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Abstract. In this paper, we consider the three-dimensional rotating Boussinesq equations (the “primitive” equations of
geophysical fluid flows). Inspired by Christodoulou and Lindblad (Pure Appl Math 53:1536-1602, 2000), we establish a
priori estimates of Sobolev norms for free boundary problem of inviscid rotating Boussinesq equations under the Taylor-
type sign condition on the initial free boundary. Using the same method, we can also obtain a priori estimates for the
incompressible inviscid rotating MHD system with damping.
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1. Introduction

The Boussinesq equations are of relevance to study a number of models coming from atmospheric or
oceanographic turbulence where the rotation and stratification play an important role. Referring to [19],
we consider the following inviscid rotating Boussinesq equations without heat diffusion in D:

Oww+v-Vu+ feg x v+ Vp = Thes,
Oth +v-Vh = —Tvs, (1.1)
V-v=0,

where v = (v, v2,v3), p and h denote the velocity, the fluid pressure and the deviation of the temperature
function from the basic temperature profile, respectively. The Coriolis parameter f = 2Asin ¢ is assumed
to be a nonzero real constant in which A is the angular frequency of rotation and ¢ is the latitude;
ez = (0,0,1) is the vertical unit vector; the Coriolis force fes X v gives rise to a vertical rigidity in the
fluid. The number YT > 0 is gravity and I' > 0 is the stratification parameter which represents the Brunt-
Viiséla frequency (also buoyancy frequency). The stratification induces the term T'vs in the equations,
which gives rise to a horizontal rigidity in the fluid. D C Upgi<r{t} x R? is an unknown time-space
domain for some constant T > 0.
We want to find a set D and (v, k) solving (1.1) and satisfying the initial conditions:

{z:(0,2) € D} =Dy, (v,h)],_q = (vo(x),ho(x)) for x € Dy. (1.2)
Let Dy = {x € R™ : (t,x) € D}, then the conditions on the free boundary read

vy = K, on 0Dy,

(1.3)
p=0, on 0Dy,

for each ¢t € [0,7], where N is the exterior unit normal to 9Dy, vy = N'v; in the sense of Einstein’s
summation convention, « is the normal velocity of 9D;.
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We will prove a priori bounds for (1.1)—(1.3) in some Sobolev spaces under the assumption:
Vnp < —e <0 on 0Dy, (1.4)

where ¢ is a constant. In fact, we can assume that the condition (1.4) holds initially and it will hold true
within some time. In other words, (1.4) is natural physical condition, the pressure is larger in the interior
than on the boundary. Moreover, (1.4) is called the Taylor sign condition for the Euler equations.

The free boundary problems of incompressible Euler equations have been studied by many people in
recent decades. In two and three dimensions, Wu [24,25] obtained the well-posedness for the incompress-
ible irrotational water wave problem. Christodoulou and Lindblad [6] proved the a priori energy estimates
under Taylor’s sign condition without surface tension for the incompressible Euler equations; Lindblad
proved the local well-posedness for the motion of an incompressible liquid with free surface boundary
in [15,16]; Coutand and Shkoller [7] obtained the local well-posedness of the problem with or without
surface tension. More important progresses have been made for flows with some general data, see [18] for
example.

When f =T = 0, there have been some results for the Boussinesq equations in R™. Chae and Nam [3]
proved the local existence and blow-up criterion for the Boussinesq equations. In [1], Abidi and Hmidi got
the global well-posedness for Boussinesq system. Danchin and Paicu proved the existence and uniqueness
results for the Boussinesq system with data in Lorentz spaces in [10]. Sulaiman [20] obtained the global
existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces. Xu had done a lot of
work involving the Boussinesq equations in [21-23].

When f # 0, in [5], Charve proved the global well-posedness for the primitive equations with some less
regular initial data. Charve also studied asymptotics and lower bound for the lifespan of solutions to the
primitive equations in [4]. Babin, Mahalov and Nicolaenko had considered regularity of three-dimensional
rotating Euler-Boussinesq equations in [2]. Iwabuchi, Mahalov and Takada proved global solutions for
the incompressible rotating stably stratified fluids in [14].

However, there have been only few results on the free boundary problems for the Boussinesq equations.
In the Hélder spaces, the local and global existence theorem for the problem in the Oberbeck—Boussinesq
approximation was established by Denisova and Solonnikov in [8,9]. Hao and Zhang proved the maximal
LP-L9 regularity for the linearized equations in [12] and the local well-posedness in [13] for the two-phase
fluid motion in the Oberbeck—Boussinesq approximation.

In this paper, we adopt a geometrical point of view used in [6], and estimate quantities such as the
second fundamental form. The energy contains interior and boundary parts involving projected spatial
derivatives which is crucial due to the loss of regularity for the estimates of pressure on the boundary.
We denote the material derivative by D; = 0; + v50y, then the system (1.1) can be rewritten as:

Dyvj +0; 4+ 0jp = 0;3Th, inD,
Dih = —Twvs, inD,
9,07 =0, inD,
uvN =k, on[0,T]x Dy,
p=0, on0,T] x 9D,
Vnp < —e, on {t =0} x 9Dy,
where 0 := (—fuvs, fv1,0) and 6;; is the Kronecker delta symbol such that d;; = 1 and d;; = 0 for i # j.

Remark 1.1. Just consider fixed boundary problem, we need to add additional conditions to (1.5). When
I'=7" and vy = 0 on 0Dy, the energy

1
Bo(0) = 5 [ (o(e.0) + |ble. o)) do (1.6)
Do
is conserved. In fact, the rotation and stratification do not cause the above energy loss.
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Remark 1.2. Similar to the fixed boundary problem, in this paper, we do not need to assume the condition
of temperature on the boundary. Different from Euler equations, the energy of the system is not conserved,
but it can be controlled by the initial data and time 7. In the following proof, we can find that the higher-
order energy of temperature is actually controlled by velocity and the initial energies, and is not affected
by the boundary condition.

In order to define higher-order energies, we introduce the second fundamental form of the free surface
and tensor products given in [6]. We want to project the system to the tangent space of the boundary.
The orthogonal projection II to the tangent space of the boundary of a (0,r) tensor « is defined to be
the projection of each component along the normal:

(Ha)il...ir = Hzll s Hg:()éjl..,j” where Hz = 55 — ]\71]\[j
Let 9; = IT/9; be a tangential derivative. If p = 0 on @D, it follows that d;p = 0 and
(H32p)ij = 0;;V D, (1.7)

where 0;; = @Nj is the second fundamental form of 9D;. Then we define the quadratic form @Q of the
form:

Q(e, ) = (Mo, ) = ¢ - g ay i, By
where
¢ =69 —n?(d)N'N?, d(z) = dist (z,0D;), N'= —§0;d.

Here 7 is a smooth cut-off function satisfying 0 < n(d) < 1, n(d) = 1 when d < dy/4, and n(d) = 0 when
d > dy/2. dy is a fixed number that is smaller than the injectivity radius ¢g of the normal exponential
map, defined to be the largest number ¢y such that the map

ODy X (—p,%0) — {x € R™ : dist (z,0D;) < 5o},
given by
(Z,¢) = =T +sN(z),
is an injection. Then we define the higher energies for » > 1 as

E.(t) :/(5”@(8”1}1',87"11.7) —l—/‘@r_lcurlv‘zda:
Dy

Dy

(1.8)
+ / |87"h|2 dz +sgn(r — 1) / Q (0"p, 0"p) V¥dS,
D, D,
where sgn denotes the sign function and
0= (—Vyp) .
In the present paper, we prove the following main result.
Theorem 1.1. Let
K(0) = max ([|6(0, )| L= (ap,), 1/50(0)) . (19)

E(0) = 111/ (T xp(0, ) | (o) = 1/£(0) > 0.
There exists a continuous function T > 0 such that if

T< T(|f‘,T,F,K(O),S(O),Eo(O), e 3E4(O)7 VOZDO) ) (110)
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then any smooth solution of the free boundary problem for inviscid rotating Boussinesq Eq. (1.5) without
heat diffusion satisfies
4

4
> E(t)<2) Ei(0), 0
s=0

Let us now outline the proof of Theorem 1.1. Firstly, for the rotating Boussinesq Eq. (1.5), we transform
the free boundary problem to a fixed boundary problem in the Lagrangian coordinates in Sect.2. In
Sect. 3, we prove the zero-order and the first-order energy estimates. Section4 is devoted to the higher-
order energy estimates by using the identities derived in Sect. 2, then, we justify the a priori assumptions
in Sect. 5. Finally, for the rotating MHD equations with damping, we can get a similar conclusion in
Sect. 6.

N
~
/N
N

(1.11)

2. Reformulation in Lagrangian coordinates

We introduce the Lagrangian coordinates to transform the free boundary problem to a fixed boundary
problem. Let  be a bounded domain in R?, and f; : Q — Dy where fj is a diffeomorphism. The connection
between the Eulerian coordinates x and the Lagrangian coordinates y is given by © = z(t,y) = f:(y) and

dx
E = U(t7$(tay))7 J?(O,y) = fO(y)a Yy e Q. (21)
The Euclidean metric d;; in Dy, then in Q for each fixed ¢, induces a metric
Ozt 027
Jab(t,y) = 5ij37y“87yb’ (2.2)
and its inverse
oy° Oy?
cd ki
=" == 2.
Furthermore, expressed in the y-coordinates, we have
0 oy® 0 (2.4)

‘T ort Ozt oy’
Let us introduce the notation for the material derivative
0 0
T ot ot

y= const

—H}ki.

D
K ozk

xr= const

If k(t, ) is the (0,r) tensor expressed in the x-coordinates, we have

oxh ox'r 't Mt
Diwg,...q, = = (Dtkilmn + kg, + o F ~wil~~~é>

ayal . Aay“"' axil Oxlir
dxh Ox'r
where Way---a, (t7 y) = w s %kil'“ir (t7 x)

Let u(t,y), ©(t,y), P(t,y) represent the velocity, deviation of the temperature function, pressure in
the Lagrangian coordinates, respectively. Then from [17, Lemma 2.1] and (1.5), we have

ol oxk ovI
Dua =52 (=05 = 0ip + Tosh) +vj5 25 % (2.5)

= — Uy — VoP 4+ Y3,0 + uV,ue,
where 4, = g—;iﬁj. Similarly, since the deviation of the temperature function © is scalar, we directly get

D,© = —Tus. (2.6)
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Thus, the system (1.5) can be rewritten in the Lagrangian coordinates as
Dyug + tg + Vo P = 03,0 + uVaue, in [0,7] x Q,
D©® = —-Tus, in[0,7]x9Q,

2.7
Vou® =0, in [0,7] x £, 27)
P=0, on]l0,T]x09.
3. The zero-order and the first-order energy estimates
In this section, we define the zero-order energy as
1
Eo(®) = 5 [ (ut.o)P +10(t.0)P) (3.1)
Q

[17 Lemma 2.1] and (2.7), Gauss’ formula, it yields

/Dt g buaub + |®|2) dpig

(Dtgab) (uqusp) dpg

DO | =

u*Dyu, +0OD,O) dpy + /
Q

Q
— / [—ulq — UV P + Tu%3,0 + uuVou, — I'Oug] dpg — /h“b (uqup) dptg
Q Q
=— /Nau“Pdu7 + /(T —TNuzOdpy + /uaucvaucdug
Q Q

1

-3 /g“ (Veua + Vaue) g™ uqupdpsg

Q
= /(T —INusOdpy,
Q
where dugy = +/detgdy is the Riemannian volume element on 2 in the metric g. In fact, we can easily

obtain D;du, = 0 and ut, = 0 by using divu = 0. Obviously, when T = I', the energy of the system is
conserved. Using the Holder inequality

qa
dt

From the Gronwall inequality, for ¢ € [0, 7] with a constant T > 0, it follows that
Eo(t) < C(T, 7, T) Ey(0). (3.3)

Eo(t) < C(T,D)|lull 2@ Ol L2() < C(T, ) Eo(t). (3.2)

Due to the initial energy is given, we can get the zero-order energy estimate. Before dealing with the
first-order energy estimates, we need the following Identities. From [11, Lemma 2.3], (2.5) and (2.7), we
have

D; (Vyug) + VeV P
= [Dt, Vb] Uq + VpDiug + VoV P
— (Vavbud) Ug + Vplg + Y03,VpO + VyuVaue + uVy Ve
= VpuVate + Viiig + 93, TV0.

(3.4)
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Note that by (2.6) and [11, Lemma 2.3], we directly find that
D (VO) = [D,V]© + VD0 = —I'Vus. (3.5)

Now we calculate the first-order energy estimates. From (3.4), [17, Lemma 2.1], and [11, (A.13)], we
derive the material derivative of gbd'y“evaubveud,
Dy (¢""9*V qupVetig)
= (Dtgbd) YV qupVetg + g° (D YY) Vaup Vg + 2gbd~e (DeV qup) Veug
=— 47“67fcveufvaudvcud + 2T'y“eveub53bva9 - yaeveubvaab — 2V, (’y“eveubvaP)
+2(Vyy™) (Veu Vo P) .

(3.6)

In fact, Y2¢V uV,il, = 0 by using symmetry and the definition of @. Similarly, by (3.5), we obviously
have

Dy ([VO?) = Dy(¢"*V,OV,0) = (D1g*")V.OV,0 +2¢g*°D,V,0V,0

bd b (3.7)
=49"°g""V uqgV,0V,0 — 2I'g""V u3V;, 0.

Next, we shall calculate the material derivative of |curlu|?. Indeed, we can get

Dy|curlul* =D (g“cgbd(curlu)ab(curlu)cd)
=2(D; g‘w) (curlu)ab(curlu)cd + 4gcgb? (DiV qup) (curlu) eq
=—2¢"°g7g" (Vous + V pue) (curlu)  (curlu) o
+ 4g%¢ gt (curlu) oqVau Vyue — 49%g bd(curlu)cdvaﬂb (3.8)
—4g%“g bd(curlu)cdv VP + 4Tg%g bd(curlu)cdégbva@
= — 4¢%°g*V ul(curlu) g (curlu) g — 49%°g bd(curlu)cdvaﬂb
+ 47T g% g (curlu) oqd3, V4 ©.

Define the first-order energy as

Eq(t) :/gbdvaevaubveuddug+/|curlu|2dug+/\V@|2du9. (3.9)
Q Q

Then we get the following estimates.
Theorem 3.1. For any smooth solution of system (2.7) satisfying
IVP| < M, |Vu|< M, in [0,T] x Q,
0] + [Vu| + % <K, on [0, 7] x 0,
we have for t € [0,T]
Eqi(t) < 2e“ME(0) + OK? (e“MF — 1), (3.10)

where C depends only on T, Y, |f| and VolQ.
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Proof. By (3.6), (3.7), (3.8), [17, Lemma 2.1] and Gauss’ formula, it holds

d
%El( ) / (_47ae’yfcveufvaudvcud + 2T7aeveub63bva@) d/’bg
Q
+ 2/ Vv V ubv P) dpg — 4/gaegbdveuc(curlu)ab(curlu)cddug
Q Q

4/gacgbd (curlu)cq Vo tp +4T/ *g* (curlu)cadss Va Odyg

Q
+4 / 9%¢"V uqV,OV;,0 — 2T / 9"V au3Vp© — 2 / Ny (Y*“VulV,P) dps,
Q Q o0

where dp, is the Riemannian volume element on 0. Since P = 0 on 02, it follows that v*¢V,P = 0.
Thus, the integral on the boundary is zero.
Next, from [11, (A.3) and (A.5)], we get

Vy®e = -0 N© — 0, N°.
By the Holder inequality and [11, (A.5)], we directly get that

%El(t) SCKM(VolQ)\2E2(t) + C(X + T + | f) Er (1)

+ OVl oy (IVullfz(@) + IVO Iz + lowtullfs g )

SCKM(VolQ)2EY2(t) + C(M, Y, T, | f) Ey (¢).
From the Gronwall inequality, it yields the desired estimate. O
Remark 3.1. Whether in the lower order or the higher-order energy estimates later in this paper, we can
find that the Coriolis force u does not affect energy of tangential velocity, but it will affect © and the

energy of curlu. In fact, the integral involving P is zero, so we do not need to estimate the boundary
integral in F;. But for the higher-order estimates, we have to introduce boundary integrals for P.

4. The general r-th order energy estimates

In this section, we establish the higher-order energy estimates. Applying [11, Lemma 2.2] and (1.5), we
get

Dtvrua :Dtval e Varua

Oz ox'r 9zt
—D, <6ya1 " G 8711‘18“ "'@',ﬂh’)

r—1
=~ V'ig — V'VP — ; ( . 1) (Vu) - V'™, + T65,V"O
+ VuVu,,
and so, we get for r > 2,
DiV"uy + V'V, P == V", + (curlu) . V'u® + Td3,V"O

=2 (4.1)

+sgn(2r)z< +1> (ViF2u) - V=2,
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Similarly, by (2.7) and [11, Lemma 2.3], we have

r—1
D,V'© = D, V']0+ V' DO =—>" (S j; 1) (Vo) - V7™*0 — 'V us. (4.2)

s=1

Define the r-th order energy for r > 2 as

E.(t) :/gbd’)/af’)/AerA_lvanv;_le“Uddﬂg + / |V Leurlu|* dpg
Q Q
/|VT@\2dug +/vaf»yAFv:;;1vanrF*1vaq9duv,
Q oQ
where ¥ = 1/ (—=V yP) as before, then we have the following theorem.
Theorem 4.1. For the integer r € [2,4], there exists a constant T > 0 such that, for any smooth solution
to system (2.7) for 0 <t < T satisfying
IVP| < M, |Vul|<M, |VO|

<M, in[0,T]xQ,
0] +1/s0 <

K, on]0,T]x 09,
—VNP>2e>0, onl0,T]x 09, (4.4)
|V2P|+|VNDP| < L, on[0,T] x 09,
we have, for t € [0,T],
E.(t) < e“'E(0) + Co (e9F — 1), (4.5)

where the constants Cy and Co depend on Y, T, |f|, K, M, L,1/e, VolQ, Ey(0), E1(0),--- and E,_1(0).

Proof. By (4.3), the derivative of E, with respect to ¢ is

d

—Br(t) = / Dy ("7 Iy VT Ve ViV pua) dpg + / Dy (IV"O) dpg
Q Q

+ / Dy [V eurlu|® dp, + / Dy (v AAEV IV PV V4 P) Ydp (4.6)
Q o0

U
+ /VQf’YAFVZ_IVaPVTF_lva <19t - hNN> Dy,
60

where hyy = hay NN and hap, = Digap/2. By using [17, Lemma 2.1], (4.1) and (4.2), we can directly
get

Dy (9" 4 ATV TV quy Vi 'V pug)
= (Dtgbd) YA I oy VitV pug + g (Dwaf) ANV IV up VitV ug
+ 29"y A Dy (VI Vaw) Vi 'V pug
=— QVCuevafwAFV’;(lVaucV;TlVfue — 4rvcuev"cv€f’yAFVf[1VaudV}71Vfud
— 20 ANV VTV iy, — 29 ATV YV YTV, VL P
+ 29 ATV pul (curlu)p Vi Vaus + 20y ATV 063, VTV, O

r—2
+ 2sgn(2 — )y ALV puy Z (s :_ 1> (Vettu) - v —sul) , .
s=1
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Similarly,
Dy ([V"O) =Di(9" g™ V' 'V, OV} 'V 0)
=r(Dg* ) gtV TIV,OVET IV 0 + 20 gA DUV TIV,O) VIV 6
= — 2V uf g2 TV IV,0VET V0 - 2T g gAMLV OV Vus (47)
r—1
af AFxor—1 s+1 r—s
_QQfg Ve Vf@(Z( +1>(V+ )V @) ,
s=1 Aa
and
Dy (v AV PV IV P)
= —2rVeuey "y AV IV PV P+ 29 AP TN  PD, (Vi 'V P)
In fact, the difficulty is how to deal with the integration of the higher-order derivatives of P on the

boundary.
We can apply (4.7), the Holder inequality and

r—1 r—2
D (5 (V) - VIO = Viu - VO +sgn(r — 2) Y (1) (Vi) - V706,
s=1

s=1

to get the estimates for V702, it follows that

/Dt (|vre\2) dptg| < C||Vull L (0 Er(t) + CTE () + C||[ VO poe (o En ()

r—2
+ Csgn(r — 2) / g g Vv e ( (s51) (VoT1u) V”@) dpg (48)
Q s=1 Aa '
CIVullze ) + VO]l () + T)Ex(t)
r—2
+ Csgn(r — 2)E7}/2(t) Z:l Hvs+1uHL4(Q) HVT_SGHM(Q) :

Similarly, by the Holder inequality, we finally obtain that

/Dt (gbd"/“vaFV’;(lVaubV;flVfud) dpg

+ / Dy (v Iy IV PV P) Ydp
o0
<C ”VUHLOO(Q) ET'(t) + CTET(t)

1/2 - +1 (4.9)
+ Csgn(r — 2)E; ZHVQ U’HL‘l(Q)HVT g“Hm(u

s=1
1
+2/7af7Aszmp <Dt WP - ﬂNbV}fub> Udpiy
o0
2 [ Vi (190 ViV V. P,
Q
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Hence, by the Holder inequality, we get

/vb af AF VT 1V ’Lbbvr 1V Pd/ig CKEi/z(t) ||VTP||L2(Q) (410)

Now we need to estimate |[V"P||,. Q)" The first step is to find an equation for P, taking divergence
on the first equation of (2.7), by [11, Lemma 2.2], we obtain

AP = —V,i® — V,u’Vyu + 1050. (4.11)
We get for r > 2
r—2
VT72AP _ _V’r‘72(vaﬂa) _ Z (7";2) staubvr7275vbua 4 TvT7283@
s=0

Definition 4.1. Let 0 < €1 < 2 be a fixed number, and let t; = ¢ (1) the largest number such that
N (Z1) — N (Z2)| < &1 whenever |T — Ta| < t1,%1,T9 € OD.
Suppose 1/¢; < K7, then from [11, (A.28)], we see that, for ¢; > 1/K1,

n/2—s s
ull oo 0y < OZK/ IV*ull 2 () < C (K1) ZE“? (4.12)

In view of (4.12), for s > 0, one has

2
V3l oy < C Y K727 [V ] o) < C (K7) ZE;@ (4.13)
=0

and similarly,

2
V20 oy < Y KT VE20)| Ly < C (K ZEW

s+€
=0
From the Hoélder inequality, (4.12) and (4.13), we get for r € {3,4},
r—2
[V 2AP| o ) <CUAIIVT  ull 20y + CY VoV VT V|| g
s=0

+0T HVPl@Hp(Q)
SO Vullps@) [V 0l 2y + (r = 3)C V]| poe ) V2
+O(fL OV ] .

“HLZ(Q)
@ T v 1@||L2(Q) (4.14)

C (K1) Y Eolt) + C (K1) By () EN2(t) + C(Y, | ) B (#)

r—1
C (K0T, S Eolt) + C (K1) By 2 ()EY2 ().
=0

The last inequality is attributed to the zero-order energy estimate and the inequality F EM? 1(t) S CEy(t)+
E,._1(t). For r = 2, we have the following estimate from the assumption of (4.4) and the Holder inequality,
ie.,

IAP| L2y < C(M, |f], T)E2 (1), (4.15)



A priori estimates for free boundary Page 11 of 21 80

ZAMP

which is a lower-order energy term. Then, by [6, (A.17)], (4.14) and (4.15), we obtain for any 4, > 0

IV Pll 20y <Or [TV P 12(90) + C (1/6r, K, VoI) Z IVEAP 20

s<r—2
— 4.16
<O IV P oy + C (/8,7 1, K, Ky, M, VOI) S Ei(t) (4.16)
=0

+ (r—2)C (1/6,, K, Ky, M,VolQ) (EX () EM2(1)).
Since P = 0 on 99, due to [11, (A.18)], we obtain for r > 1,

Z HkaHL2(BQ (4.17)

IV Pl 12(90) < C (K, K1) | 0]~ 0) + (r —2) Z Hvk‘gHLz(asz)
k<r—1

k<r—3

From [11, (A.7)], we get the fact that [IV2P = §V y P, and then by (4.4), we have
1 2

<z [TIV2P| 2 g - (4.18)

12(89)

ovap
16115 o) = H

Next, we will estimate [[IIV" P, 5q) and [|[V"P|| 2o for r € {2,3,4}.
For r = 2, by using the trace theorem, (4.16) and (4.17), we get

[TV2P| 12 90y < 1012 o) IV Pl| 2002y

< C(K,VO]Q) (HVQPHLZ(Q) + HVPHL?(Q))

< C(K,VolQ)5, |[IV?P|| ., (o + CE, VolQ, M, T, | F(VoIQ)Y2E, (t)

+C (1/527 T7 |f|7 K7 K17 M7 VOIQ7E0(O)) El(t)
We can take d2 so small that the first term can be absorbed by the left-hand side. Thus
||HV2P||L2(6Q) HV2P||L2 (@ < C (K K1, 0, |1, M, VolQ, Eo(0)) (1+ Ex (1)),
||9||L2 a0) < C (K, ,[(17 T, |f|, M, \/YOIQ7 1/6, EO(O)) (1 + El(t)) .

By Theorem 3.1, there exists a constant 7' > 0 such that E(t) < CE;(0) for t € [0,T].

For r = 3, from (4.4), (4.17), (4.19) and (4.20), we get

HHV3P||L2(aQ) <C (K, K1) (K+ H9||L2(89)) Z ||VkPHL2(é)Q)
k<2
(4.21)

<C (K, K1, 0, |f], M, VolQ, 1/e, By (0) E1(0) [ V2P| 12 )
+ C (K, Kl, T, |f|, M, VOIQ, ]./57 Eo(O),El(O)) ;

and it follows from (4.16) that
||V3P||L2(Q) <030 (K, Ky, Y, |f|, M, VolQ, 1/, E1(0))
+65C (K, K1, Y, | f], M, VoI, 1/e, E1(0)) .
O (15, K, K T 1M VOI) (Eo(f) + Fa(6) + Ea(t) 422
1/

+C(1/65, K, Ky, Y, |f|, M,VolQ) (ES*(t) BN (1)).

IV°P| 2 q)
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Hence, we can choose a sufficiently small §3 > 0, and by using (4.21) and (4.22), it implies

IV°P 12y -

PHLz(am <C(K,Ky,Y,|f|, M, VoI, 1/¢, E5(0), E1(0))

(4.23)
+C (K, Ky, Y, |f], M, VolQ) (ZE@ t)+ B33t )E§/2(t)> .
For r = 4, since
VoVNP =)V (NV,P) = (6 — NyN?) (VgN*) VP + N*V 4V, P)
= 0¢V,P + N°V,V,P — N,N% 03V P + N*V,V,P),
then from [11, (A.31) and (A.8)], (4.15), (4.19), (4.20) and (4.23), it follows that

VY NP 1200y <CI0ll 001V Pllz2(00) + C || V2

CD) PHL2(8Q)

<C(KVoIQ) (V2P| o gy + V2Pl 2y + IV P2y
<C(K, K1, T, |f], M, Vol®, 1/¢, Ey(0), E1 (0))

2
(1 B+ B0 ;%) .
=0
Thus, by [11, (A.8)], it follows that (VO)V NP =TIV3P — 302VV v P, and we have

1 _
- HHV?)PHLZ(BQ) + Cl10] e (o0 ||VVNPHL2(39))
C(K,K1,7,|f], M,VolQ,1/e, Eyx(0), E1(0))

-<1+ZE2 By (1) é/%)).

||?9||L2(asz <
<

Hence, by using (4.17), it yields

HHV4P|\L2 00y S C (K, K1) (K + 116l z2(00) + IVl 202)) D HkaHLZ(Q

k<4

Consequently, from (4.16), we choose a sufficiently small 64 > 0 which can absorb the highest-order term
in the right-hand side, and get
4 4
V2P 2y - ITIVAP| 2 o

(4.24
< C (K, K1, Y, |f], M, VolQ, 1/e, Ey(0) <1+ZE£ By (t) i”(t))- )

Therefore, thanks to (4.19), (4.23) and (4.24), we can get for r > 2

HVTPHLQ(Q) <O (Ka K17T7 |f‘7M7V01Qa 1/65E0(0)aE1(0))

: (1 + iE«(t) +(r— 2)<E%/2<t>E3/2<t>>> :
=0
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from which and (4.10), we obtain
2L/,V% af AF VW 1‘7 ub‘7r 1v7})dug
Q
< O (K, K1, Y, | f], M, VoI, 1/e, Eg(0), E1(0)) EX?(t)

: (1 + i BEo(t) + (r — 2)E21/2(t)ET1/2(t)> .
£=0

Now, we recall that P =0 on 09, so 7/VqP = 0 on 0€2. Then we also obtain
— 97Ny = VNPNy = N°V PN, = 6)V P — 4V,P = V, P.
Next, by the Holder inequality and (4.25), we have
1
/ yyAEYT P (Dtv;fp — SNV fub) i

o0

< ClI) 2 ooy BN (1) [T (D (V7 P) = 07 Ny ) | 2

1/2 T T
= Ol o0y B> ITL(De (V7 P) + V7 VP)| oy
then we need to estimate IID, (V" P) and V"u - VP, by [11, Lemma 2.3], it follows that

D:V'"P+V"u-VP=[D,V'|P+V"D,P+V"u-VP

r—2
=sgn(2-r) ) (8 fr 1) (V**lu) - V"5 P + V" Dy P.
s=1

By [11, (A.18), (A.31) and (A.17)], we have, for 2 <r <4

[IIV" Dy Pl 290y < C (K, K1, Vol{) <||0|L°C(BQ) +(r—2) Z Hvk‘gum(am
k<r—3

' Z HVthPHLQ(Q) ?

k<r

and

IV" DeP| () < SIIIVT DeP| 2 g + C(1/6, K, Vol2) Y~ [VSADP 1o g -

s<r—2
Now, from [11, Lemmas 2.1 and 2.3], (2.7), (3.4), (4.11) and

Dy(Vau®) =D f(—Viug + Vauy)
=f(—=[D¢, V1]ua — V1 Dsus + [Ds, Valugs + Vo Diuq)
— F(VyuV qtie + Viia — VoVaP — VauViytie — Vaiiy + Vo Vi P)
=f(=forur — fOaus)
=f?03us,

80

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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it follows that
AD;P = — 20"V, VP + (Au®) V. P — Dy (¢" g%V qugVu, + Vai® + Y050)
= — 20"V, VP + (Au®) V. P — 2Dy (g") VuaViu® — 2¢°* Dy (Vauq) Viou®
+ Dy(Vau®) + YDy (030)
= — 2hV VP + (Au®) VP + 4hbV yug Viyu® + 2¢"Vu?V oV 4P 4+ T D, (9:0)
+ 26Y9V,uV g — 29"V uV qulV gue + f203u3 — 2T ¢ Vut634V . ©
=4¢°°V bV, VP + (Au®) V. P + 2V 4’ Vyu'V,u® + 2¢%4VutV ,iig
— 2V ¢V u®6,,Vu® + (f2 — T'Y)dzus.
By (4.13), (4.16) and [11, Lemma A.12], it implies that, for s = 2 (similarly for s = 0,1)

||v2ADtPHL2(Q)

< C[VPuV?P + V2uVPP + VuV* P + VPV,
+C HVguVuVu + VQuVQuVuHLZ(Q) + CIf] || V?uV2u + VSuVu||L2(Q)
+CT [[VPuVe + V2uV?e + Vuv?e|| , o

+ O + [fP)IVull 20

< ClIVullzo o) VAP gy + ClIVPull 20y VPPl ()
+C HV2UHL4(Q) ||V3PHL4(Q) +C Hv4u||L2(Q) IVP[[Le (o)
+ ClIVull L @IVl L @) | V20l 12 ) + CIVUllL @) [ VPul| fa o) 1V2Ul] 1o
+ CT [Vl o ) [[V?O] 12 ) + C V0| 12 (TIIVOI e ) + [V Ull 1 ()
+C HV2UHL4(Q) (T Hv2@||L4(Q) + 171 HVQU’HL‘%Q)) +CT + [Vl L2

From [11, (A.11)] and (4.13), we can get
9 1/2
[l < 11 ) (319 1

C (K1) ZEiﬁ

(4.30)

Similarly, it follows that
7600, < € 003 B0 (431

By (4.30) and (4.31), we can estimate all terms with L*(Q2) norms and the similar estimate of P by the
assumptions. Thus, we obtain the bound which is linear about the highest-order energy Erl/ 2(t), ie.,

||VSADtP||L2(Q) <C (K7 Klar7 Ta |f|a M7 La 1/EaVOIQv EO(O)?EI(O))

: (1 + § Ee(t)> (1 + Erl/Q(t)) .
£=0

(4.32)



ZAMP A priori estimates for free boundary Page 15 of 21 80

Therefore, by (4.28), (4.29), (4.32), for small ¢ independent of F,(t), we obtain, by induction argument
for r, that

IV Dy P 2oy <C (K, K1, T, Y, ||, M, L, 1/2, Vo€, Eq(0), E1(0))

: (1 + i Ee(t)) (1 + Eg/Q(t)) .
=0

(4.33)

Then, we estimate the remaining term IT ((Vsﬂu) . VT*SP), for the case r = 3,4 and s = r — 2, indeed,
we have, by (A.6), [11, Lemma A.14] and (4.4),

[T ((vtu) - v2P)

<[Vl

||L2(aQ)

v2p||L°°(8Q) <CL ||v2u“L2<n—1>/<n—2>

(89) H (09)

<C(K,VolQ)L (HVTUHH @ T Hvr_luHLQ(QD

<C(K, L, VolQ) ( E% () + B2t ))
For r =4 and s = 1, we get similarly

HH ((V?u) 'VBP)HLQ(OQ)
= [|[IV?u - TIVPP + 11 (V?u - N) @I (N - V?’P)HLZ(BQ)
<OVl u gy ITVEP| u gy + C TNV ua) || L o0y TVNVZP) || Lo
Y HV2“HL4(89) Hv3P||L4(aQ)

< 0, Vo10) ([ V0l gy + 9%l ) (9Pl oy + V2P o)
< C (K K |1, M Vol9) (B52(0) + By (e )(ZE (ZE”Z )Ei” >>

3 4
< C(K, K1Y f, M Vol) S By (6) S E2(1)
s=0 =0

Hence, we have
|(4.26)| < C (K, Ky,T, Y, |f|, M, L,1/e,VolQ, Ey(0), E1(0)) (1 + Z Es(t)> (1+E.(1).

By combining (4.30) with (4.31), we can get
|(48)‘ + |(49)| <C (Ka K17 Fa T’ ‘f|7 Ma L7 1/8, VOlQa E0(0)7 El(o))

) (1 + Ti:Es(t)> (1+E.(t)).
s=0
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Now we calculate the material derivatives of |VT’1cur1u|2. By [17, Lemma 2.1] and (4.1), we have

Dy (|V“lcur1u|2>
=Dy (g“gbdgAFVZ(l(curlu)abvgfl(curlu)cd)
= (r+ 1)D; (¢°¢) g** g V" (curlu) o Vit (curlu) o
+ 4¢%¢g"?¢AF D, (V:lvaub) V;Tl(curlu)cd
= —2(r + 1)V ug" gV (curlu) o Vit (curlu) o
— 4g¢ gt gV (curlu) (g VT, Vo P + 49°¢ g0 g2 Vi (curlu) ca Vi i
— 4T g gt gV (curlu) cadps V', © + 497" g Vit (curlu) cq (curlu) pe V' u®
+4sgn(2 — r)g*g Vi (curlu) o TZ2 (1) (VH5u) - vrsud)

a
s=1

The higher-order term involving pressure P will vanish by symmetry. For other terms, we can apply the
Holder inequality and the Gauss formula to get that

/Dt (|VT_1curlu‘2> dpig
Q

< (K.Y, |f|, M, L,1/e, VolQ, Ey(0)) - (1 + Tz_:Es(t)> (1+ E.(1).
s=0

Finally, we only need to estimate the last term in (4.6). By [11, (A.12)], we have
0, 2MGN'V,P  VND,P
9 VyP NN UVNP

Thus, the integrals can be controlled by C(K,Y,T,|f|, M, L,1/e)E.(t).

In summary, we obtain

d

r—1
—Br(t) < C (K K1, L, | |, M, L, 1 /e, VoI, E(0)) (1 + ZEs(t)) (1+ E. (1)),
s=0

which implies the desired result by Gronwall’s inequality and the induction argument for r € {2,3,4}.

O
5. Justification of a priori assumptions
In this section, we justify the a priori assumptions in Sect. 4. At time ¢, denote
K(t) = max ([|0(t, )| = 00), 1/0(t)) ,
1 (5.1)

£8) = 1/ (TwPE ooy <0 = 55

In fact, our judgment is very similar to those in [6,11], so we only state the results and omit their proofs
as follows.
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Lemma 5.1. Let Ky > 1/5i(t), then there are continuous functions F;, j =1,2,3,4, such that

IVul| ) + VO L (@) < F1 (K1, Eo, -+, E4),
\|VP|\L00(Q)+||V2P||LOQ(Q < Fy (Ky,&,Ep, -, Ey, VoIQ)
IVDiP|| e 90y < Fa (K1, €, Eo, -+ , By, VolQ2)

||9||Loc(am < B3 (K1,&,Ey, -+, By, VolQ),

)

)

‘ Cr KlvngOa"' 7E4a VOlQ)a

< Gy (K1,&, Eo, -+, Eq, Vo) Y E.

s=0

E8

dt

Lemma 5.2. There exists a continuous function T > 0 depending on Ky, |f|,T,T, Ey(0), E1(0), ---
E4(0) and VolQ) such that for

0<t< T (Ky,|f],T,T,E(0), Ep(0),- -, E4(0), Volf2)
the following statements hold
Ey(t) <2E4(0), 0<s<4, &(t)<28(0).

Furthermore,

1
§gab<0,y>Y“Yb < gar (6, Y)Y Y < 29450, y) VY,

and with €1 as in Definition 4.1,

_ 9 _
IN(z(t, 7)) — N(x(0,7))| < 1% y € on,
lz(t,y) — x(t,y)| < 16 yeq,
dz(t,y)  9(0,9) _

Lemma 5.3. Let T be as in Lemma 5.2. There exists some €1 > 0 such that, if

€1

‘N(LI} (07291)) - N(‘T (an2))| < 57

then fort < T, it holds
|N (l‘ (ta yl)) - N(x (tayQ))‘ <Er.
Proof.

IN (2 (t,91)) = N ( (t,y2))]
<IN (z (8 91)) = N (2 (0,0) + [N (2 (0,41)) = N (2 (0, 92))]
+ [N (2(0,y2)) = N (2 (£, y2))]

and follows from Lemma 5.2.

Consequently, Lemmas 5.2 and 5.3 yield immediately Theorem 1.1.
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6. A priori estimates for rotating magnetohydrodynamics with damping

As everyone knows, the rotating MHD has wide application including planetary flows, stellar flows and
accretion discs. An incompressible inviscid MHD system with damping under solid body rotation and in
the presence of a uniform background magnetic field will be considered. The equations in the rotating
frame of reference are:

Ow+v-Vu+aes3 x b+ Vp=>5b-Vb,

Ob+v-Vb=1>b-Vv—nb, (6.1)

V-ou=0, V-b=0,
in D (the same as before), where v, b, p denote the velocity, the magnetic field, the total pressure,
respectively; « is the rotation rate and 1 > 0 is a damping coefficient. Obviously, when o = n =0, (6.1)
are the incompressible inviscid MHD equations considered in [11]. The system (6.1) with the conditions

p=0,b-N =0and vy = k (the normal velocity of free surface) on the free boundary 0D; can be written
in the Lagrangian coordinates as

Dytg + VoP = —f4 + BuVaue + VaBa,  in [0,7]
DBy = BV qug + YV atie — 9B, in [0,T] x Q,
Vau® =0, Vo3*=0, inl0,7]
BuaN*=0, P=0, on][0,T]x09Q,

(6.2)

where § = (—afs2,a01,0), Q = Dy; u, 3, P denote the velocity, the magnetic field, the total pressure in
the new coordinates. Thus, in view of (6.2) and [17, Lemma 2.1], we also have the zero-order energy
t
1
Eo(0) = 5 [ (lutt.o) +190.2)P) diy +1 [ [ 1P
Q 0 Q
A direct computation yields that the energy of the system is conserved.
Similarly, we can define the first-order energy as

Ey (t) :/ (gbd'yaevaubveud + gbd’Yaevaﬂbveﬁd) dﬂg

Q
t

+/(|cur1u|2+|curw|2) dug+n//|Vﬂ|2d,ung.
Q

Q 0

Theorem 6.1. For any smooth solution of system (6.2) for 0 <t < T satisfying

IVP| <M, |Vul<M, inl0,7]xQ, (6.3)
1
0] + |Vu| + o <K, on[0,T]xdQ, (6.4)
0
we have for t € [0,T]
Eq(t) < 2e“M By (0) + CK? (VoI + Ey(0)) (e“M — 1), (6.5)

where C' depend on «,1.
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Define the r-th order energy for r > 2 as

E.(t) = / "Iy AT oy VY puadpg + / V7 teurlu|” dpg
Q2 Q
a r— r— r— 2
+/9bd7 VA VNG A v 1Vfﬁddug+/yv LeurlB|” dpug

Q Q
t

-‘rT]//‘Vrﬁlzdﬂ d7+/yafy”vr 'V, PV} IV PYdp,.
0 o0

Theorem 6.2. For the integer 2 < r < 4, there exists a constant T > 0 such that, for any smooth solution
to system (6.2) for 0 <t < T satisfying

1Bl < My, for r=2, in|[0,T]xQ,
IVP| < M, |Vu| <M, |Vﬂ| <M, n|0,T] xQ,
0] +1/s0 < K, on[0,T] x 09, (6.7)
~VNP>e>0, onl0,T]x 09,
|V?P| + |[VNDP| < L, on[0,T] x 99,
we have for t € [0,T],
E.(t) < e'E(0) + Co (e9F — 1), (6.8)

where the constants Cy and Co depend on K, o, n, M, M, L,1/e, VolQ, Eq(0), E1(0),- -+ and FE._1(0).

Remark 6.1. 1t is meaningfully different from the Boussinesq equations that in such case the Taylor sign
condition does involve the total pressure rather than just the pure hydrostatic pressure.

Remark 6.2. Because the nonlinear term involves 3, then we have to estimate the L? norm of V,3%3¢V
Vou® when we estimate |V*AD, P2 for s < 2. Obviously, we have to assume |3 < M) when r = 2.
It is different from the rotating Boussinesq equations.

Similarly, we can obtain the following a priori estimates.

Theorem 6.3. Let
K(0) = max (]|6(0, )| L= (09), 1/<0(0)) ,
£(0) = 1/ (VnP(0, )]l oo 902y = 1/2(0) > 0.
There exists a continuous function T > 0 such that if
T < T (o, n,K(0),£(0), Eo(0), - - - , E4(0), Volf2) ,

then any smooth solution of the free boundary problem for incompressible inviscid rotating MHD system
(6.1) with damping satisfies

Y E(t)<2) E,(0), 0<t<T.

Theorems 6.1, 6.2 and 6.3 can be proved similarly as those of rotating Boussinesq equations and the
non-rotating MHD case in [11]. We omit the details of the proof.
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