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Abstract
We establish the a priori estimates and prove a blow-up criterion for the
three-dimensional free boundary incompressible ideal magnetohydrodynamics
equations. The fluid occupies a bounded region with a free boundary that is a
closed surface, without assumptions of simple connectedness or periodicity of
the region (thus, Fourier transforms cannot be applied), nor the graph assump-
tion for the free boundary. The fluid is under the influence of surface tension,
and flattening the boundaries using local coordinates is insufficient to resolve
this problem. This is because local coordinates fail to preserve curvature, as
the mean curvature of a flat boundary degenerates to zero. To address these
challenges and circumvent the intricate issue of spatial regularity in Lagrangian
coordinates, we utilize reference surfaces to represent the free boundary and
develop new energy functionals that both preserve the material derivative and
incorporate spatial-temporal scaling ∂t ∼∇ 3

2 in Eulerian coordinates. This
method enables us to establish both low-order and high-order regularity estim-
ates without any loss of regularity. More importantly, we prove a blow-up
criterion and provide a complete classification of blow-ups, including the self-
intersection of the free boundary (which the graph assumption cannot handle),
the breakdown of the mean curvature, and the blow-up of the normal velocity
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(which Lagrangian coordinates fail to capture). To the best of our knowledge,
this is the first result addressing the a priori estimates and the blow-up criterion
for free boundary problems with surface tension in general regions.

Keywords: free boundary problem, incompressible magnetohydrodynamics,
blow-up, local regularity, surface tension

Mathematics Subject Classification numbers: 35Q35, 35R35, 35B44, 76B03,
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1. Introduction

We consider the three-dimensional free boundary incompressible ideal magnetohydrodynam-
ics (MHD) equations with surface tension in a bounded domain:

Dtv+∇p= H ·∇H, in Ωt,

DtH= H ·∇v, in Ωt,

divv= 0, divH= 0, in Ωt,

H · ν = 0, p=AΓt , vn = VΓt , on Γt,

v(0, ·) = v0, H(0, ·) = H0, in Ω0,

(1.1)

where t represents the time, v the velocity,Dt := ∂t+ v ·∇ the material derivative, H the mag-
netic field, and p the scalar total pressure. The moving domain Ωt ⊂ R3 is bounded with a
closed surface Γt := ∂Ωt. ν denotes the unit outer normal, AΓt the mean curvature, and VΓt

the normal velocity of Γt, which is equal to the normal component of the velocity vn := v · ν.
We specify the initial data v0,H0 and Ω0, denoting Γ0 := ∂Ω0. Additionally, the coefficient of
surface tension is assumed to be 1 for simplicity.

In this paper, we establish a priori estimates and present a complete classification of the
blow-up behaviour for system (1.1) in Sobolev spaces. To ensure the generality of our results,
we impose no additional assumptions on the fluid region or the free boundary.

1.1. Energy functionals preserving the material derivative in Eulerian coordinates

Our analysis relies crucially on the new energy functionals constructed below in the Eulerian
coordinates. For any integer l⩾ 1, we define

el (t) : =
1
2

(
‖Dl+1

t v‖2L2(Ωt)
+ ‖Dl+1

t H‖2L2(Ωt)
+ ‖∇̄

(
Dl
tv · ν

)
‖2L2(Γt)

)
+

1
2

(
‖∇⌊ 3l+1

2 ⌋ curlv‖2L2(Ωt)
+ ‖∇⌊ 3l+1

2 ⌋ curlH‖2L2(Ωt)

)
, (1.2)

and we define the lower-order energy as ē(t) = e1(t)+ e2(t)+ e3(t), while the case l⩾ 4 cor-
responds to the higher-order energy. In (1.2), b·c represents the integer part of a given number,
∇̄ denotes the tangential derivative, and curlF=∇F− (∇F)⊤ applies to a vector field F.
Additionally, we introduce the following energy functional:

El (t) :=
l∑

k=0

(
‖Dl+1−k

t v‖2
H

3
2 k(Ωt)

+ ‖Dl+1−k
t H‖2

H
3
2 k(Ωt)

)
+ ‖v‖2

H⌊ 3l+3
2 ⌋(Ωt)

+ ‖H‖2
H⌊ 3l+3

2 ⌋(Ωt)
+ ‖∇̄

(
Dl
tv · ν

)
‖2L2(Γt)

+ 1, l⩾ 1, (1.3)

2



Nonlinearity 38 (2025) 075009 C Hao and S Yang

where we take into account the spatial-temporal regularity. As before, the lower-order energy

Ē(t) :=
4∑

k=0

(
‖D4−k

t v‖2
H

3
2 k(Ωt)

+ ‖D4−k
t H‖2

H
3
2 k(Ωt)

)
+

3∑
k=1

‖∇̄
(
Dk
t v · ν

)
‖2L2(Γt)

+ 1,

and we observe that C1(E1 +E2 +E3)⩽ Ē⩽ C2(E1 +E2 +E3) for some constants C1,
C2 > 0.

The principle of reducing derivatives. The scaling 3/2 in (1.3) is revealed in [37] that a
second-order time derivative can be roughly equated to a third-order spatial differentiation,
indicating the regularizing effect of the surface tension. From system (1.1), this scaling sug-
gests that we can reduce ‘1/2-order’ spatial regularity by substitutingDtv=−∇p+H ·∇H or
DtH= H ·∇v. In this sense, we can also reduce ‘1/2-order’ spatial regularity when the oper-
atorsDt and curl are combined (see lemma 2.5). These observations are crucial in deriving the
optimal expressions for divDl

tv,curlDl
tv, the error terms, etc (see, e.g. lemmas 2.8 and 2.10)

which allow us to control the higher-order energy (see lemma 6.3).
This principle will be consistently used throughout the paper.

1.2. Representation of the free boundary and the a priori assumptions

Let (v,H,p,Ωt) be any solution to system (1.1) on [0,T0) for some T0 > 0. We choose a
smooth, compact reference surface Γ to represent the free boundary. Here, Γ = ∂Ω, where
Ω is a smooth, compact domain satisfying the uniform interior and exterior ball condition with
radius R=R(Ω)> 0.

The free boundary is represented as:

Γt = {x+ h(x, t)νΓ(x) : x ∈ Γ} , t ∈ [0,T) ,

where the time T⩽ T0 and the height function h : Γ× [0,T)→ R are characterized as follows:

MT :=R− sup
0⩽t<T

‖h(·, t)‖L∞(Γ) > 0. (1.4)

In other words, h(·, t) is well-defined in [0,T) as long asMT > 0. The maximal representation
interval [0,Tr) for the reference surfaceΓ is defined as Tr = sup{T⩽ T0 : (1.4) holds}. It should
be noted that one of the following three scenarios will occur as time approaches Tr.

(1) The free boundary Γt first self-intersects at time Tr (Tr < T0 or Tr = T0), resulting in a
splash or splat singularity (see, e.g. [6]). That is,R(Ωt)> 0 for 0⩽ t< Tr andR(ΩTr) = 0.

(2) Tr = T0 and Γt does not self-intersect on [0,T0). In this scenario, we complete the repres-
entation of the free boundary throughout the existence of the solution.

(3) Tr < T0 and Γt does not self-intersect on [0,Tr). In this case, our reference surface is insuf-
ficient to represent the free boundary at time Tr, necessitating a switch to a new reference
surface to continue the representation.

Having definedMT to ensure the well-definedness of the height function, we introduce the
following quantity to ensure the extension of the solution

NT := sup
0⩽t<T

(
‖h(·, t)‖H3+δ(Γ) + ‖∇v‖H3(Ωt) + ‖∇H‖H3(Ωt) + ‖vn‖H4(Γt)

)
, (1.5)

where δ > 0 is a sufficiently small constant and T⩽ T0.
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We mention that the requirements for the height function and the normal velocity are nat-
ural, as we do not fix the boundary using Lagrangian coordinates. These two parts precisely
control the spatial and temporal regularity of the free boundary:

(1) ‖h‖H3+δ(Γ) controls the tangential derivative of the height function. It also ensures that the
second fundamental form BΓt is uniformly bounded, i.e. ‖BΓt‖L∞(Γt) ⩽ C.

(2) Note that ∂th= vn, and therefore ‖vn‖H4(Γt) controls the time derivative of the height
function.

Moreover, ‖v‖L2(Ωt) and ‖H‖L2(Ωt) are not included, due to the energy conservation of sys-
tem (1.1).

1.3. Main results

We make the following assumptions on the initial data throughout the paper. Let v0,H0 ∈
H6(Ω0;R3) be the initial divergence-free velocity and magnetic fields, satisfying H0 · νΓ0 = 0
on Γ0, where Ω0 is the initial bounded domain, and the initial boundary Γ0 ∈ H7 is a non-
self-intersecting closed surface. As discussed in section 1.2, we can choose a suitable ref-
erence surface Γ = ∂Ω with R=R(Ω)> 0, and represent the free boundary. In particular,
Γ0 = {x+ h0(x)νΓ(x) : x ∈ Γ}, where ‖h0‖L∞(Γ) <R.

Our main results are stated as follows.

Theorem 1.1. Let (v,H,Ωt) be any solution to system (1.1) on [0,T) for some T> 0 with initial
data (v0,H0,Ω0), and satisfies the following the a priori assumptions:

NT <∞, andMT > 0. (1.6)

Then, we have the following results:

(1) Lower-order quantitative regularity estimates:

sup
0⩽t<T

(
Ē(t)+

3∑
k=0

‖D3−k
t p‖2

H
3
2 k+1(Ωt)

+ ‖BΓt‖2H5(Γt)

)
⩽ C̄, (1.7)

where C̄ is a constant that depends only on T,NT,MT,‖v0‖H6(Ω0),‖H0‖H6(Ω0) and
‖AΓ0‖H5(Γ0). Specifically, the following holds:

sup
0⩽t<T

[
4∑

k=0

(
‖∂4−k

t v‖2
H

3
2 k(Ωt)

+ ‖∂4−k
t H‖2

H
3
2 k(Ωt)

)
+

3∑
k=0

‖∂3−k
t p‖2

H
3
2 k+1(Ωt)

]
⩽ C̄, (1.8)

where the constant C̄ depends on the same quantities as in (1.7).
(2) Higher-order regularity estimates for l⩾ 4:

sup
0⩽t<T

El (t)⩽ Cl, (1.9)

where Cl is a constant that depends on l,T,NT,MT, and El(0). In particular, we have
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sup
0⩽t<T

[
l∑

k=0

(
‖∂l+1−k

t v‖2
H

3
2 k(Ωt)

+ ‖∂l+1−k
t H‖2

H
3
2 k(Ωt)

+ ‖∂l−k
t p‖2

H
3
2 k+1(Ωt)

)
+‖v‖2

H⌊ 3(l+1)
2 ⌋(Ωt)

+ ‖H‖2
H⌊ 3(l+1)

2 ⌋(Ωt)
+ ‖BΓt‖2

H
3l+1
2 (Γt)

]
⩽ Cl, (1.10)

where the constant Cl depends on the same quantities as in (1.9).
(3) There exists a time T0 > 0 depending only on the initial quantities M0,‖v0‖H6(Ω0),

‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0), such that the a priori assumptions (1.6) hold for T= T0.

Notably, if we consider a smooth solution on [0,T), it will not develop singularities at time
T and remains smooth with respect to both time and space, as long as the a priori assump-
tions (1.6) hold.

Next, we present the classification of blow-up for system (1.1), which fully captures the
scenario of boundary self-intersection.

Theorem 1.2. For any solution (v,H,Ωt) to system (1.1) with initial data (v0,H0,Ω0), define
the maximal time interval of existence [0,T∗), where T∗ is the maximal time such that

v,H ∈ C0
tH

6 (Ωt) and Γt ∈ C0
tH

7.

If the maximal time T∗ <∞, then one of the following scenarios must occur:

(1) The free boundary Γt self-intersects for the first time at time T∗.
(2) Either the mean curvature does not belong to the H1+δ-class, or the free boundary Γt does

not belong to the H2+ε-class at time T∗, for some sufficiently small positive constants δ
and ε.

(3) The normal velocity of the free boundary VΓt does not belong to the H
4-class at time T∗.

(4) The breakdown of lower-order quantities on Ωt, i.e.

sup
0⩽t<T∗

(
‖∇v‖H3(Ωt) + ‖∇H‖H3(Ωt)

)
=∞.

Remark 1.3. We assume that the initial data v0,H0 ∈ H6 is due to the consideration of a general
bounded domain with a closed free surface. For a periodic flat initial region (e.g. T2 × (0,1)),
we expect that the similar results of theorems 1.1 and 1.2 hold for initial data in H

9
2 , as we can

define the fractional derivative using the Fourier transform in this case.

1.4. History and background

In recent decades, there has been significant interest in studying the free boundary incompress-
ible Euler equations, and substantial advancements have been made. Extensive research has
been conducted for the irrotational case, especially the water wave equations. We refer read-
ers to [12, 25, 28, 45] and the references therein. If the fluid flow exhibits vorticity, one may
refer to [4, 5, 8, 9, 13, 30, 34, 36, 37, 43, 46] for results on the a priori estimates, the local
well-posedness with or without surface tension, the zero surface tension limit, and more.

The investigation of free boundary problems for MHD equations has emerged relatively
recently compared to the study of the Euler equations, mainly because of the strong interactions
between the magnetic and velocity fields. We focus on the incompressible MHD equations.
Hao and Luo [18] obtained a priori estimates for free boundary problems of the incompressible
ideal MHD without surface tension under the Taylor-type sign condition. They considered the
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case where the initial domain is homeomorphic to a ball. They also showed the ill-posedness of
the problem if the Taylor-type sign condition is violated in the two-dimensional case [19]. Luo
and Zhang [32] derived a priori estimates for the lower regular initial data in the initial domain
of sufficiently small volume. In [15], a local existence result was provided, with a detailed
proof in an initial flat domain T2 × (0,1). The local well-posedness for the incompressible
ideal MHD equations with surface tension is established by Gu, Luo, and Zhang in [14], in the
same initial domain setting, namely, T2 × (0,1). The nonlinear stability of the current-vortex
sheet in the incompressible MHD equations was solved by Sun et al [39] under the Syrovatskij
stability condition, assuming that the free boundaries are graphs inT2 × (−1,1).Wang andXin
[44] established the global well-posedness of a free interface problem for the incompressible
inviscid resistive MHD under similar assumptions regarding the graph. We also refer to some
related works [10, 17, 20, 29, 40–42] on the topics of the well-posedness, the current-vortex
sheets problem, the breakdown criterion, the viscous splash singularity, and the compressible
MHD.

It should be noted that the aforementioned well-posedness results for the incompressible
MHD equations are primarily derived by applying the Lagrangian coordinates, which trans-
form a moving domain into a fixed one. However, as indicated in [37, 38], the Lagrangian
map lacks maximal regularity because all the variables are defined on an evolving domain. In
fact, the moving surface can also be described using alternative methods, such as the study of
the Euler equations with surface tension [36], the fluid interface problem [31, 38], the surface
diffusion flow with elasticity [11], and the motion of charged liquid drop [26], among others.

Moreover, previous results on the incompressible MHD equations with surface tension pre-
dominantly apply to the flat periodic initial region T2 × (a,b) and rely on the graph assump-
tion for the free boundary. However, the periodic assumptions and the graph assumptions have
inherent limitations. In fact, it may be possible to reduce the problem of a general free bound-
ary to the case of a graph by selecting local coordinates. However, this reduction is technically
complicated and involves significant challenges. In the presence of surface tension, if we only
select a portion of the free boundary and flatten it near a point, there is a risk of losing cer-
tain geometric characteristics of the free boundary, such as the evolution of its curvature. For
the fluid in the flat domain T2 × (a,b), its initial mean curvature is evidently zero, as local
coordinates fail to preserve the curvature. These facts highlight the necessity of making addi-
tional assumptions on the initial velocity on the boundary. For instance, in [33], the assump-
tion v0 ∈ H3.5(T2 × (0,1))∩H4(T2 ×{1}) is made to obtain the a priori estimates; in [14],
v0 ∈ H4.5(T2 × (0,1))∩H5(T2 ×{1}) is made to establish local existence. To the best of our
knowledge, the local well-posedness for system (1.1) with surface tension remains open when
Ωt is a general bounded domain with a closed free surface.

In this paper, by constructing new energy functionals with spatial-temporal scaling ∂t ∼∇ 3
2

in Eulerian coordinates, we establish the a priori estimates on the general domain without any
loss of regularity. We also eliminate the additional regularity requirement for the velocity on
the initial boundary [14, 33] and our results highlight the effectiveness of employing the height
function on the reference surface to analyse the evolution of curvature.

It is also natural and fundamentally important to consider the breakdown criterion of solu-
tions to system (1.1), for which we are unaware of any relevant rigorous studies, although a
few studies are available if we neglect the surface tension. Fu, along with both authors and
Zhang, established a Beale-Kato-Majda continuation criterion for solutions to the free bound-
ary incompressible ideal MHD equations without surface tension [10]. When the viscosity
is taken into account, the authors proved the existence of finite-time splash singularities [20],
while Hong et al also demonstrated the existence of such singularities [21]. Recently, Ifrim et al
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established a low-regularity blow-up criterion for the incompressible ideal MHD equations
without surface tension [23], inspired by the previous works [22, 24].

Based on the a priori estimates, we provide a complete classification of blow-up behaviour
for solutions to system (1.1). In contrast to the graph assumption, which cannot capture non-
graphical free boundaries, our method allows the analysis of free boundaries approaching self-
intersection. Moreover, our energy functionals are defined in Eulerian coordinates, and the
a priori assumptions—apart from the height function used to characterize the regularity of
the boundary—are independent of the choice of coordinates. Therefore, our method remains
unaffected by different coordinate choices as the free boundary approaches self-intersection.

1.5. Novelties and structure of the paper

The novelties of this study are as follows.
To the best of our knowledge, theorem 1.1 is the first result focusing on the regularity estim-

ates of system (1.1) in a general bounded domain with a closed free surface, i.e. without impos-
ing any periodicity or simple connectedness assumptions on the fluid region, or any graph
assumptions on the free boundary.

a) Our a priori estimates are derived from an energy inequality of the following form, based
on the a priori assumptions, without requiring smallness in time. That is,

˙̄E≲NT,MT C(initial data) Ē, Ėl ≲NT,MT,induction CEl, l⩾ 4.

This is crucial for establishing a breakdown criterion [10, 22–24, 26, 34, 43]. If additional
smallness in time were required, we could not establish a blow-up criterion, let alone a com-
plete classification of blow-up behaviour. The common a priori estimates yield a polyno-
mial of the energy, multiplied by time, such as sup[0,T] Ē(t)⩽ C(Ē(0))+ T

1
2P(sup[0,T] Ē(t)).

However, this inequality necessitates a sufficiently small time T to complete the energy
estimates, making the breakdown criterion unattainable.

b) Our lower-order regularity results (1.7) extend the a priori estimates with an initial flat
domain T2 × (0,1) from [33] to a general domain without any loss of regularity. Moreover,
we eliminate the additional regularity requirement for the velocity on the initial bound-
ary (which was assumed in [33] as v0 ∈ H3.5(T2 × (0,1))∩H4(T2 ×{1})) since our final
estimate does not depend on this initial quantity. We also establish higher-order energy
estimates without any loss of regularity.

c) We establish a distinct energy functional that preserves the material derivativeDt with a dif-
ferent spatial-temporal scaling (∂t ∼∇ 3

2 ) in Eulerian coordinates, in contrast to the energy
functional defined in the flat periodic domain using Lagrangian coordinates [14, 32, 33].
This strategy avoids destroying the structure of system (1.1) when separating ∂t from Dt,
and the energy estimates are driven by the second fundamental form and pressure. We also
eliminate the additional regularity requirement for the velocity on the initial boundary as
in [14], i.e. the assumption v0 ∈ H4.5(T2 × (0,1))∩H5(T2 ×{1}).

Theorem 1.2 provides the first comprehensive classification of blow-ups for solutions
of (1.1).

a) In our classification, the first three types of singularities arise from the free boundary and
are mutually distinct. These singularities can be effectively characterized using the height
function: (1), (2), and (3) in theorem 1.2 correspond to the inability to choose a refer-
ence surface to define the height function, the blow-up of the tangential derivative of the

7
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height function, and the blow-up of the time derivative of the height function, respectively.
Therefore, each of these three types of singularities is indispensable.

b) The case where only the singularity in theorem 1.2 (1) arises, while the others in (2)–(4)
do not occur, does exist. The singularity of boundary self-intersection, where the solution
and free boundary remain smooth, exists in the presence of viscosity [20, 21]. For the free
boundary incompressible ideal MHD equations with surface tension, it is conjectured in
[6] that this singularity also exists.

c) If we consider the fixed boundary problem, our blow-up classification reduces to (4)
in theorem 1.2, analogous to the remarkable Beale-Kato-Majda criterion for the Euler
equations [1].

Our results hold without assuming that the free boundary is a graph. Analysing the evolution
of a small region by selecting a portion of the closed surface and applying local coordinate
flattening is insufficient to solve the problem.Moreover, the strategy for selecting the reference
surface provides the following advantages compared to the graph assumption.

a) When the free boundary is represented by a graph function over the initial boundary T2 ∼
T2 ×{1}, it corresponds to a specific height function. Choosing T2 ×{1} as the reference
surface with (0,0,1) as the unit outer normal, the height function coincides with the graph
function.

b) The height function enables direct computation of curvature evolution via tangential deriv-
atives, whereas flattening the surface with local coordinates fails to preserve the intrinsic
geometric properties of the moving surface.

c) We can continually select appropriate reference surfaces to represent the free boundary,
particularly facilitating the characterization of the process by which the boundary devel-
ops self-intersection. However, the graph function fails when the moving surface boundary
undergoes turning (see, e.g. the breakdown criterion for the free boundary Euler equations
with surface tension in [34] and without surface tension in [43]).

We use reference surfaces to represent the free boundary, which offers advantages over
fixing the boundary in Lagrangian coordinates for the following reasons.

a) It is more convenient to control the mean curvature and boundary regularity using the height
function, as the regularity improvement of the free boundary is geometric [37], directly
connected to the regularity of the mean curvature (see lemma A.2), and not entirely evident
in the Lagrangian coordinates.

b) We avoid addressing the issue of spatial regularity of the flow map in Lagrangian
coordinates.

c) A more precise estimation of the pressure can be obtained by analysing the normal velocity
of the free boundary. In contrast, in Lagrangian coordinates, the normal velocity of the free
boundary is implicit because the boundary is fixed.

The rest of this paper is organized as follows. In section 2, we calculate the commutators,
the error terms, and additional terms to establish the energy estimates. In section 3, we compute
the time derivative of the energy functional. In section 4, we will show that ‖p‖H3(Ωt) can be
uniformly bounded within the time interval of existence. In section 5, we estimate the error
terms that appeared in section 3. In section 6, we close the energy estimates and prove our
main theorems. Finally, in section 7, we discuss the connection between the self-intersection
and the curvature blow-up on the free boundary established in theorem 1.2.
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2. Formulas for the energy estimates

Throughout the paper, we will use the Einstein summation convention and the notation S ⋆T
from [16] to denote a tensor formed by contracting certain indices of tensors S and T with con-
stant coefficients. In particular, for k, l ∈ N= {1,2,3, · · ·} (we denote N0 = {0,1,2,3, · · ·}),
∇kf ⋆∇lg represents a contraction of certain indices of tensors ∇i f and ∇jg for 0⩽ i⩽ k and
0⩽ j⩽ l with constant coefficients. Note that f and g can be vector fields, and we include the
lower-order derivatives along with the function (or vector field) itself. However, we exclude the
case of a single term∇i f. Let u : Γ→ R and F : Γ→ R3 be a sufficiently regular function and
vector field, respectively. Since the reference hypersurface Γ (embedded in R3) has a natural
metric g induced by the Euclidean metric, (Γ,g) is a Riemannian manifold with connection
∇̂. For a function u ∈ C∞(Γ) and a vector field F, ∇̂Fu= Fu.

We denote the normal part of F by Fn := F · νΓ, and the tangential part by Fσ := F−FnνΓ,
where ‘·’ denotes the inner product. If Γ is smooth, we can extend both u and F to R3 and
define the tangential differential by ∇̄u := (∇u)σ , the tangential gradient of F by ∇̄F :=
∇F− (∇Fν)⊗ ν, i.e. (∇̄F)ij = ∂jF i− ∂lF iν lνj, and the tangential divergence by divσ F :=
Tr(∇̄F). The tangential gradient and covariant gradient are equivalent: for any vector field
F̃ : Γ→ R3, F̃ · ν = 0, we have ∇̂F̃u= ∇̄u · F̃. Additionally, the second fundamental form B
and the mean curvatureA can be written as B= ∇̄ν andA= divσ ν. The Beltrami-Laplacian
is defined by ∆Bu := divσ(∇̄u), and it holds

∆Bu=∆u−
(
∇2uν · ν

)
−A∂νu, (2.1)

where ∂ν denotes the outer normal derivative. We also recall the divergence theorem´
Γ
divσ FdS=

´
Γ
AΓ(F · νΓ)dS, and the differentiation formula (see, e.g. [37])

d
dt

ˆ
Γt

fdS=
ˆ
Γt

Dtf+ fdivσ vdS. (2.2)

We will fix our reference surface Γ, a boundary of a smooth, compact set Ω satisfying the
uniform interior and exterior ball condition with radius R> 0. We denote its tubular neigh-
bourhoodU(R,Γ) = {x ∈ R3 : dist(x,Γ)<R}. We say thatΓt = ∂Ωt (orΩt) isHs(Γ)-regular,
if Γt = {x+ h(x, t)νΓ(x) : x ∈ Γ}, where h(·, t) : Γ→ R is Hs(Γ)-regular and ‖h(·, t)‖L∞(Γ) <
R. Γt is called uniformly Hs(Γ)-regular if ‖h‖Hs(Γ) ⩽ C and ‖h‖L∞(Γ) ⩽ cR for constants C
and c< 1 (see [26] for similar definitions).We can express the unit outer normal and the second
fundamental form by the height function (see [35])

νΓt = a1
(
h(·, t) ,∇̄h(·, t)

)
, BΓt = a2

(
h(·, t) ,∇̄h(·, t)

)
∇̄2h(·, t) , (2.3)

where a1,a2 ∈ C∞. We extend ν toΩ via harmonic extension and denote it as ν̃. We sometimes
still denote the extended one by ν. From (1.6) and (2.3), ‖ν̃‖H5/2+δ(Ωt) ⩽ C for δ > 0 small.

From the definition curlF=∇F− (∇F)⊤, a straightforward calculation yields:

Lemma 2.1. Let l,k ∈ N,F, and G be smooth vector fields and f be a smooth function. Then,
we have:

(1) curl(F ·∇G) =∇G∇F−∇F⊤∇G⊤ +(F ·∇)curlG and [Dt,curl]F=∇v⊤∇F⊤ −
∇F∇v.

(2) [Dl+1
t ,∇k]f =Dt[Dl

t,∇k]f+ [Dt,∇k]Dl
tf and [Dl

t,∇k+1]f = [Dl
t,∇]∇kf+∇[Dl

t,∇k]f.

To derive a general formula for the commutators, we apply the following results. It is easy to
verify that Dta(ν) = b(ν)∇̄v,Dt∇Dk

t v=∇Dk+1
t v+∇v ⋆∇Dk

t v,Dt∇̄Dk
t v= ∇̄Dk+1

t v+ ∇̄v ⋆
∇̄Dk

t v for k ∈ N, where a(ν) and b(ν) denote the finite ⋆ product of ν.

9
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Lemma 2.2. Let l,k ∈ N, l⩾ 2 and k⩾ 3. Then, we have:

(1) [Dt,∇2]f =∇v ⋆∇2f+∇2v ⋆∇f.
(2) [Dt,∇k]f =

∑
|α|⩽k−1∇1+α1v ⋆∇1+α2 f.

(3) [Dl
t,∇]f =

∑
2⩽m⩽l+1

∑
|β|⩽l+1−m∇Dβ1

t v ⋆ · · · ⋆∇Dβm−1
t v ⋆∇Dβm

t f.

(4) [Dl
t,∇2]f =

∑
2⩽m⩽l+1

∑
|α|⩽1,|β|⩽l+1−m∇1+α1Dβ1

t v ⋆ · · · ⋆∇1+αm−1Dβm−1
t v ⋆∇1

+αmDβm
t f.

Roughly speaking, the leading term is∇kDl−1
t in the commutator [Dl

t,∇k].

Proof. A direct calculation yields the first claim and the second claim can be found in [26,
lemma 4.1]. We prove the third one by induction, and it is easy to verify the case of l= 2. For
the case of l⩾ 3, from lemma 2.1 and the above formulas, it follows that[

Dl
t,∇
]
f =Dt

[
Dl−1
t ,∇

]
f+∇v ⋆∇Dl−1

t f

=Dt

 ∑
2⩽m⩽l

∑
|β|⩽l−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇Dβm
t f

+∇v ⋆∇Dl−1
t f

=
∑

2⩽m⩽l+1

∑
|β|⩽l+1−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇Dβm
t f.

The last claim follows again by induction and we omit the proof.

Let aβ(ν) and aα,β(ν,B) denote the finite ⋆ product of the tensors. We provide a more
precise formulation of the quantities than those in [26, lemma 4.2].

Lemma 2.3. Let l⩾ 1 and we have the following results:

(1) [Dl
t,∇̄]f =

∑
2⩽m⩽l+1

∑
|β|⩽l+1−m ∇̄Dβ1

t v ⋆ · · · ⋆ ∇̄Dβm−1
t v ⋆ ∇̄Dβm

t f.

(2) Dl
tν =

∑
1⩽m⩽l

∑
|β|⩽l−m aβ(ν)∇̄Dβ1

t v ⋆ · · · ⋆ ∇̄Dβm
t v.

(3) Dl
tB=

∑
1⩽m⩽l

∑
|β|⩽l−m,|α|⩽1 aα,β(ν,B)∇̄1+α1Dβ1

t v ⋆ · · · ⋆ ∇̄1+αmDβm
t v.

(4) [Dl
t,∇̄2]f =

∑
2⩽m⩽l+1

∑
|β|⩽l+1−m,|α|⩽1 aα,β(ν,B)∇1+α1Dβ1

t v ⋆ · · · ⋆∇1+αm−1Dβm−1
t v ⋆

∇̄1+αmDβm
t f.

Proof. To prove the first claim, we recall [Dt,∇̄]f =−(∇̄v)⊤∇̄f in lemma A.1. For the case
of l⩾ 2, we have by induction that[

Dl
t,∇̄
]
f=Dt

[
Dl−1
t ,∇̄

]
f+
[
Dt,∇̄

]
Dl−1
t f

=Dt

 ∑
2⩽m⩽l

∑
|β|⩽l−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm−1

t v ⋆ ∇̄Dβm
t f

+ ∇̄v ⋆ ∇̄Dl−1
t f

=
∑

2⩽m⩽l+1

∑
|β|⩽l+1−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm−1

t v ⋆ ∇̄Dβm
t f.

Similarly, we can obtain the last claim. For the second claim, we recall Dtν = ∇̄v ⋆ ν, and for
l⩾ 2, it holds by induction. As for the third claim, we have for l⩾ 1 that

10
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Dl
tB=

[
Dl
t,∇̄
]
ν+ ∇̄Dl

tν

= ∇̄

 ∑
1⩽m⩽l

∑
|β|⩽l−m

aβ (ν)∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm

t v


+

∑
2⩽m⩽l+1

∑
|β|⩽l+1−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm−1

t v ⋆ ∇̄Dβm
t ν =: I1 + I2.

It is clear that I1 =
∑

1⩽m⩽l

∑
|β|⩽l−m,|α|⩽1 aα,β(ν,B)∇̄1+α1Dβ1

t v ⋆ · · · ⋆ ∇̄1+αmDβm
t v. For I2,

it follows that

I2 =
∑

2⩽m⩽l+1

∑
|β|⩽l+1−m

∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm−1

t v

⋆

 ∑
1⩽n⩽βm

∑
|λ|⩽βm−n,|γ|⩽1

∇̄1+γ1Dλ1
t v ⋆ · · · ⋆ ∇̄1+γnDλn

t v


=

∑
2⩽m⩽l+1,|β|⩽l+1−m

∑
1⩽n⩽βm

∑
|λ|⩽βm−n,|γ|⩽1

aβ,λ,γ (ν,B)∇̄Dβ1
t v ⋆ · · · ⋆ ∇̄Dβm−1

t v

⋆ ∇̄1+γ1Dλ1
t v ⋆ · · · ⋆ ∇̄1+γnDλn

t v,

which is also contained in
∑

1⩽m⩽l

∑
|α|⩽1,|β|⩽l−m aα,β(ν,B)∇̄1+α1Dβ1

t v ⋆ · · · ⋆ ∇̄1+αmDβm
t v.

We denote the divergence of a matrix A= (Aij) as (divA)i :=
∑

j ∂jAij and recall curlF=

∇F− (∇F)⊤. For later use, we recall [26, lemma 3.3]:

Lemma 2.4. LetΩ be a bounded domain with C1,α boundary. For any smooth vector field F, we
have ‖F‖2L2(Γ) ⩽ C(‖Fτ‖2L2(Γ) + ‖F‖2L2(Ω) + ‖divF‖2L2(Ω) + ‖curlF‖2L2(Ω)), where τ = n,σ.

To estimate energy, we begin with the following basic results. By the divergence-free con-
dition, it is clear that divDtv= ∂i vj∂jvi and we have

−∆p= ∂i v
j∂jv

i− ∂iH
j∂jH

i. (2.4)

A direct calculation produces the following identities.

Lemma 2.5. For the velocity and magnetic fields, we have

(1) curlDtv= (∇H)⊤ curlH+ curlH∇H+(H ·∇)(curlH), [Dt,curl]v=−(∇v)⊤ curlv−
curlv∇v.

(2) curlDtH=∇v∇H− (∇H)⊤(∇v)⊤ +(H ·∇)(curlv), [Dt,curl]H= (∇v)⊤(∇H)⊤ −
∇H∇v.

Next, we introduce some errors associated with the magnetic field. Denote R0
∇H,H :=

0,R0
∇H,∇H :=∇H ⋆∇H, and for k⩾ 1, we define

Rk∇H,H :=
∑

3⩽m⩽k+2

∑
|α|⩽1,|β|⩽k+2−m

aα,β (∇v)∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αm−2Dβm−2

t v ⋆∇αm−1H ⋆H,

Rk∇H,∇H :=
∑

3⩽m⩽k+2

∑
|α|⩽2,αi⩽1,|β|⩽k+2−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αm−2Dβm−2

t v ⋆∇αm−1H ⋆∇αmH,

11
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where aα,β(∇v) denotes the finite ⋆ product. In the case of βj = 0,∇Dβj
t can be absorbed into

aα,β(∇v). A direct calculation shows Dt(∇H ⋆∇H) =∇2v ⋆H ⋆∇H+∇v ⋆∇H ⋆∇H and
Dt(∇H ⋆H) =∇2v ⋆H ⋆H+∇v ⋆∇H ⋆H, and the following are the results for higher-order
material derivatives.

Lemma 2.6. Let k ∈ N. We have Dk
t (∇H ⋆∇H) = Rk∇H,∇H and Dk

t (∇H ⋆H) = Rk∇H,H.

Proof. It is sufficient to consider the case of k⩾ 2. We claim that given any k⩾ 2, one has

Dk
t (∇H ⋆∇H) =

∑
2⩽m⩽k+2

∑
|β|⩽k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−2

t v ⋆∇Dβm−1
t H ⋆∇Dβm

t H,

Dk
t (∇H ⋆H) =

∑
2⩽m⩽k+2

∑
|β|⩽k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−2

t v ⋆∇Dβm−1
t H ⋆Dβm

t H.

In fact, from lemma 2.2, we see that

Dk
t (∇H ⋆∇H) =∇Dk

tH ⋆∇H+
[
Dk
t ,∇

]
H ⋆∇H+

∑
|γ|=k,γ1,γ2⩾1

[Dγ1
t ,∇]H ⋆ [Dγ2

t ,∇]H

+∇Dγ1
t H ⋆ [Dγ2

t ,∇]H+∇Dγ1
t H ⋆∇Dγ2

t H

=
∑

2⩽m⩽k+2

∑
|β|⩽k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−2

t v ⋆∇Dβm−1
t H ⋆∇Dβm

t H,

Dk
t (∇H ⋆H) =∇Dk

tH ⋆H+
[
Dk
t ,∇

]
H ⋆H+Dk

tH ⋆∇H

+
∑

|γ|=k,γi⩾1

[Dγ1
t ,∇]H ⋆Dγ2

t H+∇Dγ1
t H ⋆Dγ2

t H

=
∑

2⩽m⩽k+2

∑
|β|⩽k+2−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−2

t v ⋆∇Dβm−1
t H ⋆Dβm

t H.

By substituting DtH= H ·∇v and by induction, it is readily verified that

Dj
tH=

∑
1⩽m⩽j

∑
|β|⩽j−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm

t v ⋆H, (2.5)

∇iDj
tH=

∑
1⩽m⩽j

∑
|α|⩽i,|β|⩽j−m

∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αmDβm

t v ⋆∇αm+1H, (2.6)

where i, j ∈ N. These conclude the proof of the lemma.

The above lemma shows that Dk
t (H ·∇H) = Rk∇H,H. Due to the divergence-free condition,

it can be shown that taking the divergence does not increase the order of derivatives.

Lemma 2.7. We have the following results:

(1) divDt(H ·∇H) =∇2v ⋆∇H ⋆H+∇v ⋆∇H ⋆∇H+∇2H ⋆∇v ⋆H.
(2) For any integer k⩾ 2, it holds divDk

t (H ·∇H) = ∂j∂lDk−1
t viHl∂iHj+∇3Dk−2

t v ⋆∇v ⋆H ⋆
H+L.O.T., where L.O.T. stands for lower-order terms.

Proof. By lemma A.1, a direct calculation gives the first result. For k⩾ 2, the divergence-free
condition implies that ∂jDγ

t ∂iH
j = [∂j,Dγ

t ]∂iH
j, and therefore

12
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divDk
t (H ·∇H) = ∂j

(
Dk
t ∂iH

jHi
)
+ ∂j

(
∂iH

jDk
tH

i
)
+ ∂j

 ∑
|γ|=k,γi<k

Dγ1
t ∂iH

jDγ2
t H

i


= ∂jDk

tH
i∂iH

j+
[
∂j,Dk

t

]
∂iH

jHi+
[
Dk
t ,∇

]
H ⋆∇H+∇Dγ1

t H ⋆∇Dγ2
t H

+ [Dγ1
t ,∇]H ⋆∇Dγ2

t H+
∑

|γ|=k,γi<k

[∂j,Dγ1
t ]∂iH

jDγ2
t H

i.

In the above, it suffices to consider the most challenging term ∂jDk
tH

i∂iHj. Note that ∂jDk
tH

i =

∂j∂lDk−1
t viHl+

∑
|γ|=k−1,γ1<k−1 ∂j∂lD

γ1
t v

iDγ2
t H

l+
∑

|γ|=k−1 ∂j[D
γ1
t ,∂l]viDγ2

t H
l, and we find

that

divDk
t (H ·∇H) = ∂j∂lDk−1

t viHl∂iH
j+
[
∇,Dk

t

]
∇H ⋆H+

[
Dk
t ,∇
]
H ⋆∇H

+
∑

|γ|=k,γi<k

([∇,Dγ1
t ]∇H ⋆Dγ2

t H+∇Dγ1
t H ⋆∇Dγ2

t H+ [Dγ1
t ,∇]H ⋆∇Dγ2

t H)

+
∑

|γ|=k−1,γ1<k−1

∇2Dγ1
t v ⋆D

γ2
t H ⋆∇H+

∑
|γ|=k−1

∇ [Dγ1
t ,∇]v ⋆Dγ2

t H ⋆∇H

=: ∂j∂lDk−1
t viHl∂iH

j+R.

Here, the highest-order term in R is ∇2Dk−1
t H ⋆∇v ⋆H, resulting from [∇,Dk

t ]∇H ⋆H. To
complete the proof, we replace the material derivative with the spatial derivative, resulting in
∇3Dk−2

t v ⋆∇v ⋆H ⋆H, along with lower-order terms as shown in (2.6).

To derive the energy estimates by applying the div-curl estimates, it is inevitable to compute
divDl

tv,divDl
tH,curlDl

tv, and curlDl
tH. The following lemma is crucial for computing curlDl

tv
(see lemma 2.10).

Lemma 2.8. It holds Dt((H ·∇)(curlH)) =∇2 curlv ⋆H ⋆H+∇2H ⋆∇v ⋆H+∇2v ⋆∇H ⋆
H, and

Dk
t ((H ·∇)curlH) =∇k+1 curlH ⋆H ⋆ · · · ⋆H︸ ︷︷ ︸

ktimes

+
∑

|α|,m⩽k+2,αi⩽k+1,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇αmFm

+
∑

|α|+|β|⩽k+2,αi+βi⩽k+1,
m⩽k+1,βi⩽k−1,Fj=v,H

∇α1Dβ1
t v ⋆ · · · ⋆∇αk−1Dβk−1

t v ⋆∇αkFk ⋆ · · · ⋆∇αmFm,

if k⩾ 2 is even. For odd k⩾ 3, we replace∇k+1 curlH ⋆H ⋆ · · · ⋆H︸ ︷︷ ︸
ktimes

by∇k+1 curlv ⋆H ⋆ · · · ⋆H︸ ︷︷ ︸
ktimes

.

Proof. First, we apply lemma 2.5 to obtain Dt[(H ·∇)(curlH)] =∇2 curlv ⋆H ⋆H+∇2H ⋆
∇v ⋆H+∇2v ⋆∇H ⋆H. In the case of k= 2, one has

D2
t ((H ·∇)(curlH)) = ∂iD2

t curlHH
i+
[
D2
t ,∂i

]
curlHHi+∇2H ⋆D2

t H

+Dt∇2H ⋆∇v ⋆H=: I1 + I2 + I3 + I4.

We denote I1 = (∇curlDt(H ·∇v)) ⋆H+∇([D2
t ,∇]H) ⋆H=: I11 + I12. By lemma 2.5, it

holds curl(H ·∇Dtv) =∇Dtv ⋆∇H+∇2 curlH ⋆H ⋆H+∇2H ⋆∇H ⋆H, and using lemma
A.1, it follows that
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I11 =∇(curl(DtH ·∇v)) ⋆H+∇(curl(H · Dt∇v)) ⋆H

=∇3 curlH ⋆H ⋆H+∇2Dtv ⋆∇H+∇Dtv ⋆∇2H+
∑

|α|,m⩽4,αi⩽3,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇αmFm.

Applying lemma 2.2, we have I12 =∇2Dtv ⋆∇H ⋆H+∇Dtv ⋆∇2H ⋆H+∇2H ⋆∇v ⋆∇v ⋆
H+∇2v ⋆∇H ⋆∇v ⋆H+∇2H ⋆∇v ⋆H+∇2v ⋆∇H ⋆H, and I2 =∇Dtv ⋆∇2H ⋆H+∇3v ⋆
∇v ⋆H ⋆H+∇2H ⋆∇v ⋆∇v ⋆H+∇2v ⋆∇H ⋆∇v ⋆H+∇2H ⋆∇v ⋆H.

To control the last two terms, (2.5) implies that I3 =∇Dtv ⋆∇2H ⋆H+∇2H ⋆∇v ⋆∇v ⋆
H+∇2H ⋆∇v ⋆H, and lemma 2.2 together with (1.1) yields I4 =∇3v ⋆∇v ⋆H ⋆H+∇2H ⋆
∇v ⋆∇v ⋆H+∇2v ⋆∇H ⋆∇v ⋆H. We arrive at the following

D2
t ((H ·∇)curlH) =∇3 curlH ⋆H ⋆H+

∑
|α|,m⩽4,αi⩽3,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇αmFm

+
∑

|α|+|β|⩽4,αi+βi⩽3
βi⩽1,m⩽3,Fj=v,H

∇α1Dβ1
t v ⋆∇α2F2 ⋆ · · · ⋆∇αmFm =: J1 + J2 + J3.

As for k= 3, to calculate DtJ1, we only focus on the most difficult term. Actually, it holds
Dt∇3 curlH=∇4 curlv ⋆H+

∑
|α|⩽5,αi⩽4∇α1H ⋆∇α2v, from lemmas 2.2 and 2.5. With the

help of lemma 2.2, DtJ2 and DtJ3 can be treated in the same fashion. Therefore, we obtain

D3
t ((H ·∇)curlH) =∇4 curlv ⋆H ⋆H ⋆H+

∑
|α|,m⩽5,αi⩽4,Fj=v,H

∇α1F1 ⋆ · · · ⋆∇αmFm

+
∑

|α|+|β|⩽5,βi⩽2,αi+βi⩽4,m⩽4,Fj=v,H

∇α1Dβ1
t v ⋆∇α2Dβ2

t v ⋆∇α3F3 ⋆ · · · ⋆∇αmFm.

The other cases can be shown in the same way.

From now on, we denote R0
∇2H,H := (H ·∇)curlH, and Rk∇2H,H :=Dk

t ((H ·∇)curlH) for
k⩾ 1. We proceed to introduce another two types of error terms. The first one is written in the
form

R0
I =∇v ⋆∇v, RlI =

∑
2⩽m⩽l+1

∑
|β|⩽l+2−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇Dβm
t v, (2.7)

for any l⩾ 1. The second error term is denoted by

R0
II =∇v ⋆Dtv+∇v ⋆∇v ⋆ v,

RlII =
∑

2⩽m⩽l+1,|β|⩽l,|α|⩽1

aα,β (∇v)∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇α1Dα2+βm
t v, (2.8)

where l⩾ 1 and aα,β(∇v) denotes the finite ⋆ product as before.

Lemma 2.9. For l ∈ N0, we have [Dl+1
t ,∇]p=

∑
i⩽l∇Di

tv ⋆∇H ⋆H+RlII+Rl∇H,H.

Proof. We prove this claim by induction. The case of l= 0 follows directly. As for l⩾ 1, by
lemmas 2.1 and 2.2,[

Dl+1
t ,∇

]
p=Dt

([
Dl
t,∇
]
p
)
+ [Dt,∇]Dl

tp=Dt
([
Dl
t,∇
]
p
)
− (∇v)⊤∇Dl

tp,

14
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where −∇Dl
tp= [Dl

t,∇]p+Dl
t(Dtv−H ·∇H) = [Dl

t,∇]p+Dl+1
t v−Dl

t(H ·∇H). A direct
computation shows that DtR

l−1
II = RlII and DtR

l−1
∇H,H = Rl∇H,H. These, combined with

[Dl
t,∇]p=

∑
i⩽l−1∇Di

tv ⋆∇H ⋆H+Rl−1
II +Rl−1

∇H,H (also obtained by induction), yield that

[
Dl+1
t ,∇

]
p=Dt

∑
i⩽l−1

∇Di
tv ⋆∇H ⋆H

+RlII+Rl∇H,H =
∑
i⩽l

∇Di
tv ⋆∇H ⋆H+RlII+Rl∇H,H,

where in the last step, the lower-order terms have been absorbed into the terms RlII and R
l
∇H,H.

Lemma 2.10. Let l ∈ N. We have

Dt∇l curlv= (H ·∇)∇l curlH+∇v ⋆∇l curlv+∇l+1v ⋆ curlv

+
∑
|β|=l

∇1+β1H ⋆∇β2 curlH+
∑

|α|⩽l−1,α2⩽l−2

∇1+α1v ⋆∇1+α2 curlv,

Dt∇l curlH= (H ·∇)∇l (curlv)+∇v ⋆∇l curlH

+
∑
|β|=l

∇1+β1v ⋆∇1+β2H+
∑

|α|⩽l−1,α2⩽l−2

∇1+α1v ⋆∇1+α2 curlH.

Moreover, we can also write divDl
tv= Rl−1

I ,curlDl
tv= Rl−1

I +Rl−1
∇H,∇H+Rl−1

∇2H,H, and

divDl+1
t v= divdiv(v⊗Dl

tv)+ divRl−1
II .

Proof. The first two claims are immediate consequences of lemmas 2.2 and 2.5. Regarding
curlDl

tv and divDl
tv for l⩾ 2. Noting that (Dl

t∇u)⊤ =Dl
t[(∇u)⊤] and applying lemmas 2.2

and 2.8, together with lemma 2.5, we obtain

curlDl
tv=

[
∇,Dl−1

t

]
(Dtv)−

([
∇,Dl−1

t

]
(Dtv)

)⊤
+Dl−1

t curlDtv

=
∑

2⩽m⩽l

∑
|β|⩽l−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇Dβm+1
t v+Dl−1

t (∇H ⋆∇H)

+Dl−1
t ((H ·∇)(curlH)) = Rl−1

I +Rl−1
∇H,∇H+Rl−1

∇2H,H.

Similarly, one has divDl
tv= Rl−1

I thanks to divv= 0. For the last statement, we apply
[Dt,div]F=−div(∇vF) and divdiv(v⊗Dl

tv) = div(∇Dl
tvv), l⩾ 1 (both can be easily com-

puted). Then, we have

divD2
t v=Dt div(∇vv)+ div(∇vDtv) = divDt (∇vv)− div(∇v∇vv)+ divR0

II,

and therefore,

divD2
t v= div(∇Dtvv)+ div([Dt,∇]vv)− div(∇v∇vv)+ divR0

II

= divdiv(v⊗Dtv)+ divR0
II.

For l⩾ 2, we argue by induction, i.e. divDl+1
t v=Dt divDl

tv− [Dt,div]Dl
tv=

Dt div(∇Dl−1
t vv)+Dt divR

l−2
II + div(∇vDl

tv). The proof is complete since Dt divR
l−2
II =

divRl−1
II ,div(∇vDl

tv) = divRl−1
II (direct calculations), and
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Dt div
(
∇Dl−1

t vv
)
= divDt

(
∇Dl−1

t vv
)
+ [Dt,div]

(
∇Dl−1

t vv
)

= div
(
∇v ⋆∇Dl−1

t v ⋆ v
)
+ div

(
∇Dl

tvv+Dtv ⋆∇Dl−1
t v+ v ⋆∇v ⋆∇Dl−1

t v
)

= divdiv
(
v⊗Dl

tv
)
+ divRl−1

II .

Lemma 2.11. Let l⩾ 1. We have

−∆Dtp= divdiv(v⊗Dtv)+ div
(
R0
II+∇v ⋆H ⋆∇H+H ·∇(H ·∇v)

)
= − divdiv(v⊗∇p)+ divR0

II+∇2v ⋆∇H ⋆H+∇2H ⋆∇v ⋆H
+∇2H ⋆∇H ⋆ v+∇v ⋆∇H ⋆∇H

−∆Dl+1
t p= divdiv

(
v⊗Dl+1

t v
)
− divRl+1

∇2H,H+ div

∑
i⩽l

∇Di
tv ⋆∇H ⋆H+RlII+Rl∇H,H

 .

Proof. From the divergence-free condition, lemmas 2.10 and 2.9, the first claim follows. The
second claim follows by applying lemma 2.9 that

−∆Dl+1
t p= − divDl+1

t ∇p+ div
[
Dl+1
t ,∇

]
p

= divDl+2
t v− divDl+1

t (H ·∇H)+ divRlII+ div

∑
i⩽l

∇Di
tv ⋆∇H ⋆H+Rl∇H,H

 .

From p=A and the identities (e.g. [37, section 3.1])

DtA=−∆Bvn− |B|2vn+ ∇̄A · v, ∆Bν =−|B|2ν+ ∇̄A, (2.9)

it holds on the free-boundary Γt that

Dtp=−∆Bv · ν− 2B : ∇̄v=−∆Bvn− |B|2vn+ ∇̄p · v. (2.10)

Finally, we introduce the error term Rlp as described in [26]. We define

R1
p = − |B|2Dtv · ν+ ∇̄p · Dtv+ a1 (ν,∇v) ⋆∇2v+ a2 (ν,∇v) ⋆B,
R2
p = − |B|2D2

t v · ν+ ∇̄p · D2
t v+ a3 (ν,∇v) ⋆∇2Dtv+ a4 (ν,∇v) ⋆∇Dtv ⋆∇2v

+ a5 (ν,∇v) ⋆∇Dtv ⋆B+ a6 (ν,∇v) ⋆∇2v+ a7 (ν,∇v) ⋆B,
R3
p = − |B|2D3

t v · ν+ ∇̄p · D3
t v+ a8 (ν,∇v) ⋆∇2D2

t v+ a9 (ν,∇v) ⋆∇D2
t v ⋆∇2v

+ a10 (ν,∇v) ⋆∇D2
t v ⋆B+ a11 (ν,∇v) ⋆∇2Dtv ⋆∇Dtv+ a12 (ν,∇v) ⋆∇2Dtv ⋆B

+ a13 (ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆∇2v+ a14 (ν,∇v) ⋆∇Dtv ⋆∇Dtv ⋆B+L.O.T.,

Rlp = − |B|2Dl
tv · ν+ ∇̄p · Dl

tv+
∑

|α|⩽1,|β|⩽l−1

aα,β (ν,B)∇1+α1Dβ1
t v ⋆ · · · ⋆∇1+αl+1Dβl+1

t v,

where l⩾ 4, ai(ν,∇v) and aα,β(ν,B) denote the finite ⋆ product.

Lemma 2.12. On the free-boundary Γt, we have Dl+1
t p=−∆B(Dl

tv · ν)+Rlp for l ∈ N.
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Proof. For l= 1, we differentiate (2.10) to obtain D2
t p=−Dt∆Bv · ν−∆Bv · Dtν− 2DtB :

∇̄v− 2B :Dt∇̄v. Recalling the formulas for [Dt,∆B],Dtν and DtB in lemma A.1, it holds
D2
t p= −∆BDtv · ν− 2B : ∇̄Dtv+ a1(ν,∇v) ⋆∇2v+ a2(ν,∇v) ⋆B.
For l= 2, we differentiate D2

t p and calculate [Dt,∆B]Dtv= ∇̄2Dtv ⋆∇v−∇̄Dtv ·
∆Bv+BΓ ⋆∇v ⋆ ∇̄Dtv,DtB= a1(ν,∇v) ⋆B+ a2(ν,∇v) ⋆∇2v,Dt∇̄Dtv= ∇̄D2

t v+ ∇̄v ⋆
∇̄Dtv,Dta(ν,∇v) = b(ν,∇v) ⋆∇Dtv,Dt∇2v=∇2v ⋆∇v+∇2Dtv to obtain D3

t p=
−∆BD2

t v · ν− 2B : ∇̄D2
t v+ a3(ν,∇v) ⋆∇2Dtv+ a4(ν,∇v) ⋆∇Dtv ⋆∇2v+ a5(ν,∇v) ⋆

∇Dtv ⋆B+ a6(ν,∇v) ⋆∇2v+ a7(ν,∇v) ⋆B. We can obtain the case of l= 3 in the same
way and the remaining proof is similar to [26, lemma 4.7].

3. Time derivatives of the energy functionals

In this section, we compute the time derivative of the energy functional el(t) by applying
Reynolds transport theorem and (2.2). The main result in this section is the following propos-
ition.

Proposition 3.1. Assume that the a priori assumptions (1.6) hold for some T> 0. Then, we
have

d
dt
ē(t)⩽ C

3∑
l=1

(
‖RlI‖2H1/2(Ωt)

+ ‖RlII‖2L2(Ωt)
+ ‖Rl∇H,H‖2L2(Ωt)

+ ‖Rlp‖2H1/2(Γt)

)
+C

(
1+ ‖∇2p‖2L2(Ωt)

)
Ē(t) ,

where the constant C depends on T,NT, andMT.
Moreover, we further assume that sup0⩽t<TEl−1(t)⩽ C for l⩾ 4. Then, it holds

d
dt
el (t)⩽ C

(
El (t)+ ‖RlI‖2H1/2(Ωt)

+ ‖RlII‖2L2(Ωt)
+ ‖Rl∇H,H‖2L2(Ωt)

+ ‖Rlp‖2H1/2(Γt)

)
,

for l⩾ 4, where the constant C depends on T,NT,MT, and sup0⩽t<TEl−1(t).

Denote Il1(t) =
1
2‖D

l+1
t v‖2L2(Ωt)

, Il2(t) =
1
2‖D

l+1
t H‖2L2(Ωt)

, Il3(t) =
1
2‖∇̄(Dl

tv · ν)‖2L2(Γt)
, Il4(t)

= 1
2‖∇

⌊ 3l+1
2 ⌋ curlv‖2L2(Ωt)

and Il5(t) =
1
2‖∇

⌊ 3l+1
2 ⌋ curlH‖2L2(Ωt)

. We will apply Reynolds trans-

port theorem and (2.2) several times and we start with Il1(t). From (1.1) and the divergence
theorem,

d
dt
Il1 (t) = −

ˆ
Ωt

Dl+1
t ∇p · Dl+1

t vdx+
ˆ
Ωt

Dl+1
t (H ·∇H) · Dl+1

t vdx

= −
ˆ
Ωt

∇Dl+1
t p · Dl+1

t vdx−
ˆ
Ωt

[
Dl+1
t ,∇

]
p · Dl+1

t vdx+
ˆ
Ωt

Dl+1
t

(
Hj∂jHi

)
Dl+1
t vidx

= −
ˆ
Ωt

div
(
Dl+1
t pDl+1

t v
)
dx+

ˆ
Ωt

Dl+1
t pdivDl+1

t vdx

−
ˆ
Ωt

[
Dl+1
t ,∇

]
p · Dl+1

t vdx+
ˆ
Ωt

Dl+1
t

(
Hj∂jHi

)
Dl+1
t vidx

17
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⩽
ˆ
Ωt

Hj∂j
(
Dl+1
t Hi

)
Dl+1
t vidx︸ ︷︷ ︸

=:Jl1(t)

−
ˆ
Γt

Dl+1
t p

(
Dl+1
t v · ν

)
dS︸ ︷︷ ︸

=:Kl1(t)

+∥Dl+1
t v∥2L2(Ωt)

+

ˆ
Ωt

Dl+1
t pdivDl+1

t vdx︸ ︷︷ ︸
=:Il11(t)

+∥
[
Dl+1
t ,∇

]
p∥2L2(Ωt)︸ ︷︷ ︸

=:Il12(t)

+
l∑

k=0

ˆ
Ωt

Dk
tH

j
[
Dl+1−k
t ,∂j

]
HiDl+1

t vidx︸ ︷︷ ︸
=:Il13(t)

+

l+1∑
k=1

ˆ
Ωt

Dk
tH

j∂jDl+1−k
t HiDl+1

t vidx︸ ︷︷ ︸
=:Il14(t)

,

where we have used the fact that

Dl+1
t

(
Hj∂jHi

)
Dl+1
t vi = Hj∂j

(
Dl+1
t Hi

)
Dl+1
t vi

+
l∑

k=0

Dk
tH

j
[
Dl+1−k
t ,∂j

]
HiDl+1

t vi+
l+1∑
k=1

Dk
tH

j∂jDl+1−k
t HiDl+1

t vi.

Similarly, for the magnetic field, it follows that

d
dt
Il2 (t) =

ˆ
Ωt

Hj∂j
(
Dl+1
t vi

)
Dl+1
t Hi dx︸ ︷︷ ︸

=:Jl2(t)

+
l∑

k=0

ˆ
Ωt

Dk
tH

j
[
Dl+1−k
t ,∂j

]
viDl+1

t Hidx︸ ︷︷ ︸
=:Il21(t)

+
l+1∑
k=1

ˆ
Ωt

Dk
tH

j∂jDl+1−k
t viDl+1

t Hidx︸ ︷︷ ︸
=:Il22(t)

.

Recalling the divergence-free condition and H · ν = 0 on Γt, it is clear that Jl1(t)+ Jl2(t) = 0,
and we obtain d

dt (I
l
1(t)+ Il2(t))⩽ Kl1(t)+

∑4
i=1 I

l
1i(t)+ Il21(t)+ Il22(t)+ ‖Dl+1

t v‖2L2(Ωt)
.

To control the third term, we apply lemma A.1 to deduce

d
dt
Il3 (t) =

ˆ
Γt

−
(
∇̄v
)⊤ ∇̄

(
Dl
tv · ν

)
· ∇̄
(
Dl
tv · ν

)
dS+

1
2

ˆ
Γt

|∇̄
(
Dl
tv · ν

)
|2 divσ vdS

+

ˆ
Γt

∇̄
(
Dl+1
t v · ν

)
· ∇̄
(
Dl
tv · ν

)
dS+

ˆ
Γt

∇̄
(
Dl
tv · Dtν

)
· ∇̄
(
Dl
tv · ν

)
dS

⩽ −
ˆ
Γt

(
Dl+1
t v · ν

)
·∆B

(
Dl
tv · ν

)
dS︸ ︷︷ ︸

=:Kl3(t)

+‖∇̄
(
Dl
tv · Dtν

)
‖2L2(Γt)︸ ︷︷ ︸

=:Il31(t)

+C
(
‖∇̄v‖L∞(Γt) + 1

)
‖∇̄
(
Dl
tv · ν

)
‖2L2(Γt)

.

Finally, to compute the last two terms involving the curl, we denote µl := b(3l+
1)/2c. We then utilize the divergence-free condition and the fact that H · ν = 0 on Γt
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to obtain
´
Ωt

∑
|α|=l(H ·∇)(∇α curlH :∇α curlv+∇α curlv :∇α curlH)dx= 0. Therefore,

from lemma 2.10, it follows that

d
dt
Il4 (t)−

ˆ
Ωt

∑
|α|=l

(H ·∇)∇α curlH :∇α curlvdx

⩽ C
(
‖∇v‖L∞(Ωt) + 1

)
‖∇µl+1v‖2L2(Ωt)

+ ‖∇H‖2L∞(Ωt)
‖curlH‖2Hµl (Ωt)

+ ‖curlH‖2L∞(Ωt)
‖∇H‖2Hµl (Ωt)

+ ‖∇v‖2L∞(Ωt)
‖∇v‖2Hµl (Ωt)

,

d
dt
Il5 (t)−

ˆ
Ωt

∑
|α|=l

(H ·∇)∇α curlv :∇α curlHdx

⩽ C
(
‖∇v‖L∞(Ωt) + 1

)
‖∇µl curlH‖2L2(Ωt)

+ ‖∇v‖2Hµl (Ωt)
‖∇H‖2L∞(Ωt)

+ ‖∇H‖2Hµl (Ωt)
‖∇v‖2L∞(Ωt)

.

Proof of proposition 3.1. By (1.6), one has ‖∇̄v‖L∞(Γt) ⩽ C‖∇v‖L∞(Ωt) ⩽ C. This, com-
bined with the above calculations and applying lemma 2.12, ‖∇H‖L∞(Ωt) ⩽ C by (1.6),
together with the definition of Ē(t), we obtain Kl1(t)+Kl3(t) =−

´
Γt
Rlp(Dl+1

t v · ν)dS, and

d
dt
ē(t)⩽ CĒ(t)+C

3∑
l=1

(
−
ˆ
Γt

Rlp
(
Dl+1
t v · ν

)
dS+

4∑
i=1

Il1i (t)+ Il31 (t)+ Il21 (t)+ Il22 (t)

)
,

d
dt
el (t)⩽ CEl (t)+C

(
−
ˆ
Γt

Rlp
(
Dl+1
t v · ν

)
dS+

4∑
i=1

Il1i (t)+ Il31 (t)+ Il21 (t)+ Il22 (t)

)
, l⩾ 4.

We divide the remaining proof into six steps.

Step 1. We control Il14(t) and I
l
22(t). We omit the case of l= 1, and assume F= v,G= H or

F= H,G= v respectively. In the case of l= 2, from the fact that

‖∇DtH‖2L2(Ωt)
⩽ ‖∇(H ·∇v)‖2L2(Ωt)

⩽ C, (3.1)

‖∇Dtv‖2L2(Ωt)
⩽ ‖∇(H ·∇H)‖2L2(Ωt)

+ ‖∇2p‖2L2(Ωt)
⩽ C

(
1+ ‖∇2p‖2L2(Ωt)

)
, (3.2)

it follows that

3∑
k=1

ˆ
Ωt

Dk
tH

j∂jD3−k
t FiD3

t G
idx

⩽ C
(
E2 (t)+ ‖H ·∇v‖2L2(Ωt)

‖D2
t F‖2H3(Ωt)

+ ‖D2
t H‖2H2(Ωt)

‖∇DtF‖2L2(Ωt)

+‖D3
t H‖2L2(Ωt)

‖∇F‖2L∞(Ωt)

)
⩽ C

(
1+ ‖∇2p‖2L2(Ωt)

)
Ē(t) .

As for l= 3, again by (3.1) and (3.2), we obtain
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4∑
k=1

ˆ
Ωt

Dk
tH

j∂jD4−k
t FiD4

t G
idx

⩽ C
(
E3 (t)+ ‖H ·∇v‖2L6(Ωt)

‖D3
t F‖2H3/2(Ωt)

+ ‖D2
t H‖2L2(Ωt)

‖D2
t F‖2H3(Ωt)

+‖D2
t (H ·∇v)‖2L∞(Ωt)

‖∇DtF‖2L2(Ωt)
+ ‖D4

t H‖2L2(Ωt)
‖∇F‖2L∞(Ωt)

)
⩽ C

(
1+ ‖∇2p‖2L2(Ωt)

)
Ē(t) ,

where we have used

‖D2
t H‖2L2(Ωt)

⩽ C
(
‖DtH ⋆∇v‖2L2(Ωt)

+ ‖H ⋆Dt∇v‖2L2(Ωt)

)
⩽ C

(
1+ ‖∇2p‖2L2(Ωt)

)
,

‖D3
t H‖2L∞(Ωt)

⩽ ‖D2
t H ⋆∇v‖2L∞(Ωt)

+ ‖DtH ⋆Dt∇v‖2L∞(Ωt)
+ ‖H ⋆D2

t ∇v‖2L∞(Ωt)

⩽ C
(
‖D2

t H‖2L∞(Ωt)
+ ‖ [Dt,∇]v‖2L∞(Ωt)

+ ‖∇Dtv‖2L∞(Ωt)

+‖
[
D2
t ,∇

]
v‖2L∞(Ωt)

+ ‖∇D2
t v‖2L∞(Ωt)

)
⩽ CĒ(t) , (3.3)

by utilizing (1.6), lemmas A.1 and 2.2. Additionally, one order material derivative has been
substituted with the spatial derivative of the velocity field. As l⩾ 4, we use the hypotheses
El−1(t)⩽ C to obtain

l+1∑
k=1

ˆ
Ωt

Dk
tH

j∂jDl+1−k
t FiDl+1

t Gidx

⩽ C

(
l∑

k=2

‖Dk
tH‖2H1(Ωt)

‖Dl+1−k
t F‖2H3/2(Ωt)

+ ‖DtH
j∂jDl

tF‖2L2(Ωt)
+El (t)

)
⩽ CEl (t)El−1 (t)+CEl (t)+C‖DtH‖2L6(Ωt)

‖∇Dl
tF‖2L3(Ωt)

⩽ CEl (t) .

Step 2.We control Il13(t) and I
l
21(t). As before, we assume F= v,G= H or F= H,G= v. We

only consider the case of l⩾ 3. In fact, from [Dj
t,∇] in lemma 2.2, (3.1)–(3.3), it holds

3∑
k=0

ˆ
Ωt

Dk
tH

j
[
D4−k
t ,∂j

]
FiD4

t G
idx

⩽ C
(
E3 (t)+ ‖D3

t H
j∂jv

k∂kF‖2L2(Ωt)

+ ‖D2
t H ⋆ (∇v ⋆∇F+∇Dtv ⋆∇F+∇v ⋆∇DtF+∇v ⋆∇v ⋆∇F)‖2L2(Ωt)

+ ‖DtH ⋆
(
∇D2

t v ⋆∇F+∇Dtv ⋆∇DtF+∇v ⋆∇D2
t F

+∇Dtv ⋆∇v ⋆∇F+∇v ⋆∇v ⋆∇DtF+L.O.T.)‖2L2(Ωt)

+ ‖H ⋆
(
∇D3

t v ⋆∇F+∇D2
t v ⋆∇DtF+∇Dtv ⋆∇D2

t F

+∇v ⋆∇D3
t F+L.O.T.

)
‖2L2(Ωt)

)
⩽ C

(
1+ ‖∇2p‖2L2(Ωt)

)
Ē(t) .

For l⩾ 4, from lemma 2.2 and the assumption El−1(t)⩽ C, we deduce
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l∑
k=0

ˆ
Ωt

Dk
tH

j
[
Dl+1−k
t ,∂j

]
FiDl+1

t Gidx

⩽ C
(
El (t)+ ‖Dl

tH
j∂jv

k∂kF‖2L2(Ωt)

+
l−1∑
k=0

‖Dk
tH ⋆

∑
2⩽m⩽l+2−k

∑
|β|⩽l+2−k−m

∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v

⋆∇Dβm
t F‖2L2(Ωt)

)
⩽ CEl−1 (t)El (t)+CEl (t)⩽ CEl (t) .

Step 3. To estimate
´
Γt
Rlp(Dl+1

t v · ν)dS, we apply lemma 2.10 and the normal trace

theorem (e.g. [2, theorem 3.1]) to obtain ‖Dl+1
t v · ν‖H−1/2(Γt) ⩽ C(‖Dl+1

t v‖L2(Ωt) +

‖divDl+1
t v‖H−1(Ωt)). Therefore, it follows that∣∣∣ˆ

Γt

Rlp
(
Dl+1
t v · ν

)
dS
∣∣∣⩽ C

(
Ē(t)+ ‖RlI‖2L2(Ωt)

+ ‖Rlp‖2H1/2(Γt)

)
, l⩽ 3,∣∣∣ˆ

Γt

Rlp
(
Dl+1
t v · ν

)
dS
∣∣∣⩽ C

(
El (t)+ ‖RlI‖2L2(Ωt)

+ ‖Rlp‖2H1/2(Γt)

)
, l⩾ 4.

Step 4. We estimate Il31(t). We only present estimates for l⩾ 3, and the cases of l⩽ 2 are
easier. Actually, by the a priori assumptions (1.6) and the trace theorem, one has

∥∇̄
(
D3
t v · Dtν

)
∥2L2(Γt) ⩽ ∥∇̄D3

t v ⋆Dtν∥2L2(Γt) + ∥D3
t v ⋆ ∇̄Dtν∥2L2(Γt)

⩽ C

∥Dtν∥2L∞(Γt)∥D
3
t v∥2H3/2(Ωt)

+ ∥D3
t v ⋆ ∇̄2v ⋆ ν∥2L2(Γt)︸ ︷︷ ︸

=:L331(t)

+∥D3
t v ⋆ ∇̄v ⋆ ∇̄ν∥2L2(Γt)

⩽ CĒ(t) .

Above, we have applied the Sobolev embedding, i.e. for p−1 + q−1 = 2−1,p=
2δ−1 with δ > 0 small enough, it holds L331(t)⩽ C‖D3

t v‖2H1−δ(Γt)
‖∇̄2v‖2Hδ(Γt)

, and

‖D3
t v‖2H1−δ(Γt)

‖∇̄2v‖2Hδ(Γt)
⩽ ‖D3

t v‖2H3/2−δ(Ωt)
‖v‖2H5/2+δ(Ωt)

⩽ CĒ(t), by using the trace the-
orem. As for l⩾ 4, it follows that

‖∇̄
(
Dl
tv · Dtν

)
‖2L2(Γt)

⩽ C
(
‖Dtν‖2L∞(Γt)

‖Dl
tv‖2H1(Γt)

+ ‖Dtν‖2W1,4(Γt)
‖Dl

tv‖2L4(Γt)

)
⩽ C

(
‖Dl

tv‖2H3/2(Ωt)
+El−1 (t)‖Dl

tv‖2H1(Ωt)

)
⩽ CEl (t) ,

where we have used Dtν = ∇̄v ⋆ ν from lemma A.1 and ‖ν‖H2+δ(Γt) ⩽ C by (1.6) together
with (2.3).

Step 5. For Il12(t), we recall that it holds [D
l+1
t ,∇]p=

∑
β1⩽l∇Dβ1

t v ⋆∇H ⋆H+RlII+Rl∇H,H

by lemma 2.9. Clearly, we have ‖
∑

β1⩽l∇Dβ1
t v ⋆∇H ⋆H‖2L2(Ωt)

⩽ CĒ(t) for l⩽ 3, and

‖
∑

β1⩽l∇Dβ1
t v ⋆∇H ⋆H‖2L2(Ωt)

⩽ CEl(t) as l⩾ 4.

Step 6. Finally, controlling Il11(t) is trickier. Let u be a solution to{
−∆u= divDl+1

t v, in Ωt,

u= 0, on Γt,
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where l⩾ 1. We first recall the elliptic estimates (see, e.g. [26, proposition 3.8])

‖∂νu‖H1(Γt) + ‖∇u‖H3/2(Ωt) ⩽ C‖divDl+1
t v‖H1/2(Ωt). (3.4)

Then, we integrate by parts to obtain Il11(t) =−
´
Ωt
∆Dl+1

t pudx−
´
Γt
Dl+1
t p∂νudS=: Il111(t)+

Il112(t). Again by integration by parts, lemma 2.11 and the divergence theorem, it follows that

Il111 (t) =
ˆ
Ωt

(
v⊗Dl+1

t v
)
:∇2udx−

ˆ
Ωt

RlII+Rl∇H,H+
∑
β1⩽l

∇Dβ1
t v ⋆∇H ⋆H

 ·∇udx

−
ˆ
Ωt

divDl+1
t (H ·∇H)udx−

ˆ
Γt

viDl+1
t vj∂i uνjdS

⩽ C
(
‖u‖2H2(Ωt)

+El (t)+ ‖RlII‖2L2(Ωt)
+ ‖Rl∇H,H‖2L2(Ωt)

)
+

ˆ
Ωt

div
(
viDl+1

t v∂i u
)
dx︸ ︷︷ ︸

=:Ll1111(t)

−
ˆ
Ωt

divDl+1
t (H ·∇H)udx︸ ︷︷ ︸

=:Ll1112(t)

.

We estimate the first term by using lemma 2.10. Indeed, it holds

|Ll1111 (t) |= |
ˆ
Ωt

∇v ⋆Dl+1
t v ⋆∇u+ v ⋆ divDl+1

t v ⋆∇u+ v ⋆Dl+1
t v ⋆∇2udx|

⩽ C
(
‖u‖2H2(Ωt)

+El (t)+ ‖RlI‖2L2(Ωt)

)
.

To control Ll1112(t), it is important to note that the integration by parts method used pre-
viously is not applicable. However, as indicated in lemmas 2.6 and 2.7, a one-order material
derivative can be substituted for a one-order spatial derivative due to the divergence-free condi-
tion. In fact, we have from lemma 2.7 that divDl+1

t (H ·∇H) = ∂i∂mDl
tv
j∂jHmHi+∇3Dl−1

t v ⋆
H ⋆H+L.O.T., and

|Ll1112 (t) |⩽
∣∣∣∣ˆ

Ωt

∂i∂mDl
tv
j∂jH

mHiudx

∣∣∣∣+C‖u‖2L2(Ωt)
+C‖∇3Dl−1

t v ⋆H ⋆H‖2L2(Ωt)
+Ml

1112 (t)

⩽ C‖u‖2H1(Ωt)
+CEl (t)+Ml

1112 (t) ,

where we have used H · ν = 0, and∣∣∣ˆ
Ωt

∂i∂mDl
tv
j∂jH

mHiudx
∣∣∣= ∣∣∣ˆ

Ωt

∂mDl
tv
j∂i∂jH

mHiu+ ∂mDl
tv
j∂jH

mHi∂i udx
∣∣∣

⩽ CEl (t)+C‖u‖2H1(Ωt)
,

by integration by parts. Also, Ml
1112(t) contains lower-order terms (at most ∇2Dl−1

t ) which
can be controlled in the same fashion as before. These, together with the fact ‖u‖2H2(Ωt)

⩽
‖divDl+1

t v‖2L2(Ωt)
⩽ C‖RlI‖2L2(Ωt)

, it holds |Il111(t)|⩽ C(Ē(t)+ ‖RlI‖2L2(Ωt)
+ ‖RlII‖2L2(Ωt)

+

‖Rl∇H,H‖2L2(Ωt)
) for l⩽ 3, and for l⩾ 4, |Il111(t)|⩽ C(El(t)+ ‖RlI‖2L2(Ωt)

+ ‖RlII‖2L2(Ωt)
+

‖Rl∇H,H‖2L2(Ωt)
).

We are left with Il112(t). Applying lemma 2.12 and integration by parts, one has´
Γt
Dl+1
t p∂νdSu=

´
Γt
∇̄(Dl

tv · ν) · ∇̄∂νudS+
´
Γt
Rlp∂νudS. Then, we use (3.4) to deduce
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|Il112 (t) |⩽ C
(
‖∇̄
(
Dl
tv · ν

)
‖2L2(Γt)

+ ‖∂νu‖2H1(Γt)
+ ‖Rlp‖2L2(Γt)

)
⩽ C

(
Ē(t)+ ‖RlI‖2H1/2(Ωt)

+ ‖Rlp‖2L2(Γt)

)
, l⩽ 3.

Similarly, |Il112(t)|⩽ C(El(t)+ ‖RlI‖2H1/2(Ωt)
+ ‖Rlp‖2L2(Γt)

) for l⩾ 4. This completes the proof.

4. Estimates for the pressure

In this section, we treat the pressure and will show that

sup
t∈[0,T]

‖p‖H3(Ωt) ⩽ C, (4.1)

where the constant C depends on the time T > 0, the a priori assumptions NT,MT, and the
initial data ‖v0‖H6(Ω0),‖H0‖H6(Ω0) and ‖AΓ0‖H5(Γ0). For this purpose, we assume the a priori
assumptions (1.6) for some T > 0. As a result, it follows that sup0⩽t<T ‖h‖H3+δ(Γ) ⩽ C and
sup0⩽t<T ‖B‖H1+δ(Γt) ⩽ C. In particular, we have ‖p‖H1+δ(Γt) ⩽ C and

ˆ T

0
‖p‖2H1(Γt)

dt⩽ C(NT,MT)T. (4.2)

Recallingwe defineH1/2(Γt) via the harmonic extension. From lemma 2.4 and (A1), we obtain

‖∂νp‖2L2(Γt)
⩽ C

(
‖∇̄p‖2L2(Γt)

+ ‖∇p‖2L2(Ωt)
+ ‖∆p‖2L2(Ωt)

)
⩽ C

(
‖∇̄p‖2L2(Γt)

+ ‖p‖2H1/2(Γt)
+ ‖∆p‖2L2(Ωt)

)
⩽ C

(
‖p‖2H1(Γt)

+ ‖∆p‖2L2(Ωt)

)
⩽ C(NT,MT)(1+T) . (4.3)

For higher-order derivatives, we have the following results.

Proposition 4.1. Assume that Γt is uniformly H3+δ(Γ)-regular for δ > 0 sufficiently small. For
smooth function f, it holds

‖∇2f‖2L2(Γt)
⩽ C

(
‖∆f‖2H1(Ωt)

+ ‖f‖2H2(Γt)

)
, (4.4)

‖∇3f‖2L2(Γt)
⩽ C

(
‖∆f‖2H2(Ωt)

+ ‖f‖2H3(Γt)

)
. (4.5)

Proof. For any k ∈ {1,2,3}, it holds ‖∇∂kf‖2L2(Γt)
⩽ C(‖∇̄∂kf‖2L2(Γt)

+ ‖∇2f‖2L2(Ωt)
+

‖∇∆f‖2L2(Ωt)
) by applying lemma 2.4. Recall that we extend the unit outer normal ν to

Ωt by the harmonic extension and ‖ν̃‖H5/2+δ(Ωt) ⩽ C. This, combined with lemmas A.1 and
2.4 implies that
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‖∇̄∂kf‖2L2(Γt)
⩽ C

(
‖∇∇̄f‖2L2(Γt)

+ ‖∇f ⋆∇ν̃ ⋆ ν̃‖2L2(Γt)

)
⩽ C

(
‖∇̄2f‖2L2(Γt)

+ ‖∇∆f‖2L2(Ωt)
+ ‖∇f‖2H1(Ωt)

+‖∇f ⋆∇ν̃ ⋆∇ν̃‖2L2(Ωt)
+ ‖∇2f ⋆∇ν̃‖2L2(Ωt)

)
⩽ C

(
‖∇̄2f‖2L2(Γt)

+ ‖∇∆f‖2L2(Ωt)
+ ‖∇f‖2H1(Ωt)

)
,

and ‖∇∂kf‖2L2(Γt)
⩽ C(‖∇̄2f‖2L2(Γt)

+ ‖∇∆f‖2L2(Ωt)
+ ‖∇f‖2H1(Ωt)

) as a consequence. Next, we
apply (A1) and lemma A.7 to find that

‖∇f‖2H1(Ωt)
⩽ C

(
‖∂ν f‖2H1/2(Γt)

+ ‖∇f‖2L2(Ωt)
+ ‖∆f‖2L2(Ωt)

)
⩽ C

(
‖∂ν f‖2H1/2(Γt)

+ ‖f‖2H1/2(Γt)
+ ‖∆f‖2L2(Ωt)

)
.

To control ‖∂ν f‖2H1/2(Γt)
, using lemma 2.4 and by interpolation, one has

‖∂ν f‖2H1/2(Γt)
⩽ ε
(
‖∇2f‖2L2(Γt)

+ ‖∇f‖2H1(Ωt)

)
+Cε

(
‖∇̄f‖2L2(Γt)

+ ‖f‖2H1/2(Γt)
+ ‖∆f‖2L2(Ωt)

)
,

where ε> 0 is sufficiently small. We conclude that

‖∇f‖2H1(Ωt)
⩽ ε‖∇2f‖2L2(Γt)

+C
(
‖f‖2H1(Γt)

+ ‖∆f‖2L2(Ωt)

)
, (4.6)

and then (4.4) follows.
To prove the second claim, by lemma 2.4, it follows that ‖∇∂k∂lf‖2L2(Γt)

⩽
C(‖∇̄∂k∂lf‖2L2(Γt)

+ ‖∇3f‖2L2(Ωt)
+ ‖∇2∆f‖2L2(Ωt)

),k ∈ {1,2,3}. To estimate ‖∇3f‖2L2(Ωt)
, from

lemma A.7, we obtain ‖∂i f‖2H2(Ωt)
⩽ C(‖∂ν∂i f‖2H1/2(Γt)

+ ‖∇f‖2L2(Ωt)
+ ‖∇∆f‖2L2(Ωt)

) for

i ∈ {1,2,3}. Then, we obtain ‖∂ν∂i f‖2H1/2(Γt)
⩽ ε‖∇̄∂ν∂i f‖2L2(Γt)

+Cε‖∂ν∂i f‖2L2(Γt)
by inter-

polation, where ε> 0 is small enough. These, combined with (4.4), (A1) and the fact that
‖ν̃‖H5/2+δ(Ωt) ⩽ C, yield

‖∇f‖2H2(Ωt)
⩽ ε
(
‖∇3f‖2L2(Γt)

+ ‖∇2f ⋆∇ν̃‖2L2(Γt)

)
+ ‖f‖2H2(Γt)

+ ‖∆f‖2H1(Ωt)

⩽ ε‖∇3f‖2L2(Γt)
+ ‖f‖2H2(Γt)

+ ‖∆f‖2H1(Ωt)
. (4.7)

Then, we control ‖∇̄∂k∂lf‖2L2(Γt)
by lemma 2.4 and the fact that ∆ν̃ = 0

‖∇̄∂k∂lf‖2L2(Γt)
⩽ C

(
‖∇̄2∂lf‖2L2(Γt)

+ ‖∇∇̄∇f‖2L2(Ωt)
+ ‖∆∇̄∇f‖2L2(Ωt)

+ ‖∇2f‖2L2(Γt)

)
⩽ C

(
‖∇̄2∂lf‖2L2(Γt)

+ ‖∇2f‖2H1(Ωt)
+ ‖∆f‖2H2(Ωt)

+ ‖f‖2H2(Γt)

)
.

Again by (4.4) and lemma 2.4, we obtain

‖∇̄2∂lf‖2L2(Γt)

⩽ ‖∇̄3f‖2L2(Γt)
+ ‖∇3f‖2L2(Ωt)

+ ‖∇3f ⋆∇ν̃‖2L2(Ωt)
+ ‖∇2f ⋆∇ν̃‖2L2(Ωt)

+ ‖∇2∆f‖2L2(Ωt)

+ ‖∇f ⋆∇2ν̃‖2L2(Ωt)
+ ‖∇2f‖2L2(Γt)

+ ‖∇2f ⋆∇2ν̃‖2L2(Ωt)
+ ‖∇f‖2H3/2+δ(Ωt)

⩽ C
(
‖f‖2H3(Γt)

+ ‖∇f‖2H2(Ωt)
+ ‖∆f‖2H2(Ωt)

)
.
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Recalling (4.7), we conclude that ‖∇3f‖2L2(Γt)
⩽ ε‖∇3f‖2L2(Γt)

+C(‖f‖2H3(Γt)
+ ‖∆f‖2H2(Ωt)

),
and this completes the proof.

We will proceed with the estimates for the pressure.

Lemma 4.2. Assume that (1.6) holds for some T> 0. Then, we have

sup
t∈[0,T]

‖∇p‖2L2(Ωt)
⩽ eC(NT,MT)(1+T)

(
1+ ‖∇p‖2L2(Ω0)

)
.

Proof. From lemma A.1, Reynolds transport theorem, and the divergence-free condition, one
has

d
dt

1
2

ˆ
Ωt

|∇p|2dx=
ˆ
Ωt

∇Dtp ·∇pdx+
ˆ
Ωt

∇v ⋆∇p ⋆∇pdx=: I1 (t)+ I2 (t) .

Clearly, (1.6) implies |I2(t)|⩽ C‖∇p‖2L2(Ωt)
. For |I1(t)|, by (2.10), (4.3), and the divergence

theorem, we have |I1(t)|⩽
´
Γt
Dtp∂νpdS−

´
Ωt
Dtp∆pdx⩽ C(1+ ‖p‖2H1(Γt)

)−
´
Ωt
Dtp∆pdx.

To control
´
Ωt
Dtp∆pdx, we consider the following elliptic equation{

−∆u=∆p, in Ωt,

u= 0, on Γt.

Then, we see that −
´
Ωt
Dtp∆pdx=

´
Ωt
∆Dtpudx+

´
Γt
Dtp∂νudS=: I11(t)+ I12(t). Note

that (2.4) implies |∆p|⩽ C, and we have ‖u‖H1(Ωt) ⩽ C. Also, we get ‖∇u‖2L2(Γt)
⩽ C and

|I12(t)|⩽ ‖Dtp‖2L2(Γt)
+ ‖∂νu‖2L2(Γt)

⩽ C(1+ ‖p‖2H1(Γt)
) from lemma 2.4. We are left with

I11(t), for which one can repeat the argument in [26, Propsition 6.3] to deduce ‖u‖2H2(Ωt)
⩽

C(1+ ‖p‖2H1(Γt)
). Then, by (1.1), (1.6), lemma 2.11, (2.8) and (4.3), we integrate by parts to

obtain I11(t)⩽ C(1+ ‖p‖2H1(Γt)
+ ‖∇p‖2L2(Ωt)

). Combining the above calculations, it follows

that I1(t)+ I2(t)⩽ C(1+ ‖p‖2H1(Γt)
+ ‖∇p‖2L2(Ωt)

). With the help of estimate (4.2), the proof
is complete.

Lemma 4.3. Assume that (1.6) holds for some T> 0. Then, we have
ˆ T

0
‖∇̄2p‖2L2(Γt)

dt⩽ C(NT,MT)(1+T) .

Proof. We define I(t) :=
´
Γt
∇̄p · ∇̄(∇vν · ν)dS, and from the hypothesis (1.6) and (4.2),

we see that |I(t)|⩽ C‖∇̄p‖2L2(Γt)
+C‖∇2v‖2L2(Γt)

+C‖∇v ⋆B‖2L2(Γt)
⩽ C. Again by (1.6), the

divergence theorem, lemma A.1 and (2.2), we deduce for sufficiently small ε> 0 that

d
dt
I(t)⩽ C|I(t) |+

ˆ
Γt

Dt∇̄p · ∇̄(∇vν · ν)+ ∇̄p · Dt∇̄(∇vν · ν)dS

⩽ Cε + ε‖∇̄Dtp‖2L2(Γt)
+

ˆ
Γt

∇̄p · ∇̄Dt (∇vν · ν)dS

⩽ Cε + ε‖∇̄Dtp‖2L2(Γt)
−
ˆ
Γt

∆BpDt (∇vν · ν)dS=: Cε + εI1 (t)+ I2 (t) .

By (1.6), (2.10) and (4.2), it holds |I1(t)|⩽ C(1+ ‖vn‖2H3(Γt)
+ ‖∇̄B ⋆B ⋆ vn‖2L2(Γt)

+

‖∇̄p‖2H1(Γt)
)⩽ C(1+ ‖∇̄2p‖2L2(Γt)

). For |I2(t)|, from (1.6), lemma (A.1) and the divergence
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theorem, we have

|I2 (t) |⩽ −
ˆ
Γt

∆Bp(∇Dtvν · ν)dS+C‖∇̄p‖L1(Γt)

= −
ˆ
Γt

∆Bp(∇(−∇p+H ·∇H)ν · ν)dS+ ε‖∇̄2p‖2L2(Γt)
+Cε

⩽
ˆ
Γt

∆Bp
(
∇2pν · ν

)
dS−

ˆ
Γt

∆Bp ⋆∇2H ⋆∇H ⋆ ν ⋆ νdS+ ε‖∇̄2p‖2L2(Γt)
+Cε

⩽
ˆ
Γt

∆Bp
(
∇2pν · ν

)
dS+ ε‖∇̄2p‖2L2(Γt)

+Cε.

Recalling |∆p|⩽ C and by (2.1), (4.3), the divergence theorem, for ε> 0 small enough, we
deduce
ˆ
Γt

∆Bp
(
∇2pν · ν

)
dS=

ˆ
Γt

∆Bp∆p−∆Bp∆Bp−∆BpA∂νpdS

⩽ C+
ε

2
‖∇̄2p‖2L2(Γt)

+Cε‖p‖2H1(Γt)
−
ˆ
Γt

|∇̄2p|2dS

+ ‖∆Bp‖L2(Γt)‖∂νp‖L2(Γt)‖p‖L∞(Γt) ⩽−3
4
‖∇̄2p‖2L2(Γt)

+Cε.

Above, we have applied [11, remark 2.4] that ‖∇̄2p‖2L2(Γt)
⩽ ‖∆Bp‖2L2(Γt)

+C
´
Γt
|B|2|∇̄p|2dS.

Combining the above calculations, the proof is complete since d
dt I(t)⩽− 1

2‖∇̄
2p‖2L2(Γt)

+C.

Lemma 4.4. Assume that (1.6) holds for some T> 0. Then, we have

sup
t∈[0,T]

‖∇2p‖2L2(Ωt)
⩽ eC(NT,MT)(1+T)

(
1+ ‖∇2p‖2L2(Ω0)

)
.

Proof. We differentiate and apply lemma 2.2 to obtain

d
dt

1
2

ˆ
Ωt

|∇2p|2dx=
ˆ
Ωt

∇2Dtp :∇2pdx+
ˆ
Ωt

∇2v ⋆∇p ⋆∇2p+∇v ⋆∇2p ⋆∇2pdx

=: I1 (t)+ I2 (t) .

From (1.6), (2.4) and using lemma 4.2, we have

I1 (t)⩽
ˆ
Ωt

∑
i,j

∂i (∂jDtp∂i∂jp)dx−
ˆ
Ωt

∇Dtp ·∇∆pdx

⩽
ˆ
Γt

∑
j

∂jDtp∂ν∂jpdS+
ˆ
Ωt

∆Dtp∆pdx−
ˆ
Γt

∂νDtp∆pdS

⩽ C
∑
j

‖∂ν∂jp‖2L2(Γt)
+C‖∂νDtp‖2L2(Γt)

+C‖∆Dtp‖2L2(Ωt)
=: I11 (t)+ I12 (t)+ I13 (t) ,

I2 (t)⩽ C
(
‖v‖2H7/2(Ωt)

‖∇p‖2L6(Ωt)
+ ‖∇2p‖2L2(Ωt)

)
⩽ C

(
1+ ‖∇2p‖2L2(Ωt)

)
.

We apply lemmas 2.11 and 4.2, and (4.4) to obtain |I13(t)|⩽ C(1+ ‖∇2p‖2L2(Ωt)
) and |I11(t)|⩽

C(1+ ‖p‖2H2(Γt)
). Finally, (1.6), lemmas 2.11 and 2.4, and (A1) imply that
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|I12 (t) |⩽ C
(
‖∇̄Dtp‖2L2(Γt)

+ ‖∇Dtp‖2L2(Ωt)
+ ‖∆Dtp‖2L2(Ωt)

)
⩽ C

(
‖∇̄Dtp‖2L2(Γt)

+ ‖Dtp‖2H1/2(Γt)
+ ‖∆Dtp‖2L2(Ωt)

)
⩽ C

(
1+ ‖p‖2H2(Γt)

+ ‖∇2p‖2L2(Ωt)

)
.

Combined with (4.2) and lemma 4.3, the proof is complete.

Lemma 4.5. Assume that (1.6) holds for some T> 0. Then, we have

sup
t∈[0,T]

‖∇̄2p‖2L2(Γt)
+

ˆ T

0
‖∇̄3p‖2L2(Γt)

dt⩽ C
(
T,NT,MT,‖∇̄2p‖L2(Γ0),‖∇p‖H1(Ω0)

)
.

Proof. We define

I(t) :=
ˆ
Γt

∇̄2p : ∇̄2 (∇vν · ν)dS+ ε

ˆ
Γt

|∇̄2p|2dS=: I1 (t)+ εI2 (t) ,

where ε> 0 will be chosen later. From (1.6), (4.2), lemmas 4.3 and A.6, we have

|I1 (t) |⩽ Cε

(
‖∇3v‖2L2(Γt)

+ ‖∇2v ⋆B‖2L2(Γt)
+ ‖∇v ⋆ ∇̄B‖2L2(Γt)

)
+

ε

2
‖∇̄2p‖2L2(Γt)

⩽ ε

2
‖∇̄2p‖2L2(Γt)

+Cε,

and therefore, I(t)⩾−Cε +
ε

2
‖∇̄2p(·, t)‖2L2(Γt)

. We differentiate and use (1.6), (4.2), the diver-

gence theorem, lemmas A.1 and A.6 to obtain

d
dt
I1 (t)⩽ C|I1 (t) |+

ˆ
Γt

Dt∇̄2p : ∇̄2 (∇vν · ν)+ ∇̄2p :Dt∇̄2 (∇vν · ν)dS

⩽ Cε + ε
(
‖∇̄2p‖2L2(Γt)

+ ‖∇̄2Dtp‖2L2(Γt)

)
+

ˆ
Γt

∇̄2p : ∇̄2Dt (∇vν · ν)dS

⩽ ε‖∇̄2p‖2L2(Γt)
+Cε + ε‖∇̄2Dtp‖2L2(Γt)︸ ︷︷ ︸

=:I11(t)

−
ˆ
Γt

∇̄∆Bp · ∇̄Dt (∇vν · ν)dS︸ ︷︷ ︸
=:I12(t)

.

The first term can be controlled by (1.6), (2.10), (4.2) and lemma A.6, i.e. |I11(t)|⩽ C(1+
‖∇̄2p‖2L2(Γt)

+ ‖∇̄3p‖2L2(Γt)
). As for I12(t), applying (1.6), lemma (A.1) and the divergence

theorem, it follows that

|I12 (t) |⩽ −
ˆ
Γt

∇̄∆Bp · ∇̄(∇Dtvν · ν)dS+C
(
∥∇̄2p∥2L2(Γt)

+ 1
)

= −
ˆ
Γt

∇̄∆Bp · ∇̄(∇(−∇p+H ·∇H)ν · ν)dS+C
(
∥∇̄2p∥2L2(Γt)

+ 1
)

⩽
ˆ
Γt

∇̄∆Bp · ∇̄
(
∇2pν · ν

)
dS−

ˆ
Γt

∇̄∆Bp · ∇̄
(
∇2H ⋆H ⋆ ν ⋆ ν

)
dS+C

(
∥∇̄2p∥2L2(Γt)

+ 1
)

⩽
ˆ
Γt

∇̄∆Bp · ∇̄
(
∇2pν · ν

)
dS+ ε∥∇̄3p∥2L2(Γt)

+C
(
∥∇̄2p∥2L2(Γt)

+ 1
)
.

To estimate
´
Γt
∇̄∆Bp · ∇̄(∇2pν · ν)dS, by (1.6), (2.1), (2.4), (4.3), lemma A.7 and the diver-

gence theorem, it holds
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ˆ
Γt

∇̄∆Bp · ∇̄
(
∇2pν · ν

)
dS=

ˆ
Γt

∇̄∆Bp · ∇̄∆p−∇̄∆Bp · ∇̄∆Bp−∇̄∆Bp · ∇̄(A∂νp)dS

⩽ Cε∥∆p∥2H3/2(Ωt)
+ ε∥∇̄3p∥2L2(Γt) +Cε∥p∥2H2(Γt) −

7
8

ˆ
Γt

|∇̄3p|2dS

+ ∥∇̄3p∥L2(Γt)

(
∥∇̄∂νp∥L2(Γt)∥p∥L∞(Γt) + ∥∂νp∥L4(Γt)∥∇̄p∥L4(Γt)

)
⩽ Cε −

3
4

ˆ
Γt

|∇̄3p|2dS+Cε∥∇∂νp∥2L2(Γt) + ∥∇̄3p∥L2(Γt)∥∇p∥
2
H1(Ωt)

⩽ Cε −
1
2
∥∇̄3p∥2L2(Γt) +C∥∇̄2p∥2L2(Γt).

Above, we have used lemma A.1 and (4.4) to deduce ‖∇∂νp‖2L2(Γt)
⩽ C(1+ ‖p‖2H2(Γt)

+

‖∆p‖2H1(Ωt)
), and the result [11, lemma 2.3], i.e. ‖∇̄3p‖2L2(Γt)

⩽ ‖∇̄∆Bp‖2L2(Γt)
+C‖p‖2H2(Γt)

.

Similarly, we can obtain d
dt I2(t)⩽ C(1+ ‖∇̄2p‖2L2(Γt)

+ ‖∇̄3p‖2L2(Γt)
).

Combined the above calculations and by choosing suitable ε> 0, one has d
dt I(t)⩽

− 1
4‖∇̄

3p‖2L2(Γt)
+C‖∇̄2p‖2L2(Γt)

+C. Integrating the above over [0, t] with 0< t⩽ T and

recalling (4.2) together with I(t)⩾−Cε +
ε
2‖∇̄

2p(·, t)‖2L2(Γt)
, the lemma follows.

Lemma 4.6. Assume that (1.6) holds for some T> 0. Then, we have

sup
t∈[0,T]

‖p‖2H3(Ωt)
⩽ C

(
NT,MT,‖∇̄2p‖L2(Γ0),‖∇p‖H2(Ω0),T

)
.

Proof. We differentiate and apply lemma 2.2 to obtain

d
dt

1
2

ˆ
Ωt

|∇3p|2dx

=

ˆ
Ωt

∑
ijk

∂ijkDtp∂ijkpdx+
ˆ
Ωt

∇3v ⋆∇p ⋆∇3p+∇2v ⋆∇2p ⋆∇3p+∇v ⋆∇3p ⋆∇3pdx

=: I1 (t)+ I2 (t) .

From (1.6), (2.4) and lemma 2.11, we have

|I1 (t) |⩽
ˆ
Ωt

∑
i,j,k

∂i (∂jkDtp∂ijkp)dx−
ˆ
Ωt

∑
j,k

∂jkDtp∂jk∆pdx

⩽
ˆ
Γt

∑
j,k

∂jkDtp∂ν∂jkpdS+
ˆ
Ωt

∑
k

∂k∆Dtp∂k∆pdx−
ˆ
Γt

∑
k

∂ν∂kDtp∂k∆pdS

⩽ C
∑
j,k

‖∂ν∂jkp‖2L2(Γt)
+C

∑
j,k

‖∂jkDtp‖2L2(Γt)
+C

(
1+ ‖∇p‖2H2(Ωt)

)
,

and |I2(t)|⩽ C(1+ ‖∇p‖2H2(Ωt)
). Applying (4.4) and (4.5), we obtain

‖∂ν∂jkp‖2L2(Γt)
+ ‖∂jkDtp‖2L2(Γt)

⩽ C
(
‖∆p‖2H2(Ωt)

+ ‖∇p‖2H2(Ωt)
+ ‖Dtp‖2H2(Γt)

+ ‖p‖2H3(Γt)

)
⩽ C

(
1+ ‖∇p‖2H2(Ωt)

+ ‖p‖2H3(Γt)

)
,

for any indices j,k. The claim follows from lemma A.7 and the previous pressure estimates
((4.2), lemmas 4.2, 4.3, 4.4 and 4.5), since
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d
dt

1
2

ˆ
Ωt

|∇3p|2 ⩽ C
(
1+ ‖∇p‖2H2(Ωt)

+ ‖p‖2H3(Γt)

)
.

We conclude this section by controlling the initial quantities Ē(0) and∑3
k=0 ‖D

3−k
t p‖2H3k/2+1(Ω0)

.

Proposition 4.7. Assume that Ω0 is a smooth andM0 :=R−‖h0‖L∞(Γ) > 0. Then, we have

Ē(0)+
3∑

k=0

‖D3−k
t p‖2H3k/2+1(Ω0)

⩽ C
(
M0,‖v0‖H6(Ω0),‖H0‖H6(Ω0),‖A‖H5(Γ0)

)
.

The result remains valid when the initial time is replaced with any t ∈ (0,T), provided
‖h(·, t)‖L∞(Γ) <R.

Proof. We only need to consider the case when t= 0 and we divide the proof into three steps.

Step 1. We control ‖D4−k
t H‖2H3k/2(Ω0)

by the lower-order velocity terms using (2.5) and (2.6).

For k= 0, from ‖H‖L∞(Ω0) ⩽ C‖H‖H6(Ω0), we apply (2.5) to obtain

‖D4
t H‖2L2(Ω0)

⩽ C

∑
|β|⩽3

‖∇Dβ1
t v‖2L2(Ω0)

+
∑
|β|⩽2

‖∇Dβ1
t v‖2L3(Ω0)

‖∇Dβ2
t v‖2L6(Ω0)

+
∑
|β|⩽1

‖∇Dβ1
t v‖2L6(Ω0)

‖∇Dβ2
t v‖2L6(Ω0)

‖∇Dβ3
t v‖2L6(Ω0)

+ ‖v‖8H3(Ω0)


⩽ C‖D3

t v‖2H1(Ω0)
+C

(
1+ ‖D2

t v‖2H2(Ω0)

)(
1+ ‖Dtv‖2H2(Ω0)

)
.

We claim that

3∑
k=1

‖D4−k
t H‖2H3k/2(Ω0)

⩽ C
(
‖v‖H4(Ω0),‖H‖H4(Ω0)

)
×

(
1+

3∑
k=1

‖D4−k
t v‖2H(3k−1)/2(Ω0)

+ ‖v‖2H11/2(Ω0)
+ ‖H‖2H9/2(Ω0)

)
. (4.8)

Indeed, by (2.5), it follows that

‖D3
t H‖2H3/2(Ω0)

⩽ C
∑
|β|⩽2

‖∇Dβ1
t v‖2H3/2(Ω0)

‖H‖2H2(Ω0)
+C

∑
|β|⩽1

‖∇Dβ1
t v‖2H2(Ω0)

· ‖∇Dβm
t v‖2H2(Ω0)

‖H‖2H2(Ω0)
+C‖v‖6H3(Ω0)

‖H‖2H2(Ω0)

⩽ C
(
‖v‖H4(Ω0),‖H‖H4(Ω0)

)(
1+ ‖D2

t v‖2H5/2(Ω0)
+ ‖Dtv‖2H5/2(Ω0)

)
.

Again from (2.5) and lemma A.5, we see that
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‖D2
t H‖2H3(Ω0)

⩽ C‖∇Dtv‖2H3(Ω0)
‖H‖2H3(Ω0)

+C‖∇v‖4H3(Ω0)
‖H‖2H3(Ω0)

⩽ C
(
‖v‖H4(Ω0),‖H‖H4(Ω0)

)(
1+ ‖Dtv‖2H4(Ω0)

)
,

‖DtH‖2H9/2(Ω0)
⩽ C

(
‖H‖2L∞(Ω0)

‖v‖2H11/2(Ω0)
+ ‖H‖2H9/2(Ω0)

‖v‖2L∞(Ω0)

)
⩽ C

(
‖v‖H4(Ω0),‖H‖H4(Ω0)

)(
‖v‖2H11/2(Ω0)

+ ‖H‖2H9/2(Ω0)

)
.

Step 2. We control ‖D4−k
t v‖2H3k/2(Ω0)

by the pressure terms. Note that

‖Dtv‖2H9/2(Ω0)
⩽ C

(
‖p‖2H11/2(Ω0)

+ ‖H‖2H11/2(Ω0)
‖H‖2H9/2(Ω0)

)
⩽ C

(
‖p‖2H11/2(Ω0)

+ 1
)
,

and by lemma 2.6, we have

∥D2
t v∥2H3(Ω0) ⩽ ∥∇Dtp∥2H3(Ω0) + ∥ [Dt,∇]p∥2H3(Ω0) +C⩽ C

(
∥∇Dtp∥2H3(Ω0) + ∥p∥2H4(Ω0) + 1

)
.

Similarly, applying lemmas 2.8 and 2.9, we obtain

‖D3
t v‖2H3/2(Ω0)

⩽ C
(
‖∇D2

t p‖2H3/2(Ω0)
+ ‖∇Dtp‖2H3/2(Ω0)

+ ‖p‖2H9/2(Ω0)
+ 1
)
,

‖D4
t v‖2L2(Ω0)

⩽ C
(
‖∇D3

t p‖2L2(Ω0)
+ ‖∇D2

t p‖2L2(Ω0)
+ ‖∇Dtp‖2H2(Ω0)

+ ‖p‖2H9/2(Ω0)

)
.

Step 3. We show that
∑3

k=0 ‖D
3−k
t p‖2H3k/2+1(Ω0)

⩽ C. Consider the following elliptic equation{
−∆p= ∂i vj∂jvi− ∂iHj∂jHi, in Ω0,

p=AΓ0 , on Γ0.

We find that ‖p‖H11/2(Ω0) ⩽ C(‖∂i vj∂jvi− ∂iHj∂jHi‖H7/2(Ω0) + ‖A‖H5(Γ0))⩽ C from the
standard elliptic estimates. Again by the elliptic estimates, it holds ‖Dtp‖H4(Ω0) ⩽
C(‖∆Dtp‖H2(Ω0) + ‖Dtp‖H7/2(Γ0)), and ‖D2

t p‖H5/2(Ω0) ⩽ C(‖∆D2
t p‖H1/2(Ω0) + ‖D2

t p‖H2(Γ0)).
Also, by (A2), ‖D3

t p‖H1(Ω0) ⩽ C(‖∆D3
t p‖L2(Ω0) + ‖D3

t p‖H1/2(Γ0)). The calculations of the
remaining terms on the right-hand side are direct applications of lemmas 2.11 and 2.12,
and (2.10), since we have ‖p‖H11/2(Ω0) ⩽ C.

Finally, for 1⩽ j⩽ 3,‖∇̄(Dj
tv · ν)‖2L2(Γ0)

can be estimated by the trace theorem due to the
regularity of the boundary. Using the mean curvature bound, we apply lemma A.6 to obtain
‖B‖H2(Γ0) ⩽ C and therefore ‖∇̄(Dj

tv · ν)‖2L2(Γ0)
⩽ C(‖∇̄Dj

tv ⋆ ν‖2L2(Γ0)
+ ‖Dj

tv ⋆B‖2L2(Γ0)
)⩽

C. This concludes the proof of the proposition.

5. Estimates for the error terms

In this section, we estimate the error terms by the energy functional and the pressure. We start
with the following results.

Lemma 5.1. Assume that (1.6) holds for T> 0. Then, we have ‖B‖H5/2(Γt) ⩽ C, and
‖B‖Hk(Γt) ⩽ C(1+ ‖p‖Hk(Γt)) for k ∈ N/2,k⩽ 9/2. Assume further that sup0⩽t<TEl−1(t)⩽ C
for l⩾ 4. Then, it holds ‖B‖H3l/2−1(Γt) ⩽ C, and ‖B‖Hk(Γt) ⩽ C(1+ ‖p‖Hk(Γt)) for k ∈ N/2,k⩽
3l/2+ 1.
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Proof. We recall (4.1) that ‖p‖H3(Ωt) ⩽ C by the results in section 4. Since Γt is uniformly
H3+δ(Γ)-regular, it holds ‖B‖L∞(Γt) + ‖B‖H1(Γt) ⩽ C. Applying lemma A.6, for k ∈ N/2,k⩽
3, we see that ‖B‖Hk(Γt) ⩽ C(1+ ‖A‖Hk(Γt))⩽ C(1+ ‖p‖Hk(Γt)), and ‖B‖H5/2(Γt) ⩽ C. Again
by lemma A.6, the first claim follows. As for l⩾ 4, the assumption implies that

‖p‖2H3l/2−1(Γt)
⩽ C

(
1+ ‖∇p‖2H3(l−1)/2(Ωt)

)
⩽ C

(
1+ ‖Dtv‖2H3(l−1)/2(Ωt)

+ ‖H ·∇H‖2H⌊3l/2−1⌋(Ωt)

)
⩽ C.

For l= 4, we have ‖p‖H5(Γt) ⩽ C and ‖B‖H9/2(Γt) ⩽ C by the first claim. Moreover, by
lemma A.6, it implies ‖B‖H5(Γt) ⩽ C(1+ ‖p‖H5(Γt))⩽ C, i.e. ‖B‖H3l/2−1(Γt) ⩽ C in this case.
Therefore, it holds ‖B‖Hk(Γt) ⩽ C(1+ ‖A‖Hk(Γt))⩽ (1+ ‖p‖Hk(Γt)),k ∈ N/2,k⩽ 3l/2+ 1.
Using a similar argument, the second claim follows for l⩾ 5.

Lemma 5.2. Assume that (1.6) holds for T> 0. We have ‖RlI‖2H1/2(Ωt)
⩽ C(1+

‖∇2p‖2H1/2(Ωt)
)Ē(t) for l⩽ 3. Assume further that sup0⩽t<TEl−1(t)⩽ C for l⩾ 4. Then,

we have ‖RlI‖2H1/2(Ωt)
⩽ CEl(t), and there exists a constant ε> 0 small enough such that

‖Rl−k
I ‖2H3k/2−1(Ωt)

⩽ εEl(t)+Cε for k ∈ N,1⩽ k⩽ l.

Proof. Thanks to the regularity of the free boundary in lemma 5.1, it is feasible to extend
functions in H2(Ωt) to the entire space R3 (e.g. [26, proposition 2.1]) and then apply lemma
A.4. To simplify the notation, we will not distinguish between the original function and its
extension.

It suffices to estimate R3
I =

∑
2⩽m⩽4

∑
|β|⩽5−m∇Dβ1

t v ⋆ · · · ⋆∇Dβm−1
t v ⋆∇Dβm

t v defined

in (2.7) since R1
I and R2

I are easier to handle. We deal with the case of m= 2, i.e.∑
|β|⩽3∇Dβ1

t v ⋆∇Dβ2
t v and we only show the estimates when |β|= 3. From (1.6) and lemma

A.4, we see that

∥∇v ⋆∇D3
t v∥H1/2(Ωt)

⩽ C
(
∥∇v∥L∞(Ωt)∥∇D3

t v∥H1/2(Ωt)
+ ∥∇v∥W1/2,6(Ωt)

∥∇D3
t v∥L3(Ωt)

)
⩽ C

(
∥∇v∥L∞(Ωt)∥∇D3

t v∥H1/2(Ωt)
+ ∥v∥H5/2(Ωt)

∥D3
t v∥H3/2(Ωt)

)
⩽ CĒ(t)1/2 ,

∥∇D2
t v ⋆∇Dtv∥H1/2(Ωt)

⩽ C
(
∥∇Dtv∥H1/2(Ωt)

∥∇D2
t v∥L∞(Ωt) + ∥∇Dtv∥L3(Ωt)∥∇D2

t v∥W1/2,6(Ωt)

)
⩽ C

(
1+ ∥∇2p∥H1/2(Ωt)

)
Ē(t)1/2 .

If l⩾ 4, the assumption El−1(t)⩽ C also ensures that the functions in H3l/2+1(Ωt) can be
extended by lemma 5.1 and the extension theorem (e.g. [26, proposition 2.1]). Then, it follows
that ‖∇v ⋆∇Dl

tv‖H1/2(Ωt) ⩽ C(‖∇v‖L∞(Ωt)‖∇Dl
tv‖H1/2(Ωt) + ‖v‖H5/2(Ωt)‖D

l
tv‖H3/2(Ωt))⩽

CEl(t)1/2. For 1⩽ j⩽ l− j⩽ l− 1, we have j⩽ bl/2c⩽ l− 2 due to l⩾ 4, and obtain

‖∇Dj
tv ⋆∇Dl−j

t v‖H1/2(Ωt)

⩽ C
(
‖∇Dj

tv‖L∞(Ωt)‖∇Dl−j
t v‖H1/2(Ωt) + ‖Dj

tv‖H5/2(Ωt)‖∇Dl−j
t v‖H3/2(Ωt)

)
⩽ CEl (t)

1/2
,

where we have used the fact that ‖Dj
tv‖H5/2+ε(Ωt) ⩽ El−1(t)⩽ C. Again from the hypothesis

El−1(t)⩽ C, the terms involving the product of more than three items can be controlled since
we will have fewer material derivatives in this case.

To prove the last claim, we first estimate that ‖R0
I ‖2H3l/2−1(Ωt)

⩽ C‖∇v‖2L∞(Ωt)
‖∇v‖2H3l/2−1(Ωt)

⩽ C‖∇v‖2H3l/2−1(Ωt)
. By interpolation, we have ‖R0

I ‖2H3l/2−1(Ωt)
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⩽ εEl(t)+Cε for l= 5,7, · · · , and ‖R0
I ‖2H3l/2−1(Ωt)

⩽ CEl−1(t)⩽ C for l= 4,6, · · ·
Then we control the case of k= 1. When l⩾ 5, applying the previous estim-
ates, it holds ‖Rl−1

I ‖2H1/2(Ωt)
⩽ CEl−1(t)⩽ C. If l= 4, one has ‖Rl−1

I ‖2H1/2(Ωt)
⩽ C(1+

‖∇2p‖2H1/2(Ωt)
)El−1(t)⩽ C, since ‖∇2p‖2H1/2(Ωt)

⩽ ‖∇(H ·∇H−Dtv)‖2H1/2(Ωt)
⩽ C.

We are left with the case of 2⩽ k⩽ l− 1. Note that Rl−k
I =

∑
2⩽m⩽l−k+1∑

2 |β|⩽ l− k+ 2−m∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇Dβm
t v. We only estimate the case of

k= m= 2, i.e. ∇Dl−2−j
t v ⋆∇Dj

tv. As before, we assume that 0⩽ j⩽ l− 2− j⩽ l− 2 and
it holds j⩽ b(l− 2)/2c⩽ l− 2, l= 4, and j⩽ b(l− 2)/2c⩽ l− 3, l⩾ 5. We deal with the
first case, i.e. ‖∇Dtv ⋆∇Dtv‖2H2(Ωt)

+ ‖∇D2
t v ⋆∇v‖2H2(Ωt)

, since the same arguments work for
l⩾ 5 (j⩽ l− 3 in this case). We deduce that

‖∇v ⋆∇D2
t v‖2H2(Ωt)

⩽ C
(
‖∇v‖2L∞(Ωt)

‖∇D2
t v‖2H2(Ωt)

+ ‖∇v‖2H3(Ωt)
‖∇D2

t v‖2H5/2(Ωt)

)
⩽ ε‖∇D2

t v‖2H3(Ωt)
+C‖∇D2

t v‖2H2(Ωt)
⩽ εEl (t)+Cε,

‖∇Dtv ⋆∇Dtv‖2H2(Ωt)
⩽ C‖∇Dtv‖2L∞(Ωt)

‖∇Dtv‖2H2(Ωt)
⩽ CEl−1 (t)⩽ C.

The proof is complete.

Lemma 5.3. Assume that (1.6) holds for T> 0. For l⩽ 3, we have

‖Rl∇H,H‖2H1/2(Ωt)
+ ‖Rl∇H,∇H‖2H1/2(Ωt)

+ ‖Rl∇2H,H‖
2
H1/2(Ωt)

⩽ C
(
1+ ‖∇2p‖2H1/2(Ωt)

)
Ē(t) .

Assume further that sup0⩽t<TEl−1(t)⩽ C for l⩾ 4, then we have

‖Rl∇H,H‖2H1/2(Ωt)
+ ‖Rl∇H,∇H‖2H1/2(Ωt)

+ ‖Rl∇2H,H‖
2
H1/2(Ωt)

⩽ CEl (t) ,

‖R0
∇H,H‖2H3l/2−1(Ωt)

+ ‖R0
∇H,∇H‖2H3l/2−1(Ωt)

⩽ εEl (t)+Cε,

‖R0
∇2H,H‖

2
H3k/2−1(Ωt)

⩽ C‖curlH‖2H⌊3l/2+1/2⌋(Ωt)
,

‖Rl−k
∇H,H‖

2
H3k/2−1(Ωt)

+ ‖Rl−k
∇H,∇H‖

2
H3k/2−1(Ωt)

+ ‖Rl−k
∇2H,H‖

2
H3k/2−1(Ωt)

⩽ εEl (t)+Cε, (5.1)

for k ∈ N,1⩽ k< l. In the above, ε> 0 is a constant small enough.

Proof. We note that Rl∇2H,H contains all the highest-order terms in Rl∇H,H and Rl∇H,∇H and we

focus on the estimate for Rl∇2H,H. To control R3
∇2H,H in the case of l⩽ 3, we recall R3

∇2H,H in

lemma 2.8. From (1.6), we have ‖∇4 curlH ⋆H ⋆ · · · ⋆H‖2H1/2(Ωt)
⩽ C‖H‖H6(Ωt) ⩽ CĒ(t), and

‖∇2D2
t v ⋆∇F2 ⋆F3‖2H1/2(Ωt)

⩽ CĒ(t), as in lemma 5.2. The leading terms in R3
∇2H,H have been

controlled, and the estimates of the lower-order terms follow from the same arguments as in
lemma 5.2.

As for l⩾ 4, to prove the first result, it is sufficient to bound ∇l+1 curlv ⋆H ⋆ · · · ⋆H and
∇l+1 curlH ⋆H ⋆ · · · ⋆H since the other terms are either simpler or have already been estimated
in lemma 5.2. From the assumption, ‖v‖H⌊3l/2⌋(Ωt) + ‖H‖H⌊3l/2⌋(Ωt) ⩽ C. As before, we extend
the functions and estimate as in lemma 5.2 to obtain

‖∇l+1 curlv ⋆H ⋆ · · · ⋆H‖H1/2(Ωt)

⩽ C
(
‖H ⋆ · · · ⋆H‖L∞(Ωt)‖∇

l+1 curlv‖H1/2(Ωt) + ‖H ⋆ · · · ⋆H‖W1/2,6(Ωt)‖∇
l+1 curlv‖L3(Ωt)

)
⩽ C‖v‖Hl+5/2(Ωt) ⩽ CEl (t)

1/2
.
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In the last step, the condition l⩾ 4 implies 5/2+ l⩽ b3(l+ 1)/2c and therefore, it holds
‖v‖Hl+5/2(Ωt) ⩽ ‖v‖H⌊3(l+1)/2⌋(Ωt).

Next, to verify (5.1), we shall control ‖Rl−k
∇2H,H‖

2
H3k/2−1(Ωt)

for 1⩽ k⩽ l− 1. We concentrate

on the estimate for ‖∇l−k+1 curlv ⋆H ⋆ · · · ⋆H‖2H3k/2−1(Ωt)
. This time we obtain for 1⩽ k< l

that

‖∇l−k+1 curlv ⋆H ⋆ · · · ⋆H‖2H3k/2−1(Ωt)
⩽ C‖v‖H3l/2+1/2(Ωt).

By interpolation, it holds ‖v‖2H3l/2+1/2(Ωt)
⩽ ε‖v‖2H⌊3(l+1)/2⌋(Ωt)

+Cε‖v‖2H⌊3l/2⌋(Ωt)
⩽ εEl(t)+

Cε. Finally, to obtain the last two estimates, we only need to bound the most
difficult term R0

∇2H,H = (H ·∇)curlH. Since l⩾ 4, we have ‖R0
∇2H,H‖

2
H3l/2−1(Ωt)

⩽
C‖H‖2H⌊3l/2⌋(Ωt)

‖curlH‖2H⌊3l/2+1/2⌋(Ωt)
⩽ C‖curlH‖2H⌊3l/2+1/2⌋(Ωt)

, and the proof is
complete.

Lemma 5.4. Assume that (1.6) holds for T> 0. We have ‖RlII‖2L2(Ωt)
⩽ C(1+

‖∇p‖2H3/2(Ωt)
)Ē(t) for l⩽ 3. Assume further that sup0⩽t<TEl−1(t)⩽ C for l⩾ 4. Then, it

follows that ‖RlII‖2L2(Ωt)
⩽ CEl(t), and ‖Rl−k

II ‖2H3(k−1)/2(Ωt)
⩽ C for k ∈ N,1⩽ k⩽ l− 1.

Proof. To prove the first claim, we estimate

R3
II =

∑
1⩽m⩽4

∑
|β|⩽3,|α|⩽1
β1,··· ,βm−1⩾1

aα,β (∇v)∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇α1Dα2+βm
t v.

If m= 1, we consider the case of |β|= β1 = 3 and |α|= 1. We should control
a(∇v)D4

t v+ b(∇v)∇D3
t v. From the hypothesis (1.6), it is clear that ‖a(∇v)D4

t v‖2L2(Ωt)
+

‖b(∇v)∇D3
t v‖2L2(Ωt)

⩽ CĒ(t). For m= 2, |β|= 3 and |α|= 1, we show the estimates of

a(∇v)∇Dtv ⋆D3
t v and b(∇v)∇D2

t v ⋆D2
t v. Choosing 1/p+ 1/q= 1/2,p= 3/δ with δ > 0

small enough, we see that ‖∇2H‖2Lq(Ωt)
⩽ C‖H‖2H5/2+δ(Ωt)

,

‖a(∇v)∇Dtv ⋆D3
t v‖2L2(Ωt)

⩽ C‖∇2p+∇H ⋆∇H+H ⋆∇2H‖2Lq(Ωt)
‖D3

t v‖2H3/2(Ωt)

⩽ C
(
1+ ‖∇2p‖2H1/2(Ωt)

)
Ē(t) ,

and ‖a(∇v)∇D2
t v ⋆D2

t v‖2L2(Ωt)
⩽ C‖D2

t v‖2L2(Ωt)
Ē(t). To control ‖D2

t v‖2L2(Ωt)
, from the

boundedness ‖∆p‖H1(Ωt) ⩽ C and using (2.4), (2.11), (2.8), together with (A1), we obtain

‖D2
t v‖2L2(Ωt)

⩽ ‖∇Dtp‖2L2(Ωt)
+ ‖ [Dt,∇]p‖2L2(Ωt)

+ ‖DtH ⋆∇H+H ⋆Dt∇H‖2L2(Ωt)

⩽ ‖∆Dtp‖2L2(Ωt)
+ ‖Dtp‖2H1/2(Γt)

+ ‖∇v ⋆∇p‖2L2(Ωt)

+ ‖H ⋆∇v ⋆∇H+H ⋆∇v ⋆∇H+H ⋆∇2v ⋆H‖2L2(Ωt)

⩽ ‖divdiv(v⊗∇p)‖2L2(Ωt)
+ ‖∇p‖2L2(Ωt)

+C

+ ‖divR0
II+∇2v ⋆∇H ⋆H+∇v ⋆∇H ⋆∇H

+∇2H ⋆∇v ⋆H+ v ⋆∇2H ⋆∇H‖2L2(Ωt)

⩽ ‖∂j∂i
(
vi∂jp

)
‖2L2(Ωt)

+ ‖∇p‖2H1(Ωt)
+C⩽ C

(
1+ ‖∇p‖2H1(Ωt)

)
.
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In the case of m= 3 and m= 4, we estimate in the same fashion, and obtain ‖RlII‖2L2(Ωt)
⩽

C(1+ ‖∇p‖2H3/2(Ωt)
)Ē(t), as desired.

To control RlII for l⩾ 4, we focus on the case of |β|= l and |α|= 1. If m= 1, it holds
‖a(∇v)Dl+1

t v+ b(∇v)∇Dl
tv‖2L2(Ωt)

⩽ CEl−1(t)⩽ C. Next, we handle the product of func-
tions as follows. We simply assume α2 = 1 since the material derivative Dt is 1/2-higher
than the spatial derivative. If 1⩽ j⩽ l+ 1− j⩽ l, it follows that 1⩽ j⩽ b(l+ 1)/2c⩽ l− 2,
and we have ‖a(∇v)∇Dj

tv ⋆D
l+1−j
t v‖2L2(Ωt)

⩽ C‖∇Dj
tv‖2L∞(Ωt)

‖Dl+1−j
t v‖2L2(Ωt)

⩽ CEl(t). If
1⩽ l+ 1− j < j ⩽ l, we find that b(l+ 1)/2c+ 1⩽ j and 1⩽ l+ 1− j⩽ l− 2. Then, we
obtain ‖a(∇v)∇Dj

tv ⋆D
l+1−j
t v‖2L2(Ωt)

⩽ C‖Dj
tv‖2H1(Ωt)

‖Dl+1−j
t v‖2H3/2+ε(Ωt)

⩽ CEl(t). The oth-
ers can be estimated in the same way.

We are left with the last claim. For k= 1, it follows by applying the above estimates with
l− 1 if l⩾ 5. As k= 1 and l= 4, it follows from the hypothesis that E3(t)⩽ C. Therefore,
‖∇p‖2H1(Ωt)

⩽ C‖H ·∇H−Dtv‖2H1(Ωt)
⩽ C. This concludes the proof for k= 1. Assume that

2⩽ k⩽ l− 1 and we shall control ‖Rl−k
II ‖2H3(k−1)/2(Ωt)

defined in (2.8):

Rl−k
II =

∑
1⩽m⩽l−k+1

∑
|β|⩽l−k,|α|⩽1,β1,··· ,βm−1⩾1

aα,β (∇v)∇Dβ1
t v ⋆ · · · ⋆∇Dβm−1

t v ⋆∇α1Dα2+βm
t v.

Ifm= 1, |β|= l− k and |α|= 1, it is clear that ‖a(∇v)Dl+1−k
t v+ b(∇v)∇Dl−k

t v‖2H3(k−1)/2(Ωt)
⩽

CEl−1(t)⩽ C. To bound the product of functions, e.g. m= 2, |β|= l− k, |α|= 1 and
1⩽ j⩽ l− k− j⩽ l− k− 1, we note that 1⩽ j⩽ b(l− k)/2c and

‖a(∇v)‖2H3k/2−1/2(Ωt)
⩽ C‖∇v‖2L∞(Ωt)

· · ·‖∇v‖2L∞(Ωt)
‖v‖2⌊3l/2⌋(Ωt)

⩽ C.

This, combined with the Sobolev embedding and lemma A.4, we deduce that

‖a(∇v)∇Dj
tv ⋆∇α1Dα2+l−k−1

t v‖2H3(k−1)/2(Ωt)

⩽ C‖a(∇v)‖2W3(k−1)/2,6(Ωt)
‖∇Dj

tv ⋆∇α1Dα2+l−k−1
t v‖2L3(Ωt)

+C‖a(∇v)‖2L∞(Ωt)
‖∇Dj

tv ⋆∇α1Dα2+l−k−1
t v‖2H3(k−1)/2(Ωt)

⩽ C‖∇Dj
tv‖2H3k/2−1/2(Ωt)

‖∇α1Dα2+l−k−1
t v‖2L3(Ωt)

+C‖∇Dj
tv‖2L∞(Ωt)

‖∇α1Dα2+l−k−1
t v‖2H3(k−1)/2(Ωt)

⩽ C,

wherewe have used the fact that ‖∇Dj
tv‖2H3k/2−1/2(Ωt)

+ ‖∇Dj
tv‖2L∞(Ωt)

⩽ C(‖Dj
tv‖2H3k/2+1/2(Ωt)

+

‖Dj
tv‖2H5/2+ε(Ωt)

) for ε> 0 small enough. Thus, the proof is complete since the other terms can
be estimated by using similar arguments.

Lemma 5.5. Assume that (1.6) holds for T> 0. We have ‖Rlp‖2H1/2(Γt)
⩽ C

(
1+ ‖∇p‖2H2(Ωt)

)
Ē(t) for l⩽ 3. Assume further that sup0⩽t<TEl−1(t)⩽ C for l⩾ 4. Then it follows that
‖Rlp‖2H1/2(Γt)

⩽ CEl(t), and ‖Rl−k
p ‖2H3k/2−1(Γt)

⩽ εEl(t)+Cε for k ∈ N,1⩽ k⩽ l− 1 with ε> 0
small enough.

Proof. It is sufficient to show the estimate for l= 3 since the other cases are easier. Recall the
definition of R3

p, we have

∥∇̄p · D3
t v∥2H1/2(Γt)

⩽ C
(
∥∇̄p∥2W1/2,4(Γt)

∥D3
t v∥2L4(Γt) + ∥∇̄p∥2L4(Γt)∥D

3
t v∥2W1/2,4(Γt)

)
⩽ C∥∇p∥2H3/2(Ωt)

Ē(t) ,
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we have used the fact that ‖∇̄2p‖2L2(Γt)
⩽ C(‖∇p‖2H1(Γt)

+ ‖∇p ⋆B‖2L2(Γt)
)⩽ C‖∇p‖2H1(Γt)

, and

the trace theorem. Similarly, to deal with the term −|B|2D3
t v · ν, we have ‖D3

t v · ν‖2L2(Γt)
⩽

C‖D3
t v‖2H1(Ωt)

⩽ CĒ(t), and ‖− |B|2D3
t v · ν‖2H1/2(Γt)

⩽ C‖|B|2‖2H1(Γt)
‖D3

t v · ν‖2H1(Γt)
⩽ C(1+

‖∇p‖2H1(Ωt)
)Ē(t) by (1.6). Again from (1.6), it follows that

∥a8 (ν,∇v) ⋆∇2D2
t v∥2H1/2(Γt)

⩽ C
(
∥∇2D2

t v∥2H1/2(Γt)
+ ∥a8 (ν,∇v)∥2W1/2,4(Γt)

∥∇2D2
t v∥2H1/2(Γt)

)
,

∥a9 (ν,∇v) ⋆∇D2
t v ⋆B∥2H1/2(Γt)

⩽ C
(
∥∇D2

t v∥2W1/2,4(Γt)
∥B∥2L4(Γt) + ∥B∥2H1/2(Γt)

∥∇D2
t v∥2L∞(Γt)

)
,

∥a10 (ν,∇v) ⋆∇D2
t v ⋆∇2v∥2H1/2(Γt)

⩽ C∥∇2v∥2H1/2(Γt)

(
∥∇D2

t v∥2W1/2,4(Γt)
+ ∥∇D2

t v∥2L∞(Γt)

)
,

and they can be controlled by CĒ(t). Moreover,

∥a11 (ν,∇v) ⋆∇2Dtv ⋆∇Dtv∥2H1/2(Γt)

⩽ C
(
∥∇2Dtv∥2L∞(Ωt)∥∇Dtv∥2H1(Ωt) + ∥∇2Dtv∥2W1,6(Ωt)

∥∇Dtv∥2L3(Ωt)

)
⩽ C∥∇(−∇p+H ·∇H)∥2H1(Ωt)∥Dtv∥2H4(Ωt) ⩽ C

(
1+ ∥∇2p∥2H1(Ωt)

)
Ē(t) ,

and the other terms can be estimated in the same way. For l⩾ 4, the proof is similar to [26,
lemma 5.8], and we omit the details.

Applying the above error estimates and recalling proposition 3.1 as well as (4.1), we con-
clude this section by presenting the following improved version of proposition 3.1.

Proposition 5.6. Assume that (1.6) holds for T> 0. Then, we have d
dt ē(t)⩽ CĒ(t), where C

depends on T,NT,MT,‖v0‖H6(Ω0),‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0). For l⩾ 4, assume further
that sup0⩽t<TEl−1(t)⩽ C, then we have d

dtel(t)⩽ CEl(t), where the constant C depends on
T,NT,MT, and sup0⩽t<TEl−1(t).

6. Closing the energy estimates and proving the main theorems

In this section, we close the energy estimates and prove theorem 1.1. We introduce the energy
functional

ẽ(t) :=
1
2

3∑
k=1

(
‖Dk+1

t v‖2L2(Ωt)
+ ‖Dk+1

t H‖2L2(Ωt)
+ ‖∇̄

(
Dk
t v · ν

)
‖2L2(Γt)

)
+

1
2

(
‖curlv‖2H5(Ωt)

+ ‖curlH‖2H5(Ωt)

)
+ 1,

ẽl (t) :=
1
2

(
‖Dl+1

t v‖2L2(Ωt)
+ ‖Dl+1

t H‖2L2(Ωt)
+ ‖∇̄

(
Dl
tv · ν

)
‖2L2(Γt)

)
+

1
2

(
‖curlv‖2H⌊(3l+1)/2⌋(Ωt)

+ ‖curlH‖2H⌊(3l+1)/2⌋(Ωt)

)
+ 1, l⩾ 4.

Note that from the a priori assumptions (1.6), it holds ‖curlv‖2L2(Ωt)
+ ‖curlH‖2L2(Ωt)

⩽ C. By
interpolation, we have ẽ(t)⩽ C(ē(t)+ 1) and ẽl(t)⩽ C(el(t)+ 1) for l⩾ 4.

We will apply the following div-curl estimates in [26, section 3.1].
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Lemma 6.1. Let the integer l⩾ 2 and assume that ‖BΓ‖H3l/2−1(Γ) ⩽ C. Let j ∈
{5/2,3,7/2,4, · · · ,3l/2} and k ∈ {3/2,5/2,3,7/2,4, · · · ,3l/2}. Then, for all smooth vec-
tor fields F, it holds

‖F‖Hk(Ω) ⩽ C
(
‖Fn‖Hk−1/2(Γ) + ‖F‖L2(Ω) + ‖divF‖Hk−1(Ω) + ‖curlF‖Hk−1(Ω)

)
, (6.1)

‖F‖Hj(Ω) ⩽ C
(
‖∆ΓFn‖Hj−5/2(Γ) + ‖F‖L2(Ω) + ‖divF‖Hj−1(Ω) + ‖curlF‖Hj−1(Ω)

)
, (6.2)

‖F‖H⌊(3(l+1))/2⌋(Ω) ⩽ C
(
‖∆BFn‖H⌊(3l−2)/2⌋(Γ) +

(
1+ ‖B‖H3l/2(Γ)

)
‖F‖L∞(Ω)

+‖divF‖H⌊(3l+1)/2⌋−1(Ω) + ‖curlF‖H⌊(3l+1)/2⌋−1(Ω)

)
. (6.3)

Proposition 6.2. Assume that Γt ∈ H3+δ(Γ) with δ > 0 small enough. Assume that
‖p‖H3(Ωt) + ‖v‖H4(Ωt) + ‖H‖H4(Ωt) ⩽ C0. Then we have Ē(t)+ ‖B‖2H9/2(Γt)

⩽ C(1+ ē(t)),

where the constant C depends onMt,‖h(·, t)‖H3+δ(Γ),‖p‖H3(Ωt),‖v‖H4(Ωt), and ‖H‖H4(Ωt).

Proof. We shall show that Ē(t)⩽ Cẽ(t).We need to control ‖D4−k
t v‖2H3k/2(Ωt)

,‖D4−k
t H‖2H3k/2(Ωt)

,

k⩽ 3,‖v‖2H6(Ωt)
, and ‖H‖2H6(Ωt)

. Recalling (4.8), it is sufficient to control ‖D3
t v‖2H3/2(Ωt)

,

‖D2
t v‖2H3(Ωt)

, ‖Dtv‖2H9/2(Ωt)
, ‖v‖2H6(Ωt)

, and ‖H‖2H6(Ωt)
. We divide the proof into three steps.

Step 1. We control ‖D3
t v‖2H3/2(Ωt)

. Recalling that ‖ν̃‖H5/2+δ(Ωt) ⩽ C, we have

‖D3
t v · ν‖2L2(Γt)

⩽ |
ˆ
Ωt

(
D3
t v · ν

)
divD3

t vdx|+ |
ˆ
Ωt

∇D3
t v ⋆D3

t vdx|+ |
ˆ
Ωt

D3
t v ⋆∇ν ⋆D3

t vdx|

⩽ C
(
‖D3

t v‖2L2(Ωt)
+ ‖divD3

t v‖2L2(Ωt)
+ ‖∇D3

t v‖L2(Ωt)‖D
3
t v‖L2(Ωt)

)
⩽ ε‖∇D3

t v‖2L2(Ωt)
+Cεẽ(t)+C‖divD3

t v‖2L2(Ωt)
.

This, combined with lemmas 2.10 and 5.2, and (6.1), it follows that ‖D3
t v‖2H3/2(Ωt)

⩽ C(‖D3
t v ·

ν‖2H1(Γt)
+ ‖D3

t v‖2L2(Ωt)
+ ‖divD3

t v‖2H1/2(Ωt)
+ ‖curlD3

t v‖2H1/2(Ωt)
), and therefore,

‖D3
t v‖2H3/2(Ωt)

⩽ C
(
ẽ(t)+ ‖R2

I ‖2H1/2(Ωt)
+ ‖R2

∇H,∇H‖2H1/2(Ωt)
+ ‖R2

∇2H,H‖
2
H1/2(Ωt)

)
.

To control ‖R2
∇H,∇H‖2H1/2(Ωt)

, we estimate as follows. Indeed, by the assumption, applying

Young’s inequality and lemma A.4, we obtain ‖∇2Dtv ⋆∇H ⋆H‖2H1/2(Ωt)
+ ‖∇Dtv ⋆∇2H ⋆

H‖2H1/2(Ωt)
⩽ C‖Dtv‖2H3(Ωt)

‖H‖4H3(Ωt)
and

‖Dtv‖2H3(Ωt)
‖H‖4H3(Ωt)

⩽ εĒ(t)+Cε‖p‖2H1(Ωt)
+Cε‖H ·∇H‖2L2(Ωt)

⩽ εĒ(t)+Cε.

As for ‖R2
∇2H,H‖

2
H1/2(Ωt)

, we recall lemma 2.8, and we handle the most difficult term, i.e.

‖∇3 curlH ⋆H ⋆H ⋆H‖2H1/2(Ωt)
⩽ C‖curlH‖2H4(Ωt)

⩽ Cẽ(t). Again by the Young’s inequality

and lemma A.4, we can control ‖R2
I ‖2H1/2(Ωt)

. In fact, we have
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‖∇D2
t v ⋆∇v‖2H1/2(Ωt)

+ ‖∇Dtv ⋆∇Dtv‖2H1/2(Ωt)

⩽ C‖v‖2H2(Ωt)
‖D2

t v‖2H2(Ωt)
+C‖∇Dtv‖2L3(Ωt)

‖∇Dtv‖2H3/2(Ωt)

⩽
(
ε‖Dtv‖2H9/2(Ωt)

+Cε‖Dtv‖2L2(Ωt)

)(
‖∇2p‖2L3(Ωt)

+ ‖∇(H ·∇H)‖2L3(Ωt)

)
+ ε‖D2

t v‖2H3(Ωt)
+Cε‖D2

t v‖2L2(Ωt)
⩽ Cεẽ(t)+ εĒ(t) .

Combining the above estimates, we obtain ‖D3
t v‖2H3/2(Ωt)

⩽ εĒ(t)+Cεẽ(t).

Step 2.We estimate ‖D2
t v‖2H3(Ωt)

and ‖Dtv‖2H9/2(Ωt)
. Applying lemma 2.10 and (6.2), it holds

‖Dtv‖2H9/2(Ωt)
⩽ Cẽ(t)+C

(
‖∆B (Dtv · ν)‖2H2(Γt)

+ ‖∇v ⋆∇v‖2H7/2(Ωt)

+‖∇H ⋆∇H‖2H7/2(Ωt)
+ ‖H ⋆∇curlH‖2H7/2(Ωt)

)
⩽ Cẽ(t)+C‖∆B (Dtv · ν)‖2H2(Γt)

,

‖D2
t v‖2H3(Ωt)

⩽ C
(
‖∆B

(
D2
t v · ν

)
‖2H1/2(Γt)

+ ‖R1
I ‖2H2(Ωt)

+ ‖R1
∇H,∇H‖2H2(Ωt)

+‖R1
∇2H,H‖

2
H2(Ωt)

)
+Cẽ(t) .

We control ‖R1
I ‖2H2(Ωt)

by the bilinear inequality, ‖∇Dtv ⋆∇v‖2H2(Ωt)
⩽ C‖Dtv‖2H3(Ωt)

‖v‖2H3(Ωt)

⩽ εĒ(t)+Cεẽ(t). For ‖R1
∇H,∇H‖2H2(Ωt)

, it holds that ‖∇2v ⋆∇H ⋆H‖2H2(Ωt)
+ ‖∇v ⋆

∇H ⋆∇H‖2H2(Ωt)
⩽ C‖v‖2H4(Ωt)

‖H‖4H3(Ωt)
from the assumption. Then, the estimate for

‖R1
∇2H,H‖

2
H2(Ωt)

follows since ‖∇2 curlv ⋆H ⋆H‖2H2(Ωt)
⩽ Cẽ(t).

We are left with ‖∆B(D2
t v · ν)‖2H1/2(Γt)

and ‖∆B(Dtv · ν)‖2H2(Γt)
. We focus on the estimate of

‖∆B(D2
t v · ν)‖2H1/2(Γt)

. Recalling that from lemma 2.12, we have D3
t p=−∆B(D2

t v · ν)+R2
p.

Since ‖R2
p‖2H1/2(Γt)

is easier to control than ‖D3
t p‖2H1/2(Γt)

, we only bound ‖D3
t p‖2H1/2(Γt)

. By

the definition ofH1/2(Γ), it holds ‖D3
t p‖2H1/2(Γt)

⩽ C‖D3
t p‖2L2(Γt)

+C‖∇D3
t p‖2L2(Ωt)

. Applying
(3) in lemma 2.3, for the first term, we have

‖D3
t p‖2L2(Γt)

⩽ C‖
∑

1⩽m⩽3

∑
|β|⩽3−m,|α|⩽1

aα,β (ν,B)∇̄1+α1Dβ1
t v ⋆ · · · ⋆ ∇̄1+αmDβm

t v‖2L2(Γt)
.

For m= 1, from ‖B‖L∞(Γt) ⩽ C, we control a(ν,B)∇̄2D2
t v by the trace theorem and interpol-

ation: ‖a(ν,B)∇̄2D2
t v‖2L2(Γt)

⩽ C‖D2
t v‖2H5/2(Ωt)

⩽ εĒ(t)+Cεẽ(t). The other cases are either

simpler or similar. As for ‖∇D3
t p‖2L2(Ωt)

, it follows that ‖∇D3
t p‖2L2(Ωt)

⩽ Cẽ(t)+C‖D3
t (H ·

∇H)‖2L2(Ωt)
+C‖[∇,D3

t ]p‖2L2(Ωt)
. To control ‖D3

t (H ·∇H)‖2L2(Ωt)
, again by interpolation, we

see that ‖∇2D2
t v ⋆H ⋆H‖2L2(Ωt)

+ ‖∇2Dtv ⋆H ⋆H‖2L2(Ωt)
⩽ εĒ(t)+Cεẽ(t), and we estimate

‖[∇,D3
t ]p‖2L2(Ωt)

as follows

‖∇D2
t v ⋆∇p‖2L2(Ωt)

+ ‖∇Dtv ⋆∇Dtp‖2L2(Ωt)
+ ‖∇v ⋆∇D2

t p‖2L2(Ωt)

⩽ C
(
‖D2

t v‖2H2(Ωt)
‖p‖2H3/2(Ωt)

+ ‖∇(H ·∇H) ⋆∇Dtp‖2L2(Ωt)

+‖∇2p ⋆∇Dtp‖2L2(Ωt)
+ ‖∇D2

t p‖2L2(Ωt)

)
⩽ C‖D2

t v‖2H2(Ωt)
+C‖∇Dtp‖2L3(Ωt)

+C‖∇D2
t p‖2L2(Ωt)

.
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Note that ‖∇D2
t p‖2L2(Ωt)

and ‖∇Dtp‖2L3(Ωt)
have fewer material derivatives than ‖∇D3

t p‖2L2(Ωt)
.

Therefore, it can be estimated as I8(t) in the same fashion, and we can obtain ‖D3
t p‖2H1/2(Γt)

⩽
Cẽ(t)+ εĒ(t). Similarly, it holds ‖D2

t p‖2H2(Γt)
⩽ Cẽ(t)+ εĒ(t). Combining the above estim-

ates, we conclude that ‖D2
t v‖2H3(Ωt)

+ ‖Dtv‖2H9/2(Ωt)
⩽ Cẽ(t)+ εĒ(t).

Step 3. Finally, we bound ‖v‖2H6(Ωt)
and ‖H‖2H6(Ωt)

. From (6.3), we see that ‖v‖2H6(Ωt)
⩽

C(ẽ(t)+ ‖∆Bvn‖2H7/2(Γt)
+ ‖B‖2H9/2(Γt)

) and ‖H‖2H6(Ωt)
⩽ C(ẽ(t)+ ‖B‖2H9/2(Γt)

). Recalling

lemma 5.1 and by the trace theorem, it follows that ‖B‖2H9/2(Γt)
⩽ C(1+ ‖p‖2H9/2(Γt)

)⩽
εĒ(t)+ ‖H‖2H5(Ωt)

+Cε.

Again by (6.3), we can estimate in H5(Ωt) and deduce ‖H‖2H5(Ωt)
⩽ Cẽ(t)+ ‖B‖2H7/2(Γt)

.

Similarly, it holds ‖B‖2H7/2(Γt)
⩽ εĒ(t)+ ‖H‖2H4(Ωt)

+Cε ⩽ εĒ(t)+Cε. Thus, ‖B‖2H9/2(Γt)
⩽

εĒ(t)+Cε,‖p‖2H9/2(Γt)
⩽ εĒ(t)+Cε, and ‖H‖2H6(Ωt)

⩽ εĒ(t)+Cε.

We are left with the term ‖∆Bvn‖2H7/2(Γt)
. From (2.10) and by the above calculations, it

follows that

‖∆Bvn‖2H7/2(Γt)
⩽ C‖Dtp‖2H7/2(Γt)

+C‖|B|2vn‖2H7/2(Γt)
+C‖∇̄p · v‖2H7/2(Γt)

⩽ C‖v‖2H4(Ωt)
‖B‖2L∞(Γt)

‖B‖2H7/2(Γt)
+

ε

2
Ē(t)+Cεẽ(t)⩽ Cεẽ(t)+ εĒ(t) ,

where we have used the fact that

‖Dtp‖2H7/2(Γt)
⩽ C

(
‖Dtp‖2L2(Γt)

+ ‖∇Dtp‖2H3(Ωt)

)
⩽ C

(
1+ ‖D2

t v‖2H3(Ωt)
+ ‖Dt (H ·∇H)‖2H3(Ωt)

+ ‖∇v ⋆ (H ·∇H−Dtv)‖2H3(Ωt)

)
⩽ Cεẽ(t)+

ε

2
Ē(t) ,

and interpolation arguments since ‖DtH‖2H4(Ωt)
and ‖D2

t v‖2H3(Ωt)
have already been controlled.

This completes the proof.

Proposition 6.3. Let l⩾ 4. Assume that (1.6) holds for some T> 0 and sup0⩽t<TEl−1(t)⩽
C. Then, we have El(t)⩽ C(1+ el(t)), where the constant C depends on l,T,NT,MT and
sup0⩽t<TEl−1(t).

Proof. We will show that El(t)⩽ Cẽl(t) and we divide the proof into three steps.

Step 1.We claim that it is sufficient to bound ‖Dl+1−k
t v‖2H3k/2(Ωt)

,k ∈ {1,2, · · · , l},‖v‖2H⌊3(l+1)/2⌋

(Ωt)
and ‖H‖2H⌊3(l+1)/2⌋(Ωt)

. Indeed, ‖Dl+1−k
t H‖2H3k/2(Ωt)

can be controlled by these quantities.
Starting with the case of 2⩽ k⩽ l− 1, from the hypothesis, (2.5) and (2.6), we have

‖Dl+1−k
t H‖2H3k/2(Ωt)

⩽ C
∑

1⩽m⩽l+1−k
|β|⩽l+1−k−m

‖∇Dβ1
t v‖2H3k/2(Ωt)

· · ·‖∇Dβm
t v‖2H3k/2(Ωt)

‖H‖2H3k/2(Ωt)
.

If m= 1, we see that ‖Dl+1−k
t H‖2H3k/2(Ωt)

⩽ C(‖Dl+1−(k+1)
t v‖2H3(k+1)/2(Ωt)

+ 1), since

‖H‖2H3k/2(Ωt)
⩽ CEl−1(t)⩽ C. For m⩾ 2, it holds ‖Dl+1−k

t H‖2H3k/2(Ωt)
⩽ CEl−1(t) · · ·El−1(t)

⩽ C.
Next, we deal with the case of k= 1, and it follows that
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‖Dl
tH‖2H3/2(Ωt)

⩽ C
∑

β1⩽l−1

‖∇Dβ1
t v‖2H3/2(Ωt)

‖H‖2H2(Ωt)

+C
∑

2⩽m⩽l,|β|⩽l−m

‖∇Dβ1
t v‖2H2(Ωt)

· · ·‖∇Dβm
t v‖2H2(Ωt)

‖H‖2H2(Ωt)

⩽ C
(
‖∇Dl−1

t v‖2H3/2(Ωt)
+ 1
)
⩽ C

(
‖Dl+1−2

t v‖2H3(Ωt)
+ 1
)
.

Finally, for an even integer k= l, one has ‖DtH‖2H3l/2(Ωt)
⩽ C‖H‖2H⌊3l/2⌋(Ωt)

‖v‖2H⌊3l/2+1⌋(Ωt)
⩽

C‖v‖2H⌊3l/2+1⌋(Ωt)
from El−1(t)⩽ C, and if k= l is odd, we have by lemma A.5 that

‖DtH‖2H3l/2(Ωt)
⩽ C

(
‖H‖2L∞(Ωt)

‖v‖2H3l/2+1(Ωt)
+ ‖H‖2H3l/2(Ωt)

‖v‖2L∞(Ωt)

)
⩽ C‖v‖2H⌊3(l+1)/2⌋(Ωt)

+C‖H‖2H⌊3(l+1)/2⌋(Ωt)
.

Step 2. We claim that ‖Dl
tv‖2H3/2(Ωt)

⩽ εEl(t)+Cẽl(t). Due to the fact that ‖ν‖H5/2+δ(Ωt) ⩽ C

and the assumption El−1(t)⩽ C, we have

‖Dl
tv · ν‖2L2(Γt)

⩽
∣∣∣ˆ

Ωt

(
Dl
tv · ν

)
divDl

tvdx
∣∣∣+ ∣∣∣ˆ

Ωt

∇Dl
tv ⋆Dl

tvdx
∣∣∣+ ∣∣∣ˆ

Ωt

Dl
tv ⋆∇ν ⋆Dl

tvdx
∣∣∣

⩽ C
(∥∥∥Dl

tv‖2L2(Ωt)
+
∥∥∥divDl

tv‖2L2(Ωt)
+ ‖∇Dl

tv‖L2(Ωt)‖D
l
tv‖L2(Ωt)

)
⩽ ε‖∇Dl

tv‖2L2(Ωt)
+C

(
1+ ‖divDl

tv‖2L2(Ωt)

)
.

This, combined with (6.1), we see that

‖Dl
tv‖2H3/2(Ωt)

⩽ C
(
‖Dl

tv · ν‖2H1(Γt)
+ ‖Dl

tv‖2L2(Ωt)
+ ‖divDl

tv‖2H1/2(Ωt)
+ ‖curlDl

tv‖2H1/2(Ωt)

)
⩽ C

(
ε‖Dl

tv‖2H1(Ωt)
+ 1+El−1 (t)+ ‖∇̄

(
Dl
tv · ν

)
‖2L2(Γt)

+‖divDl
tv‖2H1/2(Ωt)

+ ‖curlDl
tv‖2H1/2(Ωt)

)
.

Then, it follows that ‖Dl
tv‖2H3/2(Ωt)

⩽ C(ẽl(t)+ ‖divDl
tv‖2H1/2(Ωt)

+ ‖curlDl
tv‖2H1/2(Ωt)

).
Applying lemmas 2.10, 5.2 and 5.3, we arrive at

‖divDl
tv‖2H1/2(Ωt)

+ ‖curlDl
tv‖2H1/2(Ωt)

⩽ C
(
‖Rl−1

I ‖2H1/2(Ωt)
+ ‖Rl−1

∇H,∇H‖
2
H1/2(Ωt)

+ ‖Rl−1
∇2H,H‖

2
H1/2(Ωt)

)
⩽ εEl (t)+Cε,

where ε> 0 is sufficiently small. This concludes the claim.

Step 3. We claim that for 2⩽ k⩽ l, it holds

‖Dl+1−k
t v‖2H3k/2(Ωt)

⩽ C‖Dl+3−k
t v‖2H3k/2−3(Ωt)

+ εEl (t)+Cεẽl (t) . (6.4)

Once we have these estimates, it follows that ‖Dl−1
t v‖2H3(Ωt)

⩽ εEl(t)+Cεẽl. This, combined

with Step 2, will control ‖Dl+1−k
t v‖2H3k/2(Ωt)

for any 3⩽ k⩽ l. To prove (6.4), from lemmas
2.10, 5.2 and 5.3, and (6.2), it holds
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‖Dl+1−k
t v‖2H3k/2(Ωt)

⩽ C
(
‖∆B

(
Dl+1−k
t v · ν

)
‖2H(3k−5)/2(Γt)

+ ‖Rl−k
I ‖2H(3k−2)/2(Ωt)

+‖Rl−k
∇H,∇H‖

2
H(3k−2)/2(Ωt)

+ ‖Rl−k
∇2H,H‖

2
H(3k−2)/2(Ωt)

+El−1 (t)
)

⩽ C‖∆B
(
Dl+1−k
t v · ν

)
‖2H(3k−2)/2(Γt)

+ εEl (t)+Cε.

Lemmas 2.12 and 5.5 give Dl+2−k
t p=−∆B(Dl+1−k

t v · ν)+Rl+1−k
p , and ‖Rl+1−k

p ‖2H(3k−5)/2(Γt)

⩽ εEl(t)+Cε. Then, we obtain ‖Dl+1−k
t v‖2H3k/2(Ωt)

⩽ C‖Dl+2−k
t p‖2H(3k−5)/2(Γt)

+

εEl(t)+Cε. By (A1), we see that ‖Dl+2−k
t p‖2H(3k−5)/2(Γt)

⩽ ‖Dl+2−k
t p‖2H(3k−6)/2(Γt)

+

‖∇Dl+2−k
t p‖2H(3k−6)/2(Ωt)

.
The first term can be controlled by lemma 2.3 as in proposition 6.2, i.e.

‖Dl+2−k
t p‖2H(3k−6)/2(Γt)

⩽ εEl(t)+Cε. For the second term, by (1.1), lemmas 5.3 and 5.4,
it holds

‖∇Dl+2−k
t p‖2H(3k−6)/2(Ωt)

⩽ ‖Dl+3−k
t v‖2H(3k−6)/2(Ωt)

+ ‖
∑

β⩽l+1−k

∇Dβ
t v ⋆∇H ⋆H‖2H(3k−6)/2(Ωt)

+ ‖Rl+1−k
II ‖2H(3k−6)/2(Ωt)

+ ‖Rl+2−k
∇H,H ‖2H(3k−6)/2(Ωt)

⩽ ‖Dl+3−k
t v‖2H(3k−6)/2(Ωt)

+ εEl (t)+Cε.

Combining the above estimates, (6.4) follows.
It remains to verify that ‖v‖2H⌊3(l+1)/2⌋(Ωt)

+ ‖H‖2H⌊3(l+1)/2⌋(Ωt)
⩽ εEl(t)+Cεẽl(t). Note that

from lemma 5.1 with l⩾ 4, one has ‖B‖H3l/2−1(Γt) ⩽ C and ‖B‖Hk(Γt) ⩽ C(1+ ‖p‖Hk(Γt)) for
k ∈ N/2,k⩽ 3l/2. Then, we can apply the argument as in proposition 6.2. This completes the
proof.

We are ready to prove the main results.

Proof of theorem 1.1. We divide the proof into three parts.

Step 1. We prove the first two statements in theorem 1.1. Assume that the a priori assump-
tions (1.6) hold for some T > 0.

Recalling the estimates in section 4 that Ē(0)+ sup0⩽t<T ‖p‖2H3(Ωt)
⩽ C, where C depends

on T,NT,MT,‖v0‖H6(Ω0),‖H0‖H6(Ω0), and ‖AΓ0‖H5(Γ0). Then, the assumptions of proposition
6.2 hold for any 0⩽ t< T, and propositions 5.6 and 6.2 allow us to obtain

d
dt
ē(t)⩽ CĒ(t)⩽ C(1+ ē(t)) , 0⩽ t< T. (6.5)

Integrating over (0, t), we have sup0⩽t<T ē(t)⩽ C(1+ ē(0))eCT. Again by proposition 6.2, we
see that

sup
0⩽t<T

Ē(t)⩽ C+C(1+ ē(0))eCT ⩽ C+CĒ(0)eCT ⩽ C̄0, (6.6)

where C̄0 = C̄0
(
T,NT,MT,‖v0‖H6(Ω0),‖H0‖H6(Ω0),‖AΓ0‖H5(Γ0)

)
.

With sup0⩽t<T(Ē(t)+ ‖p‖2H3(Ωt)
)⩽ C̄0, applying lemma 5.1 and the trace theorem,

it follows that ‖B‖2H9/2(Γt)
⩽ C(1+ ‖H ·∇H−Dtv‖2H4(Ωt)

)⩽ C(C̄0), giving ‖B‖2H9/2(Γt)
+

‖p‖2H5(Ωt)
⩽ C(C̄0). We proceed to find that

‖p‖2H11/2(Ωt)
⩽ C

(
1+ ‖∇p‖2H9/2(Ωt)

)
⩽ C

(
1+ ‖H ·∇H−Dtv‖2H9/2(Ωt)

)
⩽ C(C̄0) ,
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and we utilize lemmaA.6 to obtain ‖B‖2H5(Γt)
⩽ C(1+ ‖p‖2H5(Γt)

)⩽ C(C̄0). In particular, it fol-

lows that ‖A‖2H5(Γt)
⩽ C(C̄0), and proposition 4.7 yields

∑3
k=0 ‖D

3−k
t p‖2H3k/2+1(Ωt)

⩽ C, where

C= C
(
R−‖h(·, t)‖L∞(Γ),‖v‖H6(Ωt),‖H‖H6(Ωt),‖A‖H5(Γt)

)
. Combining the above estimates,

(1.7) follows. Then, from the definitions of the material derivative and Ē(t), we can also
verify (1.8).

To prove the second result, for l⩾ 4, we apply propositions 5.6 and 6.3 by induction to find
that: if sup0⩽t<TEl−1(t)⩽ C, then it follows that d

dtel(t)⩽ CEl(t)⩽ C(1+ el(t)). Similarly, we
integrate over (0, t) and use proposition 6.3 again to obtain sup0⩽t<T el(t)⩽ C(1+ el(0))eCT,
and

sup
0⩽t<T

El (t)⩽ C+C(1+ el (0))e
CT ⩽ Cl

(
l,T,NT,MT, sup

0⩽t<T
El−1 (t) ,el (0)

)
. (6.7)

However, the induction argument implies that (6.7) holds for all l and the constant Cl which
depends on l,T,NT,MT,el(0) and ē(0) from (6.6). Note that ē(0)+ el(0)⩽ CEl(0), and the
constant Cl in fact depends on l,T,NT,MT, and El(0). This completes the proof of our claim.
Again by the definition of the material derivative, (1.10) follows.

Step 2.We prove the last statement in theorem 1.1, i.e. the a priori assumptions (1.6) hold for
some time T0 ⩾ c0 > 0, where c0 depends onM0,‖v0‖H6(Ω0),‖H0‖H6(Ω0) and ‖AΓ0‖H5(Γ0). To
this aim, we define

I(t) := ‖B‖2H3(Γt)
+ ‖p‖2H3(Ωt)

+ ‖v‖2H4(Ωt)
+ ‖H‖2H4(Ωt)

+ 1, t⩾ 0.

Suppose that it holds I(t)⩽ 2I(0) and Mt ⩾M0/2 for some t> 0, where M0 =R−
‖h0‖L∞(Γ). Then we have ‖AΓt‖2H3(Γt)

⩽ C(I(0)). Thus, applying lemma A.2, one has
‖h(·, t)‖H3+δ(Γ) ⩽ C, for δ > 0 small enough, where the constant C depends on ‖AΓt‖H1+δ(Γt),
and hence on I(0). An application of proposition 6.2 allows us to obtain that there exists a
constant C, depending on I(0) and M0 such that

Ē(t)⩽ C(1+ ē(t)) . (6.8)

From the above argument, we define T0 ∈ (0,1] to be the largest number such that

[0,T0]⊂ {t ∈ [0,1] : I(t)⩾ I(0)/2,Mt ⩾M0/2,and ē(t)⩽ 1+ ē(0)} . (6.9)

Here, we assume that T0 < 1, since the claim would be trivial otherwise. We note that the last
condition together with (6.8) implies that

sup
0⩽t⩽T0

Ē(t)⩽ C(1+ ē(t))⩽ C(2+ ē(0))⩽ CĒ(0) . (6.10)

Also, we observe that satisfies N 2
T0 ⩽ Csup0⩽t<T0 Ē(t), thanks to the curvature bound

‖B‖H3(Γt) ⩽ 2I(0). Indeed, from ∇̄vn = ∇̄v · ν− v ⋆B, we can bound ‖vn‖H4(Γt) by using
‖v‖H4(Γt) and ‖B‖H3(Γt).

The estimate (6.10) ensures that the a priori assumptions (1.6) hold for time T= T0, and
the claim follows once we show that T0 specified in (6.9) has a lower bound c0 > 0. From the
definition of T0, at least one of the three conditions has equality. Assume that I(T0) = 2I(0).
Then, it holds Ē(t)⩽ CĒ(0), for all t⩽ T0 by (6.10). We will show that

d
dt
I(t)⩽ CĒ(t) I(t)⩽ CĒ(0) I(t) . (6.11)

We focus on the computation of the highest-order terms. In fact, lemma 2.2 yields
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d
dt

(
‖∇4v‖2L2(Ωt)

+ ‖∇4H‖2L2(Ωt)

)
⩽
ˆ
Ωt

∇4Dtv ⋆∇4v+
∑
|α|⩽3

∇1+α1v ⋆∇1+α2v ⋆∇4vdx

+

ˆ
Ωt

∇4DtH ⋆∇4H+
∑
|α|⩽3

∇1+α1v ⋆∇1+α2H ⋆∇4Hdx

⩽ CĒ(t) I(t) .

Applying lemmas 2.2 and 2.6, it is easy to deduce d
dt‖∇

3p‖2L2(Ωt)
⩽ CĒ(t)I(t). Similarly, we

can obtain by lemma A.1 that d
dt‖∇̄

3B‖2L2(Γt)
⩽ CĒ(t)I(t). By integrating (6.11) over (0,T0)

and using I(T0) = 2I(0), we obtain ln2= ln I(T0)− ln I(0)⩽ CT0Ē(0). Then we have T0 ⩾
C/Ē(0) = c0, where the constant c0 depends on I(0),M0, and Ē(0). Moreover, by lemma
5.1 and proposition 4.7, the constant c0 depends only on M0,‖v0‖H6(Ω0),‖H0‖H6(Ω0) and
‖AΓ0‖H5(Γ0).

A similar argument applies if we have an equality in the third condition, i.e. ē(T0) = 1+
ē(0). In fact, it follows that d

dt ē(t)⩽ CĒ(t)⩽ CĒ(0) by (6.5) and (6.10), and we integrate over
(0,T0) to obtain 1= ē(T0)− ē(0)⩽ CĒ(0)T0. This results in T0 ⩾ c0 > 0 again.

Finally, we assume thatMT0 =M0/2. Recalling thatMT =R− sup0⩽t<T ‖h(·, t)‖L∞(Γ),
and M0 > 0, we define 0< T1 ⩽ T0 by MT0 =R−‖h(·,T1)‖L∞(Γ). It is clear that
‖vn‖2L∞(Ωt)

⩽ CĒ(t)⩽ CĒ(0) by using (6.10). Recalling the fact that ∂th= vn, we have by
the fundamental theorem of calculus that

MT0 =R−‖h(·,T1)‖L∞(Γ) ⩾R−‖h0‖L∞(Γ) −
ˆ T1

0
‖vn‖L∞(Ωt)dt⩾M0 −CĒ(0)

1
2 T1,

which means T0 ⩾ T1 ⩾ CM0/Ē(0)1/2 > 0. This concludes the claim.

Step 3. Finally, we prove that the smooth solution does not develop singularities at time T.
According to the a priori assumptions, the estimates (1.7) and (1.9) hold. In particular, we
conclude by lemmas 5.1 and A.2 that the regularity of the curvature implies the regularity of
the free boundary, i.e. ΓT ∈ C∞. Additionally, the quantitative regularity estimates show that
the time derivatives of arbitrary order of the velocity and magnetic field are smooth, i.e. belong
to ∈ C∞(ΩT). This completes the proof of the theorem.

Finally, we prove the blow-up classification in theorem 1.2.

Proof of theorem 1.2. We prove this by contradiction. Assume that T∗ <∞, i.e.
v(·,T∗),H(·,T∗) /∈ H6(ΩT∗) or ΓT∗ /∈ H7. Assume further that none of (1)–(4) hold. That
is, inf0⩽t<T∗ R(Ωt)> 0,Γt ∈ H3+δ,0⩽ t⩽ T∗, and sup0⩽t<T∗(‖∇v‖H3(Ωt) + ‖∇H‖H3(Ωt) +
‖vn‖H4(Γt))<∞, where we have applied lemma A.2 and the fact that vn = VΓt . In partic-
ular, R(ΩT∗)> 0 and we choose ΓT∗ = ∂ΩT∗ as the reference surface to represent the free
boundary over a short time interval before T∗. More precisely, the height function h(·, t) is well-
defined on [T∗ − ε,T∗) for sufficiently small ε> 0 and one has sup[T∗−ε,T∗) ‖h‖H3+δ(ΓT∗ )

<∞.
Therefore, it holds that

sup
T∗−ε⩽t<T∗

(
‖h‖H3+δ(ΓT∗ )

+ ‖∇v‖H3(Ωt) + ‖∇H‖H3(Ωt) + ‖vn‖H4(Γt)

)
<∞.

Applying the low-order estimates in theorem 1.1, it follows that v(·,T∗),H(·,T∗) ∈ H6(ΩT∗)
and ΓT∗ ∈ H7 and the solution can be extended for some time. This leads to a contradiction
and the proof is complete.
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7. Further discussions of theorem 1.2

In the blow-up classification given in theorem 1.2, the first two scenarios concern the geo-
metric behaviour of the free boundary. In the final section of this manuscript, we explore the
connection between the self-intersection singularity in case (1) and the curvature blow-up in
case (2).

To quantitatively characterize how close the free boundary is to self-intersection, we adopt
the concept of the injectivity radius ι0 of the normal exponential map, as introduced in [4].
Specifically, ι0(t) is defined as the largest positive number such that the map

Γt× (−ι0 (t) , ι0 (t))→
{
y ∈ R3 : dist(y,Γt)< ι0 (t)

}
given by (x, ι) 7→ x+ ιν (x) ,

is an injection.
By combining a lower bound on the injectivity radius ι0(t) with an upper bound on the

second fundamental form BΓt , which measures the curvature, one can derive a positive lower
bound for the uniform interior and exterior ball radius via [13, lemma 1]. Specifically, if there
exists a constant K> 0 such that

1
ι0 (t)

+ ‖BΓt‖L∞(Γt) ⩽ K, (7.1)

then there exists r= r(K)> 0 such that R(Ωt)⩾ r. Consequently, if condition (7.1) holds
uniformly for all t ∈ [0,T∗), i.e.

sup
t∈[0,T∗)

(
1

ι0(t)
+ ‖BΓt‖L∞(Γt)

)
⩽ K,

then the self-intersection singularity will be excluded.
However, a uniform upper bound on the second fundamental form alone does not, in gen-

eral, guarantee a uniform positive lower bound for the injectivity radius inft∈[0,T∗) ι0(t) or for
the uniform interior and exterior ball radius inft∈[0,T∗)R(Ωt).

In fact, there exist surfaceswhose curvature remains uniformly boundedwhile their injectiv-
ity radius tends to zero. Such configurations were employed by Coutand and Shkoller [7] to
construct initial domains for the viscous water wave equations that lie sufficiently close to self-
intersection (see figures 2 and 3 in [7]), together with divergence-free initial velocity fields that
drive the boundary toward self-intersection. Notably, the curvature either remains unchanged
or undergoes only minimal variation during the deformation that leads to the self-intersection
in finite time. Similar constructions were later developed by Hong et al [21] in the context of
the viscous and non-resistive incompressible MHD equations.

Moreover, there exist surfaces for which the curvature becomes unbounded while the
injectivity radius simultaneously tends to zero. To illustrate this, consider a dumbbell-shaped
surface whose connecting neck is gradually squeezed and thinned. As this constriction intens-
ifies, the curvature tends to infinity, and the interior ball radius approaches zero. A natural and
interesting question is whether one can construct a class of regular solutions to system (1.1)
based on such special geometric configurations, where the curvature of the free boundary blows
up and the boundary simultaneously approaches self-intersection within a finite time.
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Appendix. Some estimates and formulas

Lemma A.1. For a smooth function f, it holds

(1) [Dt,∂i]f =−∂i vk∂kf, [Dt,∇̄]f =−(∇̄v)⊤∇̄f, [Dt,∇̄2]f = ∇̄2v ⋆ ∇̄f+ ∇̄v ⋆ ∇̄2f, [∇̄,∇]f =
∇f ⋆∇ν ⋆ ν, [Dt,∆B]f = ∇̄2f ⋆∇v−∇̄f ·∆Bv+B ⋆∇v ⋆ ∇̄f, [∂ν ,∂k]u=−∇u · ∂kν.

(2) Dtν =−(∇̄v)⊤ν =−∇̄vn+Bvσ,∇̄vn = ∇̄v⊤ν+BΓvσ,DtB=−∇̄2v ⋆ ν−∇̄v ⋆B.

Proof. Most formulas can be found in [37, section 3.1] and the others follow from direct
calculations.

Lemma A.2 ([37, proposition A.2]). Let Ω⊂ R3 be a domain such that ∂Ω ∈ Hs0 ,s0 > 2.
Suppose ‖A‖Hs−2(Γt) ⩽ C with s⩾ s0, then ∂Ω ∈ Hs.

Let u ∈ L2(Γ). We define the space H1/2(Γ) via the harmonic extension:

∥u∥H1/2(Γ) := ∥u∥L2(Γ) + inf
{
∥∇w∥L2(Ω) : w ∈ H1 (Ω)and w= uon Γ

}
= ∥u∥L2(Γ) + ∥∇v∥L2(Ω),

where v ∈ H1(Ω) such that v|Γ = u in the trace sense and ∆v= 0 in the weak sense. We note
that for u ∈ H1(Ω), it holds ‖u‖H1/2(Γ) ⩽ ‖u‖L2(Γ) + ‖∇u‖L2(Ω). Moreover, for u ∈ H2(Ω)

and v ∈ H1(Ω) such that u|Γ is the trace of v on Γ, we have ‖∇u‖2L2(Ω) ⩽ ‖∇(u− v)‖2L2(Ω) +

‖∇v‖2L2(Ω) ⩽ ‖(u− v)∆u‖L1(Ω) + ‖∇v‖2L2(Ω) ⩽ ε‖u− v‖2L2(Ω) +Cε‖∆u‖2L2(Ω) + ‖∇v‖2L2(Ω),
and therefore

‖∇u‖2L2(Ω) ⩽ ε‖∇(u− v)‖2L2(Ω) +Cε‖∆u‖2L2(Ω) + ‖∇v‖2L2(Ω)

⩽ ε‖∇u‖2L2(Ω) +C
(
‖∆u‖2L2(Ω) + ‖u‖2H1/2(Γ)

)
,

where we have used the fact that v− u ∈ H1
0(Ω) and Poincaré’s inequality. Therefore, we

obtain

‖∇u‖L2(Ω) ⩽ C
(
‖∆u‖L2(Ω) + ‖u‖H1/2(Γ)

)
. (A1)

Moreover, if v is the harmonic extension of u|Γ, it holds ‖v‖H1(Ω) ⩽ C‖u‖H1/2(Γ), and we have

‖u‖H1(Ω) ⩽ C
(
‖∆u‖L2(Ω) + ‖u‖H1/2(Γ)

)
. (A2)
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Lemma A.3 ([26, corollary 2.9]). Let m ∈ N0 and Γ⊂ R3 be a compact 2-dimensional hyper-
surface which is C1,α-regular such that Γ = ∂Ω and satisfies the condition (Hm), i.e.

‖B‖L4(Γ) ⩽ C, if m= 2, ‖B‖L∞(Γ) + ‖B‖Hm−2(Γ) ⩽ C, if m> 2. (A3)

Then for all k, l ∈ N/2 with k< l⩽ m and for q ∈ [1,∞], it holds ‖u‖Hk(Γ) ⩽
C‖u‖θHl(Γ)‖u‖

1−θ
Lq(Γ), where θ ∈ [0,1] is given by 1= k− θ(l− 1)+ (2− 2θ)/q, and ‖u‖Hk(Ω) ⩽

C‖u‖θHl(Ω)‖u‖
1−θ
Lq(Ω), where θ ∈ [0,1] is given by 1/2= k/3+ θ(1/2− l/3)+ (1− θ)/q.

Moreover, for k, l ∈ N0 with k< l⩽ m,p ∈ [1,∞) ,q ∈ [1,∞], it holds ‖∇ku‖Lp(Ω) ⩽
C‖u‖θHl(Ω)‖u‖

1−θ
Lq(Ω), where θ ∈ [0,1] is given by 1/p= k/3+ θ(1/2− l/3)+ (1− θ)/q.

Lemma A.4 ([3, 27]). For f,g ∈ C∞
0 (Rn) and 2⩽ p1,q2 <∞,2⩽ p2,q1 ⩽∞ with

1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/2, we have for all k ∈ N/2, ‖fg‖Hk ⩽ C(‖f‖Wk,p1‖g‖Lq1 +
‖g‖Wk,q2‖f‖Lp2 ).

Lemma A.5 ([26, proposition 2.10]). Assume ∂Ω is C1,α-regular and satisfies (Hm)
defined in (A3). Then for all k ∈ N/2,k⩽ m, it holds ‖fg‖Hk(∂Ω) ⩽ C(‖f‖Hk(∂Ω)‖g‖L∞(∂Ω) +
‖f‖L∞(∂Ω)‖g‖Hk(∂Ω)), and ‖fg‖Hk(Ω) ⩽ C(‖f‖Hk(Ω)‖g‖L∞(Ω) + ‖f‖L∞(Ω)‖g‖Hk(Ω)). Moreover,
assume that ‖B‖L4 ⩽ C and k ∈ N0. Then for p1,p2,q1,q2 ∈ [2,∞] with p1,q2 <
∞,1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/2, we have ‖fg‖Hk(Γ) ⩽ C(‖f‖Wk,p1 (Γ)‖g‖Lq1 (Γ) +
‖f‖Lp2 (Γ)‖g‖Wk,q2 (Γ)).

Lemma A.6 ([26, proposition 2.12]). Assume that Γ is C1,α-regular. For every p ∈ (1,∞), it
holds ‖BΓ‖Lp(Γ) ⩽ C(1+ ‖AΓ‖Lp(Γ)). If in addition ‖BΓ‖L4(Γ) ⩽ C, then for k= 1/2,1,2, it
holds ‖BΓ‖Hk(Γ) ⩽ C(1+ ‖AΓ‖Hk(Γ)). Finally, let m ∈ N/2,m⩾ 3, and assume additionally
‖B‖L∞(Γ) + ‖B‖Hm−2(Γ) ⩽ C. Then the above estimate holds for all k ∈ N/2 with k⩽ m.

Lemma A.7 ([26, lemma 3.5]). Let Ω be a bounded domain with ∂Ω ∈ C1 and ‖B‖L4 ⩽ C.
Then ‖u‖H2(Ω) ⩽ C(‖∂νu‖H1/2(∂Ω) + ‖∇u‖L2(Ω) + ‖∆u‖L2(Ω)). Moreover, ‖∇u‖L2(Ω) can be
replaced by ‖u‖L2(Ω).
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