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Abstract

The well-posedness theory is studied for the linearized free boundary problem of incompressible ideal
magnetohydrodynamics equations in a bounded domain. We express the magnetic field in terms of the
velocity field and the deformation tensors in Lagrangian coordinates, and substitute it into the momentum
equation to get an equation of the velocity in which the initial magnetic field serves only as a parameter.
Then, the velocity equation is linearized with respect to the position vector field whose time derivative is the
velocity. In this formulation, a key idea is to use the Lie derivative of the magnetic field taking the advantage
that the magnetic field is tangential to the free boundary and divergence free. This paper contributes to the
program of developing geometric approaches to study the well-posedness of free boundary problems of
ideal magnetohydrodynamics equations under the condition of Taylor sign type for general free boundaries
not restricted to graphs.
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1. Introduction

This paper is concerned with the well-posedness of the linearized motion of the following
incompressible ideal magnetohydrodynamics (MHD) equations with free boundary

vv+v-Vo+Vp=uH-VH, in D, (1.1)
H/+v-VH=H Vv, in D, (1.2)
divv=0, divH =0, in D, (1.3)

where v is the velocity field, H is the magnetic field, p is the total pressure including the fluid
pressure and the magnetic pressure, and p > 0 is the vacuum permeability, D = Upc ;< 7{t} X 24,
Q; C R" is the domain occupied by the fluid at time ¢.
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We also require boundary conditions on the free boundary 0D:

H-N=0, p=0, ondD, (1.4)
(3 + %) lap € T(OD), (1.5)

where A is the exterior unit normal to I'; := 9€2,. The condition p = 0 indicates that the total
pressure vanishes outside the domain. Here the fluid considered is an incompressible ideal case.
Roughly speaking, the velocity determines the motion of the boundary, and the boundary is
the level set of the total pressure that determines the acceleration together with the magnetic
tension. The condition H - A/ = 0 comes from the assumption that the boundary T’y is a perfect
conductor, and should be understood as the constraint on the initial data since it will hold true for
all ¢ € [0, T'] if it holds initially as showed in [16]. The condition (1.5) means that the boundary
moves with the velocity v of the fluid particles at the boundary.

Given a domain 2 C R” that is homeomorphic to the unit ball, and initial data (vy, Hp) satis-
fying the constrain (1.3), we expect to find aset D C [0, T'] x R" and vector fields (v, H) solving
(1.1)-(1.5) with initial conditions

{x:(0,x)eD}=Q; v=v9, H= Hp, on {0} x Q. (1.6)

Then, let Q; = {x : (¢, x) € D}. Motivated by the Taylor sign condition on the fluid pressure for
the Euler equations, we raised an analogous condition based on the total pressure for ideal MHD
in [16]:

Vap < —co<0onaD, (L.7)

where Vyr = N? 0d,i. Here we have used the summation convection over repeated upper and
lower indices. In [16], we have proved a priori estimates in standard Sobolev spaces for the free
boundary problem of incompressible ideal MHD system (1.1)-(1.6) under the condition (1.7).
We also showed in [17] that the above free boundary problem (1.1)-(1.6) under consideration
would be ill-posed at least for the case n = 2 if the condition (1.7) was violated. Thus, it will be
much reasonable and necessary to require this condition (1.7) in the studies of well-posedness of
the considering free boundary problem of incompressible ideal MHD equations.

However, all the symmetries of the nonlinear equations were used for the a priori estimates in
[16], and so only hold for perturbations of the equations that preserved all the symmetries. Thus,
those a priori estimates for solutions for the nonlinear problem cannot be used for the linearized
equations which do not preserve the symmetries. Of course, the results in [16] are important to
raising the meaningful and reasonable condition (1.7) for the well-posedness.

Magnetic fields are essential in many important physical situations ([11,31,44]), for example,
solar flares in astrophysics due to the coupling between magnetic and thermomechanical degrees
of freedom for which magnetic reconnection is thought to be the mechanism responsible for the
conversion of magnetic energy into heat and fluid motion ([11]). Moreover, interface problems
in MHD are crucial to the theoretical and practical study of producing energy by fusion. In the
study of the ideal MHD free boundary problems, a priori estimates were derived in [16] with a
bounded initial domain homeomorphic to a ball, provided that the size of the magnetic field to be
invariant on the free boundary. A priori estimates for the low regularity solution of this problem
were given in [25] for the bounded domain with small volume. Ill-posedness was showed in [17]
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for the two-dimensional problem if the condition (1.7) was violated. A local existence result
was established in [14] for which the detailed proof is given for an initial flat domain of the form
T2 x (0, 1), where T2 is a two-dimensional period box in x| and x; so that the free boundary is a
graph for a short time within which the local existence was proved. For a general free surface not
restricted to the case of a graph, it might be feasible to use several coordinate charts to deal with
the general free boundaries not restricted to the case of graphs. However, this is quite technically
involved since one has to solve several free boundary problems simultaneously. In particular, it
might be extremely difficult in the study of long time problem by this approach of using several
coordinates chats for general free boundaries. The aim of the present paper contributes to the
program of the study of the ideal MHD free surface problem with a free surface being a closed
curved surface with large curvature by the geometric approach motivated by [8], [21] and [23]
for the Euler equations, and developed in [16,25].

Besides the motivation of serving as a step of the iteration scheme for the nonlinear problem
for the case of the general free boundary without reducing the problem to the case that the free
boundary is a graph, the study of the linearized problem has its own interest since the analysis and
estimates for it may help for the design of the effective numerical computation schemes. Indeed,
the well-posedness of the nonlinear problem does not imply that for the linearized problem, for
the reason mentioned earlier that the linearized problem does not preserve the symmetries of the
nonlinear problem provided by the physical laws. Indeed, the well-posedness of the linearized
problem is even unknown for the case when the free boundary is a graph, since the approach used
in [14] for the proof of the nonlinear problem is to use the parabolic approximation motivated by
[9] without using linearization.

In this paper, we prove the existence of solutions in Sobolev spaces for linearized equations
using a new type of estimate, motivated by the work of the free boundary problem of incom-
pressible Euler equations of Lindblad in [21]. It is crucially important to prove the existence and
obtain estimates for the linearized equations or some modification, in order to prove the existence
theory for the nonlinear problem by using iteration schemes. In the most usual way, it is to lin-
earize the equations with respect to both the velocity field and the magnetic field. However, this
strategy does not work for the problem considered in this paper to prove the well-posedness for
the linearized system of this type, where many operators can not be controlled and the relations
between the velocity field and the magnetic field are also destroyed. In order to preserve these
important relations, we seek a new way to linearize the equations. Since the magnetic field can
be expressed in terms of the velocity field and the deformation tensors in the Lagrangian coordi-
nates, we first solve the equation (1.2) and substitute the magnetic field into the equation (1.1) to
obtain an equation of the velocity in which the initial magnetic field serves only as a parameter.
Then, we linearize this equation with respect to the position vector field whose time derivative is
the velocity in the Lagrangian coordinates. We believe this strategy is more suitable for the proof
of the well-posedness of the nonlinear problem by putting it in an iterative scheme motivated by
the linearization investigated in this paper. This is the first new idea of this paper. As in [21], we
project the linearized equation onto an equation in the interior using the orthogonal projection
onto divergence-free vector fields in the L? inner product, which removes a difficult term, the
differential of linearization of the pressure, and reduces a higher-order term, the linearization of
the free boundary, to an unbounded symmetric operator on divergence-free vector fields. Doing
s0, the linearized equation turns to an evolution equation in the interior for this so-called normal
operator that is positive due to the condition (1.7) and leads to energy bounds. The operator is
time dependent and nonelliptic, the existence of regular solutions cannot be obtained via stan-
dard energy methods or semigroup approaches. It is effective to use Lie derivatives with respect
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to divergence-free vector fields tangential at the boundary, motivated by [21]. The estimates of
all derivatives can be obtained from those of tangential derivatives, the divergence and the curl.
We replace the normal operator by a sequence of bounded operators converging to it that are still
symmetric and positive and have uniformly estimates in order to get the existence of solutions.

When adopting the strategy mentioned above, certain analytic obstacles appear due to the
presence of magnetic fields. A large part of the paper is to deal with the coupling of the magnetic
field with the perturbation of the velocity field. In the linearized equation, there appears a term
involving coupling of the perturbation of the velocity field and the initial magnetic field, which
is due to the magnetic tension force. Dealing with this term directly causes essential analytic
difficulties. A novel idea is to regard it in terms of the Lie derivatives of the magnetic field. This
provides advantages when we commute the vector field of the magnetic with other vector fields
used in [21] for the problem of incompressible equations by making full use of the fact that the
magnetic field belongs to the tangential spaces of the boundary when restricted there, and it is
divergence free. Moreover, the perturbation of the pressure in the linearized evolution equation
is obtained as a functional of the perturbation of the velocity field and magnetic field by solving
a Dirichlet problem of Poisson equations. The presence of magnetic field creates considerable
difficulties in estimating it coupled with other quantities.

Fluids free boundary problems arising from physical, engineering and medical models are
both important in applications and challenging in partial differential equations theory. Examples
include water waves, evolution of boundaries of stars, vortex sheets, multi-phase flow, reacting
flow, shock waves, biomedical modeling such as turmor growth, cell deformation and etc. The
most fundamental and simplest setting is for incompressible fluids for which the local well-
posedness in Sobolev spaces for inviscid irrotational flow was obtained first in [40,4 1] for 2D and
3D, respectively. Substantial progresses for the cases without the irrotational assumption, finite
depth water waves, lower regularity, uniform estimates with respect to surface tension and etc
have been made in [1-4,7-9,12,18,24,29,32,33,43] and etc. For more references, one may refer
to the excellent survey [18]. For compressible inviscid flow, the local-in-time well-posedness of
smooth solutions was established for liquids in [22,35] (see also [10] for the zero surface tension
limits), and the study of the effects of heat-conductivity to fluid free surface can be found in [26].

We conclude this introduction by reviewing related results of MHD free boundary problems.
For the case where the magnetic field is zero on the free boundary and in vacuum, the local ex-
istence and uniqueness of the free boundary problem of incompressible viscous-diffusive MHD
flow in three-dimensional space with infinite and finite depth setting was proved in [19] and
[20] where also a local unique solution was obtained for the free boundary MHD without ki-
netic viscosity and magnetic diffusivity via zero kinetic viscosity-magnetic diffusivity limit. The
convergence rates of inviscid limits for the free boundary problems of the three-dimensional in-
compressible MHD with or without surface tension was studied in [6], where the magnetic field
is constant on the surface and outside of the unbounded domain. For the incompressible viscous
MHD equations, a free boundary problem in a simply connected domain of R> was studied by a
linearization technique and the construction of a sequence of successive approximations in [28]
with an irrotational condition for magnetic fields in a part of the domain. The plasma-vacuum
system was investigated in [15] where the a priori estimates were derived in a bounded domain.
The well-posedness of the linearized plasma-vacuum interface problem in incompressible ideal
MHD was studied in [27] in an unbounded plasma domain. For other related results of invis-
cid MHD equations related to this paper with free boundaries or interfaces, one may refer to
[5,13,30,34,36-39,42].
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The rest of the paper is organized as follows. In Section 2, we reformulate the free boundary
problem to a fixed boundary problem by using the Lagrangian coordinates, and then linearize the
equation. The linearized equation is projected onto the divergence-free vector fields in Section 3.
We derive the lowest-order energy estimates in Section 4. In Section 5, the linearized problem is
changed into the case of homogeneous initial data and an inhomogeneous term which vanishes
to any order as time tends to zero. Next, the a priori bounds of the linearized equation with
homogeneous initial data will be derived in Section 6 including those of tangential derivatives and
the curl. Then, a smoothed-out equation will be studied according to the normal operator and the
existence of weak solution of it will be proved in Section 7. The existence of smooth solutions for
the linearized equation will be proved in Section 8. In Section 9, we turn to the energy estimates
of the original linearized equation with inhomogeneous initial data and an inhomogeneous term
and give the main result and its proof in Section 10. The appendix is on preliminaries about the
Lie derivatives.

2. Lagrangian coordinates and the linearization of equations
2.1. Lagrangian reformulation

In this section, we use the Lagrangian coordinates to reformulate the free boundary problem
to a fixed boundary problem. Lagrangian coordinates x = x (¢, y) = f;(y) are given by

Z—f =v(t,x(t,y), x0,y)=fo(y), yeL. 2.0
Since divv =0, f; : @ — €2, is a volume-preserving diffeomorphism. The free boundary be-
comes fixed in the new y-coordinates. We take fj as the identity operator for simplicity, that is,
x(0, y) =y and €2 is just the unit ball. For convenience, the letters a, b, ¢, d, e, and f will refer
to quantities in the Lagrangian frame, whereas the letters i, j, k, [, m, and n will refer to ones in
the Eulerian frame, e.g., 9, = 8/dy* and 8; = 3/9x".

Denote
Dy =, + ko, = =0 (2.2)
= Vo0, =— =" )
P g KT axk T axk dy?
Then, we get
ax’ dxk 9o ay“ dy® dv/
R mdp 2 = 2.3)
dye  9y® dxk ox! dx/ dx!
From (1.2) and (2.3), we have
v . 9ve R ) . 9ve ) 99
D (H ) =, 2+ B D, 2 = Higw S — Hig RS =0,
Ox! ox! ox! oxi dxk
which yields
ay*

= H)(y)8¢ = H{ (),

i CAN
H'(t,x(t,y)7—=H (0,x(0,y)) ——
ox! ax' |,—o
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and
j 7 axj(tv )’)
where H{ (y) = H(x(0, y)). Then,
- - 9xk 9y _, 9x! - _ .
H' 9 H' = H@Wﬁac(fzgﬁ> = H{ 3 (HEBpx").
For convenience, denote the differential operator
B := B%( )i with BY(y) := iHS (»)
= yay“’ Y) =ty (y),
then (1.1)-(1.5) can be written as
D2x' +9;P =B, in[0,T]x L,
0
K = det(—x> =1, in[0,T]x <, 2.5)
dy
P =0, onT,

where P = P(t,y) = p(t, x(¢, y)), 0; is thought of as the differential operator in y given in (2.2)
and Dy is the time derivative. The initial conditions read

Xli=0=y, Dixli=0=vo, (2.6)
satisfying the constraint div vy = 0. Taking the divergence of (2.5) gives the Laplacian of P:
AP = —(3; D;x*) (3 Dyxt) + 8; (B*xY). 2.7
The condition (1.7) turns to be
VNP < —co<0, onT, 2.8)
where N is the exterior unit normal to I'; parameterized by x (¢, y).
2.2. Linearization
Now, we derive the linearized equations for (2.5). We assume that (x(z, y), P (¢, y)) is a given

smooth solution of (2.5) satisfying (2.7) for ¢t € [0, T'].
Let § be a variation with respect to some parameter r in the Lagrangian coordinates:

il

or (t,y)=const
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We think of x(z, y) and P(¢, y) as depending on r and differentiating with respect to r, say,
x(t,y,r) and P, v, r) respectively. Namely, (x, P)|y—0 = (x, P). Differentiating (2.2) and us-
ing the formula for the derivative of the inverse of a matrix, § M -l _pm-1 MyM —! we have
the following commutator formula

[8, 81 = —(3;6x") . 2.9)
Let
(6x,6P) = <%, aa—f) ) (2.10)
which satisfies divéx =0 and 6 P|r = 0.
From (2.5) and (2.9), noting that [D;, §] =0 and [§, B] = 0, we obtain
D?5x' = —88; P + B*5x' = (3;6x")0 P — 9;6 P + B8x'. (2.11)
From (2.5) again, we have
3P =—D>x' + B2x' = —Djv' + B2, (2.12)
and then
(0i8x%) 0 P =0; (5x* 0, P) + 8x* (0 Div' — 31 (B%x1)). (2.13)
It follows from (2.11) and (2.13) that
D28x' 4+ 8;8 P — 8;(8x* 0y P) — 8x* (3 Dv' — i (B?x')) — B8x' = 0. (2.14)
Now, we introduce new variables.
Let gap = 6;j gf gf 5 be the metric §;; expressed in the Lagrangian coordinates, g be the

inverse of gup,

dxt 9xk axt 9xk

8ab = Di8ab = 3y4 By 5 (Okvi + 0ivp), and wap = 9y4 0y ——5 (0 vk — 0kvi) (2.15)

be the time derivatives of the metric and the vorticity in the Lagrangian coordinates, respectively.
It follows that

axi 9xk 1 .
Wﬁakvi = 5(8ab — Wap)- (2.16)
Denote
ay® . dx!
we=sxi 2 syl =whI 4 —sp. 2.17)
oxi’ ayb
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Multiplying (2.14) by gyif, and summing over i, we obtain

ox' oo c by 0% i
51‘1WD,3X — 0, (W0 P)—W (SilﬁabDlv + daq

+ 8i10ax' W23 (B*x") — 8;10,x BX(W€3.x") = 0. (2.18)
The first term in (2.18) can be written as

ax!

ay

. 200 2vwb 4 s b, X b .
Sl Dt(sx —gathW + (&ap — wap) D! W +3y“W op Dy v;.

It follows from (2.18) that

gathzwb + (&ab — wap) Dy Wb — 0, (W0, P) + 0aq
+ 818, W3y (B*x) — 8110, B2 (WCB.x') =0, (2.19)

which yields by acting g

DIW? + g (8ab — @ap) Dy W’ — g7 (WE3: P) + g™ Dug
+ g998;10,x' [WC0.(B*x") — BZ(W<3.x")] =0. (2.20)
From (2.18), we see that the energies will include || BW ||, which is very complicated due to
div (BW) # 0. Indeed, we can regard B as a tangential derivative since B = B“9,, is independent
of time and d, B = 0. Thus, we can use the Lie derivative corresponding to B given by

LpWe=BW* — 9, B°W?, (2.21)

which is divergence-free due to div Lz W = 9, (B3, W — 8, B*W?) = 0 if div W = 0. We also
have

Lpoex' = Box' + 0.B9,x". (2.22)

For more details and properties of Lie derivatives, one can see Appendix A.
It follows from (2.21) that

LAWY =B>W —2(3.B) LW — W9,(BBY),
and then
B2 (0:x' W) =3,x" LZWE +2((3.B?)dpx’ + Bo.x) LW + W3, (B>x').
Hence, in view of (2.22), one has
2998110, x [W3.(B*x") — BE(WCax')) = —LEW? —2g98;18,x' Lpd.x' Ly W°.
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We introduce some new notations. Denote
W, y) == D,Wet,y), W*:=DW (2.23)

Since ¢ = 8 P, one has ¢g|r = 0. Thus, we have the following system, by virtue of (2.20) and
(1.3),
W — LW+ g%8.q — g0 (W D P) + 8 (§ap — wap) W”

—2g998,18,x' Lpox' LW =0,
divW =719,k W) =0, (2.24)
qlr=0,
Wli—o = Wo, Wli—o = W1,

where div Wy = div W; = 0.
_ We can express (2.24) in one equation since ¢ = § P is determined as a functional of W and
W. Thus, we derive an elliptic equation for g.

2.3. The equation of Aq

In order to derive the equation of Ag, we calculate div W first. Denote

ay® .
u? = L.v’, and ug = gapu’.
dx!

It follows from div W = 0, that div W = 0. Taking the divergence of (2.24) yields

Aq = 34(87 9 (W3 P) — g7 (8ap — wap) W’ +28%8:18,x' Lgdcx' L WE),
qlr =0,

since div E% W =0.
We separate ¢ into four parts:

4
q =Zqz',
i=1

where g;’s satisfy the following Dirichlet problems of Poisson equations:

Agy =AW P), qilr =0,
Aqa = =348 gapr W), ¢2Ilr =0,
Ags = 04(g  wap W), g3lr =0,

A =204(8%8i10,x' Ld.x LEWE), qalr =0.
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Then, we can write (2.24) as

LiW:=W — LW + AW +GW —CW + X LW =0, (2.25)
where
AW = — g%, (3. PWC — q1), (2.26)
GW? = g™ (gap W + duq2). (2.27)
CW = g% (wap WP — 8ag3), (2.28)
XLpW = —26%8,0,x' Lo x' LxWE + g%93,q4. (2.29)

3. The projection onto divergence-free vector field
In this section, we recall some definitions on the projection onto divergence-free vector field,

one can see [21] for details.
Let IP be the orthogonal projection onto divergence-free vector fields in the inner product

(W, U) Z/gabW“Ubdy.
Q

Then,

PUY =U¢ — gababq7
Aq = d,(g"%8pq) =divU = 3,U%, ¢q|r=0,

because of g.,g%¢ = 85 and

(W, (I —P)U) =/W”Naqu—/qdidey:O, if div W =0,
r Q

where N, is the exterior unit conormal and d is the surface measure. Moreover, the projection
of its gradient vanishes for a function vanishing on the boundary:

P(g"0f) =0, if fIr =0.
Denote |W|| := (W, W)!/2. Clearly, one has that
IPUI< IUI, IA-PYUI< IUI.
The projection is continuous on the Sobolev spaces H' (€2) if the metric is sufficiently regular:
IPU g @) < CAlUlH (9)-
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Furthermore, if the metric also depends smoothly on time 7, then
Y UIDIPUN @) < Crx Y ID Ul - 3.1)
Jj=0 j=0

For functions f vanishing on the boundary, we define operators on divergence-free vector
fields (9, W¢ =0)

AW =P (—g“bSb(WCBC f)) : 3.2)

Ay is symmetric, i.e., (U, Ay W) = (AU, W).
Since P is the total pressure, the normal operator A in (2.26) is

A=Ap>0, (W, AW)> 0if VyP|r <0,

which is true in view of the condition (1.7). In fact,

(W, AW) = —/|N -W|?Vy PdS > 0, (3.3)
r

due to P =0 and g1 = 0 on the boundary I'. It follows from the definition in (3.2),

ArpWe=—g®3,(Wed:(fP)) + g*dpq,
Ag=AWd(fP)), qlr=0.

Then, for the divergence-free vector field U, we have

(U, AppW) =— / (U3g(WEa(f PY) + U%daq)dy
Q

:—/UNWNVN(fP)dS (3.4)
r

=— / UnWy fVyPdS,
r

since Vy(fP)= fVyP and fP =0 on the boundary, where Uy = N,U% = N - U. It follows
from the Cauchy-Schwarz inequality and the identity (3.3) that,

(U, App W) < (1 f|ooy (U, AUY (W, AW) 12, (3.5)
Moreover, since P vanishes on the boundary, so does P= D; P. Thus, we can define
A=Ap, AW = g3 (W8P —q), Aq=AWIP), qlr =0,
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which satisfies by (3.4)

(W, AW). (3.6)

Vy P
(W, AW)] /|WN| Vy PdS| < H N
Loo(I)

Indeed, A is the time derivatives of the operator A, considered as an operator with values in the
1-forms.
We define bounded projected multiplication operators for 2-forms «, as in [21], given by
MW =P(g%Pap WO, MW < el WI. 3.7)
In particular, the operators in (2.27) and (2.28) are bounded, projected multiplication operators:
G=M,, C=M,, G=M;, (3.8)
for the metric g, the vorticity o, and the time derivative of the metric g.
4. The lowest-order energy estimates
Now, we derive the energy estimates for the linearized equations
LiW=W— LW+ AW +GW —CW + XLpW =F, (4.1)

where F is divergence-free. )
We first compute the inner product of (4.1) with W and W. Since

D (ap W W) = gapy WW? + 28, WW",
we get
(W, W) = L4340y — S i, G, 4.2)
2dt 2
where G is given by (3.8). From the symmetry of A, it follows

(AW, W) = (AW W) — —(AW W),

N =
&.|g~

where AW = A p W is defined by (3.2) with f = P = D; P. In addition,

ldWW—WW
EE(? )_<7 )

Thus,

1 . 1 .
—%((A—i—I)W, W)= (A+DHW, W)—i—E(AW, W). (4.3)
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We also have

. 1d 1 [,
~ywoiny =3 4 [ 1£awPay =3 [ awcawcawtay
Q Q

+/5,-,(abxlcgaaxf + Lpdpx'd,x)LpWiWhay. (4.4)
Q

Since g4 =0 on T, it yields

(XLpW, W)=—2 / 8i10px' LB x LEWIWdy.
Q

Hence, we can define the energy as

E3(t)=E@) = (W, W)+ ((A+ DWW, W)+ (LgW, LgW). (4.5)
Then, we have the following energy estimates.

Proposition 4.1. Let

() ! 1+ VP
n =— —
0= Vy P

+2l1gll Lo () + 2M10x] Lo () ||533XI|L°°(Q)> .
Loo(Ih)

It holds
t
Eo(t) < efom®dt | B0y + f [ F(s)|le” Jomo@drgg | . (4.6)
0

Proof. Due to the antisymmetry of w, we have (CW, W) = 0. Then, we get

%E(r) =(-%Q’W +F, W)+ (W, W)+ %(AW, W) + %(g’ﬁgw, LgW)

+/5i1(£33},xlaaxi — 8;,x1£38axi)£BW“Wbdy.
Q

Thus, we obtain
|Eol <no()Eo+ I F I, (4.7)
which yields the desired estimates. 0O
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5. Turning initial data into an inhomogeneous divergence-free term

In this section, we want to change the initial value problem (4.1) and (2.24), i.e.,

{ LiW=W—LiW+AW +GW —CW + XLzW =F, (5.1a)
Wli—o = Wo, Wli=o = Wi, (5.1b)

into the case of homogeneous initial data and an inhomogeneous term F that vanishes to any
order as r — 0. As in [21], we can achieve it by subtracting off a power series solution in ¢ to

(5.1):
r+2 /5

Wo (1, 3) = S Wi ). (5.2)
s=0 """

It is clear that Wy, is divergence-free if so does Ws. Here W( and W) are the initial data given in
(5.1b), W5 is obtained from (5.1) at = 0:

Wa = W(0) = F(0) 4+ L3 Wo — A0)Wo — GO)W; + C(O)W; — X (0)LpWo.

The higher-order terms can be obtained by differentiating the equation with respect to time first
and then taking the value at # = 0. Indeed, we can obtain an expression by doing so,

D¥P2W = My (W, D,W, ---, D¥'W) + DFF,
from which we define inductively
Wisa = My (Wo, Wi, -+, Wi 1)lr=0 + DF Fli—o,
where My is some linear operator of order at most 1 and that is all we need to derive. Next, we
calculate the explicit form of M; as a simple model case, since we will do similar derivations
later on for other operators.

It is convenient to differentiate the corresponding operator with values in 1-forms, so we
denote

L W :=gapL1 W*
:gubWh - gubﬁ% Wb + 3u61 - aa (acPWC) + (gub - wab)Wh
— 28i10ax' LBOX LEWE = gup FP, (5.3)

where ¢ is chosen such that the last terms are divergence-free, and afterwards project the result
to the divergence-free vector fields. Denote

q9'=D;q, P°=D;P, g,, = D; gap, @y, = Djwap, Fs = D;F.
Applying the differential operator Dj to (5.3) and restricting 7 to 0, we obtain
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CS r— S£2 Wb a 8 Prfch 8 r
Z gah s+2 — 8ab o (Oc ) )+ 0aq
X 1
F300 (s — ol W
s=0

—221?28, ' 8i10a(D T XN Ld. (D' x) L WE = ZC,ngYF_f

s=0 51=0
Then, we need to project all terms onto divergence-free vector fields. Let
AW =P (—g% 8, (3. P*W°)),
gs Wd = P(gda ) Wb)
CW =P (g%ws, WD),

X, LpWd = —21?( da Zﬁélala (D) Lo, (D”x’)ﬁBW‘>

s1=0
We have
r—1
Wr+2— ZE gr s b+2+ZB (gr AEBW -Ar AW‘ gr—s+1Ws+1)
s=0 s=0
r
+ Z Ei Cr—s W1 — X s LWy +Gr s Fy),
s=0
which defines inductively W,4, from Wy, Wy, .-+, W4 1.

It is obvious that, by the definition of Wy, in (5.2),
D} (L1Wo, — F)ly=0 =0 fors < r, Worl=0 = Wo, Worli=0 = Wi.
Thus, we reduces (5.1) to the desired case of vanishing initial data and an inhomogeneous term
that vanishes to any order r as t — 0 by replacing W by W — Wy, and F by F — L1 Wy,.

If the igitial data are smooth, as similar as in [21], we can also construct a smooth approximate
solution W that satisfies the equation to all orders as t — 0. We can realize it by multiplying the
k-th term in (5.2) by a smooth cutoff function x (#/&x) and summing up the infinite series where
x(s) =1 for |s] < % and x (s) =0 for |s| > 1. If we take (|| Wil|lx + Dex < %, then the sequence
er > 0 can be chosen so small that the series converges in C"* ([0, T'], H™) for any m.

6. A priori estimates of the linearized equation with homogeneous initial data
6.1. The estimates of the one more order derivatives for the linearized equation
We take the time derivative to (5.3) to get

gab W' — 8abLEWP — 8,(WE8, P) — wap WP + 84
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= ZgabWb + gabﬁ%g Wb + Ba(WCBCP) - (gab - d)ab)Wb
+ 2D, (8110ax' Lox )V LpWE +2810,x Lpox' LEWE + gup FP + gap FP.

Similar to (4.2) and (4.3), it holds

'"W—ldWW 1WQW
(W, >_§d_< )‘5( )
and

“’Aww AW WY + L AW W

We have, in view of (4.4),

1d 1
—(LEW, W) —Ed—/ILBWIZdy— E/ga;,EBW LeWldy
Q
+f(£38ah)£BWaWbdy~
Q

Let
Ep, = E(D,W)= (W, W)+ (W, AW) + (LpW, LpW).
Then, similarly, from the antisymmetry of @, it holds that
p, =2(F +GF, W) —2(GW, W) +2(CW, W) —3(GW, W) + (W, AW)
+(GLEW, LW) +4(D;(8i10,x' Lpox') L WE, W)

+ 281 (8gx' LBOx" — LBy x 0.x)LEWE, W)
—2(AW, W).

Thus, we obtain
| (6.20)] < 2|[0x || Lo I£BOx Lo ED, -
By Cauchy-Schwartz’ inequalities, one has

I(62a)|<2(|IF||+||g||L°°(Q>|IF||)E +2(||g||L°°(Q)+||w||L°°(Q))E *Eo

Vy P
Ep,,
L®(RQ)

3112l 00 —_—
+< gl (QH_HVNP

and
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. i 1/2
| (6.20)] < 11§l L@ Ep, + 41| D: (8118x' L5ox") || 1o () EoE .

Now, it remainders to deal with the term (AW, W) in (6.2d). From (3.5), it follows that

(W, AW 2(W, AW)1/2, (6.3)
Lo(T)

AW, W) ” P

But this does not imply that the norm of A is bounded by the norm of A because (W, AW) is
one more order derivative than the considering energies. However, we have

(AW, W) = %(Aw, W) — (AW, W) — (AW, W),

in which the last two terms can be bounded by Ep, and Ey. Thus, we have to deal with this term
in an indirect way, by including them in the energies and using (6.3). Let

Dp, =2(AW, W),

then we get
Dp, =2(AW, W) 4+ 2(AW, W) + 2(AW, W),
and
. . . Vny P Vy P
|Dp, — 2(AW, W)| gz‘ N E E1/2+2‘ N Ep,.
N L®(Q) VNP L(Q)
VyP 1/2
Do, | <2‘ - 5 EoEy’.
N L>(Q2)
Denote
_ Vy P
ni(t) = H— ,
VNP L®(RQ)
ni(r) ——||g||L (@) + 3 H +10x | Lo 1 £Lp0x ] Lo (),
VNP L®(RQ)
i1 (1) =€l o) + @l Loy + 211Dy (8118x" Lax") || oo (o) + H
VNP LOO(Q)

and

H@O=FI+12lze@lFl.
We then have the following energy estimates.
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Proposition 6.1. Let E3(t) = Ep,, and
t
My (1) =43 () E3 (1) + de> o m @7 / (i1 (D) Eo(v) + f1(1)* dx,
0
it holds for (5.3) with zero initial data
t
E3 (1) <My (t) + / M (s)e' ~*ds.
0

Proof. From the above argument, we have obtained

d
E|ED, + Dp, |

= d E D
= E( p, +Dp,)
<2n1(H)|Ep, + Dp,| +2@m1 () Eo(t) + fi(H) E1(2),

which yields

t
1
|Ep, + Dp,| <2e2lm @z / (1) Eo(s) + f1(5)) E1(s)ds.
0
Therefore,

t
E2(t) <262 Jom @ / (f11(s)Eo(s) + f1(s)) E1(s)ds + 2711 (1) E E}
0

t
<ergnl(r)dr(%g—2jgnl(r)drfE]Z(S)ds
0

t
, ) _ 1
T 92 Jom(v)dr f (n1(s)Eo(s) + f1 (S))2 ds) + ZH%([)E(% * EEZ’
0

and then

t
E}(r) < /E%(s)ds + M (1),
0

which implies the desired result by the Gronwall inequality. O
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6.2. The more one order energy estimates with respect to Lp
We now analyze the higher order energy functional. Let

Ap=Agp, Gp=Mys, g8 = Lpgauw,

QB = MgB, Cp=Mys, wfb =Lpwap.
From (6.14), it follows that

LiLpW =LpW — L3WT 4+ ALWY + GLpW? —CLEW + X LW
=LpF — (AW +GgW? —CsW? +GgW? — GpF?)
+28%(8;10ax' LBox) g LEWE.

We define, similar to the lowest-order energies,
Ep=E(LpW) = (LpW,LgW) 4+ (LgW, (A+ 1)LpW) + (LEZW, LZW).

From (4.4), (A.8) and B - N|r =0, we get

— (LW, LpW) = —/gud,c%.wdzBW“dy

Q
Ld 2 W2 LI AP R g 2 an b
=57 [ 1EEWPdy =2 | LyWLEWdy + | (Logan) L5 W LW dy.

Q Q o

One has

(XLZW, Wr) = —2/SilaaxlﬁgacxiL%WCWﬁdy.
Q

Thus, following from (A.3), we have
—(LHZW, LpW) + (XLEW, Ly W)
1

d 1[.
:EEfw%WIzdy— E/gahE%W“E%Wbdy
Q Q

+/5,~,(£Baax’acx" — 8,x' LA XN LEWILEWPdy.
Q

Due to the antisymmetry of w, one has

Ep =2(LpF +GpF,LpW) —2(GpW, LpgW) +2(CaW, LW) —2(GpW, LpW)
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— 4L pSi10ax' Lpdex ) LW, LW) (6.4b)
—(GLEW, LyW) + (GLEW, LgW) + (LgW, ALEW) + (GLW, ALZW)
(6.4¢)
+ / SabLEWOLEWdy +2(LsW, Ly W) (6.4d)
Q
—2(ApW, LpW). (6.4¢)

Now, we control the term (A7 W, Wr). As the same argument as in the estimates of E(¢),
we have to deal with it in an indirect way, by including it in the energies. Let

Dp =2(AgW,LpW),

then

Dp =2(ApW,LpW) +2(AgW, LpW) +2(AgW, Ly W).
Therefore, we obtain
Ep + Dp =(6.26a) + (6.26b) + (6.26f) + (6.262)
+2(ApW, LpW) +2(ApW, LpW). (6.5)
From (3.7), (3.8) and (3.6), it yields
| (6.40) <2(IILFIl + 1 £Bgll Lo | FIl + 1 £8&ll L) Eo

2
Lol L@ Eo + ILsg Lo E1) E
| (6.4b)] <4[Lp(510x' L5dx") | o) Eo By,

- VNP
[ (6.4c)+ (64D < ( 1+ 1€llLe) + Eg,
VnP

and

|(65)|<2(HVN(BP)” VN(BP)H ) e
TS Vy P

Let EZ —El/2 and

Vn(BP)

i (t):' Vy P

1
Ey, ni (1) = 3 <1 + 18l + H H)

L0 (R2)
Al (t) =I1Lpé Lo Eo + | Lpwll L@ Eo + |1 Lpgll L) El

S At et

+201L5(8i0x' Lpax") | Lo () Eo +
Vy P
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O =ILsFI+ILpgl>@IFl.
Then, we have the following estimates.

Proposition 6.2. Let

t

MP () =2ﬁf(1)+2/(ﬁf(f)+f13(f))dr,
0

it holds

t

t
ElB(t)g MlB(t)—i-Z/nf(s)Mf(s)exp Z/n?(r)dr ds.
0

s
Proof. From the above argument, we have obtained

Eg+Dp <2EE(fE+af +nPED).
Since Ep(0) = Dp(0) =0, the integration over [0, ¢] in time gives

t
Ep <2EEnb +2/ElB(nfEfg +if + fPdr.
0

Taking the supremum on [0, 7] in time and dividing by supyy ;) E f , we get

t
EE@m)y <mE@) +2/nf(r)ElB(r)dz.
0

By the Gronwall inequality, we can obtain the desired estimates. O
6.3. Construction of tangential vector fields and the div-curl decomposition

In the Euclidean coordinates, a basic estimate is that one can use derivatives of the curl, the
divergence and the tangential derivatives to estimate derivatives of vector fields, as proved in
[21, Lemma 11.1]. However, this estimate is not invariant under changes of coordinates, so it is
desired to replace it by an inequality which also holds in the Lagrangian coordinates. Its higher-
order versions will be derived as well afterwards. Both the curl and the divergence are invariant,
but the other terms are not. There are two ways to make these terms to be invariant. One is to
replace the differentiation by covariant differentiation as used in [8,16], and the other is to replace
it by Lie derivatives with respect to tangential vector fields introduced below, as the same as used
in [21]. A lower-order term involving only the norm of the 1-form itself multiplied by a constant
relative to the coordinates appears in both ways.
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Definition 6.3. Let ¢; be a constant satisfying

ox |2 2
gcly

dy
dy

0x

> (ganl + 18D < i,
a,b

and let K| denote a continuous function of c;.

Indeed, the bound for the Jacobian of the coordinate and its inverse follows from the bound
for the metric and its inverse, and the bound for the former implies an equivalent bound for the
latter with c% multiplied by n.

Following [21], we now construct the tangential divergence-free vector fields which are in-

dependent of time and expressed of the form 7¢(y) aga in the Lagrangian coordinates. Due to

det(g—;) = 1, the divergence-free condition reduces to
0, T* =0.

The vector fields can be explicitly expressed since €2 is the unit ball in R”. The rotation
vector fields y*d, — yd, span the tangent space of the boundary and are divergence-free in the
interior. It is clear that B = B%0d, belongs to this space. Moreover, they also span the tangent
space of the level sets of the distance function from the boundary in the Lagrangian coordinates
d(y) =dist(y,I') =1 — |y| for y # 0 away from the origin. We denote this set of vector fields
by Sp. Thus, B € Sp.

As in [21,23], a finite set of vector fields spanning the tangential space when d > dy and
compactly supported in the set where d > dp/2 can be constructed. This set of vector fields is
denoted by S1. We use S = Sy U S to denote the family of space tangential vector fields, and let
T =S U {D,} denote the family of space-time tangential vector fields.

Let the radial vector field be R = y“9,. Then, 9, R* = n is constant. Let R =S U {R}, which
spans the full tangent space of the space everywhere. We use i/ = S U {R} U { D;} to denote the
family of all vector fields. Note that the radial vector field commutes with the rotations, i.e.,

[R,S1=0, Se&.
Moreover, the commutators of two vector fields in Sy are another vector field in Sy. Set R; =
SiU{R}, Ti =8S; U{D;} and U; =T; U{R} fori =0, 1.

Now, we recall some estimates as follows.

Lemma 6.4 ([21, Lemma 11.3]). In the Lagrangian frame, with W , = gup Wb, we have

|[LuW| <K} (|curlﬂ| + |div W| + Z [LsW |+ [g]1|W|> , UeR, (6.6)
SeS

LuW| <K <|cur1m +Idiv W]+ 3 1Lr W+ [g]1|W|>, Uel, 6.7)
TeT

where [g]1 = 1+ |0g|. Furthermore,
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OW| < K (|LRW|+Z|£SW|+|W|>. (6.8)
SeS

When d(y) < do, we may replace the sums over S by the sums over Sy and the sum over T by
the sum over T.

Next, we recall the higher-order versions of the inequality in last lemma. The lemma will be
applied to W replaced by £{}W, and the divergence term will vanish in applications. We will
be able to control The curl of (Eéﬂ)a = /J{/(gab W?) will thus be controlled, which is different
from the curl of (ﬁ{] W), = gabﬁé WPb. However, the difference is lower order and therefore
controlled. We first introduce some notation.

Definition 6.5. Let 8 be a function, a 1- or 2-form, or vector field, and let }V be any of our families
of vector fields. Set

Y=Y |£dH.
|JI<s,JeV
Bl = > 1B --IBIY. (Bl =1.

SpFe s S pysi 2 1

In particular, | /3|Z2 and | ,8|Z;{ are equivalent to Z|a|< , , respec-

08| and X ie, [ DFOSB

tively.

Lemma 6.6 (/2], Lemma 11.5]). With the convention that |curlﬂ|f1 = |div W|l}1 =0, we have

)
WIR <K (|cur1m?_1 +ldiv W W+ |g|?|W|Z%> :

s=1

,
WIR <K (IR (leurd WIR -+ 1div IR+ WIS,)

r—1-—s r—1-—s
s=1

The same inequalities also hold with R replaced by U everywhere and S replaced by T :

)
WIH <K <|cur1w|%’_1 +Hldiv W Wl 4 gl |W|€‘_s) ,

s=1

r—1-—s r—1-—s

)
W <Ky D Tl (et W +1div WL+ wIT).

s=1

6.4. Commutators between the linearized equation and Lie derivatives with respect to B

First, we commute tangential vector fields through the linearized equation, in order to get the
higher-order energy estimates of tangential derivatives.
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Let T € T be atangential vector field, and recall that [L7, D;] = 0 and that if W is divergence-
free, then so does L7 W. Now, we apply Lie derivatives LIT = ET[I -+ L7, with the multi-index
I =C(1, - ,i;) to(5.3).

From (A.5), we have for r = |I|,

. I by I Iy
Lr@aWh = > Oy gL WP =:cl, L7 g LFW,
Li+h=1

where we sum over all /1 + I, = I and cfl 1, = 1 (only for the simplicity of summing over the

repeated indices) in last expression.
From (A.2) and the identity

T3, PWE) =3.(T494 P)WE — (0. ToPWE + 8. PT 94 W¢
=3.(TP)WC + 0. PLy W°,
one has
L7030 PWE)) =0,T (0. PWC) = 3,0 (T PYWE + 8. PLTWE).
Then we have inductively
L5840 PWE)) =8, T (9 PWE) = ¢} 1 8a(8.(T" P)LEWE). (6.9)
Hence, we obtain
¢, (£7 8ab)LE WP — ], 1, (L7 8ab) L7 LEW® — ], 1,3a @ (T PYLE W)
=—0,T g — ¢} | (L3 (8ab — w0ap)LEWP +ch 1 (L7 gap) LFFP
+2¢] 1, (L3 (Bi18ax' Lpdex' ) LELEWE. (6.10)
Denote
Wy =LLW, Fi=LF, Pr=T'P, gy =Tq,
(1 =L (), 8hy = L7 8ab Oy = L7 Wab,
and g[{b = D,E;gab = EITgab, W;=D,W; = E;W, etc. Then, (6.10) can be written as
clllzgabwlz clllzgab(‘Cz W) C;ﬂzaa(acpll WICZ)

== 0aq] — clllz (gab - wab)le
+2¢] 1) (810ax" Lpdcx) [, (LEW) Lo + ¢ 1,80 FP. (6.11)

Next, we project each term onto the divergence-free vector fields and introduce some new
notation for the operators
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AW =Ap W, GW=P(g%gl,WP),
GIWe =P84, W), CiW* =P(g“wy, W),

and ¢ ~1112 _CI 1, if I # I while ¢ 1 2 — 0if I, = I. Then, we can write (6.9) as

P (g% L (gac AWE)) = AW! + &2 AL W
Thus, we are able to rewrite (6.11) as
LiWd =wi — LAw)d + AW +GWi —cwi + x(Lpw)d
:F;j - 61I[2(~’41| W;lz + gll W]‘i _Cll VVId2 + gll W[‘é - gll Fg)

+267 269 (81 9x' Lpdex") 1, (LEW)S,.
Now, we define higher-order energies. For / € V with || =r > 2, let
=EW) = (W, W)+ (W, (A+ DW;) + (Lg Wy, LsWy).

For V e {{D,},{B},B,S,T,R,U} where B={B, D,}, let

wiy=")_

|W|sB = Z ‘EB[,%W

\1\<S,Tev <5, TeV
o VnLE .
% NETY v
19g1Y o por= Y. | =5 N3G o por =Y 10q) o pers
|I|=s,TeV L®(R) 0<ILs
1
W=D ILhfli~e. FX=" > 1Al
|1|1<s, TeV 1< s, TeV
-V V_
EY= > JVE. EY= ) E
[I|=s,TeV 0<IKs

6.5. The higher-order energy estimates for time and Lp derivatives

From (6.14), we have for I € 3,

Ep =2(Wy, Fy) = (GWr. Wi) +2(Wp, W) + (GW. (A+ DW))
+ (Wi, AW;) +(GLEW, LpWy)
— 261 (Wi, Af W) + (W, G W) — (Wy. Cry W)
+ (W1, G, Wi,) — (Wr, Gr, FL,))
+AG (W (8110ax' Lpdex) 1, (LeW)S,)
+ 2L Wi, LeWr) +2(Wp, (LEW) ) — 2(W,, X(LpW))).
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Ej,
L>(Q2)

~ i 1/2 ~1/2
| (6.21)] < 48] 211(8118ax" L5 dex) 1y 112 B} B}

It is clear that

' _ Vy P
| 6191 < 2E, 217l + [ 1+ gl + || o
VyP

and

To deal with the term (W;, Aj, Wp,), we introduce

Dy =255112(W1,A11 W),

then
Dy =28 (Wi, Ay Wiy) + (Wr, A W) + (Wr, Ay W),
Thus,
|D; + (6.20)
- VN Pp Vy Py . 1/2 -1/2
<2ehh ‘— ' ! + 18" L) + o ) ) E)°E
I ( VNP LOO(Q) VNP LOO(Q) ( ) ( ) 12 !

~I I ) 1/2
+ 282 M | oo oy (IWi Il + 1 Fr IDE, 2,

where the term || W12 || can be controlled by the energy norm taking one 7 = D;.
Since B- N =0onI', we get by (A.3),

(6.22) = = 2((Lpgap) WE, LEW?) 4+ 4(8118,x' Lpopx' W, L W?)
=2(8;1(3,x' LB dpx" — Lpdax' dpx YW, LpWP).

Then,
[ (6.22)] < 4|0x ]l Loo () ILBIX | Loy E -
Therefore,

EI+DI
2EVP(Fp|| + &N gh W F
S2E/7(Frll ¢ 2 llg M e AW+ 1 Fr D)

: Vn P l i
Hl1+1glli=e + | =— +4168;;0x" Lpox" |1 | Ex
VNP

P

<1 Vi Pp

+2C11 2 — 1
VNP

Loo(2)

[
L) VNP

+ 118" Lo + o ||L°°(SZ))

L%(Q)
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1/2

E/ E)”* 4432 5,0x Lgox'yy, @ E)] PE)? (6.23)

Noticing that E;(0) = D;(0) = 0, the integration over [0, ¢] in time implies

t
E; <Dy +/ (6.23)dt
0

r—1

<2E;r Y CHIOP, g 0 p1 EF + /(6 23)dr. (6.24)
s=0

Let

VNP
Bo14@r —D)gll=w@ +20 = DIILsgl L) +
VNP

L(2)

+4||3i13ax11333bxi||m°(9),
B =f(||aP||,,oo,P71 F 18P0 pt + 115 + 0I5 + 1815
. ! inB
+ 118i104x" Lpdcx ”r’oo)dtv

=/(1 + g8, FPdr.

Taking the supremum on [0, 7] in time of (6.24), then summing up the order from O to r, and
dividing by EB = Supyo ] EB, we get

t

SC(sup I8P,y o0 pt +ADVEB |+ CFP + fn?E,Bdr.
[0,¢]
0

By the Gronwall inequality, we can obtain the following estimates.

Proposition 6.7. Let

M5B = C[(sup 18P, _1 o0pt +ADVEE | + frB],
[0.1]

it holds

t t
EBt)y <MBa) + / MB(s)nB(s) exp f nB(t)dr | ds.

N
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This is a recursion formula between E,B and E_FB_I, thus we can obtain inductively the esti-

mates of Efg and Efg since we have proved the estimates of Efg = suppg ) (Eo + E1 + EF) in
Propositions 4.1, 6.1 and 6.9. Indeed, we have the following:

Proposition 6.8. Assume that x, P € C"2([0,T] x Q), B € C"t2(Q), P|r =0, VyP|r <
—co <0, B*N,|lr =0 and divV =0, where V = D;x. Suppose that W is a solution of (5.3)
where F is divergence-free and vanishing to order r as t — 0. Then, there is a constant
C = C(x, P, B) depending only on the norm of (x, P, B), a lower bound for cyg, and an up-
per bound for T such that ifEf,g(O) =0fors < r, then

t
EB1) < c/ IF|\Bdt, fortel0,T]. (6.25)
0

6.6. Estimates for the tangential derivatives

The obtained higher-order time and Lp derivatives are some kinds of tangential derivatives
due to div B =0 and B - N|r = 0, but they do not give the estimates for all tangential derivatives.
Thus, we need to derive the estimates for tangential derivatives ) ;.7 |L7 W] of W.

LetT €T, Wr =LyW, Fr = L7 F, and similar notation as in (6.12):

Ar=Arp, Gr=M,r, gl =Lrga,

Gr=Myr, Cr=M,r, ol,=Lroaw.
Then, from (6.14), it follows that
LIW;J =F]4 - (ATWd + GTWd — CTWd + QTW" — gTFd)
+ 28 (8;10,x' Locx) T LEWE.

We define, as for the lowest-order energies,

Er = E(Wr) = (Wr, Wr) + (Wr, (A+ DWr) +(LgWr, LEWr).

From (4.4), (A.8) and B - N|r =0, we obtain
— (LT LYW, Wr)

:—/gadﬁ[T’B]EBWdW%ldy—/‘gadﬁBﬁ[T,B]WdW%dy
Q Q
d

1 L[, i
+ S / |£BWT|2dy — E/gab£3W7“~£BW?dy + /‘(EBgab)EBWTa"W%dV
Q Q

Q

One has
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(XLrLpW, Wr)=—2 f 8i1dax' Lydex’ Lo,y W Wiidy
Q
i / 8i10ax Lpdox! Lg WEWidy.
Q

Thus, by (A.3), we get

— (LT LYW, Wr) + (X Lr LW, Wr)

. . 1d
= —Z/gadE[T,B]EBWdW?dy+/gadﬁ[[T,B],B]WdW?dy+ EE/|LBWT|2dy
Q

Q Q

2
Q Q

— —[gabﬁBW;wEBW%dy —2/3513axl£386xl£[T,B]Wc W%dy

+ f 511 (Lp0ax' dex’ — dax! Lpdex’) L WEWEdy.
Q

From the antisymmetry of @, one has

Er =2(Fr + GrF, Wr) — 2(Gr W, Wr) +2(Cr W, Wr) — 2(Gr W, Wr)
— 4((8i10x' Lpdcx )T LEWE, WE)
-2 / 8i1(Lpdax'8.x" — 9,x' Lpdox") Ly WEWEdy
Q
+4/SilaaxlﬁBacxiﬁ[T,B]WCW?dy
Q

+4 / 8adLiT.B1LB wH W%dy
Q

-2 / gad Lyt 51,8y W Widy
Q
—(GWr, Wr) + (GWr, Wr) + (Wr, AWr) + (GWr, AWT)

+fgab£BW?£BW?dY+2<WT, Wr)
Q
—2(Ar W, Wr).

(6.26a)

(6.26b)

(6.26¢)

(6.26d)

(6.26¢)

(6.26f)

(6.26g)

(6.26h)

Now, we deal with the term (A7 W, WT). As the same argument as in the estimates of E1(z),

we have to handle it in an indirect way, by including it in the energies. Let

DT = 2(~ATW7 WT)!
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then

Dy =2(Ar W, Wr) + 2(Ar W, Wr) + 2(Ar W, Wr).
Therefore, we obtain

E7 + D7 =(6.26a) + (6.26b) + (6.26¢) + (6.26d) + (6.26¢) + (6.26f) + (6.26g)
+ 2(Ar W, Wr) 4+ 2(A7r W, Wr). (6.27)

From (3.7), (3.8) and (3.6), it yields

1 (6.262)] <2(II1Frll + lg” oo @ I F Il + 187 | Lo (@) Eo
1/2
+ " L@ Eo + ||gT||L°°(Q)E1)ET/ ,
. s .
| (6.26b)] <4||(5i13xlﬁ33x’)rIILOO(Q)EOE 1> 4 2)1850x' Lpox' |l L) ET,

| (6.26f) + (6.262)| < (1 + 18l + H H) Er,

VNT P 12
E E E )
0+H Vn P H 1) r

VNT P
| (6.27)] <2(H '
Vy P

i 1/2
| (6.26¢)] <4[18;10x' Lpax' || L | Lir. 5y WL ES 2,
1/2
| (6.26e)] <2llgllLoe I LriT, B, BIWIIE / ,

and
| (6.260)| <4lgllzos( | £y, L8 W ES?
Since Be Sandfor T € S,
div[T, B] = 8,(T*3,B” — B%8,T") = 8,T7%8,B” — 9, B%8,T" =0,
we get [T, B] € §. Similarly, [[T, B], B] € S. Thus, from the above estimates and observation,

we see that the energies should include Er for any 7' € T in order to deal with the commutators.
Thus, we define the energy as

El =E*forTeT, E[ =Y Ef.
TeT
Let
_ VNTP
HOE H N Eo,
VNP L®(R)
1
ni(t) =5 T4+ l1gllLee) + 3lIgllLe @) + +2/18:0x Lpdx | Lo (),
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il (1) =187 I @) Eo + 0" Iy Eo + llg” Iy E

Vy TP E VTP
Vn P Vn P

4+ 2118110x" Lpdx") 7 || Lo () Eo + H ” Eq,

L@ =I1Frl+lg" L@l Fl,

(t) —ZZ sup7 +2/ an dr,

re7 1011 TeT

0 =2/ > flar.

o TeT
Then, we have the following estimates.

Proposition 6.9. It holds

t t

E] < ﬁlT(t)+f1T(t)+/(ﬁf(s)+f17(s))n1(s)exp /nl(r)dt ds.

0 Ky

Proof. From the above argument, we have obtained
ET + DT
T T T T T
<2E; {”FT” + g lre@ I FIl+ 187 I Eo + llo” L@ Eo + 118" Lo @) E

VnNT P
N E
Vn P

VN TP
+211(8:10x" Lpdx") 7 || Lo ) Eo + E

1 ) Vy P .
+ - (1418l +3lglio@) + | o || +416:70x' Lpox' || L~ ) ET §.
2 VNP

Since E7(0) = D7 (0) = 0, the integration over [0, ¢] in time gives

1
Er <2ETal + 2[ El[mE] +i] + fl']dx
0

Taking the supremum on [0, 7] in time and dividing by supyy ;) E 1T ,wesumover T € 7 to get

t

El gZZ supit; +2f[n1ElT+ Zfz{]dr+f17—

re7 (01 0 TeT
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t

< / nmEl dv+i] + f7. (6.28)
0

By the Gronwall inequality, we can obtain the desired estimates. O
6.7. Estimates for the curl and the full derivatives of the first order

We will derive the estimates of normal derivatives close to the boundary. This is done, in view
of Lemma 6.6, by using the estimates of the curl and the estimates of the tangential derivatives.
Thus, the estimates of the curl and the time derivatives of the curl are needed to derive. Due to
this, the 1-form of W and W, denoted by w and w, respectively are needed, i.e., wy = gap W
and W, = gu» W?, in which the latter notation is slightly confusing and w is not equal to D;w,
but we only try to indicate that w is the corresponding 1-form obtained by lowering the indices
of the vector field W.

Let

cutlwep = dawp — pwe, F,= gabe.
Since D;wy = D; (8asW?) = g WP + gabWb, we have

D;curl wap =curl wap + 0c@wap WE + €pc0a W — 400p W€

. . ay®
+ [(&eb — @ep)Dadex™ — (8ea — Wea)Ipdcx*] ST W (6.29)
since from (2.16) we have 20,v; = (g¢p — wcp) % and

dafap — da8ap =0aldax" dpx* (Bvi + ;)] — Byl dax’ Bpx* (Bv; + dvp)]
=0gx" 0pxX9,x! 810 v; — 9gx’ XD x 00k v;
+ (0gx" 8,0px* — 8,x%040px7) (B vi + B vk)
=84 90" 0 (O vi — Biv1) + (x84 9px™ + 8,x* g 0px") vy — 9 vk)
+207x" 8, 0px%0; vk — 20,x% 040X B v;

= 0pWad + 2(34Vk 0, 0px* — 40k 49px")

c

. ) d
=0pwad + [(gea — wcd)aaabxk — (8ca — wca)adabxk] )):

axk’

Due to div W =0, we can get from Lemma 6.4 and (6.29) that

|Dycurl w] < [eurl ] + 90| [W] + 2131 W] + (1¢] + |o]) )82)(‘

dy
—‘IWI
0x

< leurl ] + K1 [¢] (Jeurlw| + Y7 1L W+ [ghi W)
SeS
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2w

Thus, we have to derive the estimates of curlw. From (5.3), we get

+ [|aw| + (121 + ol [9%x]

Dy :gab‘ﬁ%g wh — 0aq + 0,(W 9. P) + wabWb + 25ilaaxl£Bacxi£B W+ gabe.

Note that the above equation can be also formulated as

Dty — gapLEWY + gup(AWP —CWP + XLpWP) =F,,. (6.30)

Then, we have

Dycurl g =0, (8ap LEW” — 8aq + 04(W 0 P) + wapy W’ + 281 0ax' Ldex' Ly W*
+ F ) = 0a(8ab LW — 0aq + 0a(WD, P)
+ 0ap WP +28;10,x' Lpdcx" LEWE + F )
:curlﬁ%_Wad + dpwaa Wb+ Wb Wb — Wab0g Wb+ curl

+28i104x 0, (LB ocx LEWE) — 28110x 04 (LB dcx' LEWE), (6.31)

where we have used the identity d,wgp — 0gwap = dpwa, Which can be verified by (2.15). In fact,

dadb — dgwab =0aldax’ dpx" (v — Ivi)] — da[dax’ Apx* (B ve — Bgvi)]

=X 0,055 (3; vk — Ok v;) — Bux' g 9px* (3; vk — e vy)
+ 9gx" 9px* 3, (05 v — Fxvi) — dux’ Bpx* 3y (3 v — O vi)

=0 [ (dax’ 0ax*) (B vk — Bpvi)] — (' Bux*) B By (D vk — i)
+ 94x" 0px* 0,1 330k — O i) — Bax’ Dpx*0gx' 0 (8; v — B vi)

=0pwaa — 00 Vg (3gx' 3ax*dpxt — 9gx 9px*¥0x! + Bx’ dpxkagxt)
+ 30k vi (3gx BaxXpxt — Bgxt dpx¥dux! + daxt Bpxka xh)

=0pwda — 010V 0gx’ 0ax*Opx! + 0,05 v; Dgx’ Dpx* 0!

=0pWiq.
From (A.5), we get
E%}W deaE%; Weé = E%wa - Zﬁ%gea W —LpgeaLpW°,

and then
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curl Lz W =curl Lwaq — 2[00 (L38eaW*) — 0a(LE8ea W]
—[04(LBged LBW®) — 34(LBEea LBW®)]
=curl E% Waa — 2(curl E%ge.)ad weé — 2[£2Bged o, We — ﬁ%gw agWe]
— (curl Lage)ad LBW® — [LB8ed0aLBW® — LBEeadaLW].  (6.32)
From (6.31) and (6.32), it follows that
D;curl W,y =curl /.3% Wad — 2(curl E% 8e)aadWe — (curl Lpge)aa LEWE + dpwga W
— 20L58ed %W — L3 8eada W]+ [0apda W — wapda W]
+20c B"[9a8ab — 0a8ab) L8 W + 2[2a10a0c B — gapdade B" 1L W*
+ 2[8:10gx' 04 Bdox' — 8i104x' 84 B3 X 1L W
—[£B8cada LW — LBgeada LB W]
+20:B"[8ap0a LW — apda LW ]
+ 281 BO:x [0gx' 8, LpWE — 8,x' 05 L W] + curl F ;. (6.33)

With the help of (A.11) and (A.7), we have
(curl L’% W, curl w)

=/g“bngcur1£%W curl wpcdy
—L ___ad
Q

1
=— ED, (curl Lgw, curl Lpw) + / &% g% curl £Lgwageurl Lgwpedy
Q

— 2/(£Bg“b)g0dcurl Lpwggcurl wydy
Q

— / g g“curl LywaaLp [aewd, WE + b0 W€ — geedp WE
Q

. . 9y°
[(Geb = @en) 0D = (ec = 0By 3122 W Ly
axk

- / gabgcd{z(curl ‘C%}g@)ad we + 2[£%gedaa we — E%geaad We]
Q
+ (curl £88e.)ad LBW® + [LB8eddaLBW — LBgeada LW ]}curlbpedy.

Let
Ecun (1) = (curl w, curl w) + (curl w, curl w) + (curl Lgw, curl Lgw).
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Taking the inner product of (6.33) with curl w, we obtain, with the help of (A.9), that

d )

EEEcurl ) <Q2lIglre) + 11LBglLe @) Ecurl
12
a{ﬂ (1Ll L) + 8l Eo

curl LB L@ + gl @)
[OW I+ 10LsW | + 19% B L (g2 Eo]

Curl[HﬁBg”Lw(Q) + 1Ll o) 11182 x||L°°(S2)||_||L°°(Q)EO
12y -
+ Ecéﬂ (gl ooy + ||w||L°°(Q)][||£Bazx||L°°(§2)||£||L°°(S2)
dy dy
+19°x @ 1L 5w + 200%x oo 5= L@ ] Eo

l 2
/ [2||CHI'1,CBg||Loo(Q) —+ ||CuI'1,CBg||L<>0(Q)]E()

curl

12
CL{ﬂ [41L%8 Lo IdW | + 21 Lpgll Lo 1DLE W]
L L18:184x" 30 (BOcx™) + 84(8apde B) |l L2 () Eo

+4Ecur
+ 18119ax" Bacx" + gapde B Lo (o 1L W]
172 .
F2E 2 ol o IdW || + EX2 Jlcurl F. (6.34)
From (6.8) and (6.6), it follows that
W] < Ky (IICurlwll + Z ILsWIl + II[g]1||L°°(sz)||WII>
SeS
< Kj|lcurlw]| +K1E19+ llglillLoo2) Eos (6.35)
1w <Ky (ncurlwn + Y ILsW + ||[g]1||Loo<sz>||W||>
SeS
< Killeurl | + K1 EP + (gl L) Eo. (6.36)
Then, from
LpW, =g LW’ = Lpwa — (Lgar) W,
we have

LWl < Ky (IICUIICBWII + > s LeIW | + EF +igh IILOO(Q)EO)
SeS

K1 (lleurl Lgwl + (BN + 1 £gli@licurlw] + Ef
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+ (ILgh (@) + 10LBglL=(@) Eo ).
Combining (6.34), (6.35), (6.36) and (6.37), we obtain

1/2

curl

1/2 ~
() <npcur (E / + Ef) +n1,cur Eo + lcurl £,

curl

d

—(E

dt (
where

nicut =K1(1+ B + ||£Bg||L°°(Q))<||£Bé||L°°(Q) +118llLe @)
+1L58lo@ + ILBgl Lo + [18i10ax' Bdcx'
+ 8andcB (@) + lollix@) ).
n1,curl =11 curl (1&gl 1L @) + 19LB8 I Lo ()
+ K (”»CBaw”LOO(Q) + 0wl L@ + ILBE L= ()

+ 1181 oo @ 1197 Bl Lo (o)

+[IL&I L@ + Lol Lo 119X | Lo (g

dax

L°(Q2)
+[||Z;’||L°°(Q)+||w||L°°(sz)][||£332x||L°°(sz) —
0x L>®(RQ)
dy
10 (L5 | 200l |2 ]
8x L®(Q) 8)6 L®(Q)

=+ ||cur1 ‘C%g”LO"(Q) —+ ||CLII'1 EBg”LOO(Q)

1808 00 (BOcx') + 84 (8ande B (@ ).

Due to E.yy (0) = 0, the integration over [0, ¢] in time gives

172

curl

t
1/2 -
E 1)< / 1curt (B2 + ES) + iy cun Eo + [lcurl F 1.
0

From (6.28) and (6.38), we have

t
1/2 _ 1/2 =
E]S + Em{rl < /(nl,curl +”‘1$ +n1,curl)(ECl<r1 + Eis)df + f1,
0

where
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1 curl =K BIS(A+ B[S + B 8:18x' Box'
fiteut =K1lgloo@ I BIS 4+ IBIS + 1Bl 1) + 18:10x Bax' | 1)),

t
=i + f (Rt .curt + i1 curt lcurl L gl 1) Eod e
0

t

+z/ [ZflT—{- ||cur1£||]dt.

0 TeS

Therefore, by the Gronwall inequality, we have obtained the following estimates for both the first
order tangential derivatives and the curl.

Proposition 6.10. It holds

curl

1
ESO+ E0 < i)+ [ Fi) (m1.0n6) 56+ 10 0))
0

t
- €Xp /(nl,curl (r)+ nf(f) + f_ll‘curl (r))dz | ds.
s

Remark 6.11. By Lemma 6.4, we have the estimates for the first-order derivative of W.
6.8. The higher-order estimates for the curl and the normal derivatives

We derive the equations for the curl of higher order derivatives. Since the Lie derivative com-
mutes with D; and the curl, applying E{, to (6.33) and (6.29) gives

D,curl,/:é Wad =curl£é£129wad + curl E(Jjﬁad —2ch 1 (curlﬁgﬁégg.)adﬁézwe
— cj, 5, (curl L{} Eggei)adﬁljjzﬁg W€ +c¢y, .]2[:9 a,,wdaﬁ{} wb
— 2, Bl LY LY geal L1, 8IWE — L} L3 geal £77, 9a1WE]
— 2, LY L2 8eada L WE — L7 L2 80ada L2 W]
+ennlLl wap L} 0WP — L wap L7}, 9 1WP]
el Ll @apda LEWE — L3 wapda L2 WP
+ 264, 1, L7 [0 BY (9agab — dagan)1L37 LEWS
+2¢7, 1, L7} (8B40 B® — gabdadeBVIL LEWE
27, 1, L3 18110x 94 Bdcx' — 8118, 84 BOX" 1L LpW*
— cn B L) Lpgeal L7, 81LEWE — L7} Lpgeal L7 341LEW]
—en B LY LB8eada L LEWE — L} Lpgeadaly; LEWE]
+2¢ 1, 1,8l L3) (Boex 3ax) L), 8,1L5WE
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— L1 (Bacx 9,3 L2, 841L5WE]

+ 265, p8ul Ly (Boex'8ax! ), L LpWE

— L] (Bcx 9,304 L2 LW

+ 25, B [L] (8abdc BMLE 91 LW

— L] (8apdc BMLE  341L5 W)

+ 205, L]} (8ap0c B”) 0 L LEWE

— L]} (gabd B3 L LEWC], (6.39)

and

DtcurlL'LJ, Wap

=curl L} iap + ¢, JQ»CZ/I 3c0)ab£{72 we
€2 (L) @nel £ BaIWE = £ gucl L7, 951W)
+ e (L] &beda LFWE = L] 8acOp L7 W)

. . 3y
+ennky {[(geb — 0ep)a3exX’ — (§ea — Wea)Bpdcx*] ﬁ } Lprwe. (6.40)

At this point, the commutator [ﬁ{], d] needs to be derived. If |J| = 1, it is the identity (A.9).
For |J| > 2, we have the following identity.

Lemma 6.12. For |J|=r > 1 and |J,| = 1, it holds

(L el 8 WP =weL) " b.0,U%

+ > sen(LDLYWELED .U}, 6.41)
J=h+h+13
|I3]=1

Proof. For r =1, it follows from (A.4)
(Ly, 3, 1WP = 3.0,UP W°. (6.42)
For r > 2, we prove it by induction argument. For » =2, we have

[Lu, Luys 3IW? =Lu, [Luy, 3IWP + Ly, 8L, WP
=Ly, (W98,8,U%) + (Ly, W) 348,U°
=(Ly, WH318,U% + (Lyy W) 340,U° + WLy, 840,U2,
which satisfies (6.41).

Now, we assume that (6.4 1) holds for » = 5. Then, we derive the case r = s+ 1. For |J| =s+1
and |J,| = 1, one gets by using (A.9)
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[‘Cé*-]ﬁ»l £3'+1 , aa]Wb

:ﬁé_‘lﬁ—] [Elj;-H i 3a]Wb + [ﬁé—lﬂ—] . aa]»CZ}H—I Wb

_ J—=Js+1 d b Js41 d pJd—Js—Js11 b
=Ly, " Whag0,UY )+ LT WAL, 040aU"
T o 7
+ > LPLy WILP8,0,U%
J=Jsr1=I+N+T3
1= 1, 1J3]=1

_ Jiyrd pJ2 b Jst1yy7d pd—Is—JIs+1 b
= > LYWILFo0.UY  + Lyt wiLy 3. U"
J=Jsy1=J1+ 12
Ji pJs J:
+ > Ly Ly WL ?0,0,U%
J—=Jsr1=N1+N+T3
[J11Z 1, |J3]=1

J—Jg
=WIL " M0a0,U5 4 Y LY WILRa0.UT,

J=N1++J3
1121, [J31=1
which is of the form in (6.41) with r = s + 1. Thus, we proved the identity by induction. O

ForU el and |J|=r — 1, let
Er_1,cun (1) =(Cur1£éw, curlﬁlj]w) + (Curlﬁéw, Curlﬁéu'))
+ (curl L L, w, curl L L] w).
Then, from (6.40) it follows

1d

5 E Er,curl (t)

= / g“bng (curl Eljl wggcurl E{, wpe + curl ﬁljl wggcurl E{, Whe
Q

~+ curl EBﬁéwadcurl ,CBEIJ] Wpe)dy

—/EB(g“bng)curlEBEéwadcurlﬁéu')bcdy
Q

+ (curlﬁ{,u’;, curlﬁ{,w) + (curlﬁlj]u'), D,curlﬁlj]u') — curlﬁ%ﬁéw)
+(curl £ w, ¢, (£0 de0ap L3 WE + (L g0l £, 01W¢
— L} 8acl £ 061W) + (L] 2be0a LT W — L]} 2ac O LT W)
28 {10 — 0000er* — Gea — w031 | £
+(curl Lo Llyw, ey, Lo (L] dewan LW + (L goel £, BIWE
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— L] 8acl L2, 0IW) + (L] apc0a LEWE — L gacdpLEWE)
) . ay*
£ {1Ger = 0eadex’ = (ea = we)tpoex 122 L)),
Thus, by (6.39) and Lemma 6.4, we get

d g2
Z r— lcurl(t)

. 1/2
S+ l1gllLe@) + ||£Bg||L°°(Q))Er/Cur1 + llcurl LI, F|

+ ||cur1 [,CJ , E ]wII + CC]IJZ<||CUI'1£ £ g||L00(Q)||,C W|| (6.43)

L Bl L@ I L2 W + llcurl £;) Lpgll L@y (1L LEW |

+ K1 &2 (1B, | oo (leurt W, |+ D ILs Wy D) + Wl (6.44)
SeS

~(leurl By, llzos@y + D 1Ls By sy + gl 1By Il Lo (@))])
SeS

+ (||ﬁ L2gll Lo + ||CU gllLe@) + ||£B£U gllL>()

(LG W+ Ky (leurl LW+ Y IILsLEW | (6.45)
SeS

gl @ L2 WD) + 127 oll 1 @) (ITL;2, IW || + K1 (lcurl L2 W (6.46)

+ Y NLSLEWI A+ gl ooy 1L WD)
SeS

+ 1L 0B (3ugap — agab) + 8apdad B’ — gapdad Bl ()
+ 1L [8i18ax" 80 Boex" — 810,x' 84 Bdex'1l| Lo (@) 1 (I LBLEW |

J:
+ K1 &2 2 (1B, e Uleur W L+ Y ILs W, ) + (leurd By, @)
SeS

+ Y NLs By o) + 1181tz @) I By Lo @) Wy 1)
SeS

+ (L] Lrglle) + 18:7L]H (Bax 9x) | L) + 1]} (gapde BY) 11 ()

(LG 01LsWI + Ki(leurd LELEWI + Y I1LsLF LW (6.47)
SeS

+ gl @ (ILBLEW + K& ~JZI 2B, oo (leurl Wy, |l

+ Y LWl + (leurd By llooiy + Y 15 By L= (@)
SeS SeS

+ gl oo 1By oo @) | Wi 11D))
+ (1L ol (@) + I1£8L; Bl L@ (LR W+ 1L LE W)
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e

. . dy
+ ”»CZ/1 {[(geb - a)eb)aaac‘xk — (8ea — a)ea)abaxk] ok }||L°°(Q)

LW ILELEWI + 13 W]

H‘CBL {[(geb Wep)0q O x (guz

8.X L®(Q) ) ’

We first consider the term |curl [£/,, E%]w| in the line labeled (6.43). It holds

(L4, L31wa =[L]. LB1Lpwa + LBILY. LBw,
=]\ BY L3 Lpwa + (34 BS )Ly Lw,
+ Lp[BY 0y Lwa + (8, BS,) Lpwe]]
=" [B 9y L2 Lpwa + (0. BS ) LELpwe + L BY 9L wq

BY LpdpLwa + L5 By )Liwe + (84 BS) L LEwel,
which yields

(curl [£] ,E Tw)aa
=) (84 BY 0 L33 Lpwa — 34 BY, b L7 Lpwa + BY 8y (curl L3 Lw)aa
+ (34 Bj,)0a (L CLpwe + LpLpwe) — (0 B7)0a (L GLpwe + LpLwe)
+ 8, LpBY 0L wa — daLpBY 0y L7 wa + 4 BY Ly L wa
— E)dBIl ﬁBa,,cha + [ZBBI1 Bb(curlL'Uw)ad + BI1 8a£38b£Uu)d
— B} 84 L5 L3wa + (0aLpda B, — 8aL5a By )Liwe + (Lpda Bf,)0a L we
— (L. B)daL3wC].

Since
[LBa OgJwp = _aaathwm
one gets
‘curl[/ﬁl , L2 ]w‘
<K& P1|0B | 10LE Lpw| + 1L Lo w| + 18 BIILEw])
+|By, 18 (curl L2 Lgw)| + |Lp B, |13 (curl L3w)| + | B, |(182Lp L2 w]
+10° BIILGw| + 19> BIIILGw]) + (10Lp Bry| + 107 BI By, DI LG wl
+(192LpBr, | + 19> B||Br,| + 18 B9 B, DL wl].
Due to
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J _prJ by _ J wisb ~J J1 pl2 b J _ pJ
Lywa =Ly (8ab W) = 8ab LYW +¢5 1,8 LWy 8ap = L 8ab>

where the sum is over all J; + J, = J, and ¢ = =1 for |J| < |J|,and ¢ J 1 =0 for |Jo| = |J],
from Lemma 6.4, it follows that
I I ~I I
ILGwl <IGILEWI+E2 1, |g LW,
I I I ~I I
9LGw] < |0gIILEW] + IgIDLE W +Ep, ,,, l0g™ LG W)
~1 I
+E2 1,18 LW
< b I I
<Killgl + [0g[1(Jeurl LEW| + Y 1L LEW ]+ [ghILEW])
SeS

~I
+KiE2 e+ 10g"]

(lourl 2 W1+ Y L5 £E2 W+ gL W),
SeS

and

10L2 Lpw,|
:|8£’2 (LgarW’ + gap LEWP)|
<& 1, (LG LogIILE W] +1L7 LpglloLE W]

1AL gL LW+ L2 glldL> L W])
< chlzllzz(lﬁﬁl Lpgl+ |3/351 Lpgl)

: <|cur1£{§2W| + 3 LW+ [ghlﬁiszl)
SeS

+ K1GE, (L6 gl +10L5 gD (lourl L2 LaWI+ 3 1L5LE2 W]
SeS

+ 1812, [LE6 BIlourt L2 W1+ 7 1L L2 W+ gD ILE W] )
SeS

+ (leurl 2 Bl + Y 1LsL72 BI)ILEWI ),
SeS

since

‘[EI’EB W’ 5112[|Bll||8W12|+|8Bh||W12|]

<c1112K1 |:‘Bl1| (Z [LsWp,| + |le|) + |8311| ‘W12|i|' (6.48)
SeR
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Now, we have to express the term, like |curl Wy | = |cur1£{] W/ in the above inequality and in
the line labeled (6.44) and other lines, in term of w. By Lemma 6.4, we have

|curl z:{,_wa | = |curl gup £F, W]
<leurl £ wq + & 1 leurl (gl LG W)
<leurl £§wal + &1, , 1848y L3 W) = 8a (gt LG W)
<leurl L wa| +281  (18gMILG W]+ 18" 1L W)
< |cur1££,wa|

+ K124, 1, (108" + 18" (lourl LEW |+ Y 1L LEW] -+ [ghILEW1).
SeS

The term |curl L{,E pW| in (6.47) can be estimated as a similar argument as above by regarding

B as a tangential vector field of form U. By (6.41), for the term [[,{/2, a]W in (6.45), we get

J—s,
LE W <IWIL, 2020, 1+ D> sen(LDILZULILEWI,
J=L+h+13
[I3]=1
and a similar estimate holds for the term [LIJ},B]W in (6.46). Similarly, for the term
[£}2,91LpW in (6.47), we have with the help of (6.48)
J—J
L3 NLWI< LWLy 0%Un,, 1+ Y. sen(ILDILGO* U
12=|1114‘r1%+13
3=

. |:|£3£{]1W| + K]Efllllz |B’|1 | ('Cuﬂ Wi, |+ Z [LsWi,| + 8] |W112|)
SeS

+ (|curl%| + Z |LsBr, |> |W112|i|'

SeS

For the term |£5[,LJ/2£B W], we can use (6.48) to get estimates.
For convenience, we introduce some new norms and notation.

Definition 6.13. For any family V of our families of vector fields, let

1/2
WY =Wl = Y. f ILGW (@ p)Pdy |
< TeV \g

1/2
W s =Wl = > ILBLEW (@ y)dy | .

IS TeV \g
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and

172

cY = /(lcurl/.ZUw| + Jeurl L L w]? + |curl £ w|*)dy ,
1I<r— 1JeV o (6.49)

cy =0.

Note that the norm || W (¢) ||z () is equivalent to the usual Sobolev norm in the Lagrangian
coordinates.

Definition 6.14. For ' any of our families of vector fields and 8 a function, a 1-form, a 2-form,
or a vector field, let |8 |}} be as in Definition 6.5 and set

IB1Y oo =BV o0
[[g1Y oo = > I81Y o N181Y nor (181100 =1,

Si4 s < s, 52> 1

where the sum is over all combinations with s; > 1. Furthermore, let

m, _[[g]], 00"

Y = 3 s (U1 oo + 1L581Y oo + 1L3581Y w0 + ol o),
B (6.50)

y v 2.V ay v

1Y =3 (181 00+ 1921V g + 18251 oo + Ha_ .
S<r X l5.00
Let F’MC“” = ||curl F[|;y-1 (). Then, it follows from the above arguments in this subsection
that

_CU

< Ki Z(mr Lo+ O(CHE+ ED) + Pl (6.51)

where Ez' is the energy of the tangential derivatives defined in (6.17). Here, we note that the
same inequalities hold with I/ and 7T replaced by R and S, respectively. Thus, by the Gronwall
inequality, we obtain for r > 1

t

Ci’{éK]@ng'('hg{J“ﬁ'Ou)dT/(sgn(r— 1) Z(m, s—l-m )Cu
0 s=1

r
.U -U T
+ Z(mr—s + mr—s)Es + Fr curl)d .
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Since we have already proved a bound for Ez— in Proposition 6.8, it inductively follows that Cﬁ”
is bounded. By Lemma 6.6, we obtain

.
IW )l @y + IW Oller@) + 1L W O lur @) < K1 Y_m4 (Y + ET). (652)
s=0

Therefore, we have the following estimates.
Proposition 6.15. Suppose that x, P € C"72([0,T] x Q), B € C"t2(Q), P|r =0, VyP|r <
—c9 <0, B*N,|r =0and divV =0, where V = D;x. Then, there is a constant C = C(x, P, B)

depending only on the norm of (x, P, B), a lower bound for co, and an upper bound for T such
that if EJ (0) = CY(0) =0 for s < r, then

t
IWIE A+ IWIY + 1w+ E] < c/nFn?;’dr, fort [0, T].
0

7. The smoothed-out equation and existence of weak solutions
7.1. The smoothed-out normal operator
In order to prove the existence of solutions, the normal operator .4 should be replaced by a

sequence A° of bounded symmetric and positive operators that converge to A as ¢ — 0.
Let p = p(d) be a smooth function of the distance d = d(y) = dist (y, I') such that

P20, p(d)=dford<

W

1
, and p(d) = 3 ford >

B

Let x (p) be a smooth function such that

W

1
x'(p) =0, x(p)=0forp< 7 andx(p)=Tforp>
For a function f vanishing on the boundary, we define

ASWE =P (=g e (0)3p(fp " (Bep)W)),

where x.(p) = x(p/¢). The integration by parts gives

(U, AW) = / I XL (0) WU dap) (WP p)dy, (7.1)
Q

which yields the symmetry of A%. In particular, A® = A% is positive if P > 0, at least close to
the boundary, i.e., '

(W, AAW) > 0.
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We have another expression for A%:

AW =P x/(0)@bp) fo " Bep)WO).

Since the projection is continuous on H' (€2), if the metric and pressure are sufficiently regular,
one gets, as in [21,23], that

k k
> ID] AWl @) < Cerk D ID] Wilar (- (7.2)
j=0 j=0

Moreover, we have

|ASW — AW |? =(A°W — AW, ASW — AW)
=(AW — AW, A°W) — (A°W — AW, AW)

_ / (AW — AW e (0)3(Pp~ (300) WE)dy
Q
+ f(.AS we — AWa)aa(BCPWC)dy
Q
_ f (AW — AW o (0)dal(Pp~ Do — 0 PYWE1dy
Q
+ / (AW — AW (1 = o (0))a (B PWO)dy
Q

=/(A€W“ — AW %/ (p)3ap[(Pp ' cp — 8. PYWC1dy
Q

+ /(As W — AW (1 = x¢(p))9a (3 PW)dy
Q

due to Pp~'d.p = 3. P on the boundary, which yields

[ASW — AW < llx.(P) I Lo 13ap(Pp ™ dcp — . PYWC||
+ 111 = xe (o)) | Lo 182 (B PWE)|| = 0, as & — 0,

since x/(p) — 0 and x:(p) — 1 in L>°(2) as ¢ — 0. Thus, we obtain
AU - AU in L*(Q), ifU e H (). (7.3)
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Asin (3.5), it holds

(U, A5, W)| < (U, A5, U) W, A5 W)

<N fllze@yan (U, AUV 2 (W, A5 W)1/2) (7.4)

where

Qf ={yeQ:dist(y,T) > ¢}. (7.5)

In fact, taking the supremum over the set where d(y) < ¢ suffices since x, =0 when d(y) > &.
The only difference with (3.5) is that the supremum is over a small neighborhood of the boundary
instead of on the boundary. One can see that P = D, P vanishes on the boundary and P /P isa
smooth function since P vanishes on the boundary, P > 0 in the interior, and Vy P < —cg <0
on the boundary. Let A¢ = A’ be the time derivative of the operator A*, satisfying

(W, A5W)| < 1P/ Pl ooy (W, AEW). (7.6)

The commutators between A% and the Lie derivatives £ with respect to tangential vector
fields T are basically the same as for A. Since Td =0 for T € 7o = So U {D;}, we have

P (g% L (8apAGWP)) = A5 LT WE + AG WE. (1.7)

In order to get additional regularity in the interior, we include the vector fields S; that span the
tangent space in the interior. The vector fields in S; satisfy Sp = Lsp = 0 when d < dy/2. Due
to x/(p) =0 when d > ¢, the above relation (7.7) holds for these as well if we assume that
e < do/2.

It remains to estimate the curl of .A° now. Although the curl of A vanishes, it is not the case
for the curl of A°. However, it vanishes away from the boundary. Let (A*W), = g.».A° Wb, we
have

(A W)y =2apP (=% xe (0)8a(Pp~ (3. p)WE))
= — %e(0)3a (P~ (3:.0)WE) — 8uq1,

for some function ¢; vanishing on the boundary and determined so that the divergence vanishes.
Then, when d(y) > ¢, we get x.(p) =0 and
(curl A*W)app =0 (A* W), — 9 (A" W),
= — 3 (x: () (PP~ (e p)W)) + 3 (xe (0)a (PP~ (9ec0) WE))
= — X (P)8ap3p (PP~ (e p) W) — 3002 (Pp ™" (9ep) W)
=0. (7.8)
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7.2. The smoothed-out equation and existence of weak solutions

We introduce the following ¢ smoothed-out linear equation

W — L2WE + AW+ GWE —CWE 4+ X LW = F?, (7.9a)
Weli—o=0, Wel=0=0. (7.9b)

This is a wave equation with variable coefficients, the existence of weak solutions in H 1(©) can
be proved by standard methods and noticing that B4 N, = 0 on the boundary, or in H" (2) by
(7.2), since all operators are bounded and Lp can be regarded as the first-order derivative with
respect to spatial variables.

In order to obtain the additional regularity in time as well, more time derivatives need to
apply using (7.2) and (3.1), the initial data for these vanish as well since we constructed F in
(7.9) vanishing to any given order. If the initial data, encoded in F, are smooth, a smooth solution
of the ¢ approximate linear equation is therefore obtained.

We shall prove that W, — W weakly in L%, where W € H" () for some large r. It will follow
that W is a weak solution. We can show that it is indeed a classical solution from the additional
regularity of W; hence the a priori bounds in the earlier section hold.

The norm of A? tends to infinity as € — 0, but we can include it in the energy because it is a
positive operator. The energy will be the same as before with A replaced by A°?, so (4.5) becomes

E*(1) = (We, We) + (A" + DWe, We) + (LpWe, LpWe). (7.10)
Since D;d = 0, it follows from taking the time derivative of (7.1), with f = P, that

d

T (AT We, We) = 20AWe, We) + (AL We, We),

where the last term is bounded by (7.6). Thus, by (4.7), one has

|Ef| < (1+H£
P

+ 2018l (@) + 2MgllL>@) ||8B||L°°(Q)> E° +2VEf|F||,
Loo(2)

from which we obtain a uniform bound for ¢ € [0, T] independent of ¢, i.e., E®(¢) < C.

A subsequence W, can be chosen such that W, — W weakly in the inner product since
[|We|l < C. We now show that the limit W is a weak solution of the equation. Multiplying (7.9a)
by a smooth divergence-free vector field U that vanished for # > T and integrating by parts, we
have

T
//gubUbF“dydt
0 Q
T

=//gab(W§' — LEWE 4+ AEWE 4 GWE — CWE + X LpWHU dydt
0 Q
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T
_ / / (D1 (gap WU — gapL3WAU” + 1. (0)(@pp) Pp~ (9ep) WU
0 Q

— wpe WEUP — 28;10px' B X" Ly WEUP — 2,0, B LeWEUP)dydt
T

T
_ / / g WeU dydt + / / (L38an)U" + gap LU Ly Widyd
0 Q 0 Q

T T
+ f / 2ap ASUPWadydr + / / (@b UP + wp UPYWEdydr
0 Q 0 Q

T T
+2 / f 8;10px' B X' WELRU dydt 42 [ / Lp(Si13px' BoxHYWEUPdydt
0 Q 0 Q

+2

St~

T
/EB(gabacBa)UbWECdydt+2ffgab353a£BUbW;dydt
Q 0 Q

T
=f/gab(l7b — L2UP + AUP + GUP —CUP + X LU Widydt
0 Q

T T
+ f / opcUPWedydt + / / Lp(8i19px' Bdcx" — 8; Bopx'd.x" YU WEdydt
0 Q 0 Q

T
+ / / L5853 B — gacdy BYUPWEdydt.
0 Q

From (7.3), we know that A°U converges to AU strongly in the norm if U € H'!. Because
We, — W weakly, this proves that we have a weak solution W of the equation

T
/fgah(ﬁ”—E%Ub+AU”+g'U”—cUb+chUb)dydt
0 Q
T T
+ / / b UPWEdydt + / / L5(8i0px' Bocx' — 8;;Bapx' d.xHYUP WEdydt
0 Q 0 Q
T T
+//£B(gab8c3“ —gacabB“)UbW“dydt=f/gabU”F“dydt
0 Q 0 Q
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for any smooth divergence-free vector field U that vanishes for # > T'. Moreover, due to div W, =

0, we get
T
| [@apwiasar=o
0 Q

for any smooth ¢ that vanishes on the boundary and thus

T
f / (daq)Wedydt = 0. (7.11)
0 Q

Therefore, W is weakly divergence-free.
8. Existence of smooth solutions for the linearized equation

In order to show that W is divergence-free classical solution, we need to prove the additional
regularity, i.e., W, W € H"(2) for any r > 0. Then, the integration by parts for (7.11) yields

T

//qaaWadydt =0
Q

0

for any smooth function ¢ that vanishes on the boundary. Thus, W is divergence-free.
Moreover,

T
//gabUb(Wa — LEW 4+ AW 4 GW —CW + XL W)dydt
0 Q

T
=//ga;,UbF“dydt (8.1)
0 Q

for any smooth, divergence-free vector field U that vanished for + > T. Since W is divergence-
free, it follows that W¢ — E% We + AW? + GW* — CW* + XLgW* is divergence-free. By
construction, F is also divergence-free, it follows that (8.1) holds for any smooth vector field U
that vanishes for ¢+ > T'. Thus, we conclude that

W — L2W9 4+ AW + GW —CW + XLpWe = F4, divW =0.
Therefore, it only remains to prove that W € H"(2). For this, uniform bounds for the ¢
smoothed-out equation similar to the a priori bounds for the linearized equation are needed.
The uniform tangential bounds for the ¢ smoothed-out equation follow the proof of the a priori

tangential bounds in Section 6.5, which is just a change of notation. Let
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ES =(Wer, Wer) + (Wer, (A+ DWep) + (LgWep, LWer),  Wep = LEW,.

If & < dj, then the commutator relation for A?, (7.7), is the same as for A, (6.13). Furthermore,
the positivity property for A% differs only from the one for A in which the supremum over
the boundary in (3.5) is replaced by the supremum over a neighborhood of the boundary where
d(y) < ¢ in (7.4). Thus, all the calculations and inequalities in Sections 6.5, 6.7 and 6.8 hold
with A replaced by A? if we replace the supremum of Vyg/Vy P over the boundary in (6.16)
by the supremum of ¢ /P over the domain 2 \ ¢, where Q¢ is given by (7.5). Hence, we will
reach the energy bound (6.25) for E ,T replaced by

ET = Y \/E7; (8.2)
<rieT
namely, Proposition 6.8 holds for ErT replaced by ErT ** with a constant independent of &. It is
where we require vanishing initial data and an inhomogeneous term which vanishes to higher or-
der when ¢ = 0 so that the higher-order time derivatives of the solution of (7.9a) also vanish when
t = 0. If the initial data for higher-order time derivatives were obtained from the & smoothed-out
equation, then they would depend on ¢, and so we would not have been able to get a uniform
bound for the energy E, *°.
The estimate for the curl is simple since the curl of A, vanishes in Q¢ by (7.8), it follows that
all the formula in Sections 6.7 and 6.8 hold when d(y) > ¢. This follows from replacing A in
(6.30) by A® and vanishing of its curl for d(y) > €. Let

12
cte= )" (lcurl £ we? + [curl L we Pydy |, (8.3)
J1<r—1,Jeld \Ge
1/2
WOl @ =Y, ILGW @, pdy | . (8.4)

< rTeld \Ge

Because all the used estimates from Section 6.3 are pointwise estimates, we conclude that the
inequality in Proposition 6.15 holds with a constant C independent of ¢ if we replace Cg” by

C?{{’s and the norms by (8.4), as follows.

Proposition 8.1. Suppose that x, P € C"72([0,T] x ), B € C"**(Q), P|[r =0, VyP|r <
—co <0, BYN,|lr =0 and divV =0, where V = D;x. Suppose that W, is a solution of (7.9a)
where F is divergence-free and vanishing to orderr ast — 0. Let EsT’g be defined by (8.2). Then,
there is a constant C = C(x, P, B) depending only on the norm of (x, P, B), a lower bound for
co, and an upper bound for T, but independent of ¢ such that if EST’S(O) = C?{{’S(O) =0 for
s < r, then fort € [0, T]

t
I We llogr ey + | Welloar ey + 128 Wellur ey + EJ € < C / IF|Ydz.
0
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Hence, it implies that the limit W satisfies the same bound with Q° replaced by €2, and so the
weak solution in Section 7.2 is a smooth solution indeed.

9. The energy estimate with inhomogeneous initial data

In this section, we consider the original equations with inhomogeneous initial data and an
inhomogeneous term:

W — LEWS + AW + GW —CW + X LW = F°. 9.1)

Some estimates of the commutators are needed with the operator A, G, C and tangential vector
fields. We recall them from [21],

[Ls, AIW =(As — Gs AW, [L7,GsIW =(Grs — GrGs)W,
[Ls.CIW =(Cs — GsC)W, ek, AW =d; "G, - Gy A Wi,
['CI s G]W :éfl i g[] T glkfzg.lkfl Wlkv ['CI s C]W :éfl Ikgll T glkfzclkfl Wlka

where Ag = Agp, Gs = M,s defined by GsW* = P(gacgbeb), ngCS =L7rLsgbc, GrsW? =
P(gglSWe), CrW = P (g0 W), wl, = Lrwpe, GIW* = MW = P(g%gl, WP),
g‘{c = £§guw Aj=Agip,and Wy = L’gW, the sum is over all combinations with I} + I, +
-+« 4 Iy = I in last three identities, with k > 2 and |I| < ||, c?II‘ I and éf‘ I are some constants.
For the operator X', we have similar equality for its commutator with tangential vector fields.
Denote Bpe = 8i10px' Ld.xt, we have

LTXW = L1(g" (—~2BpcWE + 3p9))
=(L78")(—2Bpc W + 8pq) — 28" (L1 o) WE — 28" Bpe LTWE + g3, Tq,

where
Aq =204(8"" B W), qlr =0.
Projecting each term onto the divergence-free vector fields, we obtain
[Lr, XIW = (X1 — Gr X)W,
where X7 W® =P (—2g%° L1 (8i10px' L d-x")WS). Similarly, we have
(L, XIW =& 4Gy, -+ Gr , Xy Wi,

These commutators are bounded operator and lower order since |I;| < |I|. In addition, [£, E%]
is also a bounded operator since B is a tangential vector field. Thus, we obtain

LiW= W] —ﬁ%W[ + AW; +QW[ —CWI +XLgW; =Hy,

594



C. Hao and T. Luo Journal of Differential Equations 299 (2021) 542-601

with
Hp=F + JIII Ikgll te glk,2A1k71 Wlk (92)
+ LT, LRIW 481Gy, - Gy, Xy (L3, LW 9.3)
+ ’éfllk gll e glk,zg.lk,l W[k + E;l Ikg]l e g]k72C[k71 Wlk’ (94)

where |I;| < |I| and F; = ,CITF. We consider only W; = £§W with § € S, as before, let
E;r =(Wi, Wiy + (Wr, (A+DW;) 4+ (LgWi, LgWy).

The energy estimate is similar to that before, and we only need to estimate the L2-norm of the
H;. Itis obvious that (9.3) and (9.4) are bounded by E; for some |J| < |/|. Since A, is of order
1, it contains derivatives in any direction, the term thus has to be estimated by [[dWy,[[12(q).
and then it does not directly get an estimate for | LsWy, || L2(Q) for all tangential derivatives S.
However, we can combine the estimates for the curl to obtain the desired estimate.

Let CR and ES be defined as in (6.49) and (6.17), respectively. Let m”, m? and i) be
defined as in (6.50). Then, we have by (6.52)

.
IWil + IW -+ LW < Ky Y mE (CR+ ED), ©9.5)

s=0
where [W|, = [IW()llRrr (). Since the projection P has norm 1, and |[G;W]| <

llg” ll o) IW |, it follows that

1Gn - Gt G Wil <N ooy - 18 2 ooy 18 ooy W Il

<l W5, (9.6)
1Gn - Gy Cry Wil < Ng™ ooy - - 182 Ml ooy ™l ooy W I

<l W5, 9.7)

and

1G1, -+ Gr_, Xi  [L%, LpIW |

I — i 1
lg ooy - -~ g2l ooy 1 L7 (Bi1dpx! Lpdcx ) |l oo @) 1L, LEIW |

<
‘R, =R
<Oy +m.Z )W, s,

where s = |I;| < r = |I|. Denote

.
PR=> 1l 0 D 108! Plimpe.
s=0 |J|<s+1,JeS

Then, we have
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~1
Id; Gr, - Gy Ar Wil <Nl sy - 18" ooy A Wl L= ()
SPRAWI + PR IW a1 9.8)

Similar to (4.7), we can get

18 Pl Loy
co

|E/| < (1 +2lIgll L) + +2||3x||L°°(Q)||£Bax||L°°(Q)) E;

+ 2V E[|Hll, 9.9)

where ¢ is the constant in the condition (1.7). From (9.6)-(9.8) and (9.5), we get

r—1
1H I <CY @R W s + @+ )W 5.5 + PRIW )
s=0

+ PRIWWI, + I FIl,

r—1
<K Y iR+l + PROCF + ER)
s=0

+ K1 PR(CR + ER) 4 ||F),. (9.10)

Summing (9.9) over all I € S with |I| =r and using (9.10), we have

dES

r

18 Pl oo (r
T() +2010x [l L (@) 1 £50x | Lo

<Ky <1 +20gllLe) +

+y ||aSP||Loo<r>><C,R +EF)
SeS

r—1
+ K Y R+ mR + PROCR + ER) + | F,. ©.11)
s=0

Since (6.51) holds with ¢/ and T replaced by R and S, respectively, we get

dcl <K 6iR +mR)(CR + ES
dt = 1m0+m0)(r+r)
r—1
+ Ky Y R +mR ) CR+ES) +|F . 9.12)
s=0

Thus, (9.11) and (9.12) yield a bound for C* 4 E€ in terms of C® + ES for s < r, namely
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CR() + ES (1) < KK Jonds (C?((» +E7(0)

t

r—1
+ / (Z(mZis +ml )(CF+ ED) + ||F||r)dr>,
0 s=0

where

n=1+2[glloq) + 18 Pll Loy /co + 2019x]| Lo 1L 53X || oo ()

+ Y 19SPll ooy + ol + 1Ll @) + I£58 L@ + 1B 5x
SeS

dy
+ 118 oo () + 182 || ooy + 15 ).

Because the bound for E(‘)g = E( have been already proven, we can get the bound for C* + ES
inductively. Therefore, from (9.5), we obtain the following estimates.

Proposition 9.1. Suppose that x, P € C"7%([0,T] x ), B € C"*(Q), P|r =0, VyP|r <
—c0 <0, B*Ny|lr =0 and divV =0, where V = D;x. Let W be the solution of (9.1) where
F is divergence-free. Then, there is a constant C depending only on the norm of (x, P, B), a
lower bound for the constant cy, and an upper bound for T, such that, for s < r, we have

IWOI + IWOl + 1£8W Ol + (W) Ar

t
< C<||W(0)”r + WOl + 1Lz WOl + (W(©0)) 4., +/ IIFIIrdf), 9.13)
0

where

Wwol-= Y. ILGWOll2q)-
[I<rleR

(WO ar= D (LEW©), AW ()",

1< r1eS
10. The main result

As the same as in [21], ||W (¢)||, is equivalent to the usual time-independent Sobolev norm;
(W(t)) 4. is only a seminorm on divergence-free vector fields, which is not only equivalent to
a time-independent seminorm given by (3.2) with f the distance function d(y) due to 0 < ¢p <
—Vn P < C, but also equivalent to the normal component of the vector field Wy = N, W¢ being
in H"(T") in view of (3.2), up to lower-order terms which can be controlled by ||W (¢)]|,, since
we only apply tangential vector fields.

We define H" (£2) to be the completion of C*°(£2) in the norm || W ()|, and define N" (L) to
be the completion of the C*°(£2) divergence-free vector fields in the norm || W||yr = |[W ()|, +
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(W(t)) 4., Since the projection [P is continuous in the H” norm, H" is also the completion of
the C°°(2) divergence-free vector fields in the H” norm. We state the main result as follows.

Theorem 10.1. Suppose that x, P € C't2([0,T] x Q), B € C"%(Q), P|[r =0, VyP|r <

—co <0, B*N,|r =0 and div D;x = 0. Then, if initial data and the inhomogeneous term in
(5.1b) are divergence-free and satisfy

(Wo, Wi, LgWo) € N"(Q) x H'(Q) x H'(Q), FeL'([0,T], H'(Q),
the linearized equations (5.1) have a solution
(W,W,LsW)eC ([0, T], N"(2) x H () x H’(Q)). (10.1)

Proof. If Wy, W and F are divergence-free and C°°, and F is supported in ¢ > 0, then there
exists a solution by the arguments in Section 8. It follows, by approximating Wy, W and F with
C°°(2) divergence-free vector fields and applying the estimate (9.13) to the differences, that we
obtain a convergent sequence in (10.1), thus the limit must be in the same space. O
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Appendix A. Lie derivatives

Let us review the Lie derivative of the vector field W with respect to the vector field 7 con-
structed in the previous section,

LrWE=TW*— (8, T")W°. (A.1)
For those vector fields, it holds that div7 = 0, so div W = 0 implies that
divCy W =TdivW — WdivT =0.
The Lie derivative of a 1-form is defined by
Lro,=Ta, + (0,T ).

The Lie derivatives also commute with the exterior differentiation, [L7,d] = 0, so if ¢ is a
function, then

L1,q =0,Tq. (A2)
The Lie derivative of a 2-form is given by

ACT,Bzzb = Tﬁab + (94 Tc),Bcb + (ach)ﬂac- (A3)
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In general, in local coordinate notation, for a type (r, s) tensor field 8, the Lie derivative along
T is given by

LBy by =TB Yy b,
— (TP — oo = BT )R =1 g
+ O, T)B Y ey + oo A @p, TOB Ty by (A4)

It follows that the Lie derivative satisfies the Leibniz rule, e.g.

Lr (o Wc) :(‘CTO[C)WC +a Lt we,
LT (,Bac WC) =(£T,3ac) we + ,BacﬁT WC, (A-S)
Lr(g"ap) =L7g"ap + g Lray,

and
L1 (WcBap) =LTWdcBap + W LTI Pab- (A.6)
If wis a 1-form and curl w,p, = dwg,p = 0, wp — dpwy, then
Lrcurlwgp = curl Lrwgp, (A7)

since the Lie derivative commutes with exterior differentiation.
From (A.1), we have the following relation on the commutator of two Lie derivatives

[Lr, LIWE = L7, ;i W*. (A.8)
From (A.4), we get the commutator of Lie derivative and 9,
(L7, 3 IW" = W?8,8,T". (A.9)
Furthermore, we also treat D; as if it were a Lie derivative and we set
Lp, = Dy. (A.10)
Of course, this is not a space Lie derivative but rather could be interpreted as a space-time Lie
derivative in the domain [0, 7] x €2. What matters is that it satisfies all the properties of the
other Lie derivatives considered, such as div W = 0 implies that div D;W =0 and D;curlw =
curl D,w, since it commutes with partial differentiation with respect to the y coordinates. More

efficient to use the same notation, since products of Lie derivatives and (A.10) will be applied.
Furthermore

[Lp,, L7]=0, (A.11)

since this quantity is Lyp, 77 and [D;, T] = 0 for the vector fields we considered, or it follows
from (A.1) and that 7% = T%(y) is independent of 7.
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