
Digital Object Identifier (DOI) 10.1007/s00205-013-0718-5
Arch. Rational Mech. Anal. 212 (2014) 805–847

A Priori Estimates for Free Boundary Problem
of Incompressible Inviscid

Magnetohydrodynamic Flows

Chengchun Hao & Tao Luo

Communicated by L. Saint-Raymond

Abstract

In the present paper, we prove the a priori estimates of Sobolev norms for
a free boundary problem of the incompressible inviscid magnetohydrodynamics
equations in all physical spatial dimensions n = 2 and 3 by adopting a geometrical
point of view used in Christodoulou and Lindblad (Commun Pure Appl Math
53:1536–1602, 2000), and estimating quantities such as the second fundamental
form and the velocity of the free surface. We identify the well-posedness condition
that the outer normal derivative of the total pressure including the fluid and magnetic
pressures is negative on the free boundary, which is similar to the physical condition
(Taylor sign condition) for the incompressible Euler equations of fluids.
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Notations

x = (xi ) Eulerian coordinates
y = (ya) Lagrangian coordinates
∂ Spatial derivative in x
∇ Covariant derivative in y
v The velocity field in Eulerian coordinates
u The velocity field in Lagrangian coordinates
B The magnetic field in Eulerian coordinates
β The magnetic field in Lagrangian coordinates
p Fluid pressure
P = p + 1

8π
|B|2 Total pressure

Dt = ∂
∂t

∣
∣
y=const = ∂

∂t

∣
∣
x=const + vk ∂

∂xk

g The Riemannian metric defined by gab = ∑

i, j δi j
∂xi

∂ya
∂x j

∂yb

γ The induced metric on the tangent space of the boundary
which can be extended to be 0 on the orthogonal complement
of the tangent space of the boundary. Also, it can be extended
to be a pseudo-Riemannian metric in the whole domain

Π Orthogonal projection to the tangent space of the boundary
θ The second fundamental form of the boundary
ι0 The injectivity radius of the normal exponential map

1. Introduction

1.1. Formulation of the Problem and Main Results

In the present paper, we consider the following incompressible inviscid mag-
netohydrodynamics (MHD) equations

vt + v · ∂v + ∂p = 1

4π

(

B · ∂ B − 1

2
∂|B|2

)

, in D, (1.1a)

Bt + v · ∂ B = B · ∂v, in D, (1.1b)

div v = 0, div B = 0, in D, (1.1c)

describing the motion of conducting fluids in an electromagnetic field, where the
velocity field of the fluids v = (v1, . . . , vn), the magnetic field B = (B1, . . . , Bn),
the fluid pressure p and the domain D ⊂ [0, T ] × R

n are the unknowns to be
determined. Here n ∈ {2, 3} is the spatial dimension, 1

4π
B · ∂ B is the magnetic

tension, 1
8π

|B|2 is the magnetic pressure, p + 1
8π

|B|2 is so called total pressure
which will be denoted by P in this paper, and |B| = (

∑n
j=1 B2

j )
1/2 is the modulus of

B. ∂ = (∂1, . . . , ∂n) and div are the usual gradient operator and spatial divergence
under Eulerian coordinates.

Given a simply connected bounded domain D0 ⊂ R
n and the initial data v0

and B0 satisfying the constraints div v0 = 0 and div B0 = 0, we want to find a set
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D ⊂ [0, T ] × R
n and the vector fields v and B solving (1.1) and satisfying the

initial conditions:

{x : (0, x) ∈ D} = D0, (v, B) = (v0, B0) on {0} × D0. (1.2)

Throughout the paper, we use the Einstein summation convention, that is, when
an index variable appears twice in both the subscript and the superscript of a single
term it implies summation of that term over all the values of the index.

Let Dt = {x ∈ R
n : (t, x) ∈ D}, we also require the following boundary

conditions on the free boundary ∂Dt :

vN = κ on ∂Dt , (1.3a)

p = 0 on ∂Dt , (1.3b)

|B| = ς and B · N = 0 on ∂Dt , (1.3c)

for each t ∈ [0, T ] with T > 0, where N is the exterior unit normal to ∂Dt ,
vN = N ivi , and κ is the normal velocity of ∂Dt , ς is a non-negative constant.
Condition (1.3c) should be understood as the constraints on the initial data. Indeed,
we will verify that the condition B · N = 0 on ∂Dt holds for all t ∈ [0, T ] if it
holds initially. We remark here on the physical meaning of the boundary conditions.
Condition (1.3a) means that the boundary of Dt moves with the fluids, (1.3b) means
that outside the fluid region Dt is the vacuum, the condition B · N = 0 on ∂Dt

comes from the assumption that the boundary ∂D is a perfect conductor. Indeed,
if we use E to denote the electric field induced by the magnetic field B, then the
boundary condition B · N = 0 on ∂Dt gives rise to E × N = 0 on ∂Dt . The
boundary condition |B| = const on ∂Dt (the magnetic strength is constant on the
boundary) is needed to guarantee that the total energy of the system is conserved,
that is,

d

dt

∫

Dt

(
1

2
|v|2 + 1

8π
|B|2

)

(t, x) dx = 0.

Condition (1.3c) includes the widely used (e.g., [12]) zero magnetic field boundary
condition as the special case, but it is much more general and physically reasonable.

In the classical plasma–vacuum interface problem (cf. [10,23]), suppose that
the interface between the plasma region Ωp(t) and the vacuum region Ωv(t) is
Γ (t) which moves with the plasma, then it requires that (1.1) holds in the plasma
region Ωp(t), while in the vacuum region Ωv(t), the vacuum magnetic field B
satisfies

∇ × B = 0, ∇ · B = 0. (1.4)

On the interface Γ (t), it holds that

p = 0, |B| = |B|, B · N = B · N = 0, (1.5)

where N is the unit normal to Γ (t). Therefore, the boundary conditions in (1.3)
also model the plasma–vacuum problem for the case when |B| is constant.
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We will prove a priori bounds for the free boundary problem (1.1)–(1.3) in
Sobolev spaces under the following condition

∇N

(

p + 1

8π
|B|2

)

� −ε < 0 on ∂Dt , (1.6)

where ∇N = N i∂i . We assume that this condition holds initially, and will verify
that it holds true within a period. For the free boundary problem of the motion
of incompressible fluids in vacuum, without magnetic fields, the natural physical
condition (cf. [2,4,5,8,15–17,21,24,25,27]) reads that

∇N p � −ε < 0 on ∂Dt , (1.7)

which excludes the possibility of the Rayleigh–Taylor type instability (see [8]). In
this paper, we find that the natural physical condition is (1.6) when the equations of
magnetic field couple with the fluids equation. In fact, the quantity p + 1

8π
|B|2, the

total pressure of the system, will play an important role in our analysis. Roughly
speaking, the velocity tells the boundary where to move, and the boundary is the
level set of the total pressure that determines the acceleration.

The free surface problem of the incompressible Euler equations of fluids has
attracted much attention in the recent decades. Important progress has been made
for flows with or without vorticity, and with or without surface tension. We refer
readers to [1,4,5,8,15–17,21,24,25,27].

On the other hand, there have been only few results on the interface problems
for the MHD equations. This is due to the difficulties caused by the strong coupling
between the velocity fields and magnetic fields. In this direction, the well-posedness
of a linearized compressible plasma–vacuum interface problem was investigated in
[23], and a stationary problem was studied in [9]. The current-vortex sheets problem
was studied in [3] and [22]. For the incompressible viscous MHD equations, a free
boundary problem in a simply connected domain of R

3 was studied by a lineariza-
tion technique and the construction of a sequence of successive approximations in
[18] with an irrotational condition for magnetic fields in a part of the domain.

In this paper, we prove the a priori estimates for the free boundary problem (1.1)–
(1.3) in all physical spatial dimensions n = 2, 3 by adopting a geometrical point
of view used in [4], and estimating quantities such as the second fundamental form
and the velocity of the free surface. Denote the material derivative Dt = ∂t + v · ∂
and the total pressure P = p + 1

8π
|B|2, we can write the free boundary problem

as

Dtv j + ∂ j P = 1

4π
Bk∂k B j in D, (1.8a)

Dt B j = Bk∂kv j in D, (1.8b)

∂ jv
j = 0 in D; ∂ j B j = 0 on {t = 0} × D0, (1.8c)

vN = κ on [0, T ] × ∂Dt , (1.8d)

|B| = ς on ∂D, B jN
j = 0 on {t = 0} × ∂D0, (1.8e)

p = 0 on ∂D, (1.8f)

∇N P � −ε < 0 on {t = 0} × ∂D0. (1.8g)
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We will derive the energy estimates from which the Sobolev norms of Hs(Dt )

(N � s � n +1) of solutions will be derived. For this purpose, we define the energy
norms as follows: the zeroth-order energy, E0(t), is defined as the total energy of
the system, that is,

E0(t) =
∫

Dt

δi j
(

1

2
viv j + 1

8π
Bi B j

)

dx, (1.9)

which is conserved, that is,

E0(t) = E0(0), for 0 � t � T . (1.10)

The higher order energy norm has a boundary part and an interior part. The boundary
part controls the norms of the second fundamental form of the free surface, the inte-
rior part controls the norms of the velocity, magnetic fields and hence the pressure.
We will prove that the time derivatives of the energy norms are controlled by them-
selves. A crucial point in the construction of the higher order energy norms is that
the time derivatives of the interior parts will, after integrating by parts, contribute
some boundary terms that cancel the leading-order terms in the corresponding time
derivatives of the boundary integrals. To this end, we need to project the equations
for the total pressure P = p + 1

8π
|B|2 to the tangent space of the boundary. The

orthogonal projection Π to the tangent space of the boundary of a (0, r) tensor α

is defined to be the projection of each component along the normal:

(Πα)i1...ir = Π
j1

i1
. . . Π

jr
ir

α j1... jr , where Π
j

i = δ
j
i − NiN

j , (1.11)

with N j = δi jNi = N j .

Let ∂̄i = Π
j

i ∂ j be a tangential derivative. If q = const on ∂Dt , it follows that
∂̄i q = 0 there and

(Π∂2q)i j = θi j∇N q, (1.12)

where θi j = ∂̄iN j is the second fundamental form of ∂Dt .
The higher order energies are defined as: for r � 1

Er (t) =
∫

Dt

δi j
(

Q
(

∂rvi , ∂
rv j

) + 1

4π
Q

(

∂r Bi , ∂
r B j

)
)

dx

+
∫

Dt

(∣
∣
∣∂

r−1curl v
∣
∣
∣

2 + 1

4π

∣
∣
∣∂

r−1curl B
∣
∣
∣

2
)

dx

+ I (r)

∫

∂Dt

Q
(

∂r P, ∂r P
)

ϑ dS, (1.13)

where I (r) = 0 if r = 1 and I (r) = 1 if r > 1, so we do not need the boundary
integral for r = 1, and

ϑ = (−∇N P)−1.

Here Q is a positive definite quadratic form which, when restricted to the boundary,
is the inner product of the tangential components, that is, Q(α, β) = 〈Πα,Πβ〉,
and in the interior Q(α, α) increases to the norm |α|2. To be more specific, let

Q(α, β) = qi1 j1 . . . qir jr αi1...ir β j1... jr (1.14)
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where

qi j = δi j − η(d)2N iN j , d(x) = dist (x, ∂Dt ), N i = −δi j∂ j d. (1.15)

Here η is a smooth cutoff function satisfying 0 � η(d) � 1, η(d) = 1 when
d < d0/4 and η(d) = 0 when d > d0/2. d0 is a fixed number that is smaller than
the injectivity radius of the normal exponential map ι0, defined to be the largest
number ι0 such that the map

∂Dt × (−ι0, ι0) → {x ∈ R
n : dist (x, ∂Dt ) < ι0} (1.16)

given by

(x̄, ι) → x = x̄ + ιN (x̄)

is an injection.
The main theorems in this paper are as follows:

Theorem 1.1. For any smooth solution of the free boundary problem (1.8) for
0 � t � T satisfying

|∂ P| � M, |∂v| � M, in Dt , (1.17)

|θ | + |∂v| + 1

ι0
� K , on ∂Dt , (1.18)

we have for t ∈ [0, T ]

E1(t) � 2eC Mt E1(0) + C K 2 (Vol Dt + E0(0))
(

eC Mt − 1
)

, (1.19)

for some positive constants C and M.

Theorem 1.2. Let r ∈ {2, . . . , n + 1}, then there exists a T > 0 such that the
following holds: For any smooth solution of the free boundary problem (1.8) for
0 � t � T satisfying

|B| � M1 for r = 2, in Dt , (1.20)

|∂ P| � M, |∂v| � M, |∂ B| � M, in Dt , (1.21)

|θ | + 1/ι0 � K , on ∂Dt , (1.22)

− ∇N P � ε > 0, on ∂Dt , (1.23)

|∂2 P| + |∇N Dt P| � L , on ∂Dt , (1.24)

we have, for t ∈ [0, T ],

Er (t) � eC1t Er (0) + C2

(

eC1t − 1
)

, (1.25)

where the positive constants C1 and C2 depend on K , K1, M, M1, L, 1/ε, Vol Dt ,
E0(0), E1(0), . . ., and Er−1(0).
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Most of the a priori bounds (1.20)–(1.24) can be obtained from the energy
norms by the elliptic estimates which are used to control all components of ∂rv,
∂r B and ∂r p from the tangential components Π∂r P in the energy norms, and a
bound for the second fundamental form of the free boundary

∥
∥
∥∂̄r−2θ

∥
∥
∥

L2(∂Dt )
� C

(

K , L , M,
1

ε
, Er−1, Vol Dt

)

Er

for r � 2, which controls the regularity of the free boundary.
Since E0(t) = E0(0) and Vol Dt = Vol D0, recursively we can prove the

following main theorem from Theorems 1.1, 1.2.

Theorem 1.3. Let

K (0) = max
(‖θ(0, ·)‖L∞(∂D0) , 1/ι0(0)

)

, (1.26)

E (0) = ‖1/(∇N P(0, ·))‖L∞(∂D0) = 1/ε(0) > 0. (1.27)

There exists a continuous function T > 0 such that if

T � T (K (0),E (0), E0(0), . . . , En+1(0), Vol D0), (1.28)

then any smooth solution of the free boundary problem for MHD equations (1.8)
for 0 � t � T satisfies

n+1
∑

s=0

Es(t) � 2
n+1
∑

s=0

Es(0), 0 � t � T . (1.29)

In order to prove the above theorems, we need to use the elliptic estimates of the
pressure p. However, the time derivative of Δp involves a third-order term of the
velocity which needs to be controlled by higher order energies. In order to overcome
this difficulty, we work on the equations for the total pressure P = p + 1

8π
|B|2,

instead of those for the fluid pressure p.
Before we close this introduction, we mention here some studies on viscous or

inviscid MHD equations, including the Cauchy problem or initial boundary value
problems for the fixed boundaries [6,7,11–14,18–20,26] and the references therein.

The rest of this paper is organized as follows. In Section 1.2 we give more
remarks on the motivations of the construction of the higher order energy func-
tional Er (t) in (1.13) and outline of the proof of our theorems. In Section 2, we
use the Lagrangian coordinates to transform the free boundary problem to a fixed
initial boundary problem. The Lagrangian transformation induces a Riemannian
metric on D0, for which we recall the time evolution properties derived in [4] and
prove some new identities which will be used later. We also write the equations in
Lagrangian coordinates, by using the covariant spatial derivatives with respect to
the Riemannian metric induced by the Lagrangian transformation, instead of using
the ordinary derivatives. In Section 3, we prove the conservation of the zeroth order
energy E0(t), from which one can see that the boundary conditions on the mag-
netic fields B is necessary for this energy conservation. We also prove in Section
3 that the condition B · N = 0 on the boundary propagates along the boundary.



812 Chengchun Hao & Tao Luo

Section 4 is devoted to the first order energy estimates. In Section 5, we prove
the higher order energy estimates by using the identities derived in Section 2, the
time evolution property of the metric on the boundary induced by the above men-
tioned Riemannian metric induced by the Lagrangian transformation, the projection
properties and the elliptic estimates. In the derivation of the higher order energy
estimates in Section 5 some a priori assumptions are made which will be justified
in Section 6. We also give an appendix on some estimates used in the previous
sections, which are basically proved in [4].

1.2. Motivation of the Construction of Higher Order Energy Functional and
Outline of the Proofs

We give more remarks on the motivations of the construction of the higher
order energy functional Er (t) in (1.13) and outline of the proof of our theorems
here. First, for divergence free vector fields, the L2 norms of curl and tangential (or
normal) derivatives control the L2 norms of the derivatives of the vector fields [cf.
(A.15)]. Therefore, the interior integral part in (1.13) controls the L2 norms of ∂rv

and ∂r B. The reason for using ∂r−1curl v and ∂r−1curl B in the interior integral
part of (1.13) is that it is relatively easy to obtain the estimates of the Sobolev
norms of curl v and curl B by using the equations for them. The time derivative
of the interior integral part of Er (t) produces a boundary integral term after the
integration by parts, which cannot be bounded by the interior integral part of Er (t)
directly. We need a boundary integral to cancel the leading term of it. The time
derivative of the boundary integral

∫

∂Dt
Q(∂r P, ∂r P)ϑ dS (r � 2) in (1.13) which

involves the projection of the r -th derivatives of the total pressure P = p + 1
8π

|B|2
to the tangent space of the boundary is constructed for this purpose, for example,
when r = 2, we make use of the following second-order equations for the velocity
and the total pressure

D2
t vi − ∂iv

k∂k P = −∂i Dt P + 1

4π
Bk∂k Dt Bi , (1.30)

Dt∂i∂ j P+(∂k P)∂i∂ jv
k =∂i∂ j Dt P−(∂iv

k)∂k∂ j P−(∂ jv
k)∂k∂i P, (1.31)

restricted to the boundary together with the boundary condition

Dt P = 0 on ∂Dt , (1.32)

since P is constant on ∂Dt . Equations (1.30) and (1.31) can be derived from (1.8a)
and (1.8b), with the help of the following commutator formula:

[Dt , ∂i ] = −
(

∂iv
k
)

∂k . (1.33)

One can use elliptic estimates to control all components of ∂rv, ∂r B and ∂r P from
the energy functional Er (t), by the Dirichlet problems of the elliptic equations for
the total pressure P and its Lagrangian time derivative Dt P for which one has the
boundary conditions P = const and Dt P = 0 on ∂Dt [the elliptic equation for
P can be obtained by taking the divergence of (1.8a), and the elliptic equation for
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Dt P can be obtained by taking Dt of the elliptic equation for P and using (1.33)].
It should be noted that a bound of the higher order energy functional Er (t) also
gives the bound of ‖∂̄r−2θ‖L2(∂Dt )

by using a higher-order version of the projection
formula (1.12) and the physical condition (1.6). Once we have the bounds for the
second fundamental form ‖∂̄s−2θ‖L2(∂Dt )

(2 � s � r ), we can get estimates for
solution of the Dirichlet problems for the elliptic equations of P and Dt P . We
outline the proof of the main theorem as follows. For r � 2, integration by parts
gives:

d

dt
Er (t) � lower order terms

− 1

2π

∫

Dt

∂c

(

qa f q AF
)

∂r−1
F ∂ f vd Bc∂r

Aa Bd dx (1.34)

+ 2
∫

Dt

∂b

(

qa f q AF
)

∂r−1
F ∂ f v

b∂r−1
A ∂a P dx (1.35)

+ 2
∫

∂Dt

qa f q AF∂r
Aa P

(

Dt∂
r
F f P − 1

ϑ
Nb∂

r
F f v

b
)

ϑ dS, (1.36)

where A = (a1, . . . , ar−1) and F = ( f1, . . . , fr−1), q AF = qa1 f1 . . . qar−1 fr−1 ,
∂r

F f = ∂ f1 . . . ∂ fr−1∂ f , the definitions for others such as ∂r−1
A are similar.

From the Sobolev lemma (cf. [4]), the Hölder inequality and the assumption of
Theorem 1.1, one can estimate the term (1.34) for r = 2 and r � 3 separately.

The integral (1.35) can be bounded C K E1/2
r (t)‖∂r P‖L2(Dt )

by the Hölder
inequality. The estimate for ‖∂r P‖L2(Dt )

can be obtained by the elliptic estimates,
a higher-order version of the projection formula (1.12) and the physical condition
(1.6). For the estimate of the boundary integral (1.36), we notice that the tangential
derivative P on ∂Dt vanishes to infer that

∫

∂Dt

qa f q AF∂r
Aa P

(

Dt∂
r
F f P − 1

ϑ
Nb∂

r
F f v

b
)

ϑ dS

can be bounded by C ‖ϑ‖1/2
L∞(∂Dt )

E1/2
r (t) ‖Π (Dt (∂r P) + ∂rv · ∂ P)‖L2(∂Dt )

. On
the other hand, we can have

Dt∂
r P + ∂rv · ∂ P = ∂r Dt P + lower order terms. (1.37)

Since Dt P = 0 on ∂Dt , one can use the elliptic estimates to bound ‖∂r Dt P‖L2(Dt )

in terms of ‖Π∂r Dt P‖L2(∂Dt )
and

∑

s�r−2 ‖∂sΔDt P‖L2(Dt )
under the a pri-

ori assumptions in Theorem 1.2. The estimate for ‖Π∂r Dt P‖L2(∂Dt )
can be

obtained from the higher-order version of the projection formula (1.12), in terms of
‖θ‖L∞(∂Dt ),

∑

k�r−3

∥
∥∂̄kθ

∥
∥

L2(∂Dt )
and

∑

k�r

∥
∥∂k Dt P

∥
∥

L2(Dt )
. The estimate for

‖∂sΔDt P‖L2(Dt )
can be obtained by the elliptic equation for Dt P together with

the boundary condition Dt P = 0 on ∂Dt .
Once we have the above estimates, the justification of a priori assumptions in

Theorems 1.1 and 1.2 can mainly follow the argument in [4].
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It is clear from the above discussion to see the role played by the total pressure
P = p + 1

8π
|B|2, where the magnetic field B comes in for which additional

estimates are needed.
We will prove the above estimates by using the Lagrangian coordinates. One

of the advantages of doing so is that we can work on a fixed domain.

2. Reformulation in Lagrangian Coordinates

Assume that we are given a velocity vector field v(t, x) defined in a set D ⊂
[0, T ] × R

n such that the boundary of Dt = {x : (t, x) ∈ D} moves with the
velocity, that is, (1, v) ∈ T (∂D) which denotes the tangent space of ∂D . We will
now introduce Lagrangian or co-moving coordinates, that is, coordinates that are
constant along the integral curves of the velocity vector field so that the boundary
becomes fixed in these coordinates (cf. [4]). Let x = x(t, y) = ft (y) be the
trajectory of the fluid given by

{
dx
dt = v(t, x(t, y)), (t, y) ∈ [0, T ] × Ω,

x(0, y) = f0(y), y ∈ Ω
(2.1)

where, when t = 0, we can start with either the Euclidean coordinates in Ω = D0
or some other coordinates f0 : Ω → D0 where f0 is a diffeomorphism in which the
domain Ω becomes simple. For each t , we will then have a change of coordinates
ft : Ω → Dt , taking y → x(t, y). The Euclidean metric δi j in Dt then induces a
metric

gab(t, y) = δi j
∂xi

∂ya

∂x j

∂yb
(2.2)

and its inverse

gcd(t, y) = δkl ∂yc

∂xk

∂yd

∂xl
(2.3)

in Ω for each fixed t .
We will use covariant differentiation in Ω with respect to the metric gab(t, y),

since it corresponds to differentiation in Dt under the change of coordinates
Ω � y → x(t, y) ∈ Dt , and we will work in both coordinate systems. This also
avoids possible singularities in the change of coordinates. We will denote covariant
differentiation in the ya-coordinates by ∇a , a = 0, . . . , n, and differentiation in the
xi -coordinates by ∂i , i = 1, . . . , n. The covariant differentiation of a (0, r) tensor
k(t, y) is the (0, r + 1) tensor given by

∇aka1...ar = ∂ka1...ar

∂ya
− Γ d

aa1
kd...ar − . . . − Γ d

aar
ka1...d , (2.4)

where the Christoffel symbols Γ d
ab are given by

Γ c
ab = gcd

2

(
∂gbd

∂ya
+ ∂gad

∂yb
− ∂gab

∂yd

)

= ∂yc

∂xi

∂2xi

∂ya∂yb
. (2.5)



A Priori Estimates for Free Boundary Incompressible MHD 815

If w(t, x) is the (0, r) tensor expressed in the x-coordinates, then the same tensor
k(t, y) expressed in the y-coordinates is given by

ka1...ar (t, y) = ∂xi1

∂ya1
. . .

∂xir

∂yar
wi1...ir (t, x), x = x(t, y), (2.6)

and by the transformation properties for tensors,

∇aka1...ar = ∂xi

∂ya

∂xi1

∂ya1
. . .

∂xir

∂yar

∂wi1...ir

∂xi
. (2.7)

Covariant differentiation is constructed so the norms of tensors are invariant under
changes of coordinates,

ga1b1 . . . gar br ka1...ar kb1...br = δi1 j1 . . . δir jr wi1...ir w j1... jr . (2.8)

Furthermore, expressed in the y-coordinates,

∂i = ∂

∂xi
= ∂ya

∂xi

∂

∂ya
. (2.9)

Since the curvature vanishes in the x-coordinates, it must do so in the y-coordinates,
and hence

[∇a,∇b] = 0. (2.10)

Let us introduce the notation ka...
b
...c = gbdka...d...c, and recall that covariant differ-

entiation commutes with lowering and rising indices: gce∇akb·e...d = ∇agcekb·e...d .
Let us also introduce a notation for the material derivative

Dt = ∂

∂t

∣
∣
∣
∣
y=const

= ∂

∂t

∣
∣
∣
∣
x=const

+ vk ∂

∂xk
. (2.11)

Then we have, from [4, Lemma 2.2], that

Dt ka1...ar = ∂xi1

∂ya1
. . .

∂xir

∂yar

(

Dtwi1...ir + ∂v�

∂xi1
w�...ir + . . . + ∂v�

∂xir
wi1...�

)

.

(2.12)

Now we recall a result concerning time derivatives of the change of coordinates
and commutators between time derivatives and space derivatives (cf. [4, Lemma
2.1]).

Lemma 2.1. Let x = ft (y) be the change of variables given by (2.1), and let gab

be the metric given by (2.2). Let vi = δi jv
j = vi , and set

ua(t, y) = vi (t, x)
∂xi

∂ya
, ua = gabub, (2.13)

hab = 1

2
Dt gab, hab = gachcd gdb. (2.14)
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Then

Dt
∂xi

∂ya
= ∂xk

∂ya

∂vi

∂xk
, Dt

∂ya

∂xi
= −∂ya

∂xk

∂vk

∂xi
, (2.15)

Dt gab =∇aub + ∇bua, Dt g
ab =−2hab, Dt dμg = gabhabdμg, (2.16)

DtΓ
c

ab = ∇a∇buc, (2.17)

where dμg is the Riemannian volume element on Ω in the metric g.

Proof. The proof is the same as that of [4, Lemma 2.1] except that we need to
make some modification due to the difference of the definition of hab. Indeed,
the proof of (2.15), (2.17) and the first part of (2.16) is the same as the men-
tioned. The second part of (2.16) follows from (2.14) since 0 = Dt (gad gdc) =
(Dt gad)gdc+gad Dt gdc = (Dt gad)gdc+2gad hdc and then Dt gab = (Dt gad)δb

d =
(Dt gad)gdcgcb = −2gad hdcgcb = −2hab. The last part of (2.16) follows since in
local coordinates dμg = √

det gdy and Dt (det g) = (det g)gab Dt gab. �

We now recall the estimates of commutators between the material derivative

Dt and space derivatives ∂i and covariant derivatives ∇a .

Lemma 2.2. ([4, Lemma 2.3]) Let ∂i be given by (2.9). Then

[Dt , ∂i ] = −
(

∂iv
k
)

∂k . (2.18)

Furthermore,

[Dt , ∂
r ] = −

r−1
∑

s=0

(
r

s + 1

)

(∂1+sv) · ∂r−s, (2.19)

where the symmetric dot product is defined to be in components

((

∂1+sv
)

· ∂r−s
)

i1...ir
= 1

r !
∑

σ∈�r

(

∂1+s
iσ1 ...iσ1+s

vk
)

∂r−s
kiσs+2 ...iσr

, (2.20)

and
∑

r denotes the collection of all permutations of {1, 2, . . . , r}.
Lemma 2.3. (cf. [4, Lemma 2.4]) Let Ta1...ar be a (0, r) tensor. We have

[Dt ,∇a]Ta1...ar = −(∇a1∇aud)Tda2...ar − . . . − (∇ar ∇aud)Ta1...ar−1d . (2.21)

If Δ = gcd∇c∇d and q is a function, we have

[

Dt , gab∇a

]

Tb = − 2hab∇aTb − (Δue)Te, (2.22)

[Dt ,∇]q = 0, (2.23)

[Dt ,Δ]q = − 2hab∇a∇bq − (Δue)∇eq. (2.24)
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Furthermore,

[Dt ,∇r ]q =
r−1
∑

s=1

−
(

r

s + 1

)

(∇s+1u) · ∇r−sq, (2.25)

where the symmetric dot product is defined to be in components
(

(∇s+1u) · ∇r−sq
)

a1...ar
= 1

r !
∑

σ∈�r

(

∇s+1
aσ1 ...aσs+1

ud
)

∇r−s
daσs+2 ...aσr

q. (2.26)

Proof. The proof is similar to that of [4, Lemma 2.4]. We only need to verify
(2.22) and (2.24) since they involve the term Dt gab. Now from (2.16) and (2.21),
it follows that

[

Dt , gab∇a

]

Tb = Dt (g
ab∇aTb) − gab∇a Dt Tb

=
(

Dt g
ab

)

∇aTb + gab Dt∇aTb − gab∇a Dt Tb

= −2hab∇aTb + gab[Dt ,∇a]Tb

= −2hab∇aTb − gab∇b∇aueTe

= −2hab∇aTb − (Δue)Te.

From (2.12) and (2.18), we have

Dt∇aq = Dt

(
∂xi

∂ya
∂i q

)

= ∂xi

∂ya

(

Dt∂i q + ∂�

∂v�

∂xi

)

= ∂xi

∂ya

(

[Dt , ∂i ]q + ∂i Dt q + ∂�q
∂v�

∂xi

)

= ∂xi

∂ya

(

−∂iv
k∂kq + ∂i Dt q + ∂iv

�∂�q
)

= ∂xi

∂ya
∂i Dt q = ∇a Dt q,

namely, (2.23) follows. Then, (2.24) follows from (2.22) and

[Dt ,Δ]q = DtΔq − ΔDt q = Dt

(

gab∇a∇bq
)

− gab∇a∇b Dt q

=
[

Dt , gab∇a

]

∇bq + gab∇a[Dt ,∇b]q
=

[

Dt , gab∇a

]

∇bq.

Therefore, we complete the proof.

Denote

Bi =δi j B j = Bi , βa = B j
∂x j

∂ya
, βa =gabβb, and |β|2 = βaβa . (2.27)

It follows, from (2.8), that

|β|2 = |B|2, B j = ∂ya

∂x j
βa, P = p + 1

8π
|β|2. (2.28)

Then P = 1
8π

ς2 on the boundary ∂Ω .
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From (2.13), (1.8a), (2.28), (2.15), (2.7), we have

Dt ua = Dt

(

v j
∂x j

∂ya

)

= ∂x j

∂ya
Dtv j + v j Dt

∂x j

∂ya

= ∂x j

∂ya

(

−∂ j P + 1

4π
Bk∂k B j

)

+ v j
∂xk

∂ya

∂v j

∂xk

= −∇a P + 1

4π

∂x j

∂ya
δki ∂yb

∂xi
βbδ

l
k
∂yd

∂xl

∂yc

∂x j
∇dβc + ∂yb

∂x j
ubδ

l j ∂yc

∂xl
∇auc

= −∇a P + 1

4π
gbd gaegecβb∇dβc + gbcub∇auc

= −∇a P + 1

4π
βd∇dβa + uc∇auc.

Similarly, we get

Dtβa = ∂x j

∂ya
Dt B j + B j Dt

∂x j

∂ya
= ∂x j

∂ya
Bk∂kv j + B j

∂xk

∂ya

∂v j

∂xk

= βd∇dua + βc∇auc.

Thus, the system (1.1) can be written in the Lagrangian coordinates as

Dt ua + ∇a P = uc∇auc + 1

4π
βd∇dβa, (2.29a)

Dtβa = βd∇dua + βc∇auc, (2.29b)

∇aua = 0 in [0, T ] × Ω; ∇aβa = 0 in {t = 0} × Ω, (2.29c)

|β| = ς and βa N a = 0 on [0, T ] × ∂Ω, (2.29d)

p = 0 on [0, T ] × ∂Ω. (2.29e)

3. The Energy Conservation and Some Conserved Quantities

Firstly, the divergence free property of β, that is, div β = 0, is preserved for all
times under the Lagrangian coordinates or in view of the material derivative, that is,
Dt div β = 0. Indeed, from (2.22) and Lemma 2.1, the divergence of (2.29b) gives

Dt

(

gab∇bβa

)

=
[

Dt , gab∇b

]

βa + gab∇b Dtβa

= −2hab∇bβa − (Δue)βe + gab∇b

(

βd∇dua + βc∇auc

)

= −2hab∇bβa − (Δue)βe + ∇bβ
d∇dub + βd∇d∇bub

+gab∇bβ
c∇auc + βcΔuc

= −gac(∇cud + ∇duc)g
db∇bβa + ∇bβ

d∇dub + gab∇bβ
c∇auc

= 0.

Secondly, we assume that

|∇u(t, y)| � C on [0, T ] × ∂Ω, (3.1)
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then that β · N = 0 is preserved for all times t in the lifespan [0, T ], that is, we
have β · N = 0 on [0, T ] × ∂Ω if β · N = 0 on {t = 0} × ∂Ω . Indeed, we have,
from (2.29b) and Lemmas 2.1 and A.1, that

Dt
(

βa N a) = Dt

(

gabβa Nb

)

= N a Dtβa + βa

(

Dt g
ab

)

Nb + βagab Dt Nb

= N a
(

βd∇dua +βd∇aud

)

−∇cubβc Nb−N d∇duaβa +βagabhN N Nb

= hN N βa N a,

which implies, by the Gronwall inequality and the identity
∣
∣Dt | f |∣∣ = |Dt f |, that

∣
∣(βa N a)(t, y)

∣
∣ � eCt

∣
∣(βa N a(0, y)

∣
∣ = 0. (3.2)

Thus, in view of the above three preserved quantities, the system (2.29), or
(1.1), can be written in the Lagrangian coordinates as

Dt ua + ∇a P = uc∇auc + 1

4π
βd∇dβa, (3.3a)

Dtβa = βd∇dua + βc∇auc, (3.3b)

∇aua = 0, ∇aβa = 0, in [0, T ] × Ω, (3.3c)

P = 1

8π
ς2, |β| = ς, β · N = 0, on [0, T ] × ∂Ω. (3.3d)

Finally, the energy defined by

E0(t) =
∫

Ω

(
1

2
|u|2 + 1

8π
|β|2

)

dμg (3.4)

is conserved. In fact, by (2.16), (2.29), Gauss’ formula and the fact Dt dμg = 0
due to div u = 0, it yields

d

dt
E0(t) =

∫

Ω

Dt

(
1

2
gabuaub + 1

8π
gabβaβb

)

dμg

=
∫

Ω

(

ua Dt ua + 1

4π
βa Dtβa

)

dμg

+
∫

Ω

1

2

(

Dt g
ab

) (

uaub + 1

4π
βaβb

)

dμg

=
∫

Ω

[

−ua∇a P + uauc∇auc + 1

4π
uaβd∇dβa

]

dμg

+
∫

Ω

(
1

4π
βaβd∇dua + 1

4π
βaβc∇auc

)

dμg

−
∫

Ω

hab
(

uaub + 1

4π
βaβb

)

dμg

= −
∫

∂Ω

Naua pdμγ +
∫

Ω

uauc∇auc dμg + 1

4π

∫

∂Ω

Ndβduaβadμγ
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+ 1

4π

∫

Ω

βaβc∇auc dμg − 1

2

∫

Ω

gac

× (∇cud + ∇duc) gdb
(

uaub + 1

4π
βaβb

)

dμg

= 0.

4. The First Order Energy Estimates

From (2.21) and (3.3a), we have

Dt (∇bua) + ∇b∇a P = [Dt ,∇b]ua + ∇b Dt ua + ∇b∇a P

= −
(

∇a∇bud
)

ud + 1

4π
∇b

(

βd∇dβa

)

+ ∇b
(

uc∇auc
)

= −
(

∇a∇bud
)

ud + 1

4π

(

∇bβ
d∇dβa + βd∇b∇dβa

)

+∇buc∇auc + uc∇b∇auc

= ∇buc∇auc + 1

4π

(

∇bβ
d∇dβa + βd∇b∇dβa

)

.

From (2.21) and (3.3b), we get

Dt (∇bβa) = [Dt ,∇b]βa + ∇b Dtβa

= −
(

∇a∇bud
)

βd + ∇b

(

βd∇dua + βc∇auc

)

=−
(

∇a∇bud
)

βd +∇bβ
d∇dua +βd∇b∇dua +∇bβ

c∇auc+βc∇b∇auc

= ∇bβ
c(∇cua + ∇auc) + βd∇d∇bua .

Thus, we obtain

Dt (∇bua) + ∇b∇a P =∇buc∇auc + 1

4π

(

∇bβ
d∇dβa + βd∇b∇dβa

)

, (4.1)

Dt (∇bβa) = ∇bβ
c(∇cua + ∇auc) + βd∇d∇bua . (4.2)

Now, we calculate the material derivative of gbdγ ae∇aub∇eud . From (2.16),
(2.14), (A.13), we get

Dt

(

gbdγ ae∇aub∇eud

)

=
(

Dt g
bd

)

γ ae∇aub∇eud + gbd (

Dtγ
ae) ∇aub∇eud

+2gbdγ ae(Dt∇aub)∇eud

= −2gbchcf g f dγ ae∇aub∇eud − 2gbdγ achc f γ
f e∇aub∇eud

−2gbdγ ae∇eud∇a∇b P + 2gbdγ ae∇eud∇auc∇buc

+ 1

2π
gbdγ ae∇eud

(

∇aβd∇dβb + βd∇a∇dβb

)

= −γ ae(∇cu f + ∇ f uc)∇auc∇eu f − γ acγ f e(∇cu f + ∇ f uc)∇aud∇eud

−2γ ae∇eub∇a∇b P + 2γ ae∇eub∇auc∇buc

+ 1

2π
γ ae∇eub

(

∇aβd∇dβb + βd∇a∇dβb

)
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= −2γ ae∇cu f ∇auc∇eu f − 2γ aeγ f c∇eu f ∇aud∇cud + 2γ ae∇eub∇auc∇buc

−2γ ae∇eub∇a∇b P + 1

2π
γ ae∇eub

(

∇aβd∇dβb + βd∇a∇dβb

)

= −2γ aeγ f c∇eu f ∇aud∇cud − 2γ ae∇eub∇a∇b P

+ 1

2π
γ ae∇eub

(

∇aβd∇dβb + βd∇a∇dβb

)

. (4.3)

Similarly, from (4.2), we have

Dt

(

gbdγ ae∇aβb∇eβd

)

= −γ ae(∇cu f + ∇ f uc)∇aβc∇eβ
f − γ acγ f e(∇cu f + ∇ f uc)∇aβd∇eβd

+2γ ae∇eβ
b
(

∇aβc∇cub + ∇aβc∇buc + βd∇d∇aub

)

= −2γ ae∇cu f ∇aβc∇eβ
f − 2γ acγ f e∇cu f ∇aβd∇eβd

+2γ ae∇eβ
b∇aβc∇cub + 2γ ae∇buc∇eβ

b∇aβc + 2γ aeβd∇eβ
b∇d∇aub

= −2γ aeγ f c∇eu f ∇aβd∇cβd + 2γ ae∇eβ
b∇aβc∇cub

+2γ aeβd∇aβb∇d∇eub. (4.4)

Thus, by combining (4.3) with (4.4), we obtain

Dt

(

gbdγ ae∇aub∇eud + 1

4π
gbdγ ae∇aβb∇eβd

)

= −2γ aeγ f c∇eu f ∇aud∇cud − 1

2π
γ aeγ f c∇eu f ∇aβd∇cβd

−2∇b

(

γ ae∇eub∇a P − 1

4π
γ aeβb∇eud∇aβd

)

+2(∇bγ
ae)

(

∇eub∇a P − 1

4π
βb∇eud∇aβd

)

+ 1

2π
γ ae∇eub∇aβd∇dβb + 1

2π
γ ae∇eβ

b∇aβc∇cub. (4.5)

Now, we calculate the material derivatives of |curl u|2 and |curl β|2. We have

Dt |curl u|2 = Dt

(

gacgbd(curl u)ab(curl u)cd

)

= 2
(

Dt g
ac) gbd(curl u)ab(curl u)cd + 4gacgbd(Dt∇aub)(curl u)cd

= −2gaeg f cgbd(∇eu f + ∇ f ue)(curl u)ab(curl u)cd

+4gacgbd(curl u)cd∇aue∇bue

−4gacgbd(curl u)cd∇a∇b P

+ 1

π
gacgbd(curl u)cd

(∇aβe∇eβb + βe∇a∇eβb
)

= −4gaegbd∇euc(curl u)ab(curl u)cd

+ 1

π
gac(curl u)cd

(

∇aβe∇eβ
d + βe∇a∇eβ

d
)

.
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Similarly,

Dt |curl β|2 = 2(Dt g
ac)gbd(curl β)ab(curl β)cd + 4gacgbd(Dt∇aβb)(curl β)cd

= −4gaegbd∇euc(curl β)ab(curl β)cd

+4gacgbd(curl β)cd
(∇aβe(∇eub + ∇bue) + βe∇e∇aub

)

.

Thus, we can get

Dt

(

|curl u|2 + 1

4π
|curl β|2

)

= −4gaegbd∇euc(curl u)ab(curl u)cd + 1

π
gac(curl u)cd∇aβe∇eβ

d

− 1

π
gaegbd∇euc(curl β)ab(curl β)cd

+ 1

π
gacgbd(curl β)cd∇aβe(∇eub + ∇bue)

+ 1

π
∇e

(

gac(curl u)cdβe∇aβd
)

. (4.6)

Define the first order energy as

E1(t) =
∫

Ω

(

gbdγ ae∇aub∇eud + 1

4π
gbdγ ae∇aβb∇eβd

)

dμg

+
∫

Ω

(

|curl u|2 + 1

4π
|curl β|2

)

dμg. (4.7)

Let us recall the Gauss formula for Ω and ∂Ω:

∫

Ω

∇awa dμg =
∫

∂Ω

Nawa dμγ , and
∫

∂Ω

∇a f̄ a dμγ = 0 (4.8)

if f̄ is tangential to ∂Ω and (Na) denotes the unit conormal to ∂Ω .
Then, we get the following estimates.

Theorem 4.1. For any smooth solution of MHD (3.3) for 0 � t � T satisfying

|∇ P| � M, |∇u| � M, in [0, T ] × �, (4.9)

|θ | + |∇u| + 1

ι0
� K , on [0, T ] × ∂�, (4.10)

we have for t ∈ [0, T ]

E1(t) � 2eC Mt E1(0) + C K 2 (Vol Ω + E0(0))
(

eC Mt − 1
)

. (4.11)
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Proof. By (4.5), (4.6) and Gauss’ formula, we have

d

dt
E1(t) =

∫

Ω

Dt

(

gbdγ ae∇aub∇eud + 1

4π
gbdγ ae∇aβb∇eβd

)

dμg

+
∫

Ω

Dt

(

|curl u|2 + 1

4π
|curl β|2

)

dμg

+
∫

Ω

(

gbdγ ae∇aub∇eud + 1

4π
gbdγ ae∇aβb∇eβd

)

tr h dμg

+
∫

Ω

(

|curl u|2 + 1

4π
|curl β|2

)

tr h dμg

= −2
∫

Ω

γ aeγ f c∇eu f ∇aud∇cud dμg − 1

2π

∫

Ω

γ aeγ f c∇eu f ∇aβd∇cβd dμg

−2
∫

∂Ω

Nb

(

γ ae∇eub∇a P dμg − 1

4π
γ aeβb∇eud∇aβd

)

dμγ (4.12)

+2
∫

Ω

(∇bγ
ae)

(

∇eub∇a P − 1

4π
βb∇eud∇aβd

)

dμg (4.13)

+ 1

2π

∫

Ω

γ ae∇eub∇aβd∇dβb dμg + 1

2π

∫

Ω

γ ae∇eβ
b∇aβc∇cub dμg

−4
∫

Ω

gaegbd∇euc(curl u)ab(curl u)cd dμg

+ 1

π

∫

Ω

gac(curl u)cd∇aβe∇eβ
d dμg

− 1

π

∫

Ω

gaegbd∇euc(curl β)ab(curl β)cd dμg

+ 1

π

∫

Ω

gacgbd(curl β)cd∇aβe(∇eub + ∇bue) dμg

+ 1

π

∫

∂Ω

Neβ
egac(curl u)cd∇aβd dμγ (4.14)

+
∫

Ω

(

gbdγ ae∇aub∇eud + 1

4π
gbdγ ae∇aβb∇eβd

)

tr h dμg

+
∫

Ω

(

|curl u|2 + 1

4π
|curl β|2

)

tr h dμg.

Since P = 1
8π

ς2 on ∂Ω , it follows that ∇ P = 0, that is, γ d
a ∇d P = 0, and then

γ ae∇a P = gceγ a
c ∇a P = 0 on the boundary ∂Ω . In addition, β · N = 0 on ∂Ω .

Thus, the integrals in (4.12) and (4.14) vanish.
From (A.5) and (A.3), we get

θab = (

δc
a − Na N c)∇c Nb = ∇a Nb − Na∇N Nb = ∇a Nb, (4.15)

since in geodesic coordinates ∇N N = 0. It follows that

∇bγ
ae = ∇b(g

ae − N a N e) = −∇b(N a N e) = −(∇b N a)N e − (∇b N e)N a

= −θa
b N e − θe

b N a .
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Thus, by the Hölder inequality, (1.18) and Lemma A.2, we get

|(4.13)| � C K
(

‖∇u‖L2(Ω) ‖∇ P‖L∞(Ω) (Vol Ω)1/2

+ ‖∇u‖L∞(Ω) ‖β‖L2(Ω) ‖∇β‖L2(Ω)

)

� C K M
(

(Vol Ω)1/2 + E1/2
0 (0)

)

E1/2
1 (t).

For other terms, we can use the Hölder inequality directly. It yields

d

dt
E1(t) � C K M

(

(Vol Ω)1/2 + E1/2
0 (0)

)

E1/2
1 (t)

+C ‖∇u‖L∞(Ω)

(

‖∇u‖2
L2(Ω)

+ ‖∇β‖2
L2(Ω)

+‖curl u‖2
L2(Ω)

+ ‖curl β‖2
L2(Ω)

)

� C K M
(

(Vol Ω)1/2 + E1/2
0 (0)

)

E1/2
1 (t) + C M E1(t).

From the Gronwall inequality, it follows that

E1/2
1 (t) � eC Mt/2 E1/2

1 (0) + C K
(

(Vol Ω)1/2 + E1/2
0 (0)

) (

eC Mt/2 − 1
)

,

which implies the desired result. �

Remark 4.1. Since (4.12), especially the integral involving P , vanishes, we do
not need the boundary integral in the first order energy E1(t). But in higher order
energies estimates, we need to introduce boundary integrals for P in order to absorb
the analogy integral to (4.12).

5. The General r th Order Energy Estimates

From (2.12), (2.19), (1.8a), we get

Dt∇r ua = Dt∇a1 . . . ∇ar ua = Dt

(
∂xi1

∂ya1
. . .

∂xir

∂yar

∂xi

∂ya
∂i1 . . . ∂ir vi

)

= ∂xi1

∂ya1
. . .

∂xir

∂yar

∂xi

∂ya

(

Dt∂i1 . . . ∂ir vi + ∂v�

∂xi1
∂� . . . ∂ir vi + . . .

+ ∂v�

∂xir
∂i1 . . . ∂�vi + ∂v�

∂xi
∂i1 . . . ∂ir v�

)

= ∂xi1

∂ya1
. . .

∂xir

∂yar

∂xi

∂ya

(

[Dt , ∂
r ]vi + ∂r Dtvi + ∂v�

∂xi1
∂� . . . ∂ir vi + . . .

+ ∂v�

∂xir
∂i1 . . . ∂�vi + ∂v�

∂xi
∂i1 . . . ∂ir v�

)

= ∂xi1

∂ya1
. . .

∂xir

∂yar

∂xi

∂ya

(

−
r−1
∑

s=0

(
r

s + 1

)

(∂1+sv) · ∂r−svi − ∂r∂i P
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+ 1

4π
∂r (Bk∂k Bi ) + ∂v�

∂xi1
∂� . . . ∂ir vi + . . .

+ ∂v�

∂xir
∂i1 . . . ∂�vi + ∂v�

∂xi
∂i1 . . . ∂ir v�

)

= −∇r∇a P −
r−1
∑

s=1

(
r

s + 1

)

(∇1+su) · ∇r−sua

+∇auc∇r uc + 1

4π

r
∑

s=0

(r

s

)

∇sβc∇r−s∇cβa,

where
(∇sβc∇r−s∇cβa

)

a1...ar
=

∑

�r

∇s
aσ1 ...aσs

βc∇r−s
aσs+1 ...aσr

∇cβa . (5.1)

Thus, due to div β = 0, we get for r � 2

Dt∇r ua + ∇r∇a P

= (curl u)ac∇r uc + sgn(2 − r)

r−2
∑

s=1

(
r

s + 1

)

(∇1+su) · ∇r−sua

+ 1

4π
∇c

(

βc∇rβa
) + 1

4π

r
∑

s=1

(r

s

)

∇sβc∇r−s∇cβa, (5.2)

where sgn(s) is the signum function of the real number s, that is, sgn(s) = 1 for
s > 0, sgn(s) = 0 for s = 0, and sgn(s) = −1 for s < 0. Of course, we use this
notation sgn(2 − r) to indicate that the related term vanishes for r = 2.

Similarly, by noticing that div β = 0, we have

Dt∇rβa = ∇auc∇rβc − ∇r uc∇cβa

−sgn(2 − r)

r−2
∑

s=1

(
r

s + 1

)

(∇1+su) · ∇r−sβa

+∇c
(

βc∇r ua
) +

r
∑

s=1

(r

s

)

∇sβc∇r−s∇cua . (5.3)

Define the r -th order energy for r � 2 as

Er (t) =
∫

Ω

gbdγ a f γ AF∇r−1
A ∇aub∇r−1

F ∇ f ud dμg +
∫

Ω

|∇r−1curl u|2 dμg

+ 1

4π

∫

Ω

gbdγ a f γ AF∇r−1
A ∇aβb∇r−1

F ∇ f βd dμg

+ 1

4π

∫

Ω

|∇r−1curl β|2 dμg +
∫

∂Ω

γ a f γ AF∇r−1
A ∇a P∇r−1

F ∇ f P ϑ dμγ ,

where ϑ = 1/(−∇N P) as before.
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Theorem 5.1. Let r ∈ {2, . . . , n + 1}, then there exists a T > 0 such that the
following holds: for any smooth solution of MHD (3.3) for 0 � t � T satisfying

|β| � M1 for r = 2, in [0, T ] × Ω, (5.4)

|∇ P| � M, |∇u| � M, |∇β| � M, in [0, T ] × Ω, (5.5)

|θ | + 1/ι0 � K , on [0, T ] × ∂Ω, (5.6)

− ∇N P � ε > 0, on [0, T ] × ∂Ω, (5.7)

|∇2 P| + |∇N Dt P| � L , on [0, T ] × ∂Ω, (5.8)

we have, for t ∈ [0, T ],

Er (t) � eC1t Er (0) + C2

(

eC1t − 1
)

, (5.9)

where C1 and C2 depend on K , K1, M, M1, L, 1/ε, Vol Ω , E0(0), E1(0), . . ., and
Er−1(0).

Proof. We have

d

dt
Er (t) =

∫

Ω

Dt

(

gbdγ a f γ AF∇r−1
A ∇aub∇r−1

F ∇ f ud

)

dμg (5.10)

+ 1

4π

∫

Ω

Dt

(

gbdγ a f γ AF∇r−1
A ∇aβb∇r−1

F ∇ f βd

)

dμg (5.11)

+
∫

Ω

Dt |∇r−1curl u|2 dμg + 1

4π

∫

Ω

Dt |∇r−1curl β|2 dμg (5.12)

+
∫

Ω

gbdγ a f γ AF∇r−1
A ∇aub∇r−1

F ∇ f ud tr h dμg (5.13)

+
∫

Ω

|∇r−1curl u|2tr h dμg + 1

4π

∫

Ω

|∇r−1curl β|2tr h dμg (5.14)

+ 1

4π

∫

Ω

gbdγ a f γ AF∇r−1
A ∇aβb∇r−1

F ∇ f βd tr h dμg (5.15)

+
∫

∂Ω

Dt

(

γ a f γ AF∇r−1
A ∇a P∇r−1

F ∇ f P
)

ϑ dμγ (5.16)

+
∫

∂Ω

γ a f γ AF∇r−1
A ∇a P∇r−1

F ∇ f P

(
ϑt

ϑ
+ tr h − hN N

)

ϑ dμγ .

(5.17)

We first estimate (5.10), (5.11) and (5.16). From Lemmas 2.1 and A.1, and
(5.2), we get

Dt

(

gbdγ a f γ AF∇r−1
A ∇aub∇r−1

F ∇ f ud

)

=
(

Dt g
bd

)

γ a f γ AF∇r−1
A ∇aub∇r−1

F ∇ f ud + rgbd
(

Dtγ
a f

)

γ AF∇r−1
A ∇aub∇r−1

F ∇ f ud

+2gbdγ a f γ AF Dt

(

∇r−1
A ∇aub

)

∇r−1
F ∇ f ud

= −2∇cueγ
a f γ AF∇r−1

A ∇auc∇r−1
F ∇ f ue − 2r∇cueγ

acγ e f γ AF∇r−1
A ∇aud∇r−1

F ∇ f ud
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−2γ a f γ AF∇r−1
F ∇ f ub∇r−1

A ∇a∇b P + 2γ a f γ AF∇r−1
F ∇ f ub(curl u)bc∇r−1

A ∇auc

+2sgn(2 − r)γ a f γ AF∇r−1
F ∇ f ud

r−2
∑

s=1

(
r

s + 1

) (

(∇s+1u) · ∇r−sud
)

Aa

+ 1

2π
γ a f γ AF∇r−1

F ∇ f ud∇c

(

βc∇r
Aaβd

)

+ 1

2π
γ a f γ AF∇r−1

F ∇ f ud

r
∑

s=1

(r

s

) (

∇sβc∇r−s∇cβ
d
)

Aa
.

Similarly,

Dt

(

gbdγ a f γ AF∇r−1
A ∇aβb∇r−1

F ∇ f βd

)

= −2∇cueγ
a f γ AF∇r−1

A ∇aβc∇r−1
F ∇ f β

e − 2r∇cueγ
acγ e f γ AF∇r−1

A ∇aβd∇r−1
F ∇ f βd

+2γ a f γ AF∇r−1
F ∇ f β

b∇buc∇r−1
A ∇aβc − 2γ a f γ AF∇r−1

F ∇ f β
b∇cβb∇r−1

A ∇auc

+2sgn(2 − r)γ a f γ AF∇r−1
F ∇ f β

b
r−2
∑

s=1

(
r

s + 1

) (

(∇1+su) · ∇r−sβb

)

Aa

+2γ a f γ AF∇r−1
F ∇ f β

d∇c
(

βc∇r
Aaud

)

+2γ a f γ AF∇r−1
F ∇ f β

d
r

∑

s=1

(r

s

) (∇sβc∇r−s∇cud
)

Aa ,

and

Dt

(

γ a f γ AF∇r−1
A ∇a P∇r−1

F ∇ f P
)

= −2r∇cueγ
acγ e f γ AF∇r−1

A ∇a P∇r−1
F ∇ f P

+2γ a f γ AF∇r−1
A ∇a P Dt

(

∇r−1
F ∇ f P

)

.

Thus, we get

(5.10) + (5.11) + (5.16)

� C
(‖∇u‖L∞(Ω) + ‖∇β‖L∞(Ω)

)

Er (t)

+C E1/2
r (t)

r−2
∑

s=1

∥
∥
∥∇s+1u

∥
∥
∥

L4(Ω)

(∥
∥∇r−su

∥
∥

L4(Ω)
+ ∥

∥∇r−sβ
∥
∥

L4(Ω)

)

(5.18)

+C E1/2
r (t)

r−1
∑

s=2

∥
∥∇sβ

∥
∥

L4(Ω)

(∥
∥
∥∇r−s+1u

∥
∥
∥

L4(Ω)
+

∥
∥
∥∇r−s+1β

∥
∥
∥

L4(Ω)

)

(5.19)

+2
∫

∂Ω

γ a f γ AF∇r
Aa P

(

Dt∇r
F f P − 1

ϑ
Nb∇r

F f ub
)

ϑ dμγ (5.20)

+2
∫

Ω

∇b

(

γ a f γ AF
)

∇r−1
F ∇ f ub∇r−1

A ∇a P dμg (5.21)

+ 1

2π

∫

∂Ω

Ncγ
a f γ AF∇r−1

F ∇ f udβc∇r
Aaβd dμγ (5.22)

− 1

2π

∫

Ω

∇c

(

γ a f γ AF
)

∇r−1
F ∇ f udβc∇r

Aaβd dμg. (5.23)
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Due to β ·N = 0 on ∂Ω , (5.22) vanishes. From Lemma A.9, we have, for ι1 � 1/K1,
that

‖β‖L∞(Ω) � C
∑

0�s�2

K n/2−s
1

∥
∥∇sβ

∥
∥

L2(Ω)
� C(K1)

2
∑

s=0

E1/2
s (t). (5.24)

Thus, for the last integral, by the Hölder inequality and the assumption (5.5), we
have for any r � 3

(5.23) � C K ‖β‖L∞(Ω) Er (t) � C(K , K1)

(
2

∑

s=0

E1/2
s (t)

)

Er (t). (5.25)

For r = 2, we have to assume the a priori bound |β| � M1 on [0, T ] × Ω , that is,
(5.4), in order to get a bound that is linear in the highest-order derivative or energy.
Then, we have by (5.4)

(5.23) � C K ‖β‖L∞(Ω) Er (t) � C(K , M1)Er (t), for r = 2. (5.26)

By the Hölder inequality, we have

(5.21) � C K E1/2
r (t)

∥
∥∇r P

∥
∥

L2(Ω)
. (5.27)

From (1.8a), we have

∂ j (Dtv
j ) + �P = 1

4π
∂ j

(

Bk∂k B j
)

,

which yields from (2.18)

�P = −∂ jv
k∂kv

j + 1

4π
∂ j Bk∂k B j .

Since � is invariant, we have

�P = −∇aub∇bua + 1

4π
∇aβb∇bβ

a . (5.28)

It follows that for r � 2

∇r−2�P = ∇r−2
(

−∇aub∇bua + 1

4π
∇aβb∇bβ

a
)

= −
r−2
∑

s=0

(
r − 2

s

)

∇s∇aub∇r−2−s∇bua

+ 1

4π

r−2
∑

s=0

(
r − 2

s

)

∇s∇aβb∇r−2−s∇bβ
a .

From (5.24), we have for s � 0

∥
∥∇sβ

∥
∥

L∞(Ω)
� C

2
∑

�=0

K n/2−�
1

∥
∥
∥∇�+sβ

∥
∥
∥

L2(Ω)
�C(K1)

2
∑

�=0

E1/2
s+�(t), (5.29)
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and, similarly,

∥
∥∇su

∥
∥

L∞(Ω)
� C(K1)

2
∑

�=0

E1/2
s+�(t). (5.30)

By Hölder’s inequality, (5.29) and (5.30), we get for r ∈ {3, 4},
∥
∥
∥∇r−2�P

∥
∥
∥

L2(Ω)

� C
r−2
∑

s=0

∥
∥
∥∇s∇aub∇r−2−s∇bua

∥
∥
∥

L2(Ω)
+ C

r−2
∑

s=0

∥
∥
∥∇s∇aβb∇r−2−s∇bβ

a
∥
∥
∥

L2(Ω)

� C ‖∇u‖L∞(Ω)

∥
∥
∥∇r−1u

∥
∥
∥

L2(Ω)
+ C ‖∇β‖L∞(Ω)

∥
∥
∥∇r−1β

∥
∥
∥

L2(Ω)

+(r − 3)C

(∥
∥
∥∇2u

∥
∥
∥

L∞(Ω)

∥
∥
∥∇2u

∥
∥
∥

L2(Ω)
+

∥
∥
∥∇2β

∥
∥
∥

L∞(Ω)

∥
∥
∥∇2β

∥
∥
∥

L2(Ω)

)

� C(K1)E1/2
r−1(t)

3
∑

�=1

E1/2
� (t) + (r − 3)C(K1)E1/2

2 (t)
4

∑

�=2

E1/2
� (t)

� C(K1)

r−1
∑

�=1

E�(t) + C(K1)E1/2
2 (t)E1/2

r (t). (5.31)

For r = 2, we have a simple estimate from the assumption (5.5) and Hölder’s
inequality, that is,

‖�P‖L2(Ω) � LC ‖∇u‖L2(Ω) ‖∇u‖L∞(Ω) + C ‖∇β‖L2(Ω) ‖∇β‖L∞(Ω)

� C M E1/2
1 (t), (5.32)

which is a lower energy term. Thus, by (A.17), (5.31) and (5.32), we obtain for any
δr > 0

∥
∥∇r P

∥
∥

L2(Ω)
� δr

∥
∥Π∇r P

∥
∥

L2(∂Ω)

+C(1/δr , K , Vol Ω)
∑

s�r−2

∥
∥∇s�P

∥
∥

L2(Ω)

� δr
∥
∥Π∇r P

∥
∥

L2(∂Ω)
+ C(1/δr , K , K1, M, Vol Ω)

r−1
∑

�=1

E�(t)

+(r − 2)C(1/δr , K , K1, M, Vol Ω)E1/2
2 (t)E1/2

r (t). (5.33)

Now we estimate the boundary terms. Since P = 1
8π

ς2 on ∂Ω , by (A.18), we have
for r � 1

∥
∥Π∇r P

∥
∥

L2(∂Ω)
� C(K , K1)

⎛

⎝‖θ‖L∞(∂Ω) + (r − 2)
∑

k�r−3

∥
∥
∥∇k

θ

∥
∥
∥

L2(∂Ω)

⎞

⎠

×
∑

k�r−1

∥
∥
∥∇k P

∥
∥
∥

L2(∂Ω)
. (5.34)
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From (A.7), we get Π∇2 P = θ∇N P and then, by (5.7), (5.6), (A.31), (5.5)
and (5.33), we get

‖θ‖L2(∂Ω) =
∥
∥
∥
∥

Π∇2 P

∇N P

∥
∥
∥
∥

L2(∂Ω)

� 1

ε

∥
∥
∥Π∇2 P

∥
∥
∥

L2(∂Ω)
, (5.35)

∥
∥
∥Π∇2 P

∥
∥
∥

L2(∂Ω)
� ‖θ‖L∞(∂Ω) ‖∇ P‖L2(∂Ω)

� C(K , Vol Ω)

(∥
∥
∥∇2 P

∥
∥
∥

L2(Ω)
+ ‖∇ P‖L2(Ω)

)

� C(K , Vol Ω)δ2

∥
∥
∥Π∇2 P

∥
∥
∥

L2(∂Ω)
+ C(K , Vol Ω)(Vol Ω)1/2 M

+C(1/δ2, K , K1, M, Vol Ω)E1(t), (5.36)

where the first term of the right hand side of (5.36) can be absorbed by the left hand
side if we take δ2 so small that, example, C(K , Vol Ω)δ2 � 1/2. Thus, it follows
that

∥
∥
∥Π∇2 P

∥
∥
∥

L2(∂Ω)
� C(K , K1, M, Vol Ω)(1 + E1(t)), (5.37)

∥
∥
∥∇2 P

∥
∥
∥

L2(Ω)
� C(K , K1, M, Vol Ω)(1 + E1(t)), (5.38)

‖θ‖L2(∂Ω) � C(K , K1, M, Vol Ω, 1/ε)(1 + E1(t)). (5.39)

By Theorem 4.1, there exists a T > 0 such that E1(t) can be controlled by the
initial energy E1(0) for t ∈ [0, T ], example, E1(t) � 2E1(0). Thus, from (5.34),
(5.39), (5.5) and (5.38) we have

∥
∥
∥Π∇3 P

∥
∥
∥

L2(∂Ω)
� C(K , K1)

(

K + ‖θ‖L2(∂Ω)

) ∑

k�2

∥
∥
∥∇k P

∥
∥
∥

L2(∂Ω)

� C(K , K1, M, Vol Ω, 1/ε)(1 + E1(t))
∑

k�3

∥
∥
∥∇k P

∥
∥
∥

L2(Ω)

� C(K , K1, M, Vol Ω, 1/ε, E1(0))

∥
∥
∥∇3 P

∥
∥
∥

L2(Ω)

+ C(K , K1, M, Vol Ω, 1/ε, E1(0)). (5.40)

From (5.33),
∥
∥
∥∇3 P

∥
∥
∥

L2(Ω)
� δ3C(K , K1, M, Vol Ω, 1/ε, E1(0))

∥
∥
∥∇3 P

∥
∥
∥

L2(Ω)

+ δ3C(K , K1, M, Vol Ω, 1/ε, E1(0))

+ C(1/δ3, K , K1, M, Vol Ω)

2
∑

�=1

E�(t)

+ C(1/δ3, K , K1, M, Vol Ω)E1/2
2 (t)E1/2

3 (t), (5.41)
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which, if we choose δ3 > 0 so small that

δ3C(K , K1, M, Vol Ω, 1/ε, E1(0)) � 1/2,

yields

∥
∥
∥∇3 P

∥
∥
∥

L2(Ω)
� C(K , K1, M, Vol Ω, 1/ε, E1(0))+C(K , K1, M, Vol Ω)

2
∑

�=1

E�(t)

+C(K , K1, M, Vol Ω)E1/2
2 (t)E1/2

3 (t), (5.42)

and then
∥
∥
∥Π∇3 P

∥
∥
∥

L2(∂Ω)
� C(K , K1, M, Vol Ω, 1/ε, E1(0))

×
(

1 +
2

∑

�=1

E�(t) + E1/2
2 (t)E1/2

3 (t)

)

. (5.43)

Since

∇b∇N P = γ d
b ∇d

(

N a∇a P
) =

(

δd
b − Nb N d

)

(
(∇d N a)∇a P + N a∇d∇a P

)

= θa
b ∇a P + N a∇b∇a P − Nb N d (

θa
d ∇a P + N a∇d∇a P

)

,

from (A.31), it follows that

∥
∥∇∇N P

∥
∥

L2(∂Ω)
� C ‖θ‖L∞(∂Ω) ‖∇ P‖L2(∂Ω) + C

∥
∥
∥∇2 P

∥
∥
∥

L2(∂Ω)

� C(K , Vol Ω)

(∥
∥
∥∇3 P

∥
∥
∥

L2(Ω)
+

∥
∥
∥∇2 P

∥
∥
∥

L2(Ω)
+ ‖∇ P‖L2(Ω)

)

� C(K , K1, M, Vol Ω, 1/ε, E1(0)) + C(K , K1, M, Vol Ω)

2
∑

�=1

E�(t)

+C(K , K1, M, Vol Ω)E1/2
2 (t)E1/2

3 (t).

Thus, by (A.8), it follows that (∇θ)∇N P = Π∇3 P − 3θ⊗̃∇∇N P and

∥
∥∇θ

∥
∥

L2(∂Ω)
� 1

ε

(∥
∥
∥Π∇3 P

∥
∥
∥

L2(∂Ω)
+ C ‖θ‖L∞(∂Ω)

∥
∥∇∇N P

∥
∥

L2(∂Ω)

)

� C(K , K1, M, Vol Ω, 1/ε, E1(0))

×
(

1 +
2

∑

�=1

E�(t) + E1/2
2 (t)E1/2

3 (t)

)

. (5.44)

Hence, from (5.34), (A.31), it yields
∥
∥
∥Π∇4 P

∥
∥
∥

L2(∂Ω)
� C(K , K1)

(

K + ‖θ‖L2(∂Ω) + ∥
∥∇θ

∥
∥

L2(∂Ω)

)

×
∑

k�4

∥
∥
∥∇k P

∥
∥
∥

L2(Ω)
. (5.45)
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Then, from (5.33), we can absorb the highest order term
∥
∥∇4 P

∥
∥

L2(Ω)
by the left

hand side for δ4 > 0 small enough which is independent of the highest energy
E4(t), and get

∥
∥
∥∇4 P

∥
∥
∥

L2(Ω)
� C(K , K1, M, Vol Ω, 1/ε, E1(0))

×
(

1 +
3

∑

�=1

E�(t) + E1/2
2 (t)E1/2

4 (t)

)

, (5.46)

∥
∥
∥Π∇4 P

∥
∥
∥

L2(∂Ω)
� C(K , K1, M, Vol Ω, 1/ε, E1(0))

×
(

1 +
3

∑

�=1

E�(t) + E1/2
2 (t)E1/2

4 (t)

)

. (5.47)

Therefore, from (5.38), (5.42) and (5.45), we obtain for r � 2
∥
∥∇r P

∥
∥

L2(Ω)
� C(K , K1, M, Vol Ω, 1/ε, E1(0))

×
(

1 +
r−1
∑

�=1

E�(t) + (r − 2)E1/2
2 (t)E1/2

r (t)

)

, (5.48)

which, from (5.27), implies

(5.21) � C(K , K1, M, Vol Ω, 1/ε, E1(0))E1/2
r (t)

×
(

1 +
r−1
∑

�=1

E�(t) + (r − 2)E1/2
2 (t)E1/2

r (t)

)

. (5.49)

Now, we turn to the estimates of (5.20). Since P = 1
8π

ς2 on ∂Ω implies
γ a

b ∇a P = 0 on ∂Ω , we get from (A.3), by noticing that ϑ = −1/∇N P , that

− ϑ−1 Nb = ∇N P Nb = N a∇a P Nb =δa
b∇a P − γ a

b ∇a P = ∇b P. (5.50)

By the Hölder inequality and (5.50), we have

(5.20) � C ‖ϑ‖1/2
L∞(∂Ω) E1/2

r (t)
∥
∥
∥Π

(

Dt
(∇r P

) − ϑ−1 Nb∇r ub
)∥
∥
∥

L2(∂Ω)

= C ‖ϑ‖1/2
L∞(∂Ω) E1/2

r (t)
∥
∥Π

(

Dt
(∇r P

) + ∇r u · ∇ P
)∥
∥

L2(∂Ω)
.

(5.51)

By (2.25), it follows that

Dt∇r P + ∇r u · ∇ P = [

Dt ,∇r ] P + ∇r Dt P + ∇r u · ∇ P

= sgn(2 − r)

r−2
∑

s=1

(
r

s + 1

)

(∇s+1u) · ∇r−s P + ∇r Dt P.

(5.52)
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We first consider the estimates of the last term in (5.52). By (A.18) and (A.31),
we get, for 2 � r � 4

∥
∥Π∇r Dt P

∥
∥

L2(∂Ω)

� C(K , K1, Vol Ω)

⎛

⎝‖θ‖L∞(∂Ω) + (r − 2)
∑

k�r−3

∥
∥
∥∇k

θ

∥
∥
∥

L2(∂Ω)

⎞

⎠

×
∑

k�r

∥
∥
∥∇k Dt P

∥
∥
∥

L2(Ω)
. (5.53)

From (A.17) , it follows that
∥
∥∇r Dt P

∥
∥

L2(Ω)

� δ
∥
∥Π∇r Dt P

∥
∥

L2(∂Ω)
+ C(1/δ, K , Vol Ω)

∑

s�r−2

∥
∥∇s�Dt P

∥
∥

L2(Ω)
.

(5.54)

By (2.24), (5.28), Lemma 2.1, (4.1), (4.2) and (3.3), it yields

�Dt P = 2hab∇a∇b P + (�ue)∇e P − Dt

(

gbd gac∇aud∇buc

)

+ 1

4π
Dt

(

gbd gac∇aβd∇bβc

)

= 2hab∇a∇b P + (�ue)∇e P − 2Dt (g
bd)∇aud∇bua

−2gbd Dt (∇aud)∇bua + 1

2π
Dt (g

bd)gac∇aβd∇bβ
a

+ 1

2π
gbd Dt (∇aβd)∇bβ

a

= 2hab∇a∇b P + (�ue)∇e P + 4hbd∇aud∇bua − 1

π
hbd∇aβd∇bβ

a

+2gbd∇bua∇a∇d P − 2gbd∇bua∇auc∇duc

− 1

2π
∇bua

(

∇aβc∇cβ
b + βc∇a∇cβ

b
)

+ 1

2π
gbd∇bβ

a (∇aβe(∇eud + ∇due) + βe∇e∇aud
)

= 4gac∇cub∇a∇b P + (δue)∇e P + 2∇eub∇bua∇aue

− 1

2π
∇bua∇aβc∇cβ

b − 1

2π
∇buaβc∇a∇cβ

b + 1

2π
∇bβ

aβe∇e∇aub.

By (5.29), (5.33) and Lemma A.9, it follows that for s � 2
∥
∥∇sδDt P

∥
∥

L2(Ω)

� C ‖∇u‖L∞(Ω)

∥
∥
∥∇s+2 P

∥
∥
∥

L2(Ω)
+ s(s − 1)C

∥
∥
∥∇3u

∥
∥
∥

L2(Ω)

∥
∥
∥∇2 P

∥
∥
∥

L∞(Ω)

+sC
∥
∥
∥∇2u

∥
∥
∥

L4(Ω)

∥
∥
∥∇s+1 P

∥
∥
∥

L4(Ω)
+ C

∥
∥
∥∇s+2u

∥
∥
∥

L2(Ω)
‖∇ P‖L∞(Ω)
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+C
(‖∇u‖L∞(Ω) ‖∇u‖L∞(Ω) + ‖∇β‖L∞(Ω) ‖∇β‖L∞(Ω)

)
∥
∥
∥∇s+1u

∥
∥
∥

L2(Ω)

+s(s − 1)C ‖∇u‖L∞(Ω)

∥
∥
∥∇2u

∥
∥
∥

L4(Ω)

∥
∥
∥∇2u

∥
∥
∥

L4(Ω)

+C ‖∇u‖L∞(Ω) ‖∇β‖L∞(Ω)

∥
∥
∥∇s+1β

∥
∥
∥

L2(Ω)

+sC
∥
∥
∥∇2u

∥
∥
∥

L4(Ω)

∥
∥
∥∇2β

∥
∥
∥

L4(Ω)

(

(s − 1) ‖∇β‖L∞(Ω) + ‖β‖L∞(Ω)

)

+s(s − 1)C ‖∇u‖L∞(Ω)

∥
∥
∥∇2β

∥
∥
∥

L4(Ω)

∥
∥
∥∇2β

∥
∥
∥

L4(Ω)

+C ‖∇u‖L∞(Ω) ‖β‖L∞(Ω)

∥
∥
∥∇s+2β

∥
∥
∥

L2(Ω)

+sC
∥
∥
∥∇3u

∥
∥
∥

L2(Ω)
‖β‖L∞(Ω)

(

(s − 1)

∥
∥
∥∇2β

∥
∥
∥

L∞(Ω)
+ ‖∇β‖L∞(Ω)

)

+s(s − 1)C
∥
∥
∥∇3β

∥
∥
∥

L2(Ω)
‖β‖L∞(Ω)

∥
∥
∥∇2u

∥
∥
∥

L∞(Ω)

+s(s − 1)C ‖∇β‖L∞(Ω)

∥
∥
∥∇2β

∥
∥
∥

L4(Ω)

∥
∥
∥∇2u

∥
∥
∥

L4(Ω)

+s(s − 1)C ‖∇β‖L∞(Ω) ‖β‖L∞(Ω)

∥
∥
∥∇4u

∥
∥
∥

L2(Ω)

+s(s − 1)C
∥
∥
∥∇2β

∥
∥
∥

L∞(Ω)
‖β‖L∞(Ω)

∥
∥
∥∇3u

∥
∥
∥

L2(Ω)
. (5.55)

From Lemma A.8 and (5.30), it follows that

∥
∥
∥∇s+1u

∥
∥
∥

L4(Ω)
� C

∥
∥∇su

∥
∥1/2

L∞(Ω)

(
2

∑

�=0

∥
∥
∥∇s+�u

∥
∥
∥

L2(Ω)
K 2−�

1

)1/2

� C(K1)

2
∑

�=0

E1/2
s+�(t). (5.56)

We can estimate all the terms with L4(Ω) norms in the same way with the help
of (5.29), (5.30), the similar estimate of P and the assumptions. Thus, we obtain
the bound which is linear about the highest-order derivative or the highest-order
energy E1/2

r (t), that is,
∥
∥∇sδDt P

∥
∥

L2(Ω)
� C(K , K1, M, M1, L , 1/ε, Vol Ω, E0(0))

×
(

1 +
r−1
∑

�=0

E�(t)

)
(

1 + E1/2
r (t)

)

. (5.57)

Thus, from (5.53), (5.54), (5.57) and taking some small δ’s which are independent
of Er (t), we obtain, by induction argument for r , that

∥
∥Π∇r Dt P

∥
∥

L2(∂Ω)
� C(K , K1, M, M1, L , 1/ε, Vol Ω, E0(0))

×
(

1 +
r−1
∑

�=0

E�(t)

)
(

1 + E1/2
r (t)

)

. (5.58)
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To estimate (5.52), it only remains to estimate
∥
∥
∥Π

(

(∇s+1u) · ∇r−s P
)∥
∥
∥

L2(∂Ω)
for 1 � s � r − 2. (5.59)

For r = 3, 4 and s = r − 2, we have, by (5.8) and Lemma A.11, that
∥
∥
∥Π

(

(∇r−1u) · ∇2 P
)∥
∥
∥

L2(∂Ω)

�
∥
∥
∥∇r−1u

∥
∥
∥

L2(∂Ω)

∥
∥
∥∇2 P

∥
∥
∥

L∞(∂Ω)

� C L
∥
∥
∥∇2u

∥
∥
∥

L2(n−1)/(n−2)(∂Ω)

� C(K , Vol Ω)L

(
∥
∥∇r u

∥
∥

L2(Ω)
+

∥
∥
∥∇r−1u

∥
∥
∥

L2(Ω)

)

� C(K , L , Vol Ω)
(

E1/2
r−1(t) + E1/2

r (t)
)

. (5.60)

For n = 3, r = 4 and s = 1, by (A.6), Lemma A.11 and (5.33), we get
∥
∥
∥Π

(

(∇2u) · ∇3 P
)∥
∥
∥

L2(∂Ω)

=
∥
∥
∥Π∇2u · Π∇3 P + Π(∇2u · N )⊗̃Π(N · ∇3 P)

∥
∥
∥

L2(∂Ω)

� C
∥
∥
∥Π∇2u

∥
∥
∥

L4(∂Ω)

∥
∥
∥Π∇3 P

∥
∥
∥

L4(∂Ω)

+C
∥
∥
∥Π(N a∇2ua)

∥
∥
∥

L4(∂Ω)

∥
∥
∥Π(∇N ∇2 P)

∥
∥
∥

L4(∂Ω)

� C
∥
∥
∥∇2u

∥
∥
∥

L4(∂Ω)

∥
∥
∥∇3 P

∥
∥
∥

L4(∂Ω)

�C(K , Vol Ω)

(∥
∥
∥∇3u

∥
∥
∥

L2(Ω)
+

∥
∥
∥∇2u

∥
∥
∥

L2(Ω)

) (∥
∥
∥∇4 P

∥
∥
∥

L2(Ω)
+

∥
∥
∥∇3 P

∥
∥
∥

L2(Ω)

)

�C(K , K1, Vol Ω)
(

E1/2
3 (t)+E1/2

2 (t)
)
(

3
∑

s=0

Es(t)+
(

2
∑

�=0

E1/2
� (t)

)

E1/2
4 (t)

)

� C(K , K1, Vol Ω)

3
∑

s=0

Es(t)
4

∑

�=0

E1/2
� (t). (5.61)

Hence, we have

(5.20) � C(K , K1, M, M1, L , 1/ε, Vol Ω, E0(0))

×
(

1 +
r−1
∑

s=0

Es(t)

)

(1 + Er (t)) . (5.62)

By Lemma A.8, we can obtain

(5.18) + (5.19) � C(K , K1, M, Vol Ω, 1/ε)

(

1 +
r−1
∑

s=0

Es(t)

)

Er (t). (5.63)
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Therefore, we have shown that

(5.10) + (5.11) + (5.16) � C(K , K1, M, M1, L , 1/ε, Vol Ω, E0(0))

×
(

1 +
r−1
∑

s=0

Es(t)
)(

1 + Er (t)
)

. (5.64)

We now calculate the material derivatives of |∇r−1curl u|2 and |∇r−1curl β|2.
From Lemma 2.1, (5.2) and (5.3), we have

Dt

(

|∇r−1curl u|2 + 1

4π
|∇r−1curl β|2

)

= Dt

(

gacgbd g AF∇r−1
A (curl u)ab∇r−1

F (curl u)cd

)

+ 1

4π
Dt

(

gacgbd g AF∇r−1
A (curl β)ab∇r−1

F (curl β)cd

)

= (r + 1)Dt (g
ac)gbd g AF∇r−1

A (curl u)ab∇r−1
F (curl u)cd

+4gacgbd g AF Dt

(

∇r−1
A ∇aub

)

∇r−1
F (curl u)cd

+r + 1

4π
Dt (g

ac)gbd g AF∇r−1
A (curl β)ab∇r−1

F (curl β)cd

+ 1

π
gacgbd g AF Dt

(

∇r−1
A ∇aβb

)

∇r−1
F (curl β)cd

= −2(r + 1)gae∇eucgbd g AF∇r−1
A (curl u)ab∇r−1

F (curl u)cd

−r + 1

2π
gae∇eucgbd g AF∇r−1

A (curl β)ab∇r−1
F (curl β)cd

−4gacgbd g AF∇r−1
F (curl u)cd∇r

Aa∇b P (this vanishes by symmetry)

+4gacgbd g AF∇r−1
F (curl u)cd(curl u)be∇r

Aaue

+4sgn(2 − r)gacg AF∇r−1
F (curl u)cd

r−2
∑

s=1

(
r

s + 1

) (

(∇1+su) · ∇r−sud
)

Aa

+ 1

π
sgn(2 − r)gacg AF∇r−1

F (curl β)cd

r−2
∑

s=1

(
r

s + 1

)(

(∇1+su) · ∇r−sβd
)

Aa

+ 1

π
gacgbd g AF∇r−1

F (curl β)cd∇r
Aaβe∇bue

− 1

π
gacg AF∇r−1

F (curl β)cd∇r
Aaue∇eβ

d

+ 1

π
∇e

(

gacg AFβe∇r−1
F (curl u)cd∇r

Aaβd
)

+ 1

π
gacg AF∇r−1

F (curl u)cd

r
∑

s=1

(r

s

) (

∇sβe∇r−s∇eβ
d
)

Aa

+ 1

π
gacg AF∇r−1

F (curl β)cd

r
∑

s=1

(r

s

) (

∇sβe∇r−s∇eud
)

Aa
.
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Noticing that β · N = 0 on ∂Ω , then by the Hölder inequality and the Gauss
formula, we get

(5.12) � C(K , K1, M, Vol Ω, 1/ε)

(

1 +
r−1
∑

s=0

Es(t)

)

Er (t). (5.65)

Thus, by (A.12) and (2.23), we get

Dt (∇N P) = Dt
(

N a∇a P
) = (

Dt N a)∇a P + N a Dt∇a P

=
(

−2ha
d N d + hN N N a

)

∇a P + N a∇a Dt P

= −2ha
d N d∇a P + hN N ∇N P + ∇N Dt P,

which yields

ϑt

ϑ
= − Dt∇N P

∇N P
= 2ha

d N d∇a P

∇N P
− hN N + ∇N Dt P

∇N P
. (5.66)

Thus, we can easily obtain that the remainder integrals, that is, (5.13), (5.14), (5.15)
and (5.17), can be controlled by C(K , M, L , 1/ε)Er (t).

Therefore, we obtain

d

dt
Er (t) � C(K , K1, M, M1, L , 1/ε, Vol Ω, E0(0))

×
(

1 +
r−1
∑

s=0

Es(t)

)

(1 + Er (t)) , (5.67)

which implies the desired result (5.9) by Gronwall’s inequality and the induction
argument for r ∈ {2, . . . , n + 1}. �


6. Justification of a Priori Assumptions

Let K (t) and ε(t) be the maximum and minimum values, respectively, such
that (5.6) and (5.7) hold at time t :

K (t) = max
(‖θ(t, ·)‖L∞(∂Ω) , 1/ι0(t)

)

, (6.1)

E (t) = ‖1/(∇N P(t, ·))‖L∞(∂Ω) = 1/ε(t). (6.2)

Lemma 6.1. Let K1 � 1/ι1 be as in Definition A.3, E (t) as in (6.2). Then there
are continuous functions G j , j = 1, 2, 3, 4, such that

‖∇u‖L∞(Ω) + ‖∇β‖L∞(Ω) + ‖β‖L∞(Ω) � G1(K1, E0, . . . , En+1), (6.3)

‖∇ P‖L∞(Ω) +
∥
∥
∥∇2 P

∥
∥
∥

L∞(∂Ω)
� G2(K1,E , E0, . . . , En+1, Vol Ω), (6.4)

‖θ‖L∞(∂Ω) � G3(K1,E , E0, . . . , En+1, Vol Ω), (6.5)

‖∇Dt P‖L∞(∂Ω) � G4(K1,E , E0, . . . , En+1, Vol Ω). (6.6)
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Proof. (6.3) follows from (5.30), (5.29) and (5.24). From Lemmas A.9 and A.7,
we have

‖∇ P‖L∞(Ω) � C(K1)

2
∑

�=0

∥
∥
∥∇�+1 P

∥
∥
∥

L2(Ω)
, (6.7)

∥
∥
∥∇2 P

∥
∥
∥

L∞(∂Ω)
� C(K1)

n+1
∑

�=0

∥
∥
∥∇� P

∥
∥
∥

L2(∂Ω)
. (6.8)

Thus, (6.4) follows from (6.7), (6.8), Lemmas A.10, A.11, (5.32), (5.38) and (5.42).
Since, from (A.7),

|∇2 P| � |Π∇2 P| = |∇N P||θ | � E −1|θ |, (6.9)

so (6.5) follows from (6.4). (6.6) follows from Lemma A.7, (5.54), (5.57) and
(5.58). �

Lemma 6.2. Let K1 � 1/ι1 and ε1 be as in Definition A.3. Then

∣
∣
∣
∣

d

dt
Er

∣
∣
∣
∣
� Cr (K1,E , E0, . . . , En+1, Vol Ω)

r
∑

s=0

Es, (6.10)

and
∣
∣
∣
∣

d

dt
E

∣
∣
∣
∣
� Cr (K1,E , E0, . . . , En+1, Vol Ω). (6.11)

Proof. (6.10) is a consequence of Lemma 6.1 and the estimates in the proof of
Theorems 4.1 and 5.1. (6.11) follows from
∣
∣
∣
∣
∣

d

dt

∥
∥
∥
∥

1

−∇N P(t, ·)
∥
∥
∥
∥

L∞(∂Ω)

∣
∣
∣
∣
∣
� C

∥
∥
∥
∥

1

−∇N P(t, ·)
∥
∥
∥
∥

2

L∞(∂Ω)

‖∇N Dt P(t, ·)‖L∞(∂Ω)

and (6.6). �

As a result of Lemma 6.2, we have the following:

Lemma 6.3. There exists a continuous function T > 0 depending on K1, E (0),
E0(0), . . ., En+1(0), Vol Ω such that for

0 � t � T (K1,E (0), E0(0), . . . , En+1(0), Vol Ω), (6.12)

the following statements hold: We have

Es(t) � 2Es(0), 0 � s � n + 1, E (t) � 2E (0). (6.13)

Furthermore,

gab(0, y)Y aY b

2
� gab(t, y)Y aY b � 2gab(0, y)Y aY b, (6.14)
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and with ε1 as in Definition A.3,

|N (x(t, ȳ)) − N (x(0, ȳ))| � ε1

16
, ȳ ∈ ∂Ω, (6.15)

|x(t, y) − x(t, y)| � ι1

16
, y ∈ Ω, (6.16)

∣
∣
∣
∣

∂x(t, ȳ)

∂y
− ∂(0, ȳ)

∂y

∣
∣
∣
∣
� ε1

16
, ȳ ∈ ∂Ω. (6.17)

Proof. We get (6.13) from Lemma 6.2 if T (K1,E (0), E0(0), . . . , En+1(0),
Vol Ω) > 0 is sufficiently small. Then from (6.13) and Lemma 6.1, we have

‖∇u‖L∞(Ω) + ‖∇β‖L∞(Ω) + ‖β‖L∞(Ω) + ‖∇ P‖L∞(Ω)

� C(K1,E (0), E0(0), . . . , En+1(0)), (6.18)
∥
∥
∥∇2 P

∥
∥
∥

L∞(∂Ω)
+ ‖θ‖L∞(∂Ω)

� C(K1,E (0), E0(0), . . . , En+1(0), Vol Ω), (6.19)

‖∇Dt P‖L∞(∂Ω) � C(K1,E (0), E0(0), . . . , En+1(0), Vol Ω). (6.20)

By (4.1) and (4.2), we have

|Dt∇u| �
∣
∣
∣∇2 P

∣
∣
∣ + |∇u|2 + |∇β|2 + |β|

∣
∣
∣∇2β

∣
∣
∣ , (6.21)

|Dt∇β| � |∇β| |∇u| + |β|
∣
∣
∣∇2u

∣
∣
∣ . (6.22)

By (A.25), (A.31), Lemma 6.1 and (6.13), we have

‖∇u‖L∞(∂Ω) + ‖∇β‖L∞(∂Ω) � C(K1,E (0), E0(0), . . . , En+1(0), Vol Ω).

Thus, by noticing that |β| = ς on ∂Ω , it follows, from (6.18), (6.19), Lemmas A.7
and A.11, (5.30) and (5.29), that

‖Dt∇u‖L∞(∂Ω) + ‖Dt∇β‖L∞(∂Ω)

�
∥
∥
∥∇2 P

∥
∥
∥

L∞(∂Ω)
+ (‖∇u‖L∞(∂Ω) + ‖∇β‖L∞(∂Ω)

)2

+ς

(∥
∥
∥∇2u

∥
∥
∥

L∞(∂Ω)
+

∥
∥
∥∇2β

∥
∥
∥

L∞(∂Ω)

)

� C(K1,E (0), E0(0), . . . , En+1(0), Vol Ω)

× (

1 + ‖∇u‖L∞(∂Ω) + ‖∇β‖L∞(∂Ω)

)

,

which yields, with the help of Gronwall’s inequality, for 0 � t � T

‖∇u(t, ·)‖L∞(∂Ω) + ‖∇β(t, ·)‖L∞(∂Ω)

� eC(K1,E (0),E0(0),...,En+1(0),Vol Ω)t (‖∇u(0, ·)‖L∞(∂Ω) + ‖∇β(0, ·)‖L∞(∂Ω)

)

+eC(K1,E (0),E0(0),...,En+1(0),Vol Ω)t − 1. (6.23)
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If T is sufficiently small, it follows, after possibly making T > 0 smaller, that

‖∇u(T, ·)‖L∞(∂Ω) + ‖∇β(T, ·)‖L∞(∂Ω)

� 2
(‖∇u(0, ·)‖L∞(∂Ω) + ‖∇β(0, ·)‖L∞(∂Ω)

)

, (6.24)

which also guarantee the a priori assumption of (3.1).
By (2.23), (A.28), (5.54), (5.57) and (5.58), we have

‖Dt∇ P‖L∞(Ω) = ‖∇Dt P‖L∞(Ω) � C(K1)

2
∑

�=0

∥
∥
∥∇�+1 Dt P

∥
∥
∥

L2(Ω)

� C(K1,E (0), E0(0), . . . , En+1(0), Vol Ω),

which implies for sufficiently small T > 0

‖∇ P(t, ·)‖L∞(Ω) � 2 ‖∇ P(0, ·)‖L∞(Ω) . (6.25)

By (1.8) and (6.18), we have

‖Dtv‖L∞(Dt ) � ‖∂ P‖L∞(Dt ) + ‖B‖L∞(Dt )
‖∂ B‖L∞(Dt ) (6.26)

� ‖∇ P‖L∞(Ω) + ‖β‖L∞(Ω) ‖∇β‖L∞(Ω) (6.27)

� C(K1,E (0), E0(0), . . . , En+1(0)), (6.28)

which yields

‖v(t, ·)‖L∞(Dt ) � 2 ‖v(0, ·)‖L∞(Ω) . (6.29)

(6.14) follows from the same argument since Dt gab = ∇aub + ∇bua and by
(6.18)

∣
∣
∣gab(T, y)Y aY b−gab(0, y)Y aY b

∣
∣
∣�

∫ T

0
|Dt gab(s, y)| dsY aY b (6.30)

� 2
∫ T

0
‖∇aub(s)‖L∞(Ω) dsY aY b � 1

2
gab(0, y)Y aY b, (6.31)

if T is sufficiently small. Now the estimate for N follows from

Dt na = hN N na,

and the estimates for x and ∂x/∂y from

Dt x(t, y) = v(t, x(t, y)), (6.32)

Dt
∂x

∂y
= ∂v(t, x(t, y))

∂y
= ∂v(t, x)

∂x

∂x

∂y
, (6.33)

and (6.29) and (6.24), respectively. �

Now we use (6.14)–(6.17) to pick a K1, that is, ι1, which depends only on its

value at t = 0,

ι1(t) � ι1(0)/2. (6.34)
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Lemma 6.4. Let T be as in Lemma 6.2. Pick ι1 > 0 such that

|N (x(0, y1)) − N (x(0, y2))| � ε1

2
, whenever |x(0, y1) − x(0, y2)| � 2ι1.

(6.35)

Then if t � T , we have

|N (x(t, y1)) − N (x(t, y2))| � ε1, whenever |x(t, y1) − x(t, y2)| � 2ι1.

(6.36)

Proof. (6.36) follows from (6.35), (6.15) and (6.16) in view of triangle inequalities.
�


Lemma 6.4 allows us to pick a K1 depending only on initial conditions, while
Lemma 6.3 gives us T > 0, that depends only on the initial conditions and K1
such that, by Lemma 6.4, 1/ι1 � K1 for t � T . Thus, we immediately obtain the
following theorem.

Theorem 6.1. There exists a continuous function T > 0 such that if

T � T (K (0),E (0), E0(0), . . . , En+1(0), Vol Ω), (6.37)

any smooth solution of the free boundary problem for MHD Equations (1.1) and
(1.6) for 0 � t � T satisfies

n+1
∑

s=0

Es(t) � 2
n+1
∑

s=0

Es(0), 0 � t � T . (6.38)
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Appendix A. Preliminaries and Some Estimates

Let N a denote the unit normal to ∂Ω , gab N a N b = 1, gab N aT b = 0 if T ∈ T (∂Ω),
and let Na = gab N b denote the unit conormal, gab Na Nb = 1. The induced metric
γ on the tangent space to the boundary T (∂Ω) extended to be 0 on the orthogonal
complement in T (Ω) is then given by

γab = gab − Na Nb, γ ab = gab − N a N b. (A.1)

The orthogonal projection of an (r, s) tensor S to the boundary is given by

(Π S)
a1...ar
b1...bs

= γ a1
c1

. . . γ ar
cr

γ
d1
b1

. . . γ
ds
bs

Sc1...cr
d1...ds

, (A.2)
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where

γ c
a = δc

a − Na N c. (A.3)

Covariant differentiation on the boundary ∇ is given by

∇S = Π∇S. (A.4)

The second fundamental form of the boundary is given by

θab = (Π∇N )ab = γ c
a ∇c Nb. (A.5)

Let us now recall some properties of the projection. Since gab = γ ab + N a N b, we
have

Π(S · R) = Π(S) · Π(R) + Π(S · N )⊗̃Π(N · R), (A.6)

where S⊗̃R denotes some partial symmetrization of the tensor product S ⊗ R, that
is, a sum over some subset of the permutations of the indices divided by the number
of permutations in that subset. Similarly, we let S ·̃R denote a partial symmetrization
of the dot product S · R. Now we recall some identities:

Π∇2q = ∇2
q + θ∇N q, (A.7)

Π∇3q = ∇3
q − 2θ⊗̃(θ ·̃∇q) + (∇θ)∇N q + 3θ⊗̃∇∇N q, (A.8)

Π∇4q = ∇4
q − θ⊗̃

(

5(∇θ)·̃∇q + 8θ ·̃∇2
q
)

− 2(∇θ)⊗̃(θ ·̃∇q)

+(∇2
θ)∇N q + 4(∇θ)⊗̃∇∇N q + 6θ⊗̃∇2∇N q

−3θ⊗̃(θ ·̃θ)∇N q + 3θ⊗̃θ∇2
N q. (A.9)

Definition A.1. Let N (x̄) be the outward unit normal to ∂Dt at x̄ ∈ ∂Dt . Let
dist (x1, x2) = |x1 − x2| denote the Euclidean distance in R

n , and for x̄1, x̄2 ∈ ∂Dt ,
let dist ∂Dt (x̄1, x̄2) denote the geodesic distance on the boundary.

Definition A.2. Let dist (x, ∂Dt ) be the Euclidean distance from x to the boundary.
Let ι0 be the injectivity radius of the normal exponential map of ∂Dt , that is, the
largest number such that the map

∂Dt × (−ι0, ι0) → {x ∈ R
n : dist (x, ∂Dt ) < ι}

given by (x̄, ι) → x = x̄ + ιN (x̄) (A.10)

is an injection.

Definition A.3. Let 0 < ε1 < 2 be a fixed number, and let ι1 = ι1(ε1) the largest
number such that

|N (x̄1)−N (x̄2)| � ε1 whenever |x̄1 − x̄2| � ι1, x̄1, x̄2 ∈ ∂Dt . (A.11)
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Lemma A.1. ([4, Lemma 3.9]) Let N be the unit normal to ∂Ω , and let hab =
1
2 Dt gab. On [0, T ] × ∂Ω , we have

Dt Na = hN N Na, Dt N c = −2hc
d N d + hN N N c, (A.12)

Dtγ
ab = −2γ achcdγ db, (A.13)

where hN N = hab N a N b. The volume element on ∂Ω satisfies

Dt dμγ = (tr h − hN N )dμγ = (tr θu · N + γ ab∇aūb)dμγ , (A.14)

where ūb denotes the tangential component of ub to the boundary ∂Ω .

Lemma A.2. (cf. [4, Lemma 5.5]) Let wa = wAa = ∇r
A fa, ∇r

A = ∇a1 . . . ∇ar ,
f be a (0, 1) tensor, and [∇a,∇b] = 0. Let div w = ∇awa = ∇r div f , and let
(curl w)ab = ∇awb − ∇bwa = ∇r (curl f )ab. Then,

|∇w|2 � C
(

gabγ cdγ AB∇cwAa∇dwBb + |div w|2 + |curl w|2
)

. (A.15)

Lemma A.3. ([4, Proposition 5.8]) Let ι0 and ι1 be as in Definitions A.2 and A.3,
and suppose that |θ | + 1/ι0 � K and 1/ι1 � K1. Then with K̃ = min(K , K1) we
have, for any r � 2 and δ > 0,

∥
∥∇r q

∥
∥

L2(∂Ω)
+ ∥

∥∇r q
∥
∥

L2(Ω)

� C
∥
∥Π∇r q

∥
∥

L2(∂Ω)
+ C(K̃ , Vol Ω)

∑

s�r−1

∥
∥∇sδq

∥
∥

L2(Ω)
, (A.16)

∥
∥
∥∇r−1q

∥
∥
∥

L2(∂Ω)
+ ∥

∥∇r q
∥
∥

L2(Ω)

� δ
∥
∥Π∇r q

∥
∥

L2(∂Ω)
+ C(1/δ, K , Vol Ω)

∑

s�r−2

∥
∥∇sδq

∥
∥

L2(Ω)
. (A.17)

Lemma A.4. (cf. [4, Proposition 5.9]) Assume that 0 � r � 4. Suppose that |θ | �
K and ι1 � 1/K1, where ι1 is as in Definition 3.5 of [4]. If q = 0 on ∂Ω , then for
m = 0, 1,

∥
∥Π∇r q

∥
∥

L2(∂Ω)
� C(K , K1)

⎛

⎝‖θ‖L∞(∂Ω) +
∑

k�r−2−m

∥
∥
∥∇k

θ

∥
∥
∥

L2(∂Ω)

⎞

⎠

×
∑

k�r−2+m

∥
∥
∥∇kq

∥
∥
∥

L2(∂Ω)
. (A.18)

If, in addition, |∇N q| � ε > 0 and |∇N q| � 2ε ‖∇N q‖L∞(∂Ω), then
∥
∥
∥∇r−2

θ

∥
∥
∥

L2(∂Ω)

� C

(

K , K1,
1

ε

)
⎛

⎝‖θ‖L∞(∂Ω) +
∑

k�r−3

∥
∥
∥∇k

θ

∥
∥
∥

L2(∂Ω)

⎞

⎠
∑

k�r−1

∥
∥
∥∇kq

∥
∥
∥

L2(∂Ω)
.

(A.19)
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Lemma A.5. (cf. [4, Proposition 5.10] ) Assume that 0 � r � 4 and that |θ | +
1/ι0 � K . If q = 0 on ∂Ω , then

∥
∥
∥∇r−1q

∥
∥
∥

L2(∂Ω)
� C

(∥
∥
∥∇r−3

θ

∥
∥
∥

L2(∂Ω)
‖∇N q‖L∞(∂Ω) +

∥
∥
∥∇r−2δq

∥
∥
∥

L2(Ω)

)

+C
(

K , Vol Ω, ‖θ‖L2(∂Ω)

)

×
(

‖∇N q‖L∞(∂Ω) +
r−3
∑

s=0

∥
∥∇sδq

∥
∥

L2(Ω)

)

. (A.20)

Lemma A.6. ([4, Lemma A.1]) If α is a (0, r) tensor, then with a = k/m and a
constant C that only depends on m and n, such that

∥
∥
∥∇k

α

∥
∥
∥

Ls (∂Ω)
� C ‖α‖1−a

Lq (∂Ω)

∥
∥
∥∇m

α

∥
∥
∥

a

L p(∂Ω)
, (A.21)

if

m

s
= k

p
+ m − k

q
, 2 � p � s � q � ∞.

Lemma A.7. ([4, Lemma A.2]) Suppose that for ι1 � 1/K1

|N (x̄1) − N (x̄2)| � ε1, whenever |x̄1 − x̄2| � ι1, x̄1, x̄2 ∈ ∂Dt , (A.22)

and

C−1
0 γ 0

ab(y)Za Zb �γab(t, y)Za Zb �C0γ
0
ab(y)Za Zb, if Z ∈T (Ω), (A.23)

where γ 0
ab(y) = γab(0, y). Then if α is a (0, r) tensor,

‖α‖L(n−1)p/(n−1−kp)(∂Ω) � C(K1)

k
∑

�=0

∥
∥
∥∇�α

∥
∥
∥

L p(∂Ω)
, 1 � p <

n − 1

k
,

(A.24)

‖α‖L∞(∂Ω) � δ

∥
∥
∥∇kα

∥
∥
∥

L p(∂Ω)
+ Cδ(K1)

k−1
∑

�=0

∥
∥
∥∇�α

∥
∥
∥

L p(∂Ω)
, k >

n − 1

p
,

(A.25)

for any δ > 0.

Lemma A.8. ([4, Lemma A.3]) With notation as in Lemmas A.6 and A.7, we have

k
∑

j=0

∥
∥
∥∇ jα

∥
∥
∥

Ls (Ω)
� C ‖α‖1−a

Lq (Ω)

(
m

∑

i=0

∥
∥
∥∇ iα

∥
∥
∥

L p(Ω)
K m−i

1

)a

. (A.26)
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Lemma A.9. ([4, Lemma A.4]) Suppose that ι1 � 1/K1 and α is a (0, r) tensor.
Then

‖α‖Lnp/(n−kp)(Ω) � C
k

∑

�=0

K k−�
1

∥
∥
∥∇�α

∥
∥
∥

L p(Ω)
, 1 � p <

n

k
, (A.27)

‖α‖L∞(Ω) � C
k

∑

�=0

K n/p−�
1

∥
∥
∥∇�α

∥
∥
∥

L p(Ω)
, k >

n

p
. (A.28)

Lemma A.10. ([4, Lemma A.5]) Suppose that q = 0 on ∂Ω . Then

‖q‖L2(Ω) � C(Vol Ω)1/n ‖∇q‖L2(Ω) , (A.29)

‖∇q‖L2(Ω) � C(Vol Ω)1/2n ‖δq‖L2(Ω) . (A.30)

Lemma A.11. ([4, Lemma A.7]) Let α be a (0, r) tensor. Assume that

Vol Ω � V and ‖θ‖L∞(∂Ω) + 1/ι0 � K ,

then there is a C = C(K , V, r, n) such that

‖α‖L(n−1)p/(n−p)(∂Ω) � C ‖∇α‖L p(Ω) + C ‖α‖L p(Ω) , 1 � p < n, (A.31)
∥
∥
∥∇2α

∥
∥
∥

L2(Ω)
� C

(∥
∥
∥Π∇2α

∥
∥
∥

L2(n−1)/n(∂Ω)
+ ‖δα‖L2(Ω) + ‖∇α‖L2(Ω)

)

.

(A.32)
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