordinates or in view of the material derivative, that is,
D,div B = 0. Indeed, from (2.22) and Lemma 2.1, the divergence of (2.29b) gives

D: (8™Vsfa) = [ Dr. 895 | Bu + 8V D

= 21"V B, — (Au)B, + gV (B! Vatta + BV )

= 21"V B, — (Au)Be + VpBIVu’ + BV Vu®
+gabvbﬂcva“c + ,BCAMC

—g(Veutg + Vaue) gV Ba + VoIVl + gV fV,u,
=0.

Secondly, we assume that

|Vu(t, y)| < C on[0, T] x 852, 3.1)
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then that § - N = 0 is preserved for all times ¢ in the lifespan [0, T'], that is, we
have - N =0on[0,T] x 082 if B- N = 0on {t = 0} x 952. Indeed, we have,
from (2.29b) and Lemmas 2.1 and A.1, that

Di (BuN“) = Di (8 BulNp) = N“Dify+ Pu (Dig™) Ny + Bug™ DiNy
=N (B! Vatta B Vatta) = Veu® BNy = NVau u-+Bag“ v No
= hynBaN,

which implies, by the Gronwall inequality and the identity \Dt |f || = |D; f|, that

[(BaN“) (2, y)| < " [(BaN“(0, y)| = 0. (3.2)

Thus, in view of the above three preserved quantities, the system (2.29), or
(1.1), can be written in the Lagrangian coordinates as

i 1

Dty + Vo P = uVau, + E,B"Vdﬁa, (3.32)

D:Ba = BVaua + B Vaue, (3.3b)

Vou® =0, V,8°=0, in[0,T]x £, (3.3¢)
1

P=8—§2, Bl=¢, B-N=0, on[0,T] x 3. (3.3d)
T

Finally, the energy defined by

(L
Eo(t)—/g(zlul + ol ) i (3.4)

is conserved. In fact, by (2.16), (2.29), Gauss’ formula and the fact D; djug = 0
due to divu = 0, it yields

d 1 1
—Eo(t) = | D;|58" —g* d
7 o(1) /Q ' (2g Uqltp + o ,Baﬂb) Mg

a l a
= u“Diug + —B“Di By ) dug
Q 4
+/1(D“b) + - 8) d
Z Ut _
02 t8 allp axhe b Mg
1
=/ |:—u“VaP+u“u”Vauc+—u“ﬂdVdﬁai| dug
0 4
1 1 )
+/ _/saﬁdvdua + —— BB Vau, dpg
o \4r 4
1
b
_/ h¢ (”aub+ Eﬁaﬁb) dIJ«g

2
1
= — Nau® pd +/ uuVoue dpg + —/ Ndﬁdu”ﬁad,u,y
992 2 4r Joo
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1 4 oc 1 /
. V d _ ac
+47T/_QIB'B alle Albg 298
1
X (Veug 4+ Vaue) gdb (uaub + Eﬁaﬁb) dpug
=0.

4. The First Order Energy Estimates
From (2.21) and (3.3a), we have
Di(Vpug) + VpVa P = [Dy, Vplug + VpDiutg + Vp Vo P

I
- (VaVbud) wa+ Vs (f}dVdﬂa) + V) (4 Vau)

= — (Vi) ua + o (VoB'Vaba + B'VVab)
+VpuVaue +uVyVaue
= Vo + o (VoBVaba + BV Vafa) .
From (2.21) and (3.3b), we get
Di(VsB4) = [Dy, Vi1Bu + Vi Dy Ba
— (VaVou) Ba + Vi (B! Vaa + B Varc)
=— (VaVbud) Ba+ VB Vaua+BVpVaug+Vp BVt + BV Vit
= VB (Veutg + Vaute) + BV Vpitg.

Thus, we obtain

. 1
Di(Vita) + VoV P =ViouVatic + o (VoB'Vabu + B'VsVapa) . (4.1)

D;(ViBa) = VbB (Vetta + Vatte) + B VaVpita. (4.2)
Now, we calculate the material derivative of gbdy“evaubveud. From (2.16),
(2.14), (A.13), we get
D, (gbd)/ae a“bveud) = (ngbd) Y VaupVeuq + g™ (Dyy ™) VaupVeuq
+28"y (D, Vaup) Veua
= —28"herg” Yy VaupVeua — 28"y “hery T VaupVeuy
—28y9V,u gV, Vi P + 285y NV u gV 4u Viyu,

1
58"y Veta (VaB'Vaby + BV Vaps )

=~y (Veup + Vru)VauVou! —y®yTe(Vous +Vpu) Vaul Voug
—29%Vu"V, Vi P 4 2y Vou’ Vou Vyu,

1
57" Veu® (VaB'Vapy + B'VaVaby)
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= —2y“eVCusauCVeuf — Zy“eyfcveufvaudvcud + 299 Vou’ Vou Vyu,
1
2y Ve VoV P + 5=y Ve (Vap'Vaby + B'VaVabs)
= =2y Vu  VuVeug — 2y Voub Vv,V P
1
57" Veu? (VaB'Vaby + B'VaVaby) - (43)
Similarly, from (4.2), we have
D, (gbdyaevaﬁbveﬁd)
= _Vae(vcuf + Vfuc)vaﬂcveﬂf - Vacyfe(vcuf + Vfuc)vaﬂdvelgd
+2y Ve (VB Vetts + VaVouie + B'VaVauy)
= _zyaevcufvaﬂcveﬁf - ZVGCerchfVa,deeﬂd
2y 9V BV B Ve + 27 Ve Ve POV B + 2y BV BV Vaus
= 2y YV u VBV Ba 4 2y Ve OV BV ety
+2y% BN, BOV 4 Vouy,. (4.4)

Thus, by combining (4.3) with (4.4), we obtain
D (g”dy“e atpVelg + %gbdyaevaﬁbveﬂd)
= =2y“y! Vou ;Vou'Veug — %y‘”yf “Vou VB VeBa
—2V, (y“eveubvaP - %y““ﬁbveudvaﬁd)
+2(Vpy ™) (veu”vaP - %ﬂbveudvaﬂd)

1 1 .
+§y“veubvaﬁdvdﬂb + Ey“fveﬂbvmvcub. 4.5)

Now, we calculate the material derivatives of |curl u|? and |curl 8|>. We have
2 _ ac bd
Dy|curl u|” = Dy (g g7 (curl u)yp (curl u)cd)

=2 (D) g™ (curl w)ap(curl u)eq + 488" (D Vaup) (curl u) e
= —2g%g/ " (Vou y + V pue) (curl u) g (curl u) g
+4g“cgbd (curl u)cqVauVpu,
—4¢% g% (curl u)cqVaVy P
1
+—g"g" (curl u)ea (Va B Veby + B*VaVeP)

= —4g”egbdveuc(curl u)ap(curl u)eq

1
+— g (curlu)ca (VaB*VeB + BVaVep?)
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Similarly,

Dyfeurl BI? = 2(D;g") g™ (curl B)ap(curl B)ca + 488" (D Vap) (curl B)ca
= —4g°g"V,u (curl B)ap(curl B)ca
+4g9 g% (curl B)cq (Vaﬂe(Veub + Vyue) + ,Bevevaub) .

Thus, we can get

2 1 2
Dy { |curl u]® + —|curl B|
4
, 1.
= —4g%g"V,u¢ (curl u)gp (curl u)eq + - g% (curl u)eg VoV, B¢
1 ae bd c
_;g 87 Veu (curl B)gp(curl B)cq
1
+;g“g”d(cur1mcdvaﬂe(veub + Vpite)

1 R
+—V, (g (curl w)capVap?) . (4.6)
T

Define the first order energy as

1
E\(1) = / (gbdy“evaubveuﬁEgbdy“vaﬂbveﬁd) dpg
2

1
+/ (Icurlu|2 + —|curl,8|2) dig. 4.7)
Q 47
Let us recall the Gauss formula for §2 and 0£2:

/Vaw“ dugz/ N,w* dp,, and / Vaf®du, =0 (4.8)
2 082 082

if f is tangential to 352 and (N,) denotes the unit conormal to 2.
Then, we get the following estimates.

Theorem 4.1. For any smooth solution of MHD (3.3) for 0 < t < T satisfying

IVP| <M, |Vul <M, in[0,T]x <, (4.9)
1

0]+ |Vul + — < K,  on[0,T] x 0%, (4.10)
1o

we have fort € [0, T]

E1(t) < 2¢SMTEL(0) + CK? (Vol 2 + Eo(0)) (eCM’ - 1) . @1
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Proof. By (4.5), (4.6) and Gauss’ formula, we have

dt

1
+/ D, (|curlu|2 + —|curl,3|2) dug
Q 4

1
+/ (gbdy“evaubveud + Egbdy“evaﬁbveﬂd) trh djug
2

d 1
—E (1) = / D, (g”"y“vaubveud+Eg”"y“vaﬂbveﬂd) dug
2

1
+/ (|cur11,t|2 + —|curlﬂ|2) trhdug
7 4
1
=-2 y“eyfcveufvaudvcud dpg—— y“enyvgusaﬂdVCﬁd dig
o) 21 Jo
1
—2/ Np (yaeveu”vap dug — ry“eﬁbveudvaﬂd) duy (4.12)
1) 44
ae b _ L b d
+2 [ (Vpy™) | Veu"Va P 471’3 Veu"VapPa ) dug (4.13)
Q
1 1
+—/ YVl V, VB ditg + —/ Y4V BV BV eup ditg
2 Q 2 Q
—4/ 2% gV, u€ (curl u)gp (curl u)cq dug
Q
1
+— / g““(curl u)eqVa Ve B! diug
2
1 .
_;/ gaegbdveut(Curlﬁ)ab(curlﬂ)cd dug
2
1
+;/ gacgbd(curl B)eaVaB(Veup + Vpite) d,ug
2
1 .
+— / NeB g (curl u)ea Vo e dps, (4.14)
1)
1
+ / (g”dy“ aubveud+5gb"y“vaﬁbveﬂd) trh dug
2

1
—|—/ (|curl u|2 + —|curlﬁ|2) trhdug.
Q 4

Since P = %52 on 92, it follows that VP = 0, that is, y{f V4P = 0, and then
vV, P = g“y#V,P = 0 on the boundary 9£2. In addition, 8 - N = 0 on 952.
Thus, the integrals in (4.12) and (4.14) vanish.

From (A.5) and (A.3), we get

Oab = (85 — NaN) VeNp = VaNy — NoVN Ny = Vo Np, (4.15)
since in geodesic coordinates Vy N = 0. It follows that

Voy® = V(g — N*N°) = =V, (N“N°) = —(VN)N* — (V,N)N*
— —9IN® — GEN°.



824 CHENGCHUN Hao & Tao Luo

Thus, by the Holder inequality, (1.18) and Lemma A.2, we get
(@13)] < CK (I1Vull 2@y IV Pl ) (VoI 2)'/2
+ [IVull o2y 1Bl 22(02) ”Vﬂ”LZ(Q))
< CKM ((Vol )2+ E1/2(0)) EV ).

For other terms, we can use the Holder inequality directly. It yields

(f—tEl(t) < CKM ((V019)1/2 + Eé/z(o)) £V

+C IVl iy (IV8122 ) + 1V B I )
+ leurlul g + lleurl B1132,g)
< CKM ((Vol )12 E1/2(0)) E(t) + CME\ (1).
From the Gronwall inequality, it follows that
12y < CMI2EV2(0) + CK ((\/om)l/2 " Egﬂ(m) (eCM’/2 - 1) ,
which implies the desired result. O

Remark 4.1. Since (4.12), especially the integral involving P, vanishes, we do
not need the boundary integral in the first order energy E;(¢). But in higher order
energies estimates, we need to introduce boundary integrals for P in order to absorb
the analogy integral to (4.12).

5. The General rth Order Energy Estimates

From (2.12), (2.19), (1.8a), we get

- 1 dx'r ox'
DtV Ug =Dtva1 ...Varlzta=D; ayal ...mﬁail ...airvi

ax’t 9x’ x! 90t
= By .. By ay D;0;, ...0;,v; + ax—ilag ST ITEE S
vt avt
+i9)c_ifail ... 0pv; + Wai, - Bi,vg)
axt axir dx! . v’
= 8y“1 < 8yar ay [D;,E) ]U1+8 D[Ul‘f‘mag...airvi—f-...

vt vt
+ax—ira,-1 ... 0V + Wail ... 0, Vg

_ ox't oxir oxt ( rz:( ) (81+SU) L S0 — 979 P
= e i i
aya ay%r gy c\s+ 1
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I . & GDR
—i—Ea (B"0rB;) + ax—ila@...ai,v, +

avt avt
+8x—ira,», ... 0V + Wai, ... 05, g

r—1
=-V'V,P— Z (S :_ 1) (VI-HM) V' S,
s=1
,

1
+VuuCV’uc +— Z (r) VAY:BCVr_SVC,Bay
4 i

where

(VSBV ™ VeBa),, ., Z oyt BV g, Veba- (5.1)

Thus, due to div 8 = 0, we get forr > 2

D,V'u, + V'V, P

r—2
, r < _
= (curlu)geV'u +sgn(2 —r) Sz; (s N 1) (VU -V 5,

1 cx7r 1 . r S pCxgr—s
+ Ve (BB + - 2 () VAT, (5:2)

where sgn(s) is the signum function of the real number s, that is, sgn(s) = 1 for
s > 0,sgn(s) = 0 fors = 0, and sgn(s) = —1 for s < 0. Of course, we use this
notation sgn(2 — r) to indicate that the related term vanishes for r = 2.

Similarly, by noticing that div 8 = 0, we have

Dtvrﬂa = Vaucvrﬁc - Vrucvcﬂa
r—2
p
_ 2 _ VlJrS . Vrfs
sgn( r)sé(sﬂ)( u) Ba
" r
Ve (B°V"uq) + Z (s) V* BV V1. (5.3)

Define the r-th order energy for » > 2 as

E (1) :/ gbdy“fyAFV:‘_lVaubV;_IVfud dug +/ IV~ Leurl u)? dug

+1
4

+E/9|Vr_lcurlﬂ|2 cmg+/aﬂ y YAV I, PYTIV P Y dpy,

where ¥ = 1/(—Vy P) as before.
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Theorem 5.1. Let r € {2,...,n + 1}, then there exists a T > 0 such

that the

following holds: for any smooth solution of MHD (3.3) for 0 < t < T satisfying

1Bl < My forr =2, in[0,T] x £2,
IVP| <M, |Vul <M, |[VBI <M, in[0,T]x £,
0] + 1/t < K on|0,T] x 052,
— VNP > e>0 on|0,T] x 052,
V2P| +|VND;iP| < L, on [0, T] x 882,

we have, fort € [0, T],

E (1) < eCME0) + G (97 - 1),

where C1 and Cy depend on K, K1, M, M1, L, 1/¢e, Vol 2, Ey(0), E1(0), ..

E._1(0).

Proof. We have

d r— r—
aE,(r) _/ D, (g”dy“fyAFvA "Yaup Vi ‘vfud) ditg

_/ gbdyafyAer ly, BV~ IV}‘,Bd) djig
r—1 2 1 - )
+ | DV " curlul”dug + — D[V curl B|” dpug
2 4 Q
+ / gy AN I, VY pugte b dpg
2

1
+/ IV ~lcurl u|?tr h dp,g+4—/ |V curl B12tr h dpeg
T

+1
47

+/8Q (v AN P P) 9 dpy

/ gbdyafyAer lv ,Bbvr lVfﬁdtrh dl»Lg

(5.4)
(5.5)
(5.6)
(5.7)

(5.8)

(5.9)

., and

(5.10)

5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

9
+/ y Yy AE I, PV P (5’ +trh— hNN) 9 du, .
982

(5.17)

We first estimate (5.10), (5.11) and (5.16). From Lemmas 2.1 and A.1, and

(5.2), we get

D, (gbdyafyAF v 1 Vaup V'~ 1 Vfud)

= (D,gbd) vy AN Ny VTV pug + rghd (D,y“f) y AV IV, VTV pug

42gbdyaf yAF p, (vg—lvaub) ViV ug

= —ZVCuEy“fJ/AFVZ_IVau‘TV;,_IVfu” — 2rVCuey”"yefyAFV:‘_1VaudVrF_

'Vyug
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=2y y ATV VLTI,V P4 2y Yy ARV P (curl ) e VT V06

r—2
250n(2 — v yAFyT=ly r (Vs+l v d)
+2sgn(2 —r)y“y F f”d; s 1 ( u) u) ..

1 .
YAV gV, (,B‘Vgaﬂ")

2
1, " .
_— af JAFgr—ly . ( )( s pexgr—s d)
+5-r g Vfud?_l ) (wevvest)
Similarly,

Di (v AV VB VTV )
= =2Veuey y AV TV BV IV B = 28 Ve y vy AV TIN GBIV IV By
2y Yy AT B VU VT VB = 2y y AV BV By VT V'
r—2
2 2 af,, AFyr—ly . gb r (VlJrs v )
+2sgn(2 —r)y“Yy F fﬁz;‘ s+l ( u) ﬁbAu
s=
2y Yy AEV LTI BN (B V1)

r

2y Iy VT (;) (VB Veua) 4,

s=1

and
D, (y“fy”vg*‘vapv;*‘vfp)
= —2erueyaCyefyAFV2_1VaPV;,_lva
+2y APV P, (VY P).
Thus, we get

(5.10) + (5.11) + (5.16)
< C (IVull ooy + VBl o)) Er ()

r—2
+CEP0) H vty
s=1

L4(_Q) (” Vr_Su”L“(.Q) + ” Vr—Sﬂ||L4(Q)) (518)

r—1
1/2 s r—s+1 r—s+1
+CE"(1) Zz ”V ﬂ“L“(Q) (HV u‘ L4(2) + HV ﬂ‘ L4(Q))
=
(5.19)
1
+2/ y“ yALVL P (Dtvgfp -5 bv;fub) 9 du, (5.20)
92
+2/ Vo (v y A7) ViV VTGP dpg (5.21)
2
1
+— | Ny ATV ug OV, B dpay (5.22)

2 92

1 _ .
50 | Ve (y”fyAF) Vi rug BV B d. (5.23)
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Dueto8-N = 0ond$2,(5.22) vanishes. From Lemma A.9, we have, for¢; > 1/K1,
that

2
1By <C D K127 VB oy < CKD D ES @), (524
0<s<2 s=0

Thus, for the last integral, by the Holder inequality and the assumption (5.5), we
have for any r > 3

2
(5.23) < CK [|Bll (@) Er (1) < C(K. K1) (Z Ei”(z)) E (). (5.25)

s=0

For r = 2, we have to assume the a priori bound |8| < M; on [0, T] x £2, that is,
(5.4), in order to get a bound that is linear in the highest-order derivative or energy.
Then, we have by (5.4)

(5.23) < CK ||Bllp=2) Er (1) < C(K, M) E,(¢), forr=2.  (5.20)

By the Holder inequality, we have

172
(521) < CKE, (1) ||V’P||L2(m. (5.27)
From (1.8a), we have
3 j _ Ly (BB
i (Dyv )+AP_E j(B B ),
which yields from (2.18)
. 1 )
k k
AP = —0d;v kv’ + EajB o B’ .
Since A is invariant, we have
1
AP = —Vu"Vu® + 4—V,l,8bvhﬁ“. (5.28)

It follows that for r >

1
V' 72AP = V' 2 [ =V, Vyut + -V BV, BY )

r—2 r_
( ) bvr 2— .&Vbu
s=0

r—

4L Z ( ) staﬁbvr—2—s Vb,Ba.

§=

From (5.24), we have for s > 0

B

2 2
|ve <cX kv L <cwn Y B0, (529
=0 =0

Bllixo)
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and, similarly,

2
3 1/2
|Vou ”LOO(_Q) < C(Ky) Z E\,@). (5.30)
(=0
By Hoélder’s inequality, (5.29) and (5.30), we get for r € {3, 4},
[v2ar
L2(£2)

r—2
<cy H VAV, ub V25l
s=0

< CVullpxgy |V u

r—2
C H VS‘V bvi’—z—SV a
e § ap vP L2(2)

+ CIVBll ) | V78|

L2(2) L2(2)
+r =3¢ (H VZMHLOO(Q) H Vzu‘ L2(£2) + ”VZ’B HL°°(.Q) ”VZ’B‘ LZ(Q))
3 4
< CKDEL 0D ES 0+ r =3)CKDE (1) > E/ (o)
=1 =2

r—1
< C(KD) D E() + C(KDE* (0 E (1), (5.31)

(=1

For r = 2, we have a simple estimate from the assumption (5.5) and Holder’s
inequality, that is,

APl 22y < LC I Vullp2o) IVullpo @y + CIIVBIL2(02) IVBIl L2
< CME@), (5.32)

which is a lower energy term. Thus, by (A.17), (5.31) and (5.32), we obtain for any
6 >0

[V P 2y < 8 [TV P 1250,
+C(1/8,, K, Vol 2) D" |V AP| g,
s<r—2
r—1
<8 [TV P a0y + C(1/8,, K, K1, M, Vol 2) > Eu)
=1

+(r —2)C(1/8,, K, K1, M, Vol 2)E;*(1)E}* (1), (5.33)

Now we estimate the boundary terms. Since P = % c2onds, by (A.18), we have
forr > 1

[TV P 250, < CK, K1) | 161l 102) + (- = 2) Z HW

k<r-3
x> H ka’

k<r—1

L2(082)

(5.34)

L2(382)
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From (A.7), we get TIV2P = 0Vy P and then, by (5.7), (5.6), (A.31), (5.5)
and (5.33), we get

vp
Vy P

<- HHV2P
L2002) ¢

, 5.35
L2(382) (5:33)

10120y = ‘

anzp

262) < 0llzo@e) VP20

< C(K, Vol 2) (H v2p

: + ”VP”LZ(_Q))

: + C(K, Vol 2)(Vol 2)'> M

L2(R2

< C(K, Vol 2)8, HHV2P

L2382
+C(1/52, K, Ky, M, Vol ) E (1), (5.36)
where the first term of the right hand side of (5.36) can be absorbed by the left hand

side if we take 8, so small that, example, C (K, Vol £2)§> < 1/2. Thus, it follows
that

< C(K, Ky, M, Vol 2)(1 + E| (1)), (5.37)
L2(3.Q)

HHV2P
HVZP L2(Q) < C(K, K1, M, Vol 2)(1 + Eq (1)), (5.38)

101l 252) < C(K, K1, M, Vol 82, 1/e)(1 + E(¢)). (5.39)

By Theorem 4.1, there exists a 7 > 0 such that £ () can be controlled by the
initial energy E1(0) for ¢ € [0, T], example, E1(¢t) < 2E1(0). Thus, from (5.34),
(5.39), (5.5) and (5.38) we have

HHV3P

L2(382)

< C(K, Ky) (K + ||9||L2(6.Q)) Z HVkP L2(382)
2

S

< C(K, K1 M, Vol 2, 1/6)(1 + E{(0)) > HV"P
k<3

< C(K, K1, M, Vol 2, 1/¢, E1(0)) HV3P

L2(£2)

LY(2)
+ C(K, K1, M, Vol 2, 1/¢e, E1(0)). (5.40)

From (5.33),

H v3p

< BCKL K1 M. VoL 2, 1 e, E1(0)) HV3P

L2(R2 L2(2)
+ 83C(K, K1, M, Vol 22, 1/¢, E1(0))
2
+ C(1/83. K. K1, M, Vol 2) > Ey(t)
=1

+ C(1/83, K, K1, M, Vol 2)Ey*(VEy* (1), (5.41)
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which, if we choose §3 > 0 so small that

83C(K, K1, M, Vol $2,1/¢, E1(0)) < 1/2,

yields
2
3
Hv PHLZ(Q) <C(K, Ky, M,Vol 2,1/¢, E{(0)+C(K, K1, M, Vol £2) Z}Eg(t)
+C(K, Ky, M, Vol 2)E3 > () EY (1), (5.42)
and then
HV3P‘ < C(K, Ky, M, Vol 2. 1/¢, E1 (0
[1vop| L < COK KL M. YOI, 1 e, E1(O)
2
X (1 + > Eun) + E;/z(t)E;/z(t)). (5.43)
=1
Since

VoVNP = v Va (N“VaP) = (88 = NoN) (VaN)VaP + NV4V, P)
= 0fVyP + NVV, P — NyN (05V,P + N*VyV,P)
from (A.31), it follows that

||§VNP||L2(39) S ClOll @) IVPI2p0) +C HVZP‘

L2(382)

< C(K, Vol 2) (H V3P‘ + ||VP||L2(.Q))

4 ”VZP‘

L2(2) L2(£2)
2
< C(K., K1, M, Vol 2,1/e, E1(0)) + C(K. K1, M, Vol 2) > E¢(1)
=1
+C(K, Ky, M, Vol 2)E,> (1) E3/*(0).

Thus, by (A.8), it follows that (VO)Vy P = [TV3P — 30QVVy P and

_ 1 3 _
96020 < £ (179, + € 10l [P 00 )
< C(K, Ky, M, Vol 2, 1/¢, E1(0))
2
x (1 + > Een) + Eg/z(t)Eg/z(t)). (5.44)
=1

Hence, from (5.34), (A.31), it yields

HHV“P‘

< C(K,K)) (K + 10l 200) + [ VO LZ(aQ))

XZHV"P’
k<4

L2(312)
(5.45)

L2@)
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Then, from (5.33), we can absorb the highest order term H vip || 12(2) by the left
hand side for §4 > 0 small enough which is independent of the highest energy
E4(t), and get

v

L) < C(K,Kq1,M, Vol $2,1/¢e, E1(0))

3
x (1 + > Een) + Eéﬂ(z)Ei/z(t)), (5.46)

=1

an“P < C(K, K1, M, Vol 2, 1/¢, E1(0))

L2(382)
3
x (1 + > Een) + Eé/z(r)Ei/z(t)). (5.47)
=1

Therefore, from (5.38), (5.42) and (5.45), we obtain for r > 2

I V’P||L2(m < C(K, Ky, M, Vol 2, 1/¢, E1(0))
r—1
x (1 + > B+ (r — 2)E§/2(1)E}/2(r)), (5.48)
=1

which, from (5.27), implies

(5.21) < C(K, K1, M, Vol 22, 1/e, E\ () E}(1)

r—1
x (1 + > Bt + (r — 2)E;/2(I)E}/2(t)). (5.49)

=1

Now, we turn to the estimates of (5.20). Since P = %gz on 92 implies
Yy Vo P = 0o0n 382, we get from (A.3), by noticing that # = —1/Vy P, that

—97IN, = VNPNp=NVyPN,=8,VqP — yyVaP = V,P. (5.50)

By the Holder inequality and (5.50), we have

12 1/2 , i or b
(520) < CI1911}/2 50y EX*(0) Hn (D, (V'P) =0~ 'NyV'u ) o
1/2 1/2
= C 920 E/ @ | 1T (D (V' P) +V'u-VP) |20
(5.51)

By (2.25), it follows that
D/V'P+V'u-VP =D ,V'|P+V'D;P+V'u-VP
r—2
-
=sen(2 —r vty . v Sp + V' D, P.
gn( )E(Hm ) X

(5.52)
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We first consider the estimates of the last term in (5.52). By (A.18) and (A.31),
we get, for2 <r <4

|7V Di P2

92)
=k
< C(K. K1 Vol 2) [ 1611 % ) Hve
(K, K1, Vol 2) [ 110]l o) + (- =2) D 26
k<r—3
V4D P‘ . 553
X Z H ! L2(£2) ( )
k<r
From (A.17) , it follows that
[V D P50,
<8 HHV’D,P”LZ(BQ)—i—C(l/S, K, Vol 2) Z HVSADIP”Lz(Q).
s<r—2
(5.54)

By (2.24), (5.28), Lemma 2.1, (4.1), (4.2) and (3.3), it yields
AD,P = 2h%V,V, P + (Au)V,P — D, (gbdg“vaudv,,uc)

1

+1-Dr (gbdg“CVaﬂdVbﬂc)
T

= 2h"V,V,P + (Au®)V. P — 2D (g")V,ugViyu®

1 .
28" D, (Vaug) Vpu® + 5D (&g VuBa Vi

1
+-—8"Dy(VaBa)VpB°
27

= 2h"V,V,P + (Au®)V, P + 4h*VugVyut — %hbdvaﬂdvbﬂ“
+28"VpuV, Vg P — 2g"NuV,uVau,.
_%vbu“ (va,acvcﬂb + ﬂ"VaVcﬁb)
+%gbdwﬂ“ (VB (Veta + Vaue) + B VeVaua)
= 4g°°Vu’V,Vy P + Su)V, P + 2V’ Vyu V,u®
—%vbu“vaﬁ“vcﬁ” — %vbu“ﬁcvavcﬂb + %vbﬁ“ﬁevevau”.
By (5.29), (5.33) and Lemma A.9, it follows that for s < 2

[v*6Di P,

@
< ClIVull ey | V2P —nC| V| | [vee|
S ClVullpe ) Ly TS D “I2ce) L®(Q)
+5C | V2 [veip +C|ve VP
Y e L4(®) 2 W)
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+C (IVull@) 190l @) + IV Bl 1 VBlwe) | v+ u

12(2)
+s(s = DC |Vl o) H V2u

|

L)
+C IVull () VBl ey | 7B

LH2)

L2@)
e H v2u

M

+5(5 = DC [ Vullog) | V28

(s =D IVBl L2y + 1Bl x(2))

Vs

LY($2) L4($2)

LY(2) LYR)

+C [Vl 18] e [ V7728

L2(£2)

e H V3u‘

1Bl 2y ((s -0 |8 L, * ||Vﬁ||mm)

L2(2)

+5(s = HC Hvﬂe

1Bl o (2) HVZMH

+5(s = DC VBl ey | V28

L2(£2) L>(2)

VZu

L4($2) H LY2)

—1)C VBl N ”v“
+s(s — DC VBl o) I1BllL=(g) |V'u @)
1Bl | Vul

From Lemma A.8 and (5.30), it follows that

2
12 "
u ) <C “V*M“Loo(g) (g HVH_ u’

Fs(s — 1)C HVZ,BH

(5.55)

Lo0(£2) L2(2)

1/2
H VS-‘rl

KZ—Z
@) !
1/2

2
< C(K) D E, (). (5.56)
=0

We can estimate all the terms with L#(£2) norms in the same way with the help
of (5.29), (5.30), the similar estimate of P and the assumptions. Thus, we obtain
the bound which is linear about the highest-order derivative or the highest-order
energy E,l/z(t), that is,

|V*6D: P 5 < C(K, K1, M, My, L, 1/e, Vol 2, Eg(0))

r—1
x (1 +> Eg(t)) (1 + E,l/z(t)) . (5.57)
=0

Thus, from (5.53), (5.54), (5.57) and taking some small §’s which are independent
of E,(t), we obtain, by induction argument for r, that

|V "D P50, < C(K, K1, M, My, L, 1/¢, Vol 2, Eg(0))

r—1
x (1 +> Eg(t)) (1 + Erl/z(t)) . (5.58)
=0

(952)
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To estimate (5.52), it only remains to estimate

Hn ((v”lu) : VHP)‘ or1 <s<r—2. (5.59)

L2(382)

Forr = 3,4 and s = r — 2, we have, by (5.8) and Lemma A.11, that

Hn ((v’*‘u) : VZP)‘

L2(382)

<[vl

2
L2(39) H HLOO(BQ)
<CL Hvzu

L2(n—1)/(n—2)(39)

LZ(Q))

< C(K, L, Vol ) (E‘/2 ) +E,1/2(t)). (5.60)

r—1

< C(K, Vol 2)L (vauHLz(Q) + vl

Forn =3,r =4and s = 1, by (A.6), Lemma A.11 and (5.33), we get

Hn ((Vzu) : V3P)
L2(382)

= anzu CIIV3P + I(V2u - N)@I(N - V?’P)‘

L2(312)

<C HHV2u v3p

L4(92)
”H(VNVZP)

L4(382) H

+C HH(N“V%)

L4382)

) (¥ )
L2(£2) L2(£2)

3 2
<C(K, K1, Vol 2) (B () +Ey 2(r>)(z E, (t)+(z Eé“(r)) Ej/z(t))
s=0 =0

3 4
< C(K K1, Vol 2) D E(t) > E}/*(0). (5.61)
s=0 (=0

L4Y312)

<CHv2u 3p

L40%2) H L40%2)

+HV2u‘ +HV3P

<C(K, Vol 2) (Hv%‘

L2(2) L2(2)

Hence, we have
(5.20) < C(K, Ky, M, My, L,1/e, Vol 2, Ey(0))
r—1
X(l +ZE3(1))(1 + E.(1)). (5.62)
s=0

By Lemma A.8, we can obtain

r—1
(5.18) + (5.19) < C(K, K1, M, Vol 2, 1/¢) (1 +> Es(t)) E. (). (5.63)
s=0
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Therefore, we have shown that

(5.10) + (5.11) + (5.16) < C(K, K1, M, My, L, 1/¢, Vol 2, E(0))

r—1
x (1 + ; E, (t)) (14 E.(0)). (5.64)

We now calculate the material derivatives of |V’ ~Icurl u|? and |V"~!curl B|%.
From Lemma 2.1, (5.2) and (5.3), we have

1
D, (|V’—1cur1u|2 + —|Vr_lcurlﬂ|2)
4

=D, (g““gbdgAFVQ_l(curl u)abv;_l(curlu)cd)
1

+=Di (8" gV (curl By V! (curl Ba)
4

= (r + 1)D;(g*) " g T v (curl )y V5 (curl u)ca
+4g%ghdgAF p, (V:{lvaub) Vf;l(curlu)cd
r+1
4
1 _ _
+—g"g" g Dy (V7 Vb)) Vi (curl B

= -2(r + l)g“eVeuCgbdgAFV:‘_l(curlu)abV}_l(curlu)cd
r+1
o
—4gacghd gAF V}*I (curlu)eq V', VP (this vanishes by symmetry)

+4g”cgbdgAFV}_1(curlu)cd(curlu)bevzaue

+

Di(g%)g" gV (curl B)ap Vi (curl B)cq

§"Vough ATV " curl B)ap Vi (curl B)ea

r—2
ac AF or—1 r 1+s r—s d
+4sgn(2 —r)g““g”" Vi (curlu)cq S_EI (s n 1) ((V u) -V %u )A

a

r—=2
+%sgn(2 — V)g”CgAFVrF_l(curlﬁ)cd Z ( r ) ((VH-SM) . Vr—s‘Bd)

1 s+ 1 Aa

1 _
+—g %" MV (curl Bea Viy B Ve
1
——g" g Vi (curl B)ea Vi u Ve

1 .
+ Ve (58 BV, curliea Vi )

1 e . eors
—i—;g“chFV;_l(curl u)cd Z (z) (VAﬁL Vrfé Veﬂd)Aa
s=1

I e AFor—1 — (T - d
! ( )( VT )
JTg 8 ;F (curl B)ca El s V' BV Velt Aa
§=
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Noticing that 8 - N = 0 on 942, then by the Holder inequality and the Gauss
formula, we get

r—1

(5.12) < C(K, K1, M, Vol 22, 1/¢) (1 +> E‘;(t)) E.(t).  (5.65)

s=0
Thus, by (A.12) and (2.23), we get

D;(VNP) = D; (N*V,P) = (D;N®) VP + N°“D;V, P
= (2hgN" + hynN) VP + NV D, P
—2h4NVyP + hyyVNP + VyD, P

which yields

0 D,VyP  2h%N?V,P VyD; P
AR e i S ARG el (5.66)
[ Vny P VNP Vny P
Thus, we can easily obtain that the remainder integrals, that s, (5.13), (5.14), (5.15)
and (5.17), can be controlled by C(K, M, L, 1/e)E,(t).

Therefore, we obtain

d
—E.(t) < C(K,K1,M,M;,L,1/e, Vol §2, Ey(0))

dr
r—1
x(1 +ZEs(t))(1 +Ep (1), (5.67)

s=0

which implies the desired result (5.9) by Gronwall’s inequality and the induction
argument forr € {2,...,n + 1}. O

6. Justification of a Priori Assumptions

Let 2 (t) and e(t) be the maximum and minimum values, respectively, such
that (5.6) and (5.7) hold at time ¢:

(1) = max (|6, )| o @e) - 1/t0()) (6.1)
&) = 11/ (VNP )lp=pe) = 1/0). (6.2)
Lemma 6.1. Let K| > 1/t be as in Definition A.3, &(t) as in (6.2). Then there

are continuous functions G j, j = 1,2, 3,4, such that

Vullpoeo(2y + IVBIlLo2y + 1Bl o) < Gi(K1, Eo, ..., Ent1), (6.3)

||VP||LOC(Q)+HV PHLOC(BQ Ga(K1, &, Eo, ..., Eny1, Vol 2),  (6.4)

101l L2y < G3(K1, &, Eo, ..., Eqnt1, Vol 2),  (6.5)
||VD[P||LOC(BQ < G4(K1 g EO,...,En+1,VOIQ). (66)
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Proof. (6.3) follows from (5.30), (5.29) and (5.24). From Lemmas A.9 and A.7,
we have

2
IV Pl < COD Y VP L ©.7)
=0
n+1
VZPH < C(K HVZP . 8
H L®(82) C( 1); L2(382) (65)

Thus, (6.4) follows from (6.7), (6.8), Lemmas A.10, A.11, (5.32), (5.38) and (5.42).
Since, from (A.7),

V2P| > [ITV?P| = |[VNP|I0] = &716), (6.9)

so (6.5) follows from (6.4). (6.6) follows from Lemma A.7, (5.54), (5.57) and
(5.58). O

Lemma 6.2. Let K| > 1/u) and &1 be as in Definition A.3. Then

d r
‘—E, < Cr(K1, &, Eq. ..., Ent1, Vol 2) D Ej, (6.10)
dr o
and
d
38| S Cr (K1 &, Eo, ..., Engr, Vol 2), (6.11)

Proof. (6.10) is a consequence of Lemma 6.1 and the estimates in the proof of
Theorems 4.1 and 5.1. (6.11) follows from

<cf|—21
H—VNPUV)

1 2

VND:P(t, )|~
—VNP(t,") IV D P2, )l L)

Lo°(3R2)

d
dt

L®(382)
and (6.6). O
As a result of Lemma 6.2, we have the following:

Lemma 6.3. There exists a continuous function 7 > 0 depending on K, &(0),
Eo(0), ..., E;+1(0), Vol §2 such that for

0<t< J(K1,&(0), Eg(0), ..., Ent1(0), Vol £2), (6.12)
the following statements hold: We have

Eg(t) <2Eg0), 0<s<n+1, &) <28(0). (6.13)
Furthermore,

gap(0, ))YY?P

5 < gab(t, Y)YUY? < 2g45(0, y)YY?, (6.14)
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and with €1 as in Definition A.3,

| (2, 5)) — N (20, )] < f—g yeog, (6.15)
(1, y) — x(t. y)| < % yeSQ, (6.16)
.y SO0 s, (6.17)

ay ay | 16’

Proof. We get (6.13) from Lemma 6.2 if 7 (K1, &(0), Eg(0), ..., E,+1(0),
Vol £2) > 0 is sufficiently small. Then from (6.13) and Lemma 6.1, we have

IVullpoo(2y + VBl 2y + 1BllLx2) + IIVPIlL=(2)

< C(Ky, £(0), Eg(0), ..., E,11(0), (6.18)
2
HV PHLOO(B.Q) + 101l Lo
< C(Ky1, &(0), Eg(0), ..., E;+1(0), Vol £2), (6.19)
VD Pllp~po) < C(K1, £(0), Eg0), ..., Eytr1(0), Vol £2). (6.20)

By (4.1) and (4.2), we have
D, V| < ‘VZP‘ +Vul? + VB2 + 8] ‘Vzﬁ‘, 6.21)
|DVBI < VB |Vul + 18] [V2ul (6.22)
By (A.25), (A.31), Lemma 6.1 and (6.13), we have
IVullzoae) + IVBILx@e) < C(K1, £(0), Eo(0), ..., Eyi1(0), Vol £2).

Thus, by noticing that | 8| = ¢ on 9£2, it follows, from (6.18), (6.19), Lemmas A.7
and A.11, (5.30) and (5.29), that
1D Vull a2y + 1D VB Lo 92y

<V2P” + (IVull ooy + IVB ] ooao)
H L 62) (IVull L@y + IVBILx@e)

V4] ey * 7]
ts (H “ L>(352) + IB L>°(352)

< C(Ky, £(0), Eg(0), ..., E4q1(0), Vol £2)
X (14 I Vullpo@ay + IVBlLe@a)) »

which yields, with the help of Gronwall’s inequality, for0 < < T

IVu(z, Hllre@e) + 1IVBE, ir=@pe)
< CELEO:EoO)es Enit OV (17340, ) | oo 9.2y + IVBO, Ml o2y
_i_eC(Klvg(O)»EO(O) ,,,,, E,41(0), Vol 2)t 1. (6.23)
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If T is sufficiently small, it follows, after possibly making .77 > 0 smaller, that
IVu(T, )llpepo)y + IVBT, ir=@pe)
< 2(IVu(0, )i a2y + IVBO, Nl re@pa)) - (6.24)

which also guarantee the a priori assumption of (3.1).
By (2.23), (A.28), (5.54), (5.57) and (5.58), we have

2
1D,V Pllzca) = IVD; Pllzece) < C(K) Y [V Dy P|
=0

L2(2)
< C(Ky1, 6(0), Eg(0), ..., Eqt1(0), Vol £2),
which implies for sufficiently small 7 > 0
VP, )o@y < 2IVPO, )llL=(g) - (6.25)
By (1.8) and (6.18), we have
[DivllLoe(g,) < I10PllLe(g,) + IBliLe(z,) 0Bl Lo, (6.26)
S IVPIlpeo@y + 1Bl o) IVBI L= (2) (6.27)
< C(Ky1, 6(0), Eo(0), ..., Ent1(0)), (6.28)
which yields
v, ez, < 21000, o) - (6.29)

(6.14) follows from the same argument since D;g,, = V,up + Vpu, and by
(6.18)

T
T VY =g YV < [ 1Diganto 9] ds¥er 630)

T
1
<2 [ 195 g2 STV < S0 YY (631)
0
if T is sufficiently small. Now the estimate for .4 follows from
Ding = hynna,

and the estimates for x and dx/dy from

Dyx(t,y) = v(t, x(t, y)), (6.32)
0 v(t, x(z, dv(t, x) d
D,—x _ @, x(@,y)) _ 9u( x)_x, 6.33)
ay ay dx  ady
and (6.29) and (6.24), respectively. |

Now we use (6.14)—(6.17) to pick a K1, that is, ¢;, which depends only on its
value att = 0,

1) = u(0)/2. (6.34)
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Lemma 6.4. Let 7 be as in Lemma 6.2. Pick 11 > 0 such that

&
| A (x(0, y1)) — A (x(0, y2))| < ?1, whenever |x(0, y1) — x(0, y2)| < 24;.
(6.35)
Then ift < 7, we have

[ A (x(t, y1)) — A (x(t, y2))| < €1, whenever |x(t, y1) — x(t, y2)| < 2u1.
(6.36)

Proof. (6.36) follows from (6.35), (6.15) and (6.16) in view of triangle inequalities.
m}

Lemma 6.4 allows us to pick a K| depending only on initial conditions, while
Lemma 6.3 gives us .7 > 0, that depends only on the initial conditions and K
such that, by Lemma 6.4, 1/t; < K for t < .7. Thus, we immediately obtain the
following theorem.

Theorem 6.1. There exists a continuous function 7 > 0 such that if
< T(H(0), £0), Eo(0), ..., Ezt1(0), Vol £2), (6.37)

any smooth solution of the free boundary problem for MHD Equations (1.1) and
(1.6) for 0 < t < T satisfies

n+1 n+1

ZE(t) ZZE(O) 0<t<T. (6.38)
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Appendix A. Preliminaries and Some Estimates

Let N“ denote the unit normal to 882, g.s N N? = 1, gy NT? = 0if T € T (382),
and let N, = g,»N” denote the unit conormal, g’ N,N;, = 1. The induced metric
y on the tangent space to the boundary 7'(952) extended to be O on the orthogonal
complement in 7'(£2) is then given by

Yab = 8ab — NaNp, y** =g — NN". (A.1)
The orthogonal projection of an (r, s) tensor S to the boundary is given by

r r d r
(IYS)“1 w=va Ly yb]‘. yb Cl 2, (A.2)
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where
Yo =85 — NyN°. (A3)
Covariant differentiation on the boundary V is given by
VS =1IVS. (A4)
The second fundamental form of the boundary is given by
Oap = (ITVN)ap = ¥, VeNp. (A.5)

Let us now recall some properties of the projection. Since g% = % + NYN?, we
have

I(S-R) =TII(S) - II(R) + I1(S - N)®I(N - R), (A.6)

where S® R denotes some partial symmetrization of the tensor product S ® R, that
is, a sum over some subset of the permutations of the indices divided by the number
of permutations in that subset. Similarly, we let S*R denote a partial symmetrization
of the dot product S - R. Now we recall some identities:

Iv2ig = Vg +6Vng, (A7)
V3 = Vg — 2086°Vq) + (V) Vg + 308V Vg, (A.8)
nvig =99 —0& (sﬁeﬁq + seﬁzq) —_2(VO)&HVq)
H(V°0)Vng + 4(VO)EV Vg + 60@Y Vng
—30&(070) Vg + 30®0V3q. (A.9)
Definition A.1. Let .4 (x) be the outward unit normal to 0%, at x € 90%;. Let

dist (x1, x2) = |x1 — x2| denote the Euclidean distance in R”, and for X, X, € 0%,
let dist 5, (x1, X2) denote the geodesic distance on the boundary.

Definition A.2. Letdist (x, 3 ;) be the Euclidean distance from x to the boundary.
Let ¢o be the injectivity radius of the normal exponential map of 9%, that is, the
largest number such that the map

09, x (—1g,19) — {x € R" : dist (x, %) < 1}
given by (x, t) > x =X+ 14X (A.10)

is an injection.

Definition A.3. Let 0 < ¢; < 2 be a fixed number, and let | = ¢1(g;) the largest
number such that

| A (X)) — AN (X2)| < &1 whenever |x; — x| <1, X1,X2 €0%,. (A.1l)
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Lemma A.1l. ([4, Lemma 3.9]) Let N be the unit normal to 052, and let hy, =
%Dtgab. On [0, T] x 082, we have
DNy = hynNy, DN = —2hSN? + hyy N€, (A.12)
Dy = =2y“heay™®, (A.13)
where hyy = hapy N N®. The volume element on 92 satisfies
Didjy = (trh —hyy)dp, = (tr0u - N + y*“Vaip)dp,,  (A.14)
where uyp denotes the tangential component of up to the boundary 952.

Lemma A.2. (cf. [4, Lemma 5.5]) Let w, = waq = V) fa, Vi = Vo, ... Vg,
f be a (0,1) tensor, and [V, Vp] = 0. Let divw = V,w? = V'div f, and let
(curl w)gp = Vowp — Vyw, = V' (curl f)qp. Then,

Vw? < C (g“byCdyABVchanwBb + |divw|? + |curl w|2) . (A15)

Lemma A.3. ([4, Proposition 5.8]) Let (o and t| be as in Deﬁlgitions A2 and A.3,
and suppose that 10| + 1/19 < K and 1/1; < K. Then with K = min(K, K1) we
have, foranyr > 2 and § > 0,

” Vg ”LZ(BQ) + ” Vr‘1HL2(.rz)

<CAVq] 250, + CK, VOLR) D [ V38q] g - (A.16)
s<r—1
Hvr_lq oo T IV ali2e)
<8IV ] oy + CA/S K NOLR) D [ V8q] g, (A1)
s<r—2

Lemma A 4. (cf. [4, Proposition 5.9]) Assume that 0 < r < 4. Suppose that |0] <
K and 11 > 1/Ky, where 1 is as in Definition 3.5 of [4]. If ¢ = 0 on 352, then for
m=0,1,

17V 4] ooy < CCK KD [ W0leay + > |7

k<r—2—m
< 3 |9
k<r—24+m

kg‘

L2(382)

. A.18
L2(092) ( )

If, in addition, |[VNq| = ¢ > 0 and |VNq| = 2¢ VNG| 1= 0) then

7|

L2(382)

1 =k
<c(k ki, - o > H
( 1 8) 101l o) + Vo
k<r-3

vk
L2(312) kZ1H 4

=

L2082)

(A.19)



844 CHENGCHUN Hao & Tao Luo

Lemma A.5. (cf. [4, Proposition 5.10] ) Assume that 0 < r < 4 and that 60| +
1/to < K. If g =00n 082, then

vl ” Vngll o Hv’—25 ‘
” q L2(a.(2) ( L2(a(z) VNGl Le@p2) + U 2@
+C (K, Vol 2, 1011 12(52))
r—3
x (nqu li@ay + D [V*8q ||L2(m). (A.20)
s=0

Lemma A.6. ([4, Lemma A.1]) If « is a (0, r) tensor, then with a = k/m and a
constant C that only depends on m and n, such that

—=k
v ‘ ” ’ A2l
” ¢ LS(d.Q) ”a””(‘m) Lr(2)’ ( )
if
m k m—k
—=—+—, 2<p<s<g<oo
s p q

Lemma A.7. ([4, Lemma A.2]) Suppose that for 1 > 1/K

| A (X1) — AN (X2)| < &1, whenever |x1 —X2| <1, X1,% € 0%, (A.22)
and

Co VapWNZZ <yap(t. MZZP < Coygy(NZZ. IfZeT(2), (A23)

where y;b(y) = Yup(0, ¥). Then if « is a (0, r) tensor,

leell pon-vpr-1-k 5.2y < C(Kl)ez H ‘u(am’ 1<p<s ; :
=0 (A.24)
k-1 n—1
lell oo a2y < 6 H Via wrag T KD % H Vea‘ oo’ "7 p
(A.25)

forany § > 0.

Lemma A.8. ([4, Lemma A.3]) With notation as in Lemmas A.6 and A.7, we have

k
i

> v . <ttt 2|7

j=0

a
m=i ) A.26
L) K ) ( )
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Lemma A.9. ([4, Lemma A.4]) Suppose that 11 > 1/K1 and « is a (0, r) tensor.
Then

k
k—¢ || e n

Il o-snia) < € 2K Vi, 1<p<p @)

k n
all i) < C KW4HWa ks 2 A28
ol oo ; 1 @) » (A.28)

Lemma A.10. ([4, Lemma A.5]) Suppose that ¢ = 0 on 052. Then
llgllz22) < C(Vol £2)!/" Vgl ), (A.29)
IVgll 200y < C(VoL2)72" [18q 1 12 () - (A.30)

Lemma A.11. ([4, Lemma A.7]) Let o be a (0, r) tensor. Assume that
Vol 2 < V and ||9||Loo(3_g) + l/t() < K,
then thereisa C = C(K, V,r, n) such that

lall Lo-vpre-m oy < ClIIVallr@y + Cllellprey, 1< p<n, (A3])

H Via

< C(HHVZ(X‘

+ ”5‘)‘”L2(9) + ||V05||L2(_Q)) .
(A.32)

Lz(.Q) L2(n—l)/n(39)
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