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Preface

These lecture notes are intended primarily as text for a graduate-level
analysis course (Harmonic Analysis I, II) taught at the University of Chi-
nese Academy of Sciences (UCAS) with 80 class periods (50 minutes) a
semester from 2020 to 2022.

In these notes, our aim is to give some fundamental theory in har-
monic analysis, including some basic theories of real analysis, singular
integrals of convolution-type, singular integrals of non-convolution types,
some function spaces and paraproducts.

Most of the materials in these notes are borrowed from books [Ste70;
SW71; Gralda; Graldb; BL76a; Fol99; Wan+11; BCD11; MWZ12] and some
online lecture notes [AB12; Brol5; Murl9; Tao06] with some necessary
modifications and more details.

The prerequisites are some basic knowledge of real analysis (a sum-
mary of some relevant facts is provided in chapter 0) and functional anal-
ysis and some complex analysis.

There are some exercises at the end of each chapter, some of which
have been used in some proofs in the text.

The main dependencies among the chapters are indicated in the fol-
lowing diagram.

Chp. 2 Chp. 5 — Chp. 8

Chp. 10 «— Chp. 9 «— Chp. 1

S Chhengethun
Beijing
December 11, 2022
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Overview of Real Analysis and Functional
Analysis

In this chapter, the purpose is to establish the notation and terminol-
ogy that will be used throughout the book and to concisely present a few
results from analysis that will be needed later. All results can be found in
typical real analysis books, e.g., [Fol99; Fol09; SS05].

§0.1 Measure theory

The notation for the fundamental number systems is as follows:

IN = the set of positive integers (not including zero),
INo = the set of nonnegative integers (including zero),

Z = the set of integers,

Q = the set of rational numbers,

R = the set of real numbers,

C = the set of complex numbers.

The words “family” and “collection” will be used synonymously with
set”, usually to avoid phrases such as “set of sets” in set theory. The
empty set is denoted by &, and the family of all subsets of a set X is de-
noted by P(X) = {E : E C X}. Here and elsewhere, the inclusion sign “C”
is interpreted in the weak sense; that is, the assertion “E C X” includes
the possibility that E = X.

"

Let X be a nonempty set. An algebra of sets on X is a nonempty col-
lection of subsets of X that is closed under finite unions and complements.
A o-algebra is an algebra that is closed under countable unions. Moreover,
if A is an algebra, then & € A and X € A, for if E € A we have @ = ENE°
and X = E U E° where the complement E¢ of a set E (in X) is defined by
E¢ = X\E ={xeX:x¢E}. If Xis a topological space, the c-algebra
generated by the family of open sets in X is called the Borel o-algebra on
X; is denoted by By, and its elements are called Borel sets.

Let X be a set equipped with a c-algebra M. A measure on M (or on
(X,M)) is a function u : M — [0, co] such that
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i) u(w)=0,
ii) (Countable additivity) if {E]-};il is a sequence of disjoint sets in M,
then

Z (G Ej) = iﬂ(Eﬂ
-1 =1

Here are some more basic properties of measures:

(i) Finite additivity: If {Ej};l is a finite collection of disjoint sets in M,

then
n n
z (U Ef) = 2 mE)
j=1 j=1
(i) Monotonicity: If E,F € M and E C F, then u(E) < u(F).
(ii) Subadditivity: 16 {E;} M, then i (U, E) = .El u(E;).
=

(iv) Continuity from below: If {E;}7" C M and E; C Ej;1 for all j, then

(UE) = lim p(E;).

(v) Continuity from above: If {E;}7” C M and Ejy; C E; for all j, and
#(E1) < oo, then u (ﬂf.0:1 Ej) = ]lg?o ‘u(Ej).

If X is a set and M C P(X) is a o-algebra, (X, M) is called a measur-
able space and the sets in M are called measurable sets. If y is a measure
n (X, M), then (X, M, u) is called a measure space, where a set E € M
such that u(E) = 0 is called a null set. A measure whose domain includes
all subsets of null sets is called complete. Completeness can sometimes
obviate annoying technical points, and it can always be achieved by en-
larging the domain of y; indeed, there is a unique extension of yu to a
complete measure on the completion of M with respect to y.

There is a unique measure on (R, Br) such that the measure of each
interval is its length, and for n > 1, there is a unique measure on (R", Bgr»)
such that the measure of the Cartesian product of n intervals is the prod-
uct of their lengths. The completions of these measures are called the
Lebesgue measure on R and R", respectively. Its domain is called the class
of Lebesgue measurable sets, and we denote it by £.

A measure space (X, M, u) is called finite if p1(X) < oo, and is called
o-finite if X = U2, E; where E; € M and p(E;) < oo for all j. If for each
E € M with u(E) = oothereex1stsF € Mw1thF CEand 0 < u(F) < oo,
is called semifinite. Every o-finite measure is semifinite, but not conversely.

If (X,M) and (Y,N) are measurable spaces, a mapping f : X — Y is
called (M, N)-measurable, or just measurable when M and N are under-
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stood, if f~1(E) € M for all E € N.

If (X, M) is a measurable space, a real- or complex-valued function f
on X is called M-measurable, or just measurable, if it is (M, Bgr) or (M, B¢)
measurable. Br or B¢ is always understood as the c-algebra on the range
space. In particular, f : R — C is Lebesgue (resp. Borel) measurable if it is
(£, Bc) (resp. (Br, Bc)) measurable; likewise for f : R — R.

We now recall the basic building blocks of the theory of integration,
that is, the so-called “simple functions”. Here are the definitions. Suppose
that (X, M) is a measurable space. If E C X, the characteristic function
Xe : X — {0,1} of E is defined by

(x) 1, ifx€E,
x —
XE 0, ifx¢eE.

It is easy to check that xg is measurable iff (the abbreviation of “if and
only if”) E € M. A simple function on X is a finite linear combination,
with complex coefficients, of characteristic functions of sets in M. (We
do not allow simple functions to assume the values 1-c0.) Equivalently,
f : X — Cissimple iff f is measurable and the range of f is a finite subset
of C. Indeed, we have

N

f= Za]'}(]g],, where E; = f({a;}) and rangle(f) = {a1,- -+ ,an}.
j=1
We call this the standard representation of f. It exhibits f as a linear com-
bination, with distinct coefficients, of characteristic functions of disjoint
sets whose union is X. Now, we recall that arbitrary measurable functions
can be approximated in a nice way by simple functions.

e 2
Theorem 0.1 ([Fol99, Theorem 2.10]). Let (X, M) be a measurable space.

@) If f : X — [0,0c0] is measurable, there is a sequence {¢,} of simple
functions such that 0 < ¢1 < ¢o < -+ < f, ¢y — f pointwise, and
¢n — f uniformly on any set on which f is bounded.

(i) If f : X — C is measurable, there is a sequence {¢,} of simple func-
tions such that 0 < |p1]| < |¢2| < -+ < |f], ¢ — [ pointwise, and
¢n — f uniformly on any set on which f is bounded.

Next, we recall the notion of convergence in measure.

- 2
Definition 0.2. Let f, f,, n = 1,2,---, be measurable functions on

the measure space (X, M, it). The sequence {f,} is said to converge
in measure to f, denoted by f, LN f,if for all e > 0, there exists an
nog € Z" such that

n>ny= pu({x € X:|fu(x) — f(x)| >¢}) <e (0.1)
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Remark 0.3. The above definition is equivalent to the following statement:
r}iirgoy({xeX: |fu(x) — f(x)| >€e}) =0, Ve>O0. (0.2)

Clearly, (0.2) implies (0.1). To see the converse, given ¢ > 0, pick
0 < § < e and apply (0.1) for this d. There exists an ny € Z* such that

p{x € X fu(x) — f(x)| > 0}) <6

holds for n > ng. Since

p{x e X fu(x) = f(¥)] > €}) S u({x € X2 [fulx) — fF(x)] > 63),

we conclude that

p{x e X fu(x) — f(x)| > ¢}) <6

for all n > ny. Let n — o0, and we deduce that

limsup pu({x € X : |fu(x) — f(x)| > €}) <é. (0.3)

n—o0

Since (0.3) holds for all 6 € (0,¢), (0.2) follows by letting § — 0.

Vs

Theorem 0.4 (Riesz Theorem, cf. [Fol99, Theorem 2.30]). Let {f,} ad
f be complex-valued measurable functions on a measure space (X, M, u) and
suppose that f, converges to f in measure. Then, some subsequence of { f, }
converges to f p-a.e.

\\

Proof. Since f, converges to f in measure, we have by definition that for
any k € IN, there exists 7, such that

n(Ag) <27 (0.4)
and such that n; <np, < --- <n, < ---, where
Ay = {x € X1 |fu(x) — f(x)] > z—k}.

It follows from (0.4) that

U (U Ak) < Z ]/I(Ak) < Z 27k = 217”1, Vm € N, (0.5)
k=m k=m k=m

which implies that

Iz <G Ak) <1< oo (0.6)
k=1

Using (0.5) and (0.6), we conclude that the sequence of the measures of

o) 0]
the sets { U Ak} converges as m — o to

k=m m=1

H (ﬁ G Ak) =0. (0.7)

m=1k=m

It is clear that the null set in (0.7) contains the set of all x € X for which
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fn(x) does not converge to f(x). a

Theorem 0.5 (Inner regularity of Lebesgue measure). If A is Lebesgue
measurable, then pu(A) = sup{u(K) : K C A, K compact}.

§0.2 Integration

In this section, we develop the theory of integration of real- or complex-
valued functions on a measure space.

If (X, M) is a measurable space, a simple function on X is a finite lin-
ear combination of characteristic functions of measurable sets with com-

plex coefficients. Every simple function can be written uniquely as the
N

canonical form } a; XE; where N < oo, the a;’s are distinct complex num-
j=1

bers (one of which may be 0), and the E;’s are disjoint measurable sets

whose union is X.
N
Now suppose (X, M, u) is a measurable space. If ¢ = ) a;xg; is
=1

a nonnegative simple function, its integral with respect to p, [ ¢dy, is
defined in the obvious way:

/deﬂ = Y aju(E)),
with the understanding that if 2; = 0 and p(E;) = oo, then aju(E;) = 0.
Note that [ ¢dp may be 4o if some of the sets E; have infinite measures.
To extend this notion of an integral to more general functions, one can ap-
proximate such functions by simple functions, cf. [SS05]. Given a measure
space (X, M, u), we set

LT(X)={f:X — [0,00] : fis measurable},
and for f € LT (X) we define the integral of f with respect to u by
/fdy:sup{/qbdy:¢issimpleand0<<p<f}.

Thus, [ fdu is an element of [0, 00]. We say that a measurable f : X — C
is integrable if [ |f|du < oo, and we denote the set of integrable functions
by LY(X, u):

Ll(X,y):{f:X—HE: f is measurable and /\f\dy<oo}.

We now recall three basic convergence theorems that address the ques-
tion of when “the integral of the limit is the limit of the integrals”.
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4 N\
Theorem 0.6 (Monotone convergence theorem, cf. [Fol99, Theorem

2.14]). Let {fu} be a sequence in L™ such that f,,(x) < fui1(x) for all n
and x and let

fx) = Jlim fa(x) = sup fu(x)

n—oo

(which always exists since we allow the value co). Then,

[ 1=t [ 5

\ V.

( )

Lemma 0.7 (Fatou’s lemma, cf. [Fol99, Theorem 2.18]). Let {f,} be a
sequence in LT, then

/ liminf f, < liminf / fr

In particular, if f, — f a.e., then

/f<11,{gg1f/fn-

L .

If we impose a bound on the functions f,, that forbids the areas under
their graphs from escaping to infinity, we obtain another positive result.

( )
Theorem 0.8 (Dominated convergence theorem, cf. [Fol99, Theorem

2.24]). Let {fu} be a sequence in L' such that f, — f a.e., and there exists
a nonnegative ¢ € L' such that |f,| < g a.e. for all n, then f € L and

[ 1=t [ 5

\ W

The next theorem gives a criterion, less restrictive than those found in
most advanced calculus books, for the validity of interchanging a limit or
a derivative with an integral.

4 )

Theorem 0.9 ([Fol99, Theorem 2.27]). Suppose that f : X x [a,b] — C
(—0 < a <b < o) and that f( t) : X — C is integrable for each
t € [a,b]. Let F(t) = [y f(x, t)dp(x
(i) Suppose that there exists g € Ll(y) such that |f(x,t)| < g(x) for all
X, t. If}i_}rrt})f(x,t) = f(x,to) for every x, then th_}rrt}) F(t) = F(tp); in
particular, if f(x,-) is continuous for each x, then F is continuous.
(ii) Suppose that Of /ot exists and there is a ¢ € LY(u) such that
|(of /ot)(x,t)| < g(x) for all x,t. Then, F is differentiable, and
P'(t) = [(f /3t)(x, t)dp(x).

& W,

The Fubini-Tonelli theorem is an essential tool in analysis. It is most
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commonly used to justify interchanging the order of integration in an iter-
ated integral. Let us first recall some notations.

Suppose that (X;, M, j1;) is a o-finite measure space for j = 1,--- ,n,
and let X = []{ X; and M = @7 M, there is a unique measure 7 on (X, M)
such that

7T(E1 X Ep X -+ X En) = ;Ul(El)]lQ(EZ) e "l/ln<En) for all E] € Mj,

with the understanding that any numerical product containing 0 as a factor
has the value 0, even if one or more of the other factors is co. This mea-
sure is called the product of yq,--- , 4, and is denoted by p3 X - X py.
In what follows we restrict the discussion to the case of two factors to
keep the notation more manageable, but the generalization to n factors is
straightforward.

Suppose that (X, M, u) and (Y, N, v) are o-finite measure spaces. If f
is a function on X x Y, we can consider not only the integral of f with
respect to the product measure but also the iterated integrals of f with
respect to y and v or with respect to v and p. It will be convenient to
employ the following notation for the functions on X and Y obtained from
f by fixing one of its arguments:

f1x) = fxy) = foly)-
Here is the main result. Parts ii) and iii) are due to Tonelli and Fubini,
respectively, in the case where X = Y = R and y = v = Lebesgue measure.
Fubini came first, and the whole theorem is often simply called Fubini’s
theorem.

s ~
Theorem 0.10 (Fubini-Tonelli theorem, [Fol99, Theorem 2.37]). Let

(X, M, u) and (Y,N,v) be o-finite measure spaces.
(i) If f is an M ® N-measurable function on X x Y, then f¥ is M-
measurable for all y € Y and f, is N- measumble forall x € X.
(ii) (Tomelli) If f € LT (X x Y), the functions g(x) = [ fxdv and h(y) =
[ fYdp are in LT (X) and L*(Y), respectzvely, and

fad(u xv) /foydv )]du(X)

-/ [ / f(x,y)dﬂ(x)] av(y).

(iii) (Fubini) If f € LY(X x Y), then f, € L'(v) for ae. x € X and

XxY (0.8)

fY € LY(p) for a.e. y € Y; the a.e.~defined functions g(x) = [ frdv
and h(y) = [ fYdu are in L' () and L'(v), respectzvely, and (0.8)
holds.
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§0.3 L” spaces

L? spaces are a class of Banach spaces (for p € [1,00]) of functions
whose norms are defined in terms of integrals and that generalize the L!
spaces and play a central role in modern analysis.

Let (X, M, 1) be a measure space. If f is a measurable function on X
and 0 < p < oo, we define

1/p
151 = ( [ reorran)
(allowing the possibility that || f||, = c0), and

LP(X, M, ) = {f : X = C : f is measurable and ||f||, < co}.

We abbreviate L¥ (X, M, i) by LP(u), LP(X), or simply LP when this will
cause no confusion. We consider two functions to define the same element
of L¥ when they are equal almost everywhere.

For p = oo, L® consists of all y-measurable and bounded functions.
Then, we write

[ flleo = ess sup |f(x)] =inf{a > 0: p({x:|f(x)| >a}) =0},
with the convention that inf & = co.

For p € [1,00], let p’ = p/(p — 1) be the conjugate exponent of p, i.e.,
1/p+1/p" = 1 (with the notations 1’ = co and co’ = 1). Then with this
notation, we summarize some results about L”.

4 )

Theorem 0.11. (i) (Holder’s inequality, [Fol99, Theorem 6.2]) Suppose
p € [1,00]. If f and g are measurable functions on X, then

£l < 1A UplLf 1l 0.9)

For p = p' = 2, this is the Cauchy-Schwartz inequality. In particular,
if f € LP and g € LV, then fg € L', and in this case equality holds
in (0.9) iff a| f|? = B|g|"" a.e. for p > 1 and some constants , B with
(a, B) # (0,0), or |g(x)| = ||g]|lco a-. for p = 1 on the set where
f(x) #0.

(i) (Minkowski’s inequality, [Fol99, Theorem 6.5]) Suppose p € [1, oo] and
f,g € LP, then

1f +8llp < [fllp + Ny
(iii) (Completeness: Riesz-Fisher theorem, [Fol99, Theorems 6.6, 6.81) For
p € [1,00], L? is a Banach space.
(iv) (Riesz representation theorem, [DiB16, Theorem 11.1]) Suppose 1 <
p < coand E € M. For every bounded linear functional F in LF(E),
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there exists a unique function g € LP'(E) such that F is represented by
F(f) = [ fedu forall f € LV (E).
E

Moreover, ||F|| = ||gl|,», hence LP" is isometrically isomorphic to (LP)’
which denotes the dual space of LP. The same conclusion holds for p = 1
provided (X, M, ) is o-finite.

(v) ([Fol99, Proposition 6.13]) Suppose p € [1,00). If f € LP, then

£l =sup { | 75| : gty =1}

If u is semifinite, this result holds also for p = oo.
(vi) (Density, [Fol99, Proposition 6.7, Theorem 6.8]) For p € [1,00), the set

N
of (finitely) simple functions f = Y a;jxg;, where p(E;) < oo for all j,
1

is dense in LP. In addition, the simple functions (not necessarily with

finite measure support) are dense in L*.
. J

e “
Proposition 0.12 (cf. [Fol99, Exercise 6.9]). Suppose that (X, M, ) is a
measure space and p € [1,00). If a sequence { fx} C LP converges in LP to
f, then there is a subsequence { fkj} that converges to f p-a.e.

\. .

e a
Theorem 0.13 (Vitali convergence theorem, cf. [Fol99, Exercise 6.15]).

Suppose 1 < p < oo and {f,}; C LP. {fu} is Cauchy in the LV norm iff
the following three conditions hold:

(1) {fn} is Cauchy in measure;

(ii) the sequence {|fy|F} is uniformly integrable;
(iii) for every e > O there exists E C X such that u(E) < coand [, |ful? <

e for all n.
\, v,

The next result is a rather general theorem about the boundedness of
integral operators on L? spaces.

4 N\
Theorem 0.14 (cf. [Fol99, Theorem 6.18]). Let (X, M, u) and (Y,N,v)
be o-finite measure spaces, and let K be an (M @ N)-measurable function on
X x Y. Suppose that there exists C > 0 such that [ |K(x,y)|du(x) < C for
ae.ye€Yand [|K(x,y)|dv(y) < Cforae x € Xand that 1 < p < oo. If
f € LP(Y), then the integral

Tf(x) = [ K(xy)f@)v(y)

converges absolutely for a.e. x € X, the function T f thus defined is in L¥ (X),
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Land ITAIl, < ClIfllp- J

Proof. Suppose that 1 < p < oco. Let p’ be the conjugate exponent to p. By
applying Holder’s inequality to the product

K(x, ) f ()] = K )P (K )P f(w)]),

we have

[ Kl <[ [ o] [ fikeiore]

< |f |K<x,y>||f<y>|'ﬂdv<y>}1/p

for a.e. x € X. Hence, by Tonelli’s theorem,
p /
[ | ksl du <c? [[ 1K llfw ravmau
< [\ () rav(y).

Since the last integral is finite, Fubini’s theorem implies that K(x,-)f €
LY(Y) for a.e. x, so that Tf is well defined a.e., and

[1TrCoPdncx) < e £,

Taking pth roots, we are done.

For p = 1 the proof is similar but easier and requires only the hy-
pothesis

[ IKG )l <c;
for p = co the proof is trivial and requires only the hypothesis
[ 1K) lav(y) <
Details are left to the reader (Exercise 0.1). a

Minkowski’s inequality states that the L’ norm of a sum is at most
the sum of the L? norms. There is a generalization of this result in which
sums are replaced by integrals:

( )

Theorem 0.15 (Minkowski’s integral inequality, [Fol99, Exercise 6.19]).
Suppose that (X, M, u) and (Y,N,v) are o-finite measure spaces, and let f
be an (M ® N)-measurable function on X x Y.

(@) If f >0and p € [1,00), then

[/ </f(x'y)dv(]/))pdy(x)]l/p g/[/fp(x,y)dy(x)]1/pd1/(y).

) If p € [1,|, f(-,y) € LP(p) for a.e. y, and the function y
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IfC y)llp is in LY(v), then f(x,-) € LY (v) for a.e. x, the function
x— [ f(x,y)dv(y) is in LP(p), and

|/ senaw)| < [urcona:

& W,

Proof. If p = 1, (i) is merely Tonelli’s theorem. If 1 < p < oo, let p’ be
the conjugate exponent to p and suppose g € L? (X). Then by Tonelli’s
theorem and Holder’s inequality,

[ [ st ls@iante) = [ s mlglanian)
<lgly [ | [ 7 Gnino) vy

Therefore, (i) follows from (v) in Theorem 0.11. For p < oo, (ii) follows
from (i) (with f replaced by |f|) and Fubini’s theorem; for p = oo, it is a
simple consequence of the monotonicity of the integral. Q

As an application, the next result is a theorem concerning integral
operators on (0, co) with the Lebesgue measure.

e a
Theorem 0.16 ([Fol99, Theorem 6.20]). Let K be a Lebesgue measurable
function on (0,00) x (0,00) such that K(Ax, Ay) = A~'K(x,y) forall A > 0
and [;" |K(x,1)|x~/Pdx = C < oo for some p € [1,00], and let p' be the
conjugate exponent to p. For f € LV and g € L', let

Tiy) = [ Ky gt = [ Kxygdy

Then Tf and Sg are defined a.e., and ||Tf|, < C|fll, and [|Sgll,, <
Cligly-

\, V.

Proof. Setting z = x/y, we have

|Gl = [ Kz fvz)lydz = [ 1K DE )iz

where f.(y) = f(yz); moreover,
1/p

= [ [ 1remra] = [ [ pta] " =g,

Therefore, by Minkowski’s inequality for integrals, Tf exists a.e. and

ITfly < [ KGEDINflpdz = £l [ 1K@ DI7dz = CIfl,

1

Finally, setting u = y~, we have

/o \K(Ly)\y‘””/dy:/o K=, 1)y Y dy
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:/ |K(u, 1)[u~"Pdu = C,
0

so the same reasoning shows that Sg is defined a.e. and that [|Sg||,, <
Cliglly- a

4 N\

Corollary 0.17 ([Fol99, Corollary 6.21]). Let
y (o)
fy) =y~ / f(x)dx, Sg(x) = /x y~'8(y)dy
Thenforl < p <coand1< g < oo,
ITfllp < FH]CHPI IS¢l < gllgllg-

\, V.

Proof. Let K(x,y) =y~ 'xe(x,y) where E = {(x,y) : x < y}. Then
) 1
| KRG rax = [ v = p/(p - 1),
0 0

and
R ! 1 /
[T K = [ = g (g 1) =

where g’ is the conjugate exponent to g, so Theorem 0.16 yields the result.
a

Corollary 0.17 is a special case of Hardy’s inequalities; the general
result is in Exercise 0.4.

Definition 0.18. We define L?1(X) + LP2(X) to be the space of all func-
tions f, such that f = f; + f», with f; € LP1(X) and f, € LP*(X).

Suppose now p; < p». Then, we observe that
LV — LPr 4+ LP?, Vp S [pl,pz].
In fact, let f € L and let -y be a fixed positive constant. Set

0, @
f“")‘{o, Fol <,

and fo(x) = £(x >—f1< )- Then
[P = [1AEPIA©N Pdux) <97 [P,
since p; — p < 0. Similarly, due to ps > p,
[1aE@Pan) = [ 1@ PIA@P ) <97 [ IFFdu),
so fi € LMt and f, € LP2, with f = fi + fo.
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r a
Proposition 0.19 (Interpolation of L spaces). If 0 < p < g < r < oo,

then LP N L7 C L7 C LP + L and | fllg < | fll; P f 112, where 6 € (0,1) is
defined by

\\ v,

The three most obviously important L? spaces are L!, L? and L®. With
L! we are very familiar, L? is special because it is a Hilbert space, and the
topology on L* is closely related to the topology of uniform convergence.
Unfortunately, L! and L* are pathological in many respects, and it is more
fruitful to deal with the intermediate L7 spaces, e.g., the duality theory.
Many operators of interest in Fourier analysis and differential equations
are bounded on L? for 1 < p < o but not on L! or L.

§0.4 Weak* topology

Let X be a Banach space. The weak topology on X is the weakest
topology such that every bounded linear functional on X is continuous.
The dual space of X is the space X’ of all bounded linear functionals on X.
The norm of x* € X' is defined by

x| = sup{|x* (x)] = flx]| <1}
The weak* topology on X' is the weakest topology such that for all x € X
the functional x* — x*(x) is continuous. The weak* closure of a set Z C X’
is denoted cl* Z. Note that about any point xj € X' there is a weak*
neighborhood basis consisting of all sets of the form

{x e X |x* (1) —xg(x1)| < 1,0, |6 () — x5(xn)| < 1}
for some finite set x1,...,x,; € X.

A key theorem (cf. [DS88, p.424]) concerning the weak* topology is:

( )
Theorem 0.20 (Banach-Alaoglu theorem). Let X' be the dual to some

Banach space X. Then, for any r > 0, the closed ball
B(X')={x* e X': ||x*|| <r}

is weak* closed and weak* compact. Furthermore, if X is separable then

B,(X') is weak* metrizable.
\ J
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Exercises

Exercise 0.1. [Fol99, Exercise 6.26] Complete the proof of Theorem 0.14 for
the cases p=1and p =

Exercise 0.2 (Young’s conjugate functions [Pey18, Exercise 2.7]). Let ¢ be a
continuous increasing function from [0, c0) onto [0, c0). One sets

q)(x):/oqu)(t)dt and Y(y /q)—l

(i) Prove that, foralla > 0and b > 0, ab < ®(a) + ¥(b) and that the
equality holds iff b = ¢(a).
(ii) Prove the inequality, valid for nonnegative a2 and b,

ab < (a+1)In(a+1) +éb.
(i) Draw a picture. (ii) Use the function ¢(t) = In(1 + ¢).

Exercise 0.3. [Pey18, Exercise 2.8] Let ® and ¥ be as in Exercise 0.2, and
let f and g be two measurable functions.

(i) Prove the inequality

[ 15 lx < [ @(f0dx+ [ ¥(lg)]dx

Illo =inf{t >0: [ @(If(x)]/0dx < 1}.

[ 1F@slax < Hfl\q><1+/‘1’ (135) i )

[1f@)gldx <2liflo g

(iii) Prove that the set of f such that || f||¢ < oo is a normed vector space.
Such a space is called an Orlicz space.
(iv) Let f; be a sequence of functions. Then lim [ ®(¢|f;(x)|)dx = 0 for
]—o0

all ¢ > 0, iff lim ||f;]|e = 0.
j—ro0

(ii) Define
Then

and

Exercise 0.4 (Hardy’s inequalities [Fol99, Exercise 6.29]). Suppose that 1 <
p < oo, r > 0, and h is a nonnegative measurable function on (0, c0). Prove:

o [ ] < (2) [,
I A A e (3 N e

(i) Apply Theorem 0.16 with K(t,y) = t#"'y Py ) (y —t) and
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f(t) = t7h(t) for suitable B, y; or use Jensen’s inequality.
(ii) Let h(x) = f(1/x)/x* and use (i).






In this chapter, we introduce several interpolation theorems. There
are generally two ways to derive them: “complex interpolation”, such as
the Riesz-Thorin interpolation theorem, and “real interpolation”, such as
the Marcinkiewicz interpolation theorem. The former gives sharper re-
sults and is more elegant because it is based on analytic-function theory
in the complex plane. However, this also carries some disadvantages: The
LP-spaces need to be defined over C, and the method only works for lin-
ear operators. The “real interpolation” method is less elegant in terms
of results and proofs, but it works in larger generality and includes even
nonlinear operators such as maximal functions (given in §2.1).

Interpolation of Operators

These two interpolation theorems, Riesz-Thorin and Marcinkiewicz,
have been developed into full theories of interpolation of operators be-
tween function spaces in advanced functional analysis, with the goal of
studying which families of function spaces and operators between them
can be interpolated.

An important observation of E. Stein is that the proof of the Riesz-
Thorin interpolation theorem can be generalized to the case where the op-
erator T itself varies analytically, so we will introduce the Stein interpola-
tion theorem. We also introduce the notion of weak-L? spaces that are nat-
ural objects for interpolation theory and used to prove the Marcinkiewicz
interpolation theorem and weak-type estimates (cf. Definition 1.25).

§1.1 Riesz-Thorin interpolation theorem

In this section, scalars are supposed to be complex numbers.

Let T be a linear mapping from L = LF(X,du) to L7 = Li(Y,dv).
This means that T(af + fg) = «T(f) + BT(g). We shall write

T:LP — L7

if in addition T is bounded, i.e.,

I TfIl
T 1 — sup || Tf|q < oco.
{£:lIfIlp 70} p Ifll,=1

The number A is called the norm of mapping T.

A=
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It will also be necessary to treat operators T defined on several L?
spaces simultaneously.

Ifl1<p<g<r<oothen (LPNL") C LT C (LP 4+ L"), and it
is natural to ask whether a linear operator T on LF + L" that is bounded
on both L? and L is also bounded on L9. The answer is affirmative, and
this result can be generalized in various ways. A fundamental theorem
on this question is the Riesz-Thorin interpolation theorem of “complex
interpolation” as follows:

a4 )
Theorem 1.1 (Riesz-Thorin interpolation theorem). Let (X, M, 1) and
(Y, N, v) be a pair of measure spaces and po, p1,q0, 91 € [1,0]. If go = q1 =
o, suppose also that the measure v on Y is semifinite. For 0 < 6 < 1, define
p and q by
1 1-0 6 1 1-6 6

= +—, -= + —. (1.1)
p Po i q0 q1
If T is a linear operator from (LPo + LP1)(X,du) into (L7 + L) (Y, dv)
such that |[Tfllgy < Aollfllpo, for f € LP(X, dp) and ||Tfllg, < A1l flp,,
for f € LP\(X,du), then

ITflly < Aellfllp, for f € LP(X,dp), 0 < 0 <1,

with
Ag < AJTPASL. (1.2)

\, v

Remark 1.2. 1) (1.2) means that Ay is logarithmically convex, i.e., In Ag is
convex. Because of this, the above theorem is sometimes known as the
Riesz(-Thorin) convexity theorem.

2) The geometrical meaning of (1.1) is that the points (1/p,1/q) are
the points on the line segment between (1/po,1/q0) and (1/p1,1/q1);
see the figure.

3) One can only assume the boundedness of T for all finitely sim-
ple functions f on X and obtain the boundedness for all finitely simple
functions. When p < oo, by density, T has a unique bounded extension
from LP(X, u) to L7(Y,v) when p and g are as in (1.1).

The Riesz-Thorin interpolation theorem
is due to M. Riesz, who, in 1926, in the pro- 14 w1
cess of proving the convergence of Fourier '
series in the L” norm, developed an interpo-
lation method in the framework of bilinear
forms in LV with a long and difficult calcu-
lation subject to conditions pg < g0, p1 < 1
and L” spaces over R. Later, one of his stu-
dents, O. Thorin, removed the restriction on

Q
<=y
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the indices by introducing complex analysis methods in 1939. This is
what is now called the Riesz-Thorin interpolation theorem, whose cur-
rent widely presented proof is actually due to a further simplification by
A. Zygmund. The proof of Theorem 1.1 is conceptually fairly simple but
wonderful in a number of specific aspects. The key idea is a result of
complex analysis proved by J. Hadamard in 1896.

( “
Lemma 1.3 (Hadamard three lines lemma). Let S = {z € C : 0 <

Rez < 1} and f : S — C be bounded and continuous on S and analytic on
the interior S of S. Let Ag = sup |f(6 + it)|. Then we have Ag < A} °AY

teR
forall 6 € [0,1].
\

W,

Proof. Without loss of generality, we can assume that Ag = A; = 1.
Otherwise, we replace f by the function g : S — C defined by g(z) =
f(z)/ (A} ?A3). By the assumption on f, it follows that g is contin-
uous and bounded on S (because |g(z)| < |f(z)|/(A) ReZARez) <
|f(z)|/(min(1, Ag, A1)) and Ay, A1 cannot be zero) and analytic on $, with

sup |¢(z)| = sup |g(z)| = 1. Hence, we can assume that
Rez=0 Rez=1
sup [f(z)| =1
Rez=0,1

and, under this assumption, we need to show that

sup | f(z)] < 1.

z€S

To this end, we define the sequence f,(z) = f (z)e@~1/" and we observe

that |f,(z)| < |f(z)| for all z € S, in particular, sup |f,(z)| < 1. More-
Rez=0,1

over, f,(z) is analytic in § for all n > 1, and |f,,(x +iy)| — 0, as |y| — oo,
for every fixed n, uniformly in x. Hence, we obtain for every n > 1,

sup |fu(2) < 1,

z€e$
because analytic functions attain their maximum and minimum on the
boundary of any compact set (cf. [SS03, p.92], consider the compact do-
main K = {z : |Imz| < x,0 < Rez < 1}, where « is so large that
|fu(x+iy)| < 1forall |y| > «, and x € [0,1]). Since |f.(z)| — |f(z)| as
n — oo, it follows that |f(z)| < 1forallz € S. Q

The proof of the Riesz-Thorin interpolation theorem then follows by
building a function, using duality, that depends holomorphically on z cor-
responding to a complex parameter such that Re (z) = 1/p and then using
the Hadamard three lines lemma to obtain the intermediate bounds. Du-
ality again yields the final estimates.
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Proof of Theorem 1.1. We observe that the case py = p; follows from Propo-
sition 0.19: If p = po = p1, then

ITAllg < ITAllg *NTAIG, < Ag P ATIIfIlp-
Thus, we may assume that py # p; and, in particular, that p < oo for
0<6<1.
Denote

(hg) = | hw)gyiviy)

and 1/4' =1 —1/4. Then, we have, by the dual (i.e., (v) in Theorem 0.11,
where we need that v is semifinite if § = o0, i.e., go = g1 = ),

Ihllg = sup [{r,g)], and Ag = sup  [(Tf,g)l.
Iglly=1 I £l=lglly=1

Noticing that C.(X) is dense in L7 (X, u) for 1 < p < oo, we can as-
sume that f and g are bounded with compact supports since p, 4’ < oo.
(Otherwise, it will be pg = p; = o if p = o0, or 0 = %/1%0 > 1
if = o0.) Thus, we have |f(x)] < M < oo for all x € X and
supp f = {x € X: f(x) # 0} is compact, i.e., y(supp f) < oo, which im-
plies [y |f(x)|’du(x) = [(ypp s 1f()|'dp(x) < M p(supp f) < oo for any
¢ > 0. So does g.

For 0 < Rez <1, we set

1 1-z  z 1 1-z =z

—

- = - —, — —+
p(z) po p q(z) % 0

and
|f(x % il xe{xeX: f(x)#0};
1(z) ‘
0, otherwise,
{(2) ’g 5f yelyev:gly) #0}
otherwise.
Now, we prove 7(z € L for j = 0,1. Indeed, we have
Z)| — ’|f x % _ |f(x)|p(1;0 ‘p 1 ReZ+ReZ)+ZP( Imz I;r(\]Z)
1 Rez Rez
—[F ()P = ()R,
Thus,

@I = [ IntealPdut) = [ 1760 an(x) <
We have

_P_

1) =l ] EEn )
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(LAY s FE
—p( )|f< DI L In 7).

pro po f(x)]
On one hand, we have lim |f(x)|/*In|f(x)| = O for any a« > 0, ie,
f(x)] =04

Ve > 0,30 > 0s.t. |[f(x)[*In]|f(x)|| <eif |[f(x)|] <. On the other hand,
if |[f(x)] = 4, then we have

[f ()" In|f(x)]] < M* [In|f (x)|] < M* max(|In M|, [Iné]) <
Thus, ||f(x)[*In]|f(x )H C. Hence,

I7'(2)] =p \\f (x)!"‘lln\f(x)ll
<c]|fx = CIf(x)| 775
which yields
In' @15y < € [ 1) T Pa(x) <

Therefore, 1(z), '(z) € LPi for j = 0,1. So do {(z), {'(z) € LY forj=0,1
in the same way. By the linearity of T, (T#)'(z) = T#'(z). It follows that
Ty(z) € L%, and (Tn)'(z) € L% with 0 < Rez < 1, for j = 0,1. This
implies the existence of

F(z) =(Tn(z),l(z)), 0< Rez< 1.

Since
dF(z) d
d

T, () = 52 [T 2 2)dv)

- / T0):(r,2)2 (0, 2)dv(w) + [ (T)(,2)8 (0, 2)dv ()
—((Tn)(2),22)) + (Tn(2), €' (=),

F(z) is analytic on the open strip 0 < Rez < 1. Moreover, it is easy to see
that F(z) is bounded and continuous on the closed strip 0 < Rez < 1.
Next, we note that for j = 0,1

r
G +it)lp, = IIf1l) = 1.

Similarly, we also have ||{(j + it)||,, = 1 for j = 0,1. Thus, for j = 0,1

g =
[EG+i)| =[(Ty(+it), G +in| < [ITn( +it)llg,[1EG + i) llg
<Al G+ i)llplIcG+i)]y = A

Using Hadamard’s three lines lemma, reproduced as Lemma 1.3, we ob-
tain the conclusion

IF(0+it)] < AYPA], vteR.

Taking ¢ = 0, we have |F(8)| < A} ?AY. We also note that 77(f) = f and
{(0) = g, thus F(8) = (Tf,g). Thatis, |(Tf,g)| < Ay °AY. Therefore,
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Ag < AJOAY. Q

Now, we shall give a rather simple application of the Riesz-Thorin
interpolation theorem.

Theorem 1.4 (Young's inequality for convolutions). If f € LP(R") and
g€ LI(R"), 1< p,gr<ocoand = %—i—% —1, then

1+ &l < NI fllpligllg-

Proof. Fix f € LF, p € [1, 00|, then we will apply the Riesz-Thorin inter-
polation theorem to the mapping ¢ — f * g. Our endpoints are Holder’s
inequality, which gives

[f 8 < Ifllpllglly

and thus ¢ — f* g maps L¥ (R") to L®(R") and the simpler version
of Young's inequality (proved by Minkowski’s inequality), which tells us
that if ¢ € L!, then

£+ gllp < If1lpllgll-

Thus, g — f * ¢ also maps L! to LP. Thus, this map also takes L7 to L',

where
1 1-6 6 1 1-6 6
—=——+—,and-=— + —.
g 1 p rop  ®
Eliminating 6, we have % = % + % — 1. Thus, we obtain the stated inequal-
ity for precisely the exponents p, g and r in the hypothesis. Q
Remark 1.5. 1) The sharp form of Young's inequality for convolutions can
be found in [Bec75b, Theorem 3] or [Bec75a; BL76b], and we state it as

follows. Under the assumption of Theorem 1.4, we have

1f*gllr < (ApAqAr’)n”prHqu/

where A, = (mV/"/mV/" )12 for m € (1,00), A} = Ae = 1 and primes
always denote Holder conjugate numbers, i.e.,, 1/m + 1/ m = 1.

2) The Riesz-Thorin interpolation theorem is valid for a sublinear
operator. One can see [CZ56] for details.

§1.2 Stein interpolation theorem

An important observation of E. Stein is that the above proof of the
Riesz-Thorin interpolation theorem can be generalized to the case where
the operator T itself varies analytically. For the motivation and importance,
one can read Terence Tao’s blog (https://wp.me/p3qzP-1g5). In particu-
lar, if a family of operators depends analytically on a parameter z, then the
proof of this theorem can be adapted to work in this setting.


https://terrytao.wordpress.com/2011/05/03/steins-interpolation-theorem/
https://wp.me/p3qzP-1g5
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We now describe the setup for this theorem. Suppose that for every
z in the closed strip S, there is an associated linear operator T, defined
on the space of simple functions on X and taking values in the space of
measurable functions on Y such that

[ 1TGeaaldv < eo (13)

whenever A and B are subsets of finite measure of X and Y, respectively.
The family {7}, is said to be analytic if the function

z— /YTZ(f)gdv (1.4)

is analytic in the open strip S and continuous on its closure S. Finally, the
analytic family is of admissible growth if there is a constant 0 < a < 7
and a constant Cy, such that

/Y T:(f)gdv

Note that if there is a € (0, 71) such that for all measurable subsets A
of X and B of Y of finite measure there is a constant c(A, B) such that

/BTz(XA)dV

M N
then (1.5) holds for f = }_ axxs, and g = }_ ijB,- with
k=1 j=1

e lmzl1n < Cpg < 0 (1.5)

forallz € S.

e—0lImz] 1

< c(A,B), (1.6)

Cfg = In(MN) +ZZ (Ax, Bj) + |In |axbj||) -

In fact, by the linearity of T, the increase in In and (1.6), we obtain

M N
e
= ln Z akb / XAk
< ln ) dv

<In [MNmax (]akbj] exp (C(Ak, Bj)6“1m2|>)]
<In(MN) +max ’1n [(|akb | exp ( (Ak, Bj)e a|ImZ‘>):| ‘

<In(MN) +max [\ln|akb || + c(Ax, By) ”‘Imzq
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M N
<In(MN)+ ) )" Uln |agb;|| + c(Ay, Bj)e““mzq
k=1j=1

M N
< lln(MN) + 2 (|ll’l |akb]|‘ =+ C(Ak/ B]))] ea|Imz\_
k=1j=1

Then, we have an extension of the three lines theorem due to I. Hirschman
[Hir53].

4 )
Lemma 1.6 (Hirschman lemma). Let F be analytic on the open strip S =
{z € C:0 < Rez < 1} and continuous on its closure S such that for some
A <ooand 0 < a < 7, we have
In |F(z)| < Ae?ltm?| (1.7)
forall z € S. Then
|E(x +iy)|

sinztx [ [ In|F(it +iy)| In|F(1+ it +iy)]
< S
SOP { 2 / [cosh 7t —cos7rx | cosh 7t cos 7ix at

—00

whenever 0 < x < 1, and y is real.
G J

Before we give the proof of Lemma 1.6, we first recall the Poisson-
Jensen formula' from [Rub96, p.21].

4 )
Theorem 1.7 (Poisson-Jensen formula). Suppose that f is meromorphic”

in the disk Dr = {z € C : |z| < R}, r < R. Then for any z = re’® in Dg,
we have
2

i0 L igy|_ RO 1
In |f(re”)] =5/_n1n!f(Re N Rete —renpz

2
dp+ Y In|Br(z:z))|
|zy|<R
~ Y In|Br(z:w)| —kIn,
|w,[<R 4

where B is the Blaschke factor defined by
R(z—a)
R? —az
and the z, are the zeros of f, the w, are the poles of f, and k is the order of
the zero or the pole at the origin.

Br(z:a) =

“In complex analysis, a meromorphic function on an open subset D of the com-
plex plane is a function that is holomorphic on all D except a set of isolated points,
which are poles for the function.

. ,

1This is a generalization of Jensen’s Theorem (i.e., the case of r = 0, [SS03, p.135]) by
using the Gauss mean value theorem.
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Now, we consider the modulus of the Blaschke factor since

R(z—a) (z/R—a/R)

RZ—az  1—az/R?’

it suffices to consider By(z : a) with |z| < 1 and |a| < 1, thus, we consider
for z = re'?

Br(z:a) =

ret® —a r—ae %

1 — are'

zZ—a
1—az

1—ae=®r
Letting a* = ae~"?, this becomes

r—a*

1—a*r
Therefore, it is sufficient to consider the case in which z = r is a real num-
ber. Note further that replacing a* by a* is equivalent to taking the complex
conjugate of the entire fraction. Therefore, it is sufficient to consider

r—a r—a\  r*—2rRea+ |af? <1
1—ar) \1—ar) 1—2rRea+r2a]2 ="
since 2 + [a|?> — (1 +r%a|*) = (r* = 1)(1 — |a]?) < O for r < 1 and |a| < 1.

Thus, we obtain |B;(z : 4)| < 1, and then
In|Br(z:a)| <O0. (1.8)

Proof of Lemma 1.6. It is not difficult to verify that

) = %m (zijg)

is a conformal map from D = {z : |z| < 1} onto the strip § = (0,1) x R.
Indeed, i(1+¢)/(1 — ) lies in the upper half-plane, and the preceding
complex logarithm is a well-defined holomorphic function that takes the
upper half-plane onto the strip R x (0, 7). Since F o h is a holomorphic
function in D, which implies that there are no poles in D, by the Poisson-
Jensen formula with (1.8), we have

In|F((2)] < o= [ In[F(h(RE?)| o —E

S T o —’Rei(p — pei9|2d([) (19)

when z = pe®® and |z] = p < R. Let { = €', h(R{) = L1In (i%), we

observe that for R < |{| = 1 the hypothesis on F implies that
In |F(h(Rei?))| <Al ™= m(TR)] by (1.7))

(If z = |z|e', then Inz = In|z| + iB, thus Imilnz = In|z|.)

— AR

an [14+RZ|
=Ae™!" TR (due to |z1/22] = |z1|/|22])
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(14R cos ¢)?+(Rsin )2

1
n (1-Rcos ¢)2+(Rsin )2

—Ae%

(the square root is > 1 if cos ¢ > 0 and < 1 otherwise)

1+ R2 +2R| cos |\ 77
14 R% —2R|cos ¢| '

Since
1+ R* —2R|cos ¢| =(R — | cos ¢|)* + sin” ¢ > sin’ @,
1+ R*+2R|cos ¢| <(1+R)* < 4,
we obtain
; 4 ﬁ a a
In|F(h(Re'?))| < A (2) < A2x|sing| " x.
sin” ¢
Now,

T a 7 a
/ |sing| ~dg :4/2 sin” = pd¢
-7 0

since a < 7t and the fact that the Beta function

1 s
B(a,ﬁ) = /O xa—l(l _ x)ﬁ_ldx _ 2/02 Sinzﬁ—l (PCOSZ(x—l Q’d(P

converges for Rea, Re B > 0. Moreover, for 1 > R > 1(p + 1), it holds that

RZ_pZ _ RZ_pZ < RZ_pZ
|Re'¢ — pei®|2 " R2 —2Rpcos(0 — @) +p? ~ R2—2Rp + p?
_(R=p)(R+p) _ R+p _ 2 o 4
— 5 = X 7 X .
(R—p) R—p " 3(0+1)—p 1-p

Thus, (1.9) is uniformly bounded w.r.t. R € (3(p +1),1).

We will now use the following consequence of Fatou’s lemma: sup-
pose that Fr < G, where G > 0 is integrable, then

limsup/FRdgo < /limsup Frde.
R R

Letting R 1 in (1.9) and using this convergence result, we obtain

in (0] < o [ I F(h o) gy
S2m)on 1—2pcos(0 — ¢) + p?

Setting x = h(pe'®), we obtain that

do. (1.10)

e _j  cosmx+isinztx —i

pe® =h~(x) = ——— — ,
ermix g costx +i1sin7tx +1
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_ (cos tx +i(sinrx — 1)) (cos rx — i(sinrx + 1))
| cos rtx + i(sin 7tx + 1) 2

COS TTX COS X 7
= —1 = e 2 ,
1+ sin 7Tx <1+sin7tx>
from which it follows that p = (cos 7tx) /(1 + sin 7x) and 6§ = —71/2 when

x € (0,3], while p = —(cos 7tx) /(1 + sin tx) and § = /2 when x € [3,1).
In either case, we have p = (sgn (3 — x))(cosx)/(1 + sin7x) and 6 =
—(sgn (3 —x))7/2 for x € (0,1). We easily deduce that
1—p?
1—2pcos(6 — @) + p2

1— cos® mx

(1+sin 7x)2

1 —2(sgn (3 —x)) 1% cos((sgn (3 —x))E+ @) + (mﬂ

1+sin 7tx 1+sin 7rx)?

(1 + sin 7tx)? — cos? 7tx
(1 +sin7x)2 + 2(1 + sin 71x) cos 7tx sin ¢ + cos? 7x

- 2 sin 7x + 2sin’ 7rx

~ 2(1 +sin 7tx) (1 + cos 7tx sin @)
_ sin 7tx

" 1+ cosxsing’

since
1 T T 1
COS((Sgn(§ - x))z +9) —COS(E + (sgn(i —x))¢)
. 1 1 .
= —sin((sgn (5 ~ 1))p) = ~sgn (5 — x)sinp.
Using this we write (1.10) as

1
In |F < —
n|F )| 27 [n 1+ cos rtx sin ¢

T sin 7Tx

In|F(h(e'?))|de. (1.11)

We now change the variables. On the interval [—7,0), we use the change
of variables it = h(e'?) or, equivalently,

e—nt —i (efrrt _ i)2 efzm —_1— 21'677”

e =h~1(it) = .= =
(it) e 4 e 4] e=2mt 41
P L g T .
=  _— — —tanh tt — isech 7tt.
efnt + ent

Observe that as ¢ ranges from —7 to 0, t ranges from +oco to —oo. Further-
more, d¢ = —7sech rtt dt. We have

1 /0 sin 7tx ,
o "
/n1+cos71xsin<pln|1:(h(e )lde

21
_1 o sin 7Tx
2

—oo cosh 7tt — cos 7Tx In [F(it) |t (1.12)

On the interval (0, 7], we use the change of variables 1 + it = h(e'?) or,
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equivalently,

) ’ em’(l—i—it) —i eMip—mt _
e =h"1(14it) = =

ei(1+it) 4+ T pTip—Ttt + i
(em'e—nt o i) (e—m’e—nt o i)

6727'[15 +1
ef2nt —1— iefm‘(efm + em) efnt _ ent 4927
- 1+ 27t - et 4 p—mtt

= — tanh 7tt + i sech 7tt.

Observe that as ¢ ranges from 0 to 77, t ranges from —oo to +oco. Further-
more, d¢ = rtsech 7tt dt. Similarly, we obtain

1 /= sin 7tx i
27T/0 1+cos7rxsin(p1nyp(h(e ))|de

1 [ sin 7tx
=5 In|F(1+1 . 1.1
2/_00 cosh 7tt 4 cos 7tx n|F(1+it)|dt (1.13)

Adding (1.12) and (1.13) and using (1.11), we conclude the proof when
y=0.

We now consider the case when y # 0. Fix y # 0 and define the
function G(z) = F(z + iy). Then, G is analytic on the open strip § = {z €
C : 0 < Rez < 1} and continuous on its closure S. Moreover, for some
A < o and a € [0, 1), we have

In|G(z)| = In|F(z + iy)| < Ae®l™#H¥ < Ayl el im?|

for all z € S. Then, the case y = 0 for G (with A replaced by Al yields
G(x)| < exp{smnx/ { In |G(it)] n In |G(1+ it)| } dt},

2 —oo |cosh 7t — costx ~ cosh 7tt + cos Tx
which yields the required conclusion for any real y, since G(x) = F(x +iy),
G(it) = F(it +iy), and G(1 +it) = F(1 + it +iy). Q

The extension of the Riesz-Thorin interpolation theorem is now stated.

4 )
Theorem 1.8 (Stein interpolation theorem). Let (X, ) and (Y,v) be a

pair of o-finite measure spaces. Let T, be an analytic family of linear operators
of admissible growth. Let 1 < po, p1,90,91 < oo and suppose that My and
M, are real-valued functions such that

supe I In M;(t) < oo

teR
for j =0,1and some 0 < b < 7. Let 0 < 0 < 1 satisfy
1 1- 1 1-
- = 9—1—6, and — = 04—2. (1.14)

P pm m 9 Q@ @
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Suppose that

ITit(Fllgo < Mol fllpor N Trrie(Hllge < Ma(®IIfllpe (115)
for all finitely simple functions f on X. Then,

ITo(f)llg < M) fllp, when0 <6 <1 (1.16)
for all simple finitely functions f on X, where

_ sin 7t [ In My(t) In M; (t)
M(6) = exp { 2 /,oo [cosh 7tt — cos 716 + cosh 7tt + cos 710 aty -

By density, Ty has a unique extension as a bounded operator from LP(X, )

into L1(Y,v) for all p and q as in (1.14).
\ J

The proof of the Stein interpolation theorem can be obtained from that
of the Riesz-Thorin theorem simply “by adding a single letter of the alpha-
bet”. Indeed, the way the Riesz-Thorin theorem is proven is to study an ex-
pression of the form F(z) = (T#(z),{(z)), and the Stein interpolation the-
orem proceeds by instead studying the expression F(z) = (T:n(z),{(z)).
One can then repeat the proof of the Riesz-Thorin theorem more or less
verbatim to obtain the Stein interpolation theorem. We leave it as an exer-
cise.

§1.3 Distribution functions and weak L”

We shall be interested in giving a concise expression for the relative
size of a function. Thus, we give the following concept.

Definition 1.9. Let f be a measurable function on (X, M, it); we define
its distribution function f, : [0,00) — [0, c0] by

fela) = p({x € X |f(x)[ > a}).

The distribution function f. provides information about the size of f
but not about the behavior of f itself near any given point. For instance,
a function on R" and each of its translations have the same distribution
function.

In particular, the decrease of f,(x) as a grows describes the relative
largeness of the function; this is the main concern locally. The increase in
f«(a) as a tends to zero describes the relative smallness of the function “at
infinity”; this is its importance globally and is of no interest if, for example,
the function is supported on a bounded set.
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Example 1.10 (Distribution function of a simple function). Let f be a sim-
ple function of the following form

k
flx) = Z;aijj(x)
j=

where a; > ay > --- > a; >0, Aj = {x € R: f(x) = a;} and x4 is the
characteristic function of set A (see Figure (a)). Then,

f(@) el
alf ,—|
[
azar [ |
asr M I Lo bs I
CL4’I | | I by
R B Y S
5 : : [ n : : by == ——— -
L T R i A I
Lottt ' . L
As Ay A Ay As =z as a4 asaz a1«
(a) (b)

k
fel@) = {x:[f(x)] > a}| = |{x : ;aijj(X) > a}
=

k
=Y bjxs (),
=1

j
where b; = El |Ail, B = [a]-+1,a]-) forj=1,2,--- ,kand ag,1 = 0, which

shows that the distribution function of a simple function is a simple
function (see Figure (b)).

Example 1.11. Let f : [0,00) — [0, 00) be
1-(x—1)2, 0<x<2,
>

f(x):{o, x> 2.

It is clear that f.(a) = 0 for &« > 1 since |f(x)| < 1. For a € [0,1], we
have

fulw) =[{x € [0,00) : 1= (x = 1)* > a}|
—{xe0,00):1-VI—a<x<1+VI—a}|=2V1—a
That is,

2v/1 —«a, 0<a<l,
f*(“)_{o, a> 1.

Observe that the integrals of f and f. are the same, i.e.,

R e
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f I
2 2
1 1
[ 1 5 . 1 T —
(a) (b)

Example 1.12. We define an extended function f : [0,00) + [0, 0] as

0, x=0,
In{t, 0<x<1,

f(x) =14 oo, 1<x<2,
In-L, 2<x<3,
0, x = 3.

Even if f is infinite over some interval, the distribution function is still
well-defined and can be calculated for any a > 0

fela) =|{x € [1,2] : c0 > a}| {x €(0,1) :ln(%) > a}

U {x € (2,3): mi) > a}
=1+ [1—e*1)|+[(2 e +2)]

=1+2e7%,

n Iia

+t T

3t 3

21 2‘¥

11 T
1 1 1 ) } } } )
1 9 3 T 1 2 3 e}

(a) (b)

Example 1.13. Consider the function f(x) = x for all x € [0,00). Then,
fu(a) =|{x € [0,00) : x > a}| = oo for all « > 0.

Example 1.14. Consider f(x) = 35 for x > 0. It is clear that f.(a) = 0

for « > 1 since |f(x)| < 1. For « € [0,1), we have

Fola) = {x €0, 1o > oc}‘

{xe[O,oo):x> 1i“}‘:oo.

That is,

oo, 0<<a<l,
ﬁW%—{Q @ > 1.
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: :
I 1 >

A 4

Now, we give some basic properties of distribution functions.

Proposition 1.15. Let f and g be measurable functions on (X, M, ). Then

forall o, B > 0, we have
(i) f«(a) is decreasing and right continuous.

i) I |f ()] < Ig(x)], then £.(a) < g ().

(i) (cf)«(a) = fu(a/|c|), forall c € C\ {0}.

() I 1£ ()] < [g(0)|+ |(x)], then f(a+ B) < go(«) + . (B).

V) (f&)«(ap) < fula) +8+(B)-

(vi) (Chebyshev’s inequality) For any p € (0,00) and « > 0, it holds

P
fw < (Ll
(vii) If f € LP, p € (0,00), then

i P =0=1M p
a1_1)1}r1000c fi(a) =0 }g}r(l)oc fu(a).

(vii) If [y aP~1fi(a)da < oo, p € (0,00), then

i P =0 = lima?
“nga fu(a) =0 }g}r(\)oc fu(a).

(ix) If [f(x)]| < lilgi?f | fe(x)| for a.e. x, then
fe(@) < liminf(fic)« (a).

(X) If | fx| increases to |f|, then (fi)« increases to fx.
& A

Proof. (i) For simplicity, denote Ef(a) = {x € X : [f(x)| > a} for & > 0.
Let {ax} be a decreasing positive sequence that tends to «; then, we have
Ef(a) = UpZi Ef(ax). Since {Ef(ax)} is a increasing sequence of sets, it
follows that klgglo f«(ag) = fi(a). This implies the continuity of f.(a) on
the right.

(v) Noticing that

{xeX:[f(x)g(x)| >ap} C{xe X:[f(x)|>atU{x e X:|[g(x)] > B},
we have the desired result.
(vi) We have

fela) =u({x : |f(x)| > a})
dp(x)

/{X€X=f(x)>lx}
|f(x)|>p

</ < du(x

{xeX:|f(x)[>a} « H)
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< (k"
o
(vii) From (vi), it follows that
af fo(a g/ ) |Pdu( / ) Pdu(
@< [ ) < [ 17,
Thus, u({x € X : |f(x)| > a}) — 0 as « — 400 and

. 9 B
gim [ W@ =0
Hence, a? f, () — 0 as & — o0 since a? f, (a) > 0.
For any 0 < a < B, we have
lima?f(a) = lim a”(f.(a) — £(B))
—limau({x € X & < |f()] < B})
x—0

|f () |Pdp(x)

By the arbitrariness of B, it follows that a? f,(«) — 0 as &« — 0.
(viii) Since f (tP)dt = aP — (a/2)P and f.(a) < fi(t) for t < o, we
have

<,
{reX:|f(x)[<p}

[
fl@ar (=27 <p [ 07t
a/2
which implies the desired result.
(ix) Let E={x € X :|f(x)| >a} and Ex = {x € X : [fi(x)| > «a},
k € IN. By the assumption and the definition of the inferior limit, i.e.,

|f (%) < liminf |fi(x)| = sup inf | fi(x)],
k—o0 e k>
for x € E, there exists an integer M such that for all k > M, |fi(x)| > a.
Thus, E C Uy—1 Ny Ex, and for any ¢ > 1,

(ﬂ Ek> < ir;ﬁy Ey) < sup 1nf],t(Ek) = hmmfy(Ek)

Since {N;= Ex}5j_ is an increasing sequence of sets, we obtain

fela) = u(E) < p (G N Ek> = lm (ﬁ Ek) < Hminf(fi). ().
M=1k=M k=M

(x) If |fi| increases to |f|, then Ef(«) is the increasing union of

{Ef.(a)}, so (fi)« increases to f..
For others, they are easy to verify. Q

In view of (i) in Proposition 1.15, f. defines a negative Borel measure
v on (0,00) such that v((a,b]) = f.(b) — fi«(a) whenever 0 < a < b. We
can therefore consider the Lebesgue-Stieltjes integrals [ ¢df. = [ ¢dv of
functions ¢ on (0, c0). The following result shows that the integrals of the
functions of |f| on X can be reduced to Lebesgue-Stieltjes integrals.
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Theorem 1.16. If f.(x) < oo for all « > 0 and ¢ is a nonnegative Borel
measurable function on [0, 00) such that ¢(0) = 0, then

o oUfbdn == [ g(@af. (). (117

Proof. 1f v is the negative measure determined by f., we have

v((a,8]) = £u(b) = fu(a) = —p({x s a < |F(x)] < BY) = —p(|f|""((a,1]).
It follows that v(E) = —u(|f|~1(E)) for all Borel sets E C (0,0), by the
uniqueness of extensions (cf. [Fol99, Theorem 1.14]). However, this means
(1.17) when ¢ is the characteristic function of a Borel set and hence when
¢ is simple. The general case then follows by virtue of Theorem 0.1 and
the monotone convergence theorem. Q

The case of this result in which we are most interested is ¢(a) = a”,
which gives

/|f|”dy _ —/Oooucpdf*(zx). (1.18)

A more useful form of this equation is obtained by integrating the right
side by parts as follows.

Theorem 1.17 (The equivalent norm of LF). If 0 < p < oo, then
/Ifl”dﬂ = P/ P~ f, (a)d
0

Proof. If f.(a) = oo for some & > 0, then the values of both sides are
infinite, and this is clearly true. If not, and f is simple, then for either
f € LP(X)or [;7aP ! f(a)dn < oo, we always have a f,(x) — 0 as & —
+oo and @ — 0 by the property (vii) and (viii) in Proposition 1.15, so the
integration by parts described above works in r.h.s. of (1.18). Therefore,
we have

_/0 WP df,(a p/ aP 7V, (a)da — aP £, (a —p/ a7 f ()

For the general case, let {g,} be a sequence of simple functions that in-
creases to |f|; then, the desired result is true for g,, and it follows for f
by (x) in Proposition 1.15 and the monotone convergence theorem. Q

A variant of the L spaces that turns up rather often is the following.
Using the distribution function f., we now introduce the weak LP-spaces
denoted by LF**.

[Deﬁnition 1.18 (Weak LP-space). For 0 < p < oo, the space LP**(X, u) ]
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consists of all y-measurable functions f such that
1
Il = supafi”? (@) < e
a>0

In the limiting case p = oo, we put L% = L.
\ b

Two functions in LP*°(X, i) are considered equal if they are equal y-
a.e. We can show that LP* is a quasinormed linear space.

1° If || f||p~ = O, then for any a > 0, it holds that u({x € X : [f(x)| >
a}) =0; thus, f =0, p-a.e.
2° From (iii) in Proposition 1.15, we can show that for any k € C \ {0}
liflir =supa(kf):"" (@) = sup afs” o/ k]

a>0

=[k|supafi’? (&) = [k|||f]|roe,

a>0

and it is clear that ||kf||rr~ = |k||| f]|Lr~ also holds for k = 0.
3° By part (iv) in Proposition 1.15, we have

1 + gllue =supa(f + 8! (&)

a>0

<swpe (£ (3) £ (3))

<:n>:x(2p 2) sup > (fp (*> ’% (;D

1 1
<max(2%,2) (sup zxf*” () 4 sup agy (oc))

a>0 a>0

==

1
<max (27, 2)([|flle + [[gllLr=)-
Thus, LP** is a quasinormed linear space.

The weak L? spaces are larger than the usual L? spaces. We have the
following:

Theorem 1.19. For any 0 < p < oo and any f € LP (X, u), we have

£ llzrs < 11 £llp-
Hence, L (X, u) < LP®(X, ).

Proof. It is clear for p = oo. For p € (0,00), from the part (vi) in Proposi-
tion 1.15, we have

1/ vr

which yields the desired result. Q
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The inclusion L < LP*® is strict for 0 < p < co. For example, on R"
with the usual Lebesgue measure, let h(x) = |x|~"/P. Obviously, & is not
in LP(R") due to

[ee]
/ |x| 7 "dx = wy—1 /0 "y = oo,

where w,, 1 = 271"/? /T (n/2) is the surface area of the unit sphere S"~! in
R", but & is in LP°(R") and we may check easily that

]| o = sup ah/? () = sup a(|{x : [x| 77 > a}[)!/7
o 0
—supa(|{x: x| < a P/"})/P = supa(a PV,)/"
4 14

=v"?,

where V, = 7"/2/T(1 +n/2) is the volume of the unit ball in R" and
I-function I'(z) = [;° t*~'e~'dt for Rez > 0.

Convergence in measure is a weaker notion than convergence in either
LP or LP>, 0 < p < oo, as the following proposition indicates:

Proposition 1.20. Let p € (0,00 and f,, f € LP°(X, u).
@) If fu, f € LP and f, — f in LP, then f, — f in LP™.
(i) If fu — f in LP®, then f,, = f.

Proof. For p € (0,00), Theorem 1.19 gives that
1 fn = fllees <A fu = flips

which implies (i) for the case p € [1,00). The case p = oo is trivial due to
L% = L.
For (ii), given & > 0, there exists an n¢ such that for n > ny,

1 1
1fn = fllrs = supap({x € X [fu(x) = f(x)] > a})? < e
o>
Taking a = ¢, we obtain the desired result. Q

Remark 1.21. Note that there is no general converse of statement (ii) in the
above proposition. Fix p € [1,00) and on [0, 1], we define the functions

fk,j = kl/PX(%%), 1<j< k.
Consider the sequence {f11, f21, f22, f31f32, f33,- - - }. Observe that
[{x: frj(x) >0} =1/k =0, ask,j — oo.
Therefore, fy ; o Similarly, we have
| fijllire =supal{x: fij(x) > a}|"P
a>0

—supal {x: K7y 1 ) (x) > )17
a>0 kK
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1/p
=supa

j—1 f). 1/ }
xe |l 2] : k'’ >ua
a>0 { < k k

= sup a(1/k)VP
0<a<k!/P
1\"?
2??<L—W> (taking & = (k — 1/k)*/*)
>
=1,

which implies that fy ; does not converge to 0 in LP**.
It turns out that every sequence convergent in LP (X, u) or in LP** (X, i)
has a subsequence that converges a.e. to a limit in view of Theorem 0.4.

A sequence {fr}5>, C LP*® is Cauchy if ||fy — fullrre — 0as k,m —
co. We now have

( Theorem 1.22. For each p € (0, 00|, the space LV is complete. ]

Proof. Since L®® = L®, we will focus on p € (0,00). Let {f;};>, be a
Cauchy sequence in LP*; then, {fi} is Cauchy in measure by Proposi-
tion 1.20. Thus, it has a subsequence {fy } that converges a.e. to some
f by Theorem 0.4. Fixed jo and apply (ix) in Proposition 1.15. Since
|f — fi, | = im |fi, — fi, |, it follows that

0 oo 0 io

(f = Sy ) (@) SHminf(fy; — fig, ) ().
]—oo
Thus,
If = fi, e <Timiinf |[fi, — i [l1o.
J—00

Let jo — oo and use the fact that {fi} is Cauchy to conclude that f;,
converges to f in LP*. It follows that f; converges to f in LP* by the
triangle inequality for the quasinorm. a

It is a useful fact that a function f € LP(X, ) NLI(X, u) with p < g
implies f € L"(X,u) for all r € (p,q). The usefulness of the spaces LP**®
can be seen from the following sharpening of this statement:

e “
Proposition 1.23 (Interpolation of L”* spaces). Let 1 < p < g < o0 and

f e LP®(X,u) N LI>(X,u), where X is a o-finite measure space. Then,
feLl(X,u)forallr € (p,q) (ie, 0 € (0,1)) and

11 < (

r r
+

r—p q—r

1/r
) VAN [ (1.19)
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with the interpretation that 1/c0 = 0, where
1 1-6 6

roop g

Proof. We first consider the case g < co. From Theorem 1.17 and the
definition of the distribution function, it follows that

£l =r [ o1 £ (@)da (1.20)
<r [0 imin <||fl|x|pw, ||f£5qw>

1
We take a suitable a such that Hf“”’w < HfH”w, ie,a < (”g'l'”‘”) o =: B.
1P

Then, we obtain

£l < /0 Wl ”HfHLpood«xH / ) £

BT (duetop<r<yg)

- (ﬁ ; ) ||f||L 1.

For the case g = oo, because f,(«) = 0 for « > || f||c, we only use the
inequality f.(a) < a ™| f||},~ for & < [|f||e for the integral in (1.20) to
obtain

[1£lleo
Il <r [ £

which implies the result since p = (1 — 0) and L®*® = L*. Q

Frequently, it is convenient to express a function as the sum of a
“small” part and a “big” part. The following is a way of doing this that
gives a simple formula for the distribution functions.

( )
Proposition 1.24. If f is a measurable function and N > 0, let E(N) =
{x:|f(x)| > N}, and set

hn =fxx\en) + N(sgn f)xew)
gn =f —hn = (sgnf)(|f] - ) XE(N)-
Then,

(gn)«(@) = fulw + N), <hN>*(W):{§<a> ;ziz
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We leave the proof as an exercise.

§1.4 Marcinkiewicz interpolation theorem

We now turn to the Marcinkiewicz interpolation theorem, for which
we need some more terminology. Let T be an operator from some vector
space D of measurable functions on (X, M, u) to the space of all measur-
able functions on (Y, N, v).

r N

Definition 1.25. (i) T is called quasilinear if |T(f + g)| < K(|Tf| +
|Tg|) and |T(Af)| = |A||Tf| for all f,g € D, where K > 11is a
positive constant independent of f and g. If K = 1, then T is
called sublinear.

(ii) A quasilinear operator T is of strong type (p,q) (1 < p,q < ) if
LP(X,du) C D, T maps LP(X,du) into L1(Y,dv), and there exists
C > 0 such that | Tf||; < C||f]|, for all f € LP(X,dpu).

(iii) A quasilinear operator T is of weak type (p,q) (1 < p < oo,
1< g <o0)if LP(X,du) C D, T maps LP(X,du) into L¥*(Y,dv),
and there exists C > 0 such that ||Tf||s~ < C| f||, for all f €
LP(X,du). Additionally, we shall say that T is of weak type (p, o)
iff T is strong type (p, ).

Now, we give the Marcinkiewicz interpolation theorem.?

4 )
Theorem 1.26 (Marcinkiewicz interpolation theorem). Suppose that

(X, M, ) and (Y, N,v) are measure spaces. Assume that 1 < p; < g; < o0
forj=0,1,q0 # q1 and
1: 1_9+£, andlz 1_9+£, where 0 < 6 < 1.

P Po P1 q q0 7
If T is a quasi-linear map from LP°(X) + LP*(X) to the space of measurable
functions on Y that is of weak types (po,qo) and (p1,q1), then T is of strong
type (p,q). More precisely, if |Tf|| 5=y, < Ajllflly for j = 0,1, then
I\ Tfllg < Ap| fll, where A, depends only on Aj,pj,q;,0, and for j = 0,1,
Ap|p — pjl (resp. Ap) remains bounded as p — pj if p; < oo (resp. p; = o0).
\ J

2], Marcinkiewicz (1910-1940) was a Polish mathematician and a student of A. Zyg-
mund. The theorem was first announced by Marcinkiewicz (1939), who showed this result
to A. Zygmund shortly before he died in World War II. The theorem was almost forgotten
by Zygmund, and was absent from his original works on the theory of singular integral
operators. Later, Zygmund (1956) realized that Marcinkiewicz’s result could greatly sim-
plify his work, at which time he published his former student’s theorem together with a
generalization of his own.
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Proof. The case py = p; is easy and is left to the reader (Exercise 1.6).
Without loss of generality, we may therefore assume that py < p;, and
for the time being, we also assume that g9 < co and q; < co (where also
po < p1 < o0). Given f € LP(X) and N > 0, let gy and hy be as in
Proposition 1.24. Then, by Theorem 1.17 and Proposition 1.24,

[ 1anldu =po [~ BN n). (BB = po [ IS (B4 N)dB
—po [ (BN (BB < po [ FF (BB (121
) N
[ st =py [ g7 ) (B)p = p [T f(B)AE,  (122)

and
[Tty =g [ a1 (T ()i = (2K [ a7 (TF). (2Ka)de
(1.23)
Since T is quasilinear, by (iv) and (iii) in Proposition 1.15, we have

(Tf)«(2Ka) < (KTgn)«(Ka) + (KThy )« (Ka) = (Tgn)+(2) + (ThN)z(fX)-
1.24)

Then, by (1.21)-(1.24), and the weak type estimates of T, we obtain

ITfII3 <(2K)"v//0 a7 [(Aolignllpo /)™ + (Avl|llp, /)™ ] dex

90/ Po
] do

<@Kyqappp/ [Tarnt] [ s pap

q1/p
} dua

00 N
+@Kygalp [Tarnt] [T oty g

1 o qi/pj
/
Z 2K qu] 9j P]/O [/0 %(N,ﬁ)dﬁ]
where xo and X1 denote the characteristic functions of {(N,) : B > N}
and {(N,B) : B< N},

$i(N, B) = x;(N, B)al==Dri/9igri=1 £, (B).

Since gq;/p; = 1, we may apply Minkowski’s inequality for integrals to
obtain

” OO@(N,ﬁ)dﬁ e da < ” oo([)j(N,’B)qj/Pfd[x i ap
0 0 0 0
(1.26)

Since (1.24) is true for all « > 0 and N > 0, we may take N to depend on
a, say N = (a) or « = 7~ 1(N) for some bijective map <. In addition, we

da, (1.25)

q9;/pj
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have

/oc>o [/000 Qbo(N,ﬁ)qo/pOda} po/q0 "

= /Ooo [/OOO XO(N,ﬁ)Oé(q_”’O_l)dlx} po/4o BP=1f,(B)dp. (127)

If g1 > qo, then q — qo is positive. Therefore, we need to assume that
v(a) is increasing with respect to a in order to make the inner integral
of the above converge. Then, the inequality B > () is equivalent to
a < v~ 1(B). Thus, we obtain

00 771(,3) (3—g0—1) Po/do 1
(1.27) = /0 /0 a0 Vdg|  prlf(B)dp

—(g—q0)/m [Ty () g (Bdp. (129

Since we expect to control it by ||f||,, in view of Theorem 1.17, we may
take the inverse map ! such that

(7*1(5))(%%)?0/%[310071 — 5;7*1,
ie.,
q0(p=po)
7—1(5) = Brola=ao) ,
It follows from the equations defining p and g that

s_boa—q) _p =) _pla—a) _ pig—q)

Qop—ro) gl pt-p") g'p'-pH) @lpr—p)
(1.29)

where ¢ is positive for the case g1 > go, and let T = 1/0, then v~ 1(B) =
B*, namely, we may choose N = a“. Thus, it follows

(1.28) =(g —q0) 7/ [ B £ (B = I — ol /£l

On the other hand, if g1 < qo, then g — go and ¢ are negative, and the
inequality B > a” is equivalent to « > B, so as above, we obtain

(1.27) = /Ooo [/OO aq%ldzx} Po/ 4o [Bpoflf*([g)dﬁ

(g —q0) "/ [ B (BB
g = gol P/ mp Y £

A similar calculation shows that

0o 0o pi/q
LT o pymman] ™ dp = =l
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Combining these results with (1.25) and (1.26), we see that
1/q

1
sup{[[Tfllg < Ifllp =1} < 4, =2Kq"" LZ A (pi/ p)"Plg — ;7!
=0

However, since |T(Af)| = |A||Tf], this implies that ||Tf|; < A,||f]|, for
all f € LP(X), and we are done.

It remains to be shown how to modify this argument to address the
exceptional cases g = oo or q; = co. We distinguish three cases by notic-
ing the condition p; < g;.

Case I: p; = g1 = 00 (s0 po < o < ). Instead of taking N = a7 in the
decomposition of f, we take N = a/A;. Then, ||Thy||e < A1||hn]e < &,
so (Thy)«(x) = 0, and we obtain (1.25) with ¢; = 0. The same argument
as above then gives

_ 114
ITflly < 2K [qAP AT (po/ )" Plg — a0 7| " I£

Case II: pg < p1 < 00, o < g1 = oo. Again, the idea is to choose
N so that (Thy)«(«) = 0, and the proper choice is N = («/d)” where
d = Ai[p1|fllL/p]V/Pr and ¢ = p1/(p1 — p) (the limiting value of the o
defined by (1.29) as g1 — 0). Indeed, since p; > p, we have

N
I Thn 18 <AT Wil = A7 pr [ =1 £ (@)da
o (N a1p
<APpNe e [ar (e = AP EL[S]7 I = e

As in Case I, then, we find that ¢; = 0 in (1.25) and the integral involving
¢o is majorized by a constant A, when |/ f||, = 1, which yields the desired
result.

Case III: pg < p1 < o0, g1 < go = co. The argument is essentially the
same as in Case II, except that we take N = (a/d)” with d chosen so that

(Tgn)- () = 0. Q

A less superficial generalization of the theorem can be given in terms
of the notation of Lorentz spaces, which unifies and generalizes the usual
L? spaces and the weak-type spaces. For a discussion of this more general
form of the Marcinkiewicz interpolation theorem see [SW71, Chapter V]
and [BL76a, Chapter 5].

Exercises

Exercise 1.1. Prove Theorem 1.8.

Exercise 1.2 (Holder’s inequality for weak spaces[Gral4a, Exercise 1.1.15]).
Let f; be in LI of a measure space X where p; € [1,00) and 1 < j < k.
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Let
1 1 1

P P1 Pk
Prove that

_ k 1/p; k
Ifie fille < p/7 (Hm DT e |-
j=1 j=1

Take | fil| ;7= = 1 for all j. Control (f;--- fx)«(a) by

Il >a/si}) + -+ u({lfieal > se2/se1}) + p({1fel > si-1})
S(s1/)Pr + (s2/51)P> 4 -+ - + (Sk—1/5k—2) Pt + (1/551)P".
Set x1 = s1/a, xp = s2/s1, -+, xx = 1/s;_1. Minimize x}' + - - - +x,€"
subject to the constraint x; - - - x = 1/a.
Exercise 1.3 (Normability of LP** for p > 1[Gral4a, Exercises 1.1.11(a), 1.1.12]).

Let (X, jt) be a o-finite measure space and let 1 < p < c0. Pick 0 <r < p
and define

Ifllm = sup ey ( !f!rd;t)},

0<p(E)<oo
where the supremum is takes over all measurable subsets E of X of finite
measure.

(i) Show that for E C X with u(E) < oo,
r p 1-7 r
< ™
/Elf(X)l dp(x) < p—r”(E) PAf 2o
and then

1
WAl < (525) 11m

for all f in LP°(X, u). (It is not needed that X is o-finite here.)
(ii) Prove that for every measurable function f on (X, u),

1Al < ANF o

(iii) Show that LP*°(X, i) is normable when p > 1, i.e., there is a norm on
the space equivalent to || - || Lre.

(iv) Use the characterization of the L7* quasinorm obtained in parts (i)
and (ii) to prove Fatou’s lemma for this space: For all measurable
functions g, on X, we have

hﬁr_l)glf |gn]

P <G 1i£r_1>iolc‘>1f [gn | Lpeo

for some constant C,, that depends only on p € [1,0).

Part (): Use #(EN {f > a}) < min(u(E), a P f[l~). Part (i)
Write X = Uy Xk with p(Xj) < co and take E = {|f| > a} N X;.

Exercise 1.4. Prove Proposition 1.24.
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Exercise 1.5. Let p € (0,00]. If f € LP® and u(f # 0) < oo, then f € L1 for
all g € (0,p). In particular, for measure space (X, .#, u),

(X)) <oo=Vq<p, L C L.
On the other hand, if f € LP*° N L®, then f € L7 for all ¢ > p.

Exercise 1.6. [Fol99, Exercise 6.42] Prove the Marcinkiewicz interpolation
theorem in the case py = p;.

Setting p = po = p1, we have (Tf).(a) < (Aol/fllp/a)™ and
(Tf)s(a) < (A1]|fllp/a)T. Use whichever estimate is better, depending
on &, to majorize

g [T (@)da.

Exercise 1.7. Write out the proof of the Marcinkiewicz interpolation theo-
rem for two special cases: (i) po=qo =1, p1=q1 =2,and (ii) po = q0 =1,
P1 = q1 = .

Exercise 1.8. [Zh099, Example 3, on p.89] Let (X, ) and (Y, v) be two o-

finite measure spaces and g € (1,0). Assume that K(x, y) is a measurable
function on X x Y satisfying

IK(x,)||ee < C, ae. x€X,

IK(-,y) || < C, ae.yeYy.
To show that if f € LP(Y) for p € [1,00), then the integral

Tf() = | Kx)f(nav(y)

converges forae. x € X,andfor1 < p<r<ooand 1/p+1/g=1/r+1,
and T is of weak type (1,9) and of type (p,r).

Exercise 1.9. [Gral4a, Exercise 1.3.2] Let (X, u) and (Y, v) be two o-finite
measure spaces. Let 1 < p < r < co and suppose that T is a linear operator
defined on the space L'(X) + L®(X) and taking values in the space of
measurable functions on Y. Assume that T maps L!(X) to LY*(Y) with
norm Ag and L'(X) to L"(Y) with norm A;. Prove that T maps L?(X) to
LP(Y) with norm at most

_1 - .
Clp—1) vA, " A, ™.

First interpolate between L! and L’ using the Marcinkiewicz in-

1
terpolation theorem and then interpolate between L7 and L’ using the
Riesz-Thorin interpolation theorem.



Maximal Functions and Calderon-Zygmund
Decomposition

Maximal functions appear in many forms in harmonic analysis, such
as the Hardy-Littlewood maximal function, dyadic maximal function, and
nontangential maximal function [CM85; CM86]. One of the most impor-
tant of these is the Hardy-Littlewood maximal function. It plays an im-
portant role in understanding, for example, the differentiability properties
of functions, singular integrals and partial differential equations. It often
provides a deeper and more simplified approach to understanding prob-
lems in these areas than other methods. We also introduce the Calderén-
Zygmund decomposition as an application of maximal functions.

§2.1 Hardy-Littlewood maximal function

First, we consider the differentiation of the integral for one-dimensional
functions. If f is given on [a, b] and integrable on that interval, we let

:/axf(y)dy, x € [a,b].

To address F/(x), we recall the definition of the derivative as the limit of
F(x+h)—F(x)

the quotient ————= when & tends to 0, i.e.,
F/(x) = lim F(x+h)—F(x)
h—0 h '

We note that this quotient takes the form (e.g., in the case i > 0)

1 pxth 1
pl fwdv = [y

where we use the notation I = (x,x + &) and |I| for the length of this
interval.

At this point, we pause to observe that the above expression in the
“average” value of f over I and that in the limit as |I| — 0, we might expect
that these averages tend to f(x). Reformulating the question slightly, we
may ask whether

m—/f dy = f(x

o |1]
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holds for suitable points x. In higher dimensions, we can pose a similar
question, where the averages of f are taken over appropriate sets that
generalize the intervals in one dimension.

In particular, we can take the sets involved as the open ball B(x, ) of
radius 7, centered at x, and denote its measure by |B(x, r)|. It follows

/ o Wy = ), forae w2 2.1)

lim ——
20 |B(x, 1) /3

Let us first consider a simple case: when f is continuous at x, the
limit does converge to f(x). Indeed, given ¢ > 0, there exists a § > 0 such
that |f(x) — f(y)| < e whenever |x —y| < 4. Since

1
f<X>—M/BW)f(y) Y= Bl ‘/“ f(y))dy,

we find that whenever B(x,r) is a ball of radius r < 4, then

1
)~ 5T /B(mf(y)dy o ,/M Fy)ldy <,

as desired.

In general, for this “averaging problem” (2.1), we shall have an affir-
mative answer. To study the limit (2.1), we consider its quantitative analog,

where “lir%” is replaced by “sup”, which is the (centered) maximal func-
r= r>0
tion. Since the properties of this maximal function are expressed in terms

of relative size and do not involve any cancellation of positive and negative
values, we replace f by |f].

A measurable function f on R" is called to be locally integrable, if
for every ball B the function f(x)xg(x) is integrable. We shall denote by
Ll .(R") the space of all locally integrable functions. Loosely speaking, the
behavior at infinity does not affect the local integrability of a function. For
example, the functions e/*| and |x|~1/? are both locally integrable but not

integrable on IR".

4 A
Definition 2.1. If f is locally integrable on IR", we define its maximal

function Mf : R" — [0, 0] by

Mf(x) = sup Bx7) |/xr y)|ldy, xeR", (2.2)

r>0
where the supremum takes over all open balls B(x,r) centered at x.
Moreover, M is also called the centered Hardy-Littlewood maximal
operator.

It is immediate from the definition that
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Theorem 2.2. If f € L*(R"), then Mf € L®(R") and
[Mflloo < [1fleo-

Sometimes, we will define the maximal function with cubes in place
of balls. If Q(x,7) is the cube [x; — 7, x; + r]", define

1
Mf(x) =sup s [ If@)ldy, v e R, @3

r>0
When n =1, M and M’ coincide. If n > 1, then

V2 "MF(x) < M'f(x) < V27 "n"2Mf(x). (2.4)

Thus, the two operators M and M’ are essentially interchangeable, and we
will use whichever is more appropriate, depending on the circumstances.

In addition, we can define a more general maximal function

" _ L
M f(x) = ségr; 0l /Q |f(v)ldy, (2.5)

where the supremum is taken over all cubes containing x. Again, M" is
pointwise equivalent to M; indeed, V,2"Mf(x) < M"f(x) < V,n"/?Mf(x).
One sometimes distinguishes between M’ and M" by referring to the for-
mer as the centered operator and the latter as the noncentered maximal
operator.

Alternatively, we could define the noncentered maximal function with
balls instead of cubes:
Wi (x) = sup = [ | ()ldy
B>x |B | B
at each x € R". Here, the supremum is taken over all open balls B in R"
that contain the point x.

Clearly, Mf < Mf < 2"Mf and the boundedness properties of M are
identical to those of M.

Remark 2.3. (i) Mf is defined at every point x € R" and if f = g a.e,
then Mf(x) = Mg(x) at every x € R".

(ii) It may be well that Mf = oo for every x € R". For example, let
n=71and f(x) = x2.

(iii) There are several definitions in the literature that are often
equivalent.

Next, we state some immediate properties of the maximal function.
The proofs are left to interested readers.

Proposition 2.4. Let f,g € L (R"). Then

loc

(i) Positivity: Mf(x) > 0 for all x € R™.
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(i) Sublinearity: M(f + g)(x) < Mf(x) + Mg(x).
(iii) Homogeneity: M(af)(x) = |a|Mf(x), « € R.
(iv) Translation invariance: M(t,f) = (tyMf)(x) = Mf(x —y).

We are now ready to obtain some basic properties of maximal func-
tions. We need the following simple covering lemma.

4 )
Lemma 2.5 (Wiener’s Vitali-type covering lemma). Suppose B =

{Ba,---,BN} is a finite collection of open balls in R". Then, there exists
a disjoint subcollection Bj, - - -, Bj, of B such that
k
U By| <3" Z |Bji|‘
(=1 i=1

\. A

N

Proof. The argument we give is constructive and relies on the following
simple observation:

Suppose B and B’ are a pair of balls
that intersect, with the radius of B’ being not
greater than that of B. Then B’ is contained
in the ball B that is concentric with B but
with 3 times its radius. (See Fig 2.1.)

As a first step, we pick a ball B; in B
with maximal (i.e., largest) radius and then
delete from B the ball B;, as well as any balls Figure 2.1: The balls B
that intersect le. Thus, all the balls that are and B
deleted are contained in the ball B, concentric with B; but with 3 times
its radius.

The remaining balls yield a new collection B’, for which we repeat the
procedure. We pick Bj, and any ball that intersects B;,. Continuing this
way, we find, after at most N steps, a collection of dls]omt balls B, B;

, B;

=
Jk*

Finally, to prove that this disjoint collection of balls satisfies the in-
equality in the lemma, we use the observation made at the beginning of
the proof. Let Bji denote the ball concentric with B;, but with 3 times its
radius. Since any ball B in B must intersect a ball B;, and have a radius

equal to or smaller than B;,, we must have g B, 20 B C B, thus,

k k
U Bl < U Bii| < ) IBjl =3" ) [Bjl.
i=1 i=1

In the last step, we have used the fact that in R" a dilation of a set by 6 > 0
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results in the multiplication by 6" of the Lebesgue measure of this set. Q1

With Wiener’s Vitali-type covering lemma, we can state and prove the
main results for the maximal function.

e ™
Theorem 2.6 (The maximal function theorem). Let f be a given function

defined on R".
(@) If f € LP(R"), p € [1, 0], then the function M is finite a.e.
(i) If f € LY(IR"), then for every a > 0, M is of weak type (1,1), i.e.,

o MF() > a}l < 2 i
(iii) If f € LF(R"), p € (1,00], then Mf € LP(R") and

[1MFllp < Apllfllp,
where A, =2(3"/(p — 1)) for p € (1,00) and A = 1.

\. .

—~

Proof. We first prove the second one, i.e., (ii). Since Mf < Mf < 2"Mf,
we only need to prove it for M. Denote for a > 0

E, = {x:Mf(x) >oc},

we claim that the set E, is open. Indeed, from the definitions of M f and
the supremum, for each x € E, and 0 < ¢ < Mf(x) — a, there exists an
open ball By > x such that

51 o )y > M) —e >

Then for any z € By, we have M f(z) >, and thus, By C E,. This implies
that E, is open.
Therefore, for any x € E, and the above open balls, we have

1
B < [, [f®)ldy. @6

Fix a compact subset K of E,. Since K is covered by U,cg, By, by the Heine-
Borel theorem, we may select a finite subcover of K, say K C U?]::l By.
Lemma 2.5 guarantees the existence of a subcollection le, cee, B]'k of dis-
joint balls with

N k
U By < 3" Z |B]'Z.|. (2.7)
=1 i=1

-+, Bj, are disjoint and satisfy (2.6) as well as (2.7), we

Since the balls B;,, -
find that
N

U

(=1

K| <

k 3 k
<TYIBI<TY [ 1wy
i=1 i=1""ji
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371
== Wiy <2 [ 17wy

Uizt Bj
Since this inequality is true for all compact subsets K of E,, taking the
supremum over all compact K C E, and using the inner regularity of the
Lebesgue measure (i.e., Theorem 0.5), we deduce the weak type inequality
(ii) for the maximal operator M. It follows from M f < Mf that

[ M) > o} < [ M) > bl < 2 [ 1F()

The above proof also gives the proof of (i) for the case when p = 1.
For the case p = oo, by Theorem 2.2, (i) and (iii) are true with A, = 1.

Now, by using the Marcinkiewicz interpolation theorem (according
to the case p; = g1 = o0 and py = qo = 1 in its proof) between L' — L1
and L* — L%, we can simultaneously obtain (i) and (iii) for the case
p € (1,00). Q

Now, we make some clarifying comments.

Remark 2.7. (1) 1t is useful for certain applications to observe that

1\
A, =0 <P—1> , asp— 1

(2) It is easier to use M in proving (ii) than M, and one can see the
proof that E, is open.

§2.2 Differentiation theorems

We introduce some notation that will be used frequently hereafter: If
@ is any function on R” and ¢ > 0, we set

Pe(x) = e "p(x/e). (2.8)

We observe that if ¢ € L'(IR"), then [ ¢, is independent of ¢ by a change
in variables,

/]Rn pe(y)dy = /an e "p(y/e)dy = /}Rn o(y)dy.

Moreover, the “mass” of ¢. becomes concentrated at the origin as ¢ — 0.

Theorem 2.8. Suppose ¢ € L'(R") with [, ¢(x)dx = a. Let f € C.(R").
Then,

lim e * f(x) = af(x).

e—0t

Proof. Since @g * f(x) —af(x) = [pa(f — f(x))@e(y)dy. Since f is
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continuous at x, for any ¢ > 0, there exists a 6 > 0 such that
o
flx—y)—flx)] < ol
?ll1
whenever |y| < 6. Noticing that | [, ¢(x)dx| < | ¢[/1, we have

o
g f() —af ()| <por [ lgel)ldx+20f e [ Ipe()le

[x|=6
o
<porleli+20fls [ )iy
el ly|>/e
=0 + 2| flloo L.
However, I, — 0 as ¢ — 0. This proves the result. Q

By the density (cf. [Fol99, Propositions 7.9 and 4.35]) of C, in LF (1 <
p < o) and Cp (with L* norm), we immediately have the following result.

Theorem 2.9. Suppose ¢ € L'(R") and [, ¢(x)dx = a. If f € LP(R"),
1<p<ooorfeC(R") CL®(R"), then for 1 < p < o0

| f * @e —afl|l, =0, ase — 0.

In most applications of the preceding theorem, one has a = 1, al-
though the case a = 0 is also useful. If a = 1, {@, }e~0 is called an approxi-
mate identity, as it furnishes an approximation to the identity operator on
L? by convolution operators.

The Hardy-Littlewood maximal function is an important tool that can
be used to study the identity operator. At first, what could be easier to
understand than the identity? We will illustrate that the identity opera-
tor can be interesting by using the Hardy-Littlewood maximal function to
prove the Lebesgue differentiation theorem, i.e., the identity operator is a
pointwise limit of averages on balls.

The Hardy-Littlewood maximal function Mf is obtained as the supre-
mum of the averages of a function f with respect to the dilates of the kernel
k=Vv1 XB(o,1) in R". Indeed, we have

1
Mf(x) =sup o [ 1f(x = y)lxson (v/e)dy
n IRH

e>0

= sup(| f| ke ) (x).

e>0

Note that the function k = V! XB(0,1) has integral 1, and the convolution
with k, is an averaging operation where we have used the notation in (2.8).
However, it is not hard to see that many radially symmetric averaging
processes can be estimated by using M. Before stating the results, given a
function ¢ on R", we define the least decreasing radial majorant of ¢ by
¢"(x) = sup [¢(y)]- 2.9)

ly|>|x|
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It is obvious that ¢ € L! if ¢* € L1

Theorem 2.10. If ¢ has the least decreasing radial majorant ¢* € LL. then
for f € LL (R"),
sup |(f * ¢e) (1) < [l¢”[[1Mf (x)-

e>0

Proof. With a slight abuse of notation, let us write ¢*(r) = ¢*(x), if

|x| = r; it should cause no confusion since ¢*(x) is anyway radial.
Now, observe that ¢*(r) is decreasing and then fr/2<\x\<r p*(x)dx >

¢*(r) fr/2<|x|<r dx = c@*(r)r". Therefore, the assumption ¢* € L! proves
that r"¢*(r) — 0 as r — 0 or r — co. We need to show that

(f * fP?f)(x) < AMf(x), (2.10)
where f > 0,e > 0and A = [, ¢*(x)dx.

Since (2.10) is clearly translatlon invariant w.r.t f and also dilation
invariant w.r.t. ¢* and the maximal function, it suffices to show that

(f *97)(0) < AMF(0). (2.11)
In proving (2. 11) we rnay Clearly assume that Mf(0) < oco. Let us
write A(r) = [g,1 f (x'), and A(r fx‘<rf x)dx, so

:/0 Snilf(tx/)dO'(x/)t"—ldt :/0 /\(t)tn_ldt, ie. A/(I’) _ )\(7’)1’"—1,
We have
f* (P / f X)dx = /OOO -1 Sn_lf(rx/)q’*(r)dcf(x’)dr

—/ "IN () @* (r)dr = lim NA(r)q)*(r)r”_ldr
= lim i A’(r)go*(r)dr
—tim {[a()e" ()2 - [ AG)g ()}

Since A(r) < V,r"Mf(0), and the fact r"¢*(r) — 0asr — 0 or r — co, we
have

0< I\l}im A(N)¢*(N) < V,Mf(0) hm N"¢*(N) =0,
— 00 — 00
which implies I\l{im A(N)p*(N) = 0 and 51m11ar1y hr%A(s)q)*(e) = 0.
B e—
Thus, by integration by parts, we have

(o]

(F97)0) = [~ A= (1)) < VuMF(0) [ rd(—g"(7)
=nV,Mf(0) /Ooo @*(r)r"dr = Mf(O)/ ¢*(x)dx,

R
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where two of the integrals are of the Lebesgue-Stieltjes type since ¢*(r)
is decreasing, which implies 9,¢*(r) < 0, and nV,, = w,_1. This proves
(2.11) and then (2.10). a

Theorem 2.11. If ¢ has the least decreasing radial majorant ¢* € L', and
f € LP for some p € [1,00]|, then for a.e. x € R",

hrn @e * f(x / pdx.

Proof. The proofs for p = 1,1 < p < o0 and p = oo are slightly different
from each other.
Leta = [ @dx and
0(f)(x) = limsup [ge * f(x) —af(x)].
e—0t

Our goal is to show that 6(f) = 0 a.e. Observe that by Theorem 2.8, we
have for g € C.

0(f) =6(f —g)-

Additionally, according to Theorem 2.10, there is a constant C such that

0(f —&)(x) <lallf(x) — g(x)| + CM(f — &) (x).
Thus, if f € L! and « > 0, we have by Chebyshev’s inequality and Theo-
rem 2.6 (ii) that for any g € C,

[{x:0(f)(x) > a} [ <[{x:fa(f —&)(x)] > a/2} |
+ [ {x: CM(f = 8)(x) > a/2} |

C
<<If ~glh.

Since €. is dense in L!, we can approximate f in the L! norm by functions
g € €. and conclude that | {x: 0(f)(x) > a} | = 0. Since it holds for each
a > 0, then we obtain | {x: 6(f)(x) > 0} | =0.

If feLP,1< p < oo, we can argue as above and use the strong type
(p, p) estimates of the maximal operator, i.e., Theorem 2.6 (iii) to conclude
that for any g € €,

{2 00)() > a} | < Slf gl

Again, C. is dense in L7 if p < oo; thus, we can obtain 6(f) = 0 a.e.
Finally, if p = oo, we claim that for each N € IN, the set
{x:0(f)(x) > 0and |x| < N} has measure zero. This implies the theo-
rem. To establish the claim, we write f = xpon)f + (1 — XBo2n))f =:
fi+ f2. Since f1 € L for p < oo, we have 6(f1) = 0 a.e. It is easy to see
that 6(f2)(x) = 0 if |x| < 2N. Since 0(f)(x) < 0(f1)(x) + 0(f2)(x), the
claim follows. Q

The standard Lebesgue differentiation theorem is a special case of the
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result proved above.

Theorem 2.12 (Lebesgue differentiation theorem). If f € Ll (R"), then

loc

. 1
rlir(r}+ 7\3(9{,7)\ /B(x’r)f(y)dy = f(x), fora.e. x.

§2.3 Calderén-Zygmund decomposition

Applying the Lebesgue differentiation theorem, we give a decompo-
sition of R", called the Calderén-Zygmund decomposition, which is ex-
tremely useful in harmonic analysis.

4 )

Theorem 2.13 (Calder6n-Zygmund decomposition of R"). Let f &
LY(R") and a > 0. Then, there exists a decomposition of R" such that
(i) R"=FUQ, FNOQ = .
@) |f(x)| < aforae x €F.
(iif) Q) is the union of cubes, Q) = Uy Q, whose interiors are disjoint and
edges parallel to the coordinate axes, such that for each Qy

a < |Q1k| /Qk |f(x)]dx < 2"a. (2.12)

\ V.

Proof. We decompose R" into a mesh of equal cubes Q,((O) k=1,2,--+),
whose interiors are disjoint and edges parallel to the coordinate axes and
whose common diameter is so large that

1
o /Q o [f@)ldx < a, (2.13)
k k

since f € L1.
Split each Q,((O) into 2" congruent cubes which we denote by QS),
k=1,2,---. There are two possibilities:

. 1 1
either m /Q(l) |f(x)|dx < a, or ’Q(l)|/Q(l> |f(x)]dx > a.
k k k k

In the first case, we split Q]((l) again into 2" congruent cubes to obtain Q}({z)
(k=1,2,--). In the second case, we have

1 1
k< [ fldx < [ If(x)ldx < 2
Q] /e 2-7|Q\"| /"

in view of (2.13), where Q,((l) is split from Q,SCO), and then we take Q,(Cl) as
one of the cubes Q.
A repetition of this argument shows that if x ¢ Q := J;Z ; Qk then
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x e Ql(cf) (j=0,1,2,---) for which

|Qg)| —~0asj— oo, and ———

L fldy <o =010

Q]
Thus, |f(x)| < a a.e. x € F = QF by a variation of the Lebesgue differen-
tiation theorem. Thus, we complete the proof. Q

We now state an immediate corollary.

e p
Corollary 2.14. Suppose f, «, F, Q) and Qy have the same meaning as in
Theorem 2.13. Then, there exist two constants A and B (depending only on

the dimension n), such that (i) and (ii) of Theorem 2.13 hold and
A
(@) |Qf < EHle’

1
— dx < Ba.
) i Jo V1o <3

\. .

Proof. From (2.12), it follows that

1 1
Al =Yled < [ 1f@lar < il

This proves the corollary with A =1 and B = 2". a

It is possible, however, to give another proof of this corollary without
using Theorem 2.13 from which it was deduced, but by using the maximal
function theorem (Theorem 2.6) and the theorem about the decomposition
of an arbitrary open set as a union of disjoint cubes as follows. This more
indirect method of proof has the advantage of clarifying the roles of the
sets F and Q) into which R" was divided.

The decomposition of a given set into a disjoint union of cubes (or
balls) is a fundamental tool in the theory described in this chapter. By
cubes, we mean closed cubes; by disjoint we mean that their interiors are
disjoint. We have in mind the idea first introduced by Whitney and for-
mulated as follows.

( )
Lemma 2.15 (Whitney decomposition). Let F be a nonempty closed set

in R" and Q) be its complement. Then, there exists a countable collection of
cubes F = {Qx } 2., whose sides are parallel to the axes, such that
6)) Lﬁoﬁ Qk:Q:FC; .
(i) QjNQx = D if j # k, where Q denotes the interior of Q;
(iii) there exist two constants ci,co > 0 independent of F (in fact, we may
take c; = 1 and ¢o = 4.) such that

cpdiam (Qy) < dist (Qg, F) < cp diam (Qk).
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Proof.
Consider the lattice i
of points in IR"” whose !
|
I
|

coordinates are inte-

gers. This lattice de- :
termines a mesh .#, _:
which is a collection :
of cubes, namely, all :
cubes of unit length, -
whose vertices are '
points of the above Figure 2.2: Meshes and layers: .# with dashed
lattice. The mesh .# lines; .#, with dotted lines; .#_; with solid
leads to a two-way in- lines

finite chain of such meshes {.#;}%, with .#} = 27%.#,.

Thus, each cube in mesh .# gives rise to 2" cubes in mesh .#1 by
bisecting the sides. The cubes in mesh .#; each have sides of length 2%
and are thus of diameter /n27*.

In addition to the meshes .#, we consider the layers (), defined by
Qp = {x 27K < dist (x, F) < 02_k+1} ,

where ¢ is a positive constant that we shall fix momentarily. Obviously,
O =UrZ o Q.

Now, we make an initial choice of cubes and denote the resulting
collection by Fy. Our choice is made as follows. We consider the cubes
of the mesh .#; (each cube is of size approximately 27¥) and include a
cube of this mesh in J if it intersects (), (the points of the latter are all
approximately at a distance of 27 from F). Namely,

?QZU{QGE//](ZQQQ](#Q}.
k

For an appropriate choice of ¢, we claim that
diam (Q) < dist(Q,F) < 4diam (Q), Q € . (2.14)

Let us prove (2.14) first. Suppose Q € .#; then diam (Q) = /n27*. Since
Q € Ty, there exists an x € QN Q. Thus, dist(Q,F) < dist(x,F) <
c27¥1 and dist (Q,F) > dist(x,F) — diam (Q) > c27% — /n27k. If we
choose ¢ = 2y/n, we obtain (2.14). Then, by (2.14), the cubes Q € F are
disjoint from F and clearly cover Q). Therefore, (i) is also proven.

Note that the collection Fy has all our required properties, except that
the cubes in it are not necessarily disjoint. To finish the proof of the the-
orem, we need to refine our choice leading to Jy, eliminating those cubes
that were truly unnecessary.
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We require the following simple observation. Suppose that Q; and Q>
are two cubes (taken from meshes .#, and .#,, respectively). Then, if
Q1N Q2 = g, one of the two must be contained in the other. (In particular,
Q1 C Qo ifky = k2.)

Start now with any cube Q € J, and consider the maximal cube in
Fo that contains it. In view of the inequality (2.14), for any cube Q' € F
that contains Q € F, we have diam (Q') < dist(Q/,F) < dist(Q,F) <
4 diam (Q). Moreover, any two cubes Q' and Q" that contain Q have obvi-
ously a nontrivial intersection. Thus, by the observation made above each
cube, Q € JFp has a unique maximal cube in JFy that contains it. By the
same taken, these maximal cubes are also disjoint. We let J denote the
collection of maximal cubes of Fy. Then, obviously,

(i) Uger Q =10,
(ii) The cubes of J are almost disjoint,
(iii) diam (Q) < dist(Q,F) < 4diam (Q), Q € .

Therefore, we complete the proof. Q

Another proof of Corollary 2.14. We know that in F, |f(x)| < , but this fact
does not determine F. The set F is, in effect, determined by the fact that
the (uncentered) maximal function satisfies M f(x) < « on it. Therefore,

we choose F = {x :Mf(x) < tx} and Q = E, = {x cMf(x) > oc}. Then,
by Theorem 2.6 (ii), we know that || < 2|/ f||. Thus, we can take A = 3".

From the proof of Theorem 2.6, we know that (2 is open, and then F =
)¢ is closed. Then, we can choose cubes Q; according to Lemma 2.15, such
that Q) = Uy Qr, and whose diameters are approximately proportional to

their distances from F. Let Qj then be one of these cubes, and p; € F such
that

dist (F, Qk) = dist (pk, Qx)-

Let By be the smallest ball whose center is p; and which contains the
interior of Qy. Let us set
| B
k=TT
e
We have, because py € {x : Mf(x) < tx}, that

~ 1 1
ua>M 2—/ x)|dx > ——— x)|dx.
f(pk) |Bk’ B, ’f( >| ’)/k|Qk| o ’f( )’
Thus, we can take an upper bound of -y, as the value of B.

The elementary geometry and inequality (iii) of Lemma 2.15 then
show that

radius(By) <dist (px, Qx) + diam (Qx) = dist (F, Qx) + diam (Qy)
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<(c2 4+ 1) diam (Qy),
and so
|Bx| =V (radius(Bg))" < Viu(cp +1)"(diam (Qx))"
=Va(e2 +1)"n""2(Qyl,

since |Qi| = (diam (Qy)/+/n)". Thus, v, < Vy(ca +1)"n"/2 for all k. Thus,
we complete the proof with A = 3" and B = V,,(c, + 1)"n"/2. a

Remark 2.16. Theorem 2.13 may be used to give another proof of the fun-
damental inequality for the maximal function in part (ii) of Theorem 2.6.
(See [Ste70, §5.1, p.22-23] for more details.)

The Calderén-Zygmund decomposition is a key step in the real anal-
ysis of singular integrals. The idea behind this decomposition is that it is
often useful to split an arbitrary integrable function into its “small” and
“large” parts, and then use different techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an alti-
tude a, we write f = ¢+ b, where g is called the good function of the
decomposition since it is both integrable and bounded; hence the letter g.
Function b is called the bad function since it contains the singular part of f
(hence the letter b), but it is carefully chosen to have a mean value of zero.
To obtain the decomposition f = ¢ + b, one might be tempted to “cut” f
at the height a; however, this is not what works. Instead, one bases the
decomposition on the set where the maximal function of f has height «.

Indeed, the Calderén-Zygmund decomposition on R may be used to
deduce the Calderén-Zygmund decomposition for functions. The latter is
a very important tool in harmonic analysis.

( )
Theorem 2.17 (Calderén-Zygmund decomposition for functions). Let

f € LY(R") and a > 0. Then there exist functions ¢ and b on R" such that
f=g+band
@ llgll < [[fll and [|g]leo < 2"a.
(i) b = Y. bj, where each b; is supported in a dyadic cube Q; satisfying
j
fQj bj(x)dx = 0 and ||bj|1 < 2"*'a|Qj|. Furthermore, cubes Q; and
Qg have disjoint interiors when j # k.
i) £1Qj| <a|flh
j
\\ J
Proof. Applying Corollary 2.14 (with A =1 and B = 2"), we have
)R"=FUQ, FNQ =g,
2) |f(x)] <&, ae x€F;
3) Q= U}'il Qj, with the interiors of Q; mutually disjoint;
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9)10] < a1 g f(x)ldx, and & < 2 [ £(x)|dx < 2"
From 3) and 4), it is easy to obtain (iii).

Now define
1
b~:< ——/ dx> §
j f |Q]‘ f XQ

b= Zb and ¢ = f —b. It is clear that f 0 x)dx = 0. Consequently,

J, il < [ 17lax+ Q) @ J, fGax
<2 [ If)ldx < 27 alQyl,

which proves that [|bj]|; < 2"*'a|Qj|. Thus, (ii) is proved with the help of
3).

Next, we need to obtain the estimates on g. Write R" = U]- Q]- UF,
where F is the set obtained by Corollary 2.14. Since b = 0 on F and
f—b= |Q| fQ x)dx on Qj, we have

f, on F,

&= )
!Q]\ Q]f( x)dx, on Q;.

On the cube Q;, g is equal to the constant o Q| fQ x)dx, and this is

bounded by 2"« by 4). Then, by 2), we can obtain || g||OO < 2"a. Finally, it
follows from (2.15) that [|g||1 < ||f]/1. This completes the proof of (i) and
then of the theorem. Q

(2.15)

As an application of the Marcinkiewicz interpolation theorem and the
Calderén-Zygmund decomposition, we now prove the weighted estimates
for the Hardy-Littlewood maximal function (cf. [FS71, p.111, Lemma 1]).

r D
Theorem 2.18 (Weighted inequality for Hardy-Littlewood maximal

function). For p € (1,00), there exists a constant C = Cy,p such that,
for any nonnegative real-valued locally integrable function ¢(x) on R", we
have, for f € LL (R"), the inequality

loc

| Mf)Pedx<C [ If @I Medx.  @16)

\, W,

We first prove the following lemma.

Lemma 2.19. Let f € LY(R") and a > 0. If the sequence {Qy} of cubes is
chosen from the Calderén-Zygmund decomposition of R" (i.e., Theorem 2.13)
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for f and o > 0, then
{x e R": M'f(x) > 7"a} C | JQf,
k

where Q. = 2Qy. It follows
{x e R" : M'f(x) > 7"a}| <2") _|Qxl.
k

\\ v

Proof. Suppose that x & [J; Q. Then, there are two cases for any cube Q
with the center x. If Q C F := R"\ Uy Qx, then

o L ldx <a

If QN Qk # @ for some k, then it is easy to check that Q; C 3Q, and
U{Qe: N Q # 2} ©30.

k
E | el

Hence, we have

/Qlf(x)ldngQﬂF| £(x)|dx +

QNQ#2
<alQ+ ). 2"«|Q
QNQ#D

<w|Q| 4 2"a|3Q)|

<7"a|Q|.
Thus, we know that M'f(x) < 7"« for any x & U, Q;, which yields that

[{x e R": M'f(x) > 7"a}| < UQk <2") Q-
k

We complete the proof of the lemma. Qa

Proof of Theorem 2.18. Except when M¢(x) = co a.e., in which case (2.16)
holds trivially, Mg is the density of a positive measure ¢. Thus, we may
assume that M¢(x) < co a.e. x € R" and Mg(x) > 0. If we denote

do(x) = Me(x)dx and dv(x) = ¢(x)dx.
Then, by the Marcinkiewicz interpolation theorem, to obtain (2.16), it suf-
fices to prove that M is both of weak type (L*(c),L*(v)) and of weak

type (L'(c), L' (v)).
Let us first show that M is of weak type (L*(c), L®(v)). If || f|[~(0) =
«, then

/{xelR":f(x)|>a} Mo(x)dx = o({x e R" : |f(x)| > a}) = 0.

Since Mg@(x) > 0 for any x € R", we have [{x € R" : |f(x)| > a}| =0,
equivalently, |f(x)| < a a.e. x € R". Thus, Mf(x) < « ae. x € R"
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and then [{x : Mf(x) > a}| = 0 which implies that v({Mf(x) > a}) =
f{x:Mf(x)>{x} @(x)dx = 0 and thus || Mf||;~(,) < a. Therefore, || Mf||;~(,) <

£l o)
Let us turn to the proof of the weak type (L!(c),L!(v)). We need to

prove that there exists a constant C such that for any « > 0 and f € L!(0)

(x)dx =v({x € R" : Mf(x) > a})

/{xe]R”:Mf(x)>zx} ¢ (2.17)
—/ x)|Me(x)dx.

We may assume that f € L'(R"). In fact, if we take f; = |f[xp(o,), then

fr € LY(R"), 0 < fy(x) < fry1(x) for x € R* and ¢ = 1,2,---. By

élim fe(x) = |f(x)| and Exercise 2.9, we have

—00

{x e R": Mf(x) >a} = J{x e R" : Mfy(x) > a}.
14
Due to Mf(x) < ¢, M'f(x) with ¢, = 2"/V,, for all x € R". Applying
the Calderén-Zygmund decomposition on R" for f and a' = «a/(c,7"),
we obtain a sequence {Qy} of cubes satisfying

a<— )|dx < 2"
Q] Jo, FH)

By Lemma 2.19 and M" ¢ < Vnn”/zMgo, we have

x)dx
/{xe]R”:Mf(x)>zx} (P(

< d
/{xe]R”:M’f(x)>7”1x’} (P(x) *

< kQ*¢<x>dx<z /, s
\Z<!ri >< /'f 'dy>
(IQkI/ ix)

3 /Q F(y) | M p(y)dy

28"n""/2
114

< ¢, 14"

N

[ @) M)y,

Thus, M is of weak type (L!(c), L!(v)), and the inequality can be obtained
by applying the Marcinkiewicz interpolation theorem. Q
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Exercises

Exercise 2.1. Let f : R = R, f(x) = x(o1)(x). To calculate Mf, M'f, M" f
and Mf.

Exercise 2.2. [Gral4b, Exercise 2.1.13] Observe that the proof of Theorem 2.6
yields the estimate

i Up < 30 MFf > —1+l/p/~ J
l(Ff >} V7 <3V FF > 7 [ )y

for « > 0 and f locally integrable. Use the result of Exercise 1.3 (i) to prove
that the Hardy-Littlewood maximal operator M maps the space LP*°(R")
to itself for 1 < p < oo.

Exercise 2.3. [Zho99, Exercise 10, on p.75] Assume that f(x) > 0 is a lo-
cally integrable function. To show that for any x > 0, we have

x/:o ft(zt)dt < CMF(E), e (0,x).

Exercise 2.4. [Gral4a, Exercise 2.1.8] Prove that for any fixed 1 < p < oo,
the operator norm of M on L?(IR") tends to infinity as 1 — .

Let fo be the characteristic function of the unit ball in R”. Consider
the averages | By| ! [, fody, where By = B(3(|x| - \x]fl)ﬁ,%(]x\ + |x|71))
for |x| > 1.

Exercise 2.5. [Pey18, Exercise 1.3] Let f = xp(o,1) be the characteristic func-
tion of the unit ball in R". Show that, for |x| > 1, Mf(x) < C/(|x|] —1)",
where C > 0 is a constant. Conclude that, for p > 1, Mf € LP(R").

Exercise 2.6. [Pey18, Exercise 1.4] If f € L'(R") and f # 0, then Mf ¢
LY(R™).

Prove that Mf(x) > C/|x|" for |x| large enough, where C > 0 is a
constant.

Exercise 2.7. [Pey18, Exercise 1.12] Let E be a bounded subset of R". If
fIn™|f] € LY(R") and supp f C E, then

[ MF()dx <2[E[+C [ IF(0)] " [£(x)ldx,
where In™ t = max(Int,0).

Exercise 2.8 ((Gagliardo-Nirenberg-) Sobolev inequality). Let p € (1,n)
and its Sobolev conjugate p* = np/(n — p). Use the maximal function
theorem to prove that for f € Z(R"), we have

1A llp < CIVFlp,
where C depends only on 7 and p.
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Exercise 2.9. [Pey18, Exercise 1.6] Let f1, f2,- - , fm, - - - be a nondecreasing
sequence of nonnegative functions in L!(IR"). Let f be the pointwise limit
of fy. Show that, for all x € R",

MF(x) = lim Mfy(x).






Fourier Transform and Tempered Distributions

In this chapter, we introduce the Fourier transform and its elemen-
tary properties, approximate identities, the Schwartz space and its dual
space. We also give some characterizations of operators commuting with
translations and Fourier multipliers as a special class.

§3.1 Fourier transform

Now, we consider the Fourier transform of L! functions.

r 2
Definition 3.1. If f € L'(IR"), then its Fourier transform is .7 f or

? :R" — C defined by
F@) =F@) = [ e f(xax (3.1)

for all ¢ € R", where we denote dx = (271)~"/?dx for x € R".
\ J

We now continue with some properties of the Fourier transform. Be-
fore doing this, we shall introduce some notations. We recall that the space
Co(IR") consists of all continuous functions vanishing at infinity. For a mea-
surable function f on R"”, x € R" and a # 0, we define the translation,
dilation and reflection of f by

f(x) =f(x =),
5" f(x) =f(ax),
f(x) =f(=x).

. N
Proposition 3.2. Given f,¢ € L'(R"), x,y,& € R", a multi-index, a,b €
C, e € Rand e # 0, we have

(i) (Linearity) (af +bg) = af + bg.
(i) (Translation) TVf (&) = eV Ef(E).
(i) (Modulation) (€™ f(x))(&) = T/f(&).
(iv) (Conjugation) ? = ?
(v) (Transformation) If T is an invertible linear transformation of R" and
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S = (T*)~! is its inverse transpose, il then fo T = |detT|” 1f oS. In
purtzculur if T is a rotation, then f oT = f oT.

(vi) (Scaling) (5€f( ) = |e|~"8¢ (g)

(vii) (Convolution) (27t)~"/ 2f/>«<\g =12

(viil) Ifx*f € L for |a| <k, then f € X, and 9°F = ((—ix)*f(x)).

(ix) Iff € Ck, 94f € L! for |a| < k, and 3*f € € for |a| < k — 1, then
FF@) = (12 @). R

(x) (Uniform continuity) If f € LY(R"), then f is uniformly continuous.
(xi) (Riemann-Lebesgue lemma) 7 (L'(R")) C Co(R").

. A

Proof. (v)

FoD)@) = [ e ™ f(T)x
—ldeet|! [ T ()

=|det T| ™ /R TS f(y)dy
=| det T| ' 7(S¢).
(x) By
Fe+m—F@ = [ e e —1f(x)dx,
we have
F(@+h) —F(&)l
< [ e ()

<[l e il

<l lan 2 [ 1fG)1

=:h + I,

since |e — 1| < |6] for any 6 > 0. Given any & > 0, due to f € L'(R"),
we can take r so large that I, < e/2. Then, we fix this r and take |/| small
enough such that I; < &/2. In other words, for a given € > 0, there exists
a sufficiently small 6 > 0 such that F(+h) — F(&)| < e when |h| < &
where ¢ is independent of ¢.

(xi) By (ix), if f € €1 N €, then [ () is bounded and hence f € €.
However, the set of all such f’s is dense in L!, and J/‘; — ? uniformly
whenever f, — f in L! by (x). Since €y is closed in the uniform norm, the
result follows.

The other results are easy to verify. Q
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The Riemann-Lebesgue lemma gives a necessary condition for a func-
tion to be a Fourier transform. However, that belonging to Cp is not a
sufficient condition for being the Fourier transform of an integrable func-
tion. See Exercise 3.5.

We shall need to compute an important specific Fourier transform.

r N
Theorem 3.3. For all a > 0, we have
— 2
e—lxl () = (2a)’”/ze*%. (32)
In particular,
67% (g) 267%_
\ D,

Proof. The integral in question is
/ s T o3

Note that these factors are a product of one variable integrals. Thus, it is
sufficient to prove the case n = 1. It is clear that

2

/ " it gy~ / " pmaleHE/ 20 gy,
We observe that the function
F(C) — /oo efu(x+i§/(2a))2dx’ C €R,
defined on the line is constant (and thus equal to f_oooo e_“xzdx), since its
derivative is

;CF(@ =— i/ (x + i&/ (2a))e~2(HiE/ (20)* g
_E [T axriesa)? g,
=52 ) dxe dx = 0.

It follows that F(¢) = F(0) and
/Oo e pmax? gy :e_% /oo e~ dx

—0o0

2 o0
—e~ W \/1/a / e_”yzdy

7T 1/2 _ﬁ
:(—) e 4a,

a
where we used the formula for the integral of a Gaussian, i.e., the Euler-
Poisson integral: [ e~™dx =1 at the next to last one. Q

We are ready to invert the Fourier transform. If f € L!, then we define

£ =Fen = [ e ifea,
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and we claim that if f € L! and? € L! then (?)v = f. A simple appeal to
Fubini’s theorem fails because the integrand in

(F) ) = [[ exeevesyayae

need not be in L'(R" x R"). The trick is to introduce a convergence fac-
tor and then pass it to the limit using Fubini’s theorem via the following
theorem.

Theorem 3.4 (The multiplication formula). If f,¢ € L'(R"), then
| F@s@dz = [ fedx

Proof. Using Fubini’s theorem to interchange the order of the integration
on IR?", we obtain the identity. a

Theorem 3.5 (Fourier inversion theorem). If f € L! and ? € LY, then f

A\ \/ N
agrees a.e. with a continuous function fy, and ( f) = fV = f.

Proof. Given e > 0 and x € R”, let

2
_ , €
9(5) = (2m) " Zexplix- ¢ — —[¢]).
By (iii) in Proposition 3.2 and Theorem 3.3,

Ply) = 2m) " 2rie w1l (y) = e Mexp(—rtlx — y2/e?) = ge(x — ),

where g(x) = e~ and the subscript ¢ has the meaning in (2.8). By
Theorem 3.4,

e iv-E 2 >~ AN
[ wPeiF@yae = [Fodz = [ fodz = fgil).
Since [ e *dx = 1, by Theorem 2.11, we obtain f * g — f a.e. as ¢ — 0.
However, since ? € L!, and the dominated convergence theorem yields

lim [ e e e f@yae = [evf@)as = (F) (.

e—0

A\ V — ~\ V
It follows that f = ( f) a.e., and similarly f¥ = f a.e. Since < f) and

—~

fV are continuous, being Fourier transforms of L! functions, the proof is
complete. Q

[ Corollary 3.6 (Uniqueness). If f € L! and ? =0, then f =0a.e. J
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§3.2 Schwartz space

We recall the space Z(R") = CP(R") of all smooth functions with
compact support, and C*(R") of all smooth functions on R". However, it
is not immediately clear that & is nonempty.

Example 3.7. To find a function in 2, consider the function

e Ut t>0,

f(t):{o, t<0.

Then, f € €% is bounded, and so are all its derivatives. Let ¢(t) =
F(1+8)f(1 —t); then, (t) = e=2/(=) if |t| < 1, and zero otherwise.
It clearly belongs to Z(IR). We can easily obtain n-dimensional variants
from ¢. For example,
(i) For x € R", define ¥(x) = ¢(x1)p(x2) - - - ¢(x); then, p € Z(R");
(ii) For x € R", define (x) = e~2/(1=1xP) for |x| < 1 and 0 otherwise;
then, p € Z(R");
(iii) If n € €* and ¢ is the function in (ii), then (ex)y(x) defines a
function in 2(IR"); moreover, 2y (ex)n(x) — n(x) as e — 0.

The other space of €% functions we shall need is the Schwartz space
as follows.

Definition 3.8. The Schwartz space . (R") is defined as
S (R") = {(p € C®(R") : |@|op := sup |x*dP(x)| < oo, Va, B € Ng}.
xeR"
3.3)

If p €., then |¢(x)| < Cpu(1+ |x|)~™ for any m € INp. However, the
example ¢(x) = e ¢l fails to be differential at the origin and, therefore,
does not belong to .. Thus, the converse is not true.

Obviously, 2 C .#. The inclusion is strict since ¢(x) = e <" ¢
Z(R")\ 2(R") for € > 0.

Remark 3.9. We observe that the order of multiplication by powers of
X1, -+, X, and differentiation, in (3.3), could have been reversed. That is,
for ¢ € C%,
¢ € S (R") <= sup |0P(x*¢(x))| < oo, Va, B € N{.
x€R”

This shows that if P is a polynomial in n variables and ¢ € . then
P(x)p(x) and P(d)¢(x) are again in ., where P(9) is the associated
differential operator (i.e., we replace x* by 0* in P(x)).

The following alternative characterization of Schwartz functions is
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very useful.

Proposition 3.10. If ¢ € C®°(R"), then ¢ € . (R") iff
sup [(1+ |x|)N|0*@(x)|] < 00, YN € Ny, Va € INZ.

xelR”

n
Proof. 1t is clear that [x7]| < (1+ [x|)N for |y| < N. However, ¥ |x;|V is
j=1
strictly positive on the unit sphere |x| = 1, so it has a positive minimum

n
6 there. It follows that Y |x;|¥ > d|x|V for all x since both sides are
j=1

homogeneous of degree N, and hence,

(14 D™ <21+ [x™) <2

n
14071 Z ]x]N |]
j=1
<2No™t Y |xF). Q
|7|<N
It is an important observation that if f € .7, then 9*f € L7 for all
a and all p € [1,00]. Indeed, [0*f(x)] < Cn(1+ |x|)~N for all N, and
(1+ |x])™ € L? for N > n/p. Moreover, we also have the following
statement:

( )
Proposition 3.11. Let (?;‘;ly(lR”) be the set of all smooth polynomially
bounded functions, i.e., the set of all smooth f : R" — C such that for
all & € INj there exist m, € INg and C, > 0 with

103 f (x)] < Co(1+ |x])™  forall x € R".

Then for every f € €7, (R") and g € ./(R"), we have fg € . (R").
. A

Proof. This easily follows from the product rule, the Leibniz formula. QO

The space .7 (R") is not a normed space because |¢|, g is only a semi-
norm for multi-indices & and B, i.e., the condition

|@lap =0iff 9 =0

fails to hold, for example, for constant function ¢.

Proposition 3.12. . is a Fréchet space with the topology defined by the
seminorms | - |y p.

We leave the proof as an exercise.

Moreover, some easily established properties of . (R") and its topol-
ogy are as follows:
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r 2
Proposition 3.13. (i) The mapping ¢(x) — x*9P@(x) is continuous.
(ii) If ¢ € S (R"), then lim e = ¢.
%
(iii) Suppose ¢ € S (R") and h = (0,--- ,h;,---,0) lies on the i-th co-
ordinate axis of R", then the difference quotient [¢ — T @] /h; tends to
d¢/dx; as |h| — 0.

From part (viii) in Proposition 3.2, we immediately have

(Theorem 3.14. .# maps the Schwartz class . continuously into itself. ]

[ Corollary 3.15. .% is an isomorphism of .’ onto itself. ]

Proof. By Theorem 3.14, .% maps . continuously into itself, and hence,
so does f +— fY since fY(x) = f(—x). By the Fourier inversion theorem,
these maps are inverse to each other. Q

The integral defining the Fourier transform is not defined in the Lebesgue
sense for the general function in L?(IR"); nevertheless, the Fourier trans-
form has a natural definition on this space and a particularly elegant the-
ory.

If, in addition to being integrable, we assume f to be square-integrable,
then }‘\ will also be square-integrable. In fact, we have the following basic
result:

Theorem 3.16 (Plancherel theorem). If f € L' N L?, then ? € L? and
Ifllz = Ifll2; and .# |(11n12) extends uniquely to a unitary isomorphism on
L2

Proof. Let X = {f € L' : f € L}. For any f € X, by Theorem 3.5,
N\ \/ N\
we have [|fllo = | (F) llee < (270)7"/2|[fll1; thus, f € L'N L™ C L2 by

Proposition 0.19. Hence, X C L2, and X is c{ense in L2 because .¥ C X
and .¥ is dense in L2. Given f,g € X, let h = §. By the inversion theorem,

(@) = [e ™Gl = [ TRlxx = 5(@).
Hence, by Theorem 3.4,

[rz=[fii=[Fn=[F2

Thus, .Z |x preserves the L? inner product; in particular, by taking ¢ = f,
we obtain || f||2 = ||f]]2. Since .Z#(X) = X by the inversion theorem, and
7| x extends by continuity to a unitary isomorphism on L2.
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It remains only to show that this extension agrees with .# on all of
L' N L2. However, if f € L' N L2 and g(x) = e as in the proof of
the inversion theorem, we have f x g, € L! by Young’s inequality and
Fxge € L! because fxg:(¢) = e*%mzf((,‘) and f is bounded. Hence,
f * g € X. Moreover, by Theorem 2.9, f * g — f in both the L! and L2
norms. Therefore, f/>l<?8 — ? both uniformly and in the L? norm, and we
are done. Q

We have thus extended the domain of the Fourier transform from L!
to L' + 2. The Riesz-Thorin interpolation theorem yields the following
result for the intermediate L spaces:

Theorem 3.17 (Hausdorff-Young inequality). Let 1 < p <2and 1/p +
1/p' = 1. If f € LF(R"), then f € LP (R") and

IFllyr < @) /P72 £, (34)

Proof. It follows from using the Riesz-Thorin interpolation theorem be-
tween the L' — L® result ||.Z f || < (271)7"/2||f|l1 (cf. part (x) in Proposi-
tion 3.2) and the L2 — L? result, i.e., Plancherel’s theorem ||.Z f]2 = || f|2
(cf. Theorem 3.16). a

Remark 3.18. (i) Unless p = 1 or 2, the constant in the Hausdorff-Young
inequality is not the best possible; indeed the best constant is found by
testing Gaussian functions. This is much deeper and is due to Babenko
[Bab61] when p’ is an even integer and to Beckner [Bec75b; Bec75a] in
general.

(i) p’ cannot be replaced by some ¢ in (3.4). Namely, if it holds

Iflly < Cllflly, VfeLP(RY, (3.5)

then we must have g = p’. In fact, we can use the dilation to show it. For
A >0, let fy(x) =A""f(x/A); then,

Il = ([ i)

—A" (/]R A”|f(y)|”dy)1/p =A77 | fllp-

By the property of the Fourier transform, we have J/’; = Angh! f= 5/‘?
and

—~ ~ 1/q PN
IRl = ([, Faoas) =273 17,

Thus, (3.5) implies /\7||f||q S CA 7 |fllp ie, |[fllg < CAT 7 ||f]|,, then
q = p’ by taking A tending to 0 or co.
(iii) Except in the case p = 2, inequality (3.4) is not reversible, in
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the sense that there is no constant C such that ||JA"HP/ > C||fllp for 1 <
p < 2when f € 2 = CZ. Equivalently, the result cannot be extended
to the case p > 2 in view of the dual argument and the multiplication
formula (Theorem 3.4). To show this, we take f,(x) = ([)(x)e_”(l“/\)'x'z,
where ¢ € 7 is fixed and A is a large positive number. Then, |f,|, is
independent of A for any p. By the Plancherel theorem, ||f||, is also
independent of A. On the other hand, J/’; is the convolution of @, which
is in L1, with (277)7"(1 4 iA)~"/2e~Wn(HM] 2P (of. [Gralda, Ex.2.3.13,
p-133] or [BCD11, Proposition 1.28]),” which has L® norm (271)~"(1 +
A2)~1/% Accordingly, if p € [1,2), then

o~ -~ % -~ 1—% _nel_ :

Il < IR 1Bl < CO+A%) 2075 50, a5 4 = e
Since || fA|, is independent of A, this show that when p € [1,2), there is
no constant C such that C||}‘\||p/ > ||f]lp forall f € 2.

“For 0 # z € C and Rez > 0, one has ﬁ(e*d"'z)(é’) = (22)*”/23*‘5‘2/(4@, where
272 = || T 20/ 2 if 7 — |z1eM, 0 € [—7r/2,71/2].

e

Theorem 3.19. Z (and hence also .#) is dense in LP (1 < p < o0) and in
Co.

\,

Proof. Given f € LP and ¢ > 0, there exists g € C, with ||f —g||, < ¢/2
by the density of C. in L7 (cf. [Fol99, Proposition 7.9]). Let ¢ € 2 and
J ¢ = 1. Then it is easy to verify g* ¢. € Z and ||g* ¢e — gl < 0/2
for sufficiently small ¢ by Theorem 2.9. The same argument applies if L?
is replaced by Co, || - || by || - ||, and the density of € in Cy (cf. [Fol99,
Proposition 4.35]). Q

Remark 3.20. The density is not valid for p = co. Indeed, for a nonzero
constant function f = ¢p # 0 and for any function ¢ € Z(R"), we have

If = @lleo = lcol > 0.

Hence we cannot approximate any function from L*(RR") by functions
from Z(R"). This example also indicates that .# is not dense in L* since
lim |p(x)| =0forall ¢ € .7.

|x| =00

7

Theorem 3.21 (C* Urysohn lemma). If K C R" is compact and U is an
open set containing K, there exists f € P suchthat 0 < f <1, f =1on K,
and supp f C U.

&

Proof. Let 6 = dist (K, U°) (the distance from K to U¢, which is positive
since K is compact due to [SS05, Lemma 3.1, p.18]), and let V = {x :
dist (x,K) < 6/3}. Choose a nonnegative ¢ € Z such that [ ¢ = 1 and
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¢(x) = 0 for dist(x,K) > 6/3, and set f = xy * ¢. Then, f € 2, and
it is easily checked that 0 < f < 1, f = 1 on K, and supp f C {x :
dist (x,K) <26/3} C U. Q

§3.3 Tempered distributions

The collection .#’ of all continuous linear functionals on . is called

the space of tempered distributions. That is,
N

-
Definition 3.22. The functional T : . — C is a tempered distribution

if
(i) T is linear, i.e., (T, a¢ + BY) = a(T, @) + B(T, ) for all o, p € C
and ¢, ¢ € 7.

(ii) T is continuous on ., i.e., there exist ny € Ny and a constant
co > 0 such that

(T, @)l <co ), o

|al, | Bl <m0

ap

for any ¢ € 7.

J

In addition, for T, T € ./, the convergence Ty — T in .’ means that
(Ty, ) — (T, @) in C for all ¢ € ..

Before we discuss some examples, we give alternative characteriza-
tions of distributions, which are very useful from the practical point of
view. The action of a distribution u on a test function f is represented in
either one of the following two ways:

(u, f) = u(f).
Denote
punN(f) = f}i% (0" ) (x)]. (3.6)

There exists a simple and important characterization of distributions:

N\

Vs

Theorem 3.23. (i) A linear functional u on Z(R") is a distribution iff
for every compact K C R", there exist C > 0 and an integer m such

that
[(u, /Y] <C Y 110*flleos Vf € €°(R") with support in K. (3.7)

la|<m

(i) A linear functional u on #(IR") is a tempered distribution iff there
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exist constant C > 0 and integers { and m such that
[(w @) <C )}, Ilolup Ve s (RY). (3.8)
la|<C|pl<m

(iii) A linear functional u on C*(IR") is a distribution with compact support
iff there exist C > 0 and integers N, m such that
(I <SC Y pan(f), Vf€CTRY). (3.9)
la|<m

The seminorms | - |, p and pa N are defined in (3.3) and (3.6), respec-
tively.
\. J

Proof. We prove only (ii), since the proofs of (i) and (iii) are similar. It is
clear that the existence of C, ¢, m implies the continuity of u.

Suppose u is continuous. It follows from the definition of the metric
that a basis for the neighborhoods of the origin in .# is the collection of

sets Ny = {¢ ¢ Y |¢lap < €}, where ¢ > 0 and ¢ and m are
|w|<L|Bl<m

integers, because ¢, — ¢ as k — oo iff |p; — @[y p — 0 for all («, B) in the
topology induced by this system of neighborhoods and their translates.
Thus, there exists such a set N, satisfying |(u, ¢)| < 1 whenever ¢ €
Ns,é,m-

Let ||¢| = Y |¢lup forall 9 € . If o € (0,¢), then ¢ =

|| <L, | Bl<m
oo/ ||@|l € Negm if ¢ # 0. From the linearity of 1, we obtain

o
— (U, = [(u, < 1L
Ty (e @] = G )]
However, this is the desired inequality with C =1/0. Q
Example 3.24. Let f € LP(R"), 1 < p < o0, and define T = Ty by letting

(T,¢) = (Tp,9) = [ f(x)p(x)dx

for ¢ € 7. Tt is clear that T is a linear functional on .. To show that
it is continuous, it suffices to show that it is continuous at the origin.
Then, suppose ¢ — 0in . as k — co. We have for any g > 1 that || ¢||,
is dominated by a finite linear combination of seminorms |@k|s0. Thus,
@kl — 0 as k — co. Choosing q = p’, ie, 1/p+1/q = 1, Holder’s
inequality shows that [(T, ¢i)| < | fllpll@xll,y — 0 as k — oco. Thus,
Tes.

m
Example 3.25. We consider the case n = 1. Let f(x) = ¥ aix* be a
k=0

polynomial, then f € .’ since

(T, )| = ‘ f, Lo
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m

<ZIﬂk\/lR(lﬂL!xl)*H(lJr\XDHIX\"I?(X)Idx
k=0

m
<C Y lakl|@lkt14e0 /]R(l + |x) "1 Edx,
k=0

so that condition (ii) of the definition is satisfied for e = 1 and ny = m + 2.

Example 3.26. The Dirac mass at the origin Jy. This is defined for ¢ € ./
by

(0, ¢) = ¢(0).
Then, &) € .. The Dirac mass at a point xyo € R" is defined similarly by

(x5, @) = @(x0)-

The tempered distributions of Examples 3.24 — 3.26 are called func-
tions or measures. We shall write, in these cases, f and Jy instead of Tr
and Tj,. These functions and measures may be considered embedded in
' If we put on .’ the weakest topology such that the linear function-
als T — (T,¢) (p € ) are continuous, it is easy to see that the spaces
LP(R"), 1 < p < oo, are continuously embedded in .. The same is true
for the space of all finite Borel measures on R", i.e., Z(R").

Suppose that f and g are Schwartz functions and « a multi-index.
Integrating by parts |«| times, we obtain

| @N@smir= (-0 [ f@@@d. (610

If we wanted to define the derivative of a tempered distribution u, we
would have to give a definition that extends the definition of the derivative
of the function and that satisfies (3.10) for ¢ € %/ and f € .7 if the
integrals in (3.10) are interpreted as actions of distributions on functions.
We simply use (3.10) to define the derivative of a distribution.

4 N\
Definition 3.27. Let u € .’ and a a multi-index. Define

(@ u, f) = (=1)"*(u,3*f). (3.11)
If u is a function, the derivatives of u in the sense of distributions are

called distributional derivatives.
g J

In view of Theorem 3.4, it is natural to give the following:

( )
Definition 3.28. Let u € ./. We define the Fourier transform i and

the inverse Fourier transform u" of a tempered distribution u by

(@, f) = (wf) and (', f) = (uf), (3.12)
for all f in .7, respectively.

\ J/
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Example 3.29. For ¢ € ., we have
G ) = (00,9) =9(0) = [ e p(x)tx = ((2m) "%, p).
Thus, & = (271) /2 in .#". More generally, since
(@00, ) = (000, §) = (~1)" (60, 2*9) = (30, ()"
= (0, (i¢)"g) = {(271)/2(ic)" ),

we have 9%3y = (27r)7"/2(i¢)*. This calculation indicates that %3y can
be identified with the function (27r)~"/2(i&)*.

Now observe that the following is true whenever f and g are in .7:

[ gle=Df(xdx= [ flx+Dglx)dx,

R11

/ glax) f(x)dx = / g(x)a " f(a~1x)dx, (3.13)

n

[ 80 = [ s()F (e,

for all t € R" and a > 0, where = denotes the reflection. Motivated by
(3.13), we give the following;:

e D
Definition 3.30. The translation tiu, the dilation 6?u, and the reflection
1 of a tempered distribution u are defined as follows:

(t'u, f) =(u,T'f),
(8"u, f) =(u,a™"8"f),
(i1, f) =(u, f),

forall t € R" and a > 0. Let A be an invertible matrix, and the compo-
sition of a distribution u with an invertible matrix A is the distribution

(u?, p) = | det A (u, 91 7),
where ¢4 ' (x) = (A 1x).

\ J

It is easy to see that the operations of translation, dilation, reflection,
and differentiation are continuous on tempered distributions.

Example 3.31. The Dirac mass at the origin Jy is equal to its reflection,
while 66y = a="dy for a > 0. Additionally, T*éy = J, for any x € R".

Now, observe that for f, g and h in ., we have

[ s ) f)dx = [ g()ie ) (x)dx.

Motivated by this identity, we define the convolution of a function with a
tempered distribution as follows:
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p
Definition 3.32. Let u € ./ and h € .. Define the convolution % * u

by
(hsu,f) = (u,hxf), fe

\

Example 3.33. Let u = dy, and f € .. Then, f * dy, is the function T*f,
since for h € ., we have

(f * 6xg/ b) = (2, f# ) = (% 1) (x0) = /Rnf(x — xo)h(x)dx = (TVf, ).

It follows that convolution with & is the identity operator by taking
Xg — 0.

We now define the product of a function and a distribution.

4 )

Definition 3.34. Letu € %" and h € Cooly" The product hu of h and u
is defined by
(hu, f) = (u,hf), fes. (3.14)

Note that if € .7, and thus, (3.14) is well-defined. (The product of an

arbitrary C* function with a tempered distribution is not defined.)
\ J

Example 3.35. Let T € ./ and ¢ € 2 with ¢(0) = 1. Then, the product
¢(x/k)T is well-defined in .’ by

{p(x/K)T, ) := (T, p(x/k)¢),
for all ¢ € .7. If we consider the sequence Ty := ¢(x/k)T, then

(T, ) = (T, 9 (x/K)p) = (T, )

as k — oo since ¢(x/k)p — ¢ in .. Thus, Ty — T in ./ as k — oo.
Moreover, Ty has compact support as a tempered distribution in view of
the compactness of ¢; = ¢(x/k).

Next, we give a proposition that extends the properties of the Fourier
transform to tempered distributions.

4 )
Proposition 3.36. Given u,v € /'(R"), f;,f € /, y € R", b € C,
a € INE, and a > 0, we have

—
~ T

=1U+9, bu = bil,

(ili) TV(E) = e WEN(E), e Vu(x) = 144,

(iv) 6%u = (), = a "6 1),

(v) Fu(g) = (i) A(8), i = (“ix)*u(x),
= = \//

i) @) =u=u"
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[ (vii) (271)""/2f xu = fi. J

Proof. All the statements can be proved easily using duality and the cor-
responding statements for Schwartz functions. Q

Now, we give a property of convolutions. It is easy to show that
this convolution is associative in the sense that (1 f) * ¢ = u* (f xg)
whenever u € .7 and f, g € .. The following result is a characterization
of the convolution we have just described.

Theorem 3.37. Ifu € %" and ¢ € ., then ¢ x u is a oy function and

(pxu)(x) = (u, T9), (3.15)
forall x € R™.

Proof. We first prove (3.15). Let p € . (R"). We have
(pxu, ) =(u,gxy)

= ([, 3wty
([ EPOvway) (316)

= /IR S, @) (y)dy,

where the last step is justified by the continuity of u and by the fact that
the Riemann sums of the inner integral in (3.16) converge uniformly to
that integral in the topology of .7, a fact that will be justified later. This
calculation implies (3.15).

We now show that ¢ * u is a €* function. Lete; = (0,---,1,---,0)
with 1 in the jth entry and zero elsewhere. Then by part (iii) in Proposi-
tion 3.13,

Tfhej,rxﬁ . Tx?p
h

in.¥ as h — 0. Thus, since u is linear and continuous, we have from (3.15)

(g x)(x) = (ru)(x) _ (rh%’(r%) - af) L (0,7 O)

— a]‘Tx?ﬁ = Txa]‘r(P,

h h

as h — 0. The same calculation for higher-order derivatives shows that
@*xu € C® and that 97 (¢ *u) = (97 ¢) * u for all multi-indices 7. It follows
from Theorem 3.23 that for some C, m and k we have

[0 (¢ u) ()| <C ) sup [y"T*(3*P§)(y)]

|7|<m yeR"
|BI<k
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=C Y sup |(x+y)"(0""§)(y)| (changing:y—x —y)

‘Hg“ir]:l ]/G]R”
<C ) sup [(1+[x|" + [y|") (0* ) (y)]
|BI<kyER"
m m
gcm,k,zx sup w (taklng N > m)

yere (L[N
SCona(1+[x|™),
which clearly implies that 0% (¢ * u) grows at most polynomially at infin-
ity.

Next, we return to the point left open concerning the convergence
of the Riemann sums in (3.16) in the topology of .#(R"). For each N =
1,2,- -+, consider a partition of [—N, N]" into (2N?)" cubes Qy, of side
length 1/N and let y,, be the center of each Q,,. For multi-indices & and
B, we must show that

(2N2)"

Dn(x) = Y x%059(x — ym)y (ym)lQm|—/ KR G(x — y)p(y)dy

m=1
converges to zero in L®(R") as N — oo. We have by the mean value
theorem

XRG(x — Y)Y (ym)lle—/Q xR (x — y)p(y)dy

m

—/ “[OEF(x — Y)W (ym) — 35 (x — y)p(y)]dy

o, X =) (V@@ (x — )9))(&)dy

= o, % m=y)- (- Voig(x — ) + Vo g(x — ))(&)dy

for some ¢ = y + 0(ym —y), where 8 € [0,1]. We see that |y — yu| <
v/n/2N and the last integrand

2y = ) - (= VEP(x = (&) + V(&)iP(x — 8))]

<Clyfmiy___ 1 1

SR N A gy Corlarse M)

<Clyfuiy__ 1 1

SN @ a

<Clafliyn__ 1 1

SN e A
since (1+[x—¢Z)2+[¢]) = 1+ [x =&+ [¢] > 1+ |x|, and |y| < [¢] +
Oly — ym| < |&| +/n/2N < |&|+ 1 for N > \/n/2. Inserting the estimates
obtained for the integrand, we obtain

Dn(¥)| 71573 1+ [y|)M72
NN SN T )72 s T Ty
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+ / x"‘&f~ X — dy.
mew’ Plx —y)p(y)ldy
The first integral in the preceding expression is bounded by

VN =1y VN dr 2w,
‘Unfl/ T, S Wy / M < ’
(1+4r)M/2 0 (14r)z 1 " M-2n

where we pick M > 2n, while the second integral is bounded by

/ C|x|ll dy
(=NNJme (14 [x —y[)M/2 (1 + [y[)M

< C|x/ll / dy
(14 [x[)M72 J(=NNprye (1 + |y|)M/2

o ypn—lgy 2wy 1
gc B / < C n anM/ZI
Ot Jy (1+r)M/2 M —2n

for M > 2max(n, |a|) since (14 [x —y[)(1+|y]) = 1+ |x—y|+ |y| >
1+ |x|. From these estimates, it follows that

1 1
sup [Dy(x)| < C(=+——)—0, as N — oo.
sup [Dy(x)] < Clg; + )
Therefore, I\l}im sup |Dy(x)| = 0. Q

— 00 xeR"

We observe that if a function g is supported in a set K, then for all
f € 2(K°) we have

o S ()8 (x)dx = 0. (3.17)

Moreover, the support of g is the intersection of all closed sets K with the
property (3.17) for all f in 2(K¢). Motivated by this observation we give
the following:

Definition 3.38. Let u € 2'(R"). The support of u (suppu) is the
intersection of all closed sets K with the property

p€ 2(R"), suppe C K= (u,¢) =0. (3.18)

| Example 3.39. supp éx, = {x0}.

Along the same lines, we give the following definition:

r 3
Definition 3.40. We say that a distribution u € 2'(R") coincides with
the function h on an open set () if

mﬁ:AﬂWMW,We%m. (3.19)

When (3.19) occurs, we often say that u agrees with h away from (°.
\ /
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This definition implies supp (1 —h) C Q°.

Example 3.41. The distribution |x|?> + 85, + 64, Where ay,a; € R”", coin-
cides with the function |x|?> on any open set not containing the points a
and a,.

We have the following characterization of distributions supported at a
single point.

Proposition 3.42. If u € ./(R") is supported in the singleton {xo}, then
there exists an integer k and complex numbers a, such that

U= Y 0,0

|| <k

Proof. Without loss of generality, we may assume that xo = 0. By (3.8), we
have for some C, m, and k,

()l <C ) sup [x*0Pf(x)|, Vfe S (R").
la|<m xER™?
|BI<k

We now prove that if ¢ € . satisfies
@¢)(0) =0, Vla| <k, (3:20)
then (u,¢) = 0. To see this, fix a ¢ satisfying (3.20) and let {(x) be a
smooth function on R” that is equal to 1 when |x| > 2 and equal to zero
for [x| < 1. Let {*(x) = {(x/¢). Then using (3.20) and the continuity of the
derivatives of ¢ at the origin, it is not hard to show that [(*¢ — ¢|,s — 0
as ¢ — 0 for all |a| < m and |B| < k. Then,
[, )] < [(w, )| + (0,9 — @) <O+ C ) |20 — @lap — O,

la|<m
|Bl<k

as ¢ — 0. This proves our assertion.
Now, let f € .7 (R"). Let y € 2(R") be equal to 1 in a neighborhood
of the origin. Write

Fx) = () (HZ DO g h(x)) FA-g)f), 62D
a| <k :

where h(x) = O(|x|**1) as |x| — 0. Then, 5k satisfies (3.20) and hence
(1, mh) = 0 by the claim. Additionally,

{u,(1=n)f) =0
by our hypothesis. Applying u to both sides of (3.21), we obtain

wf)= ¥ COO ) = T anfors ),
o<k <k

with a, = (—1)1*/(u, x*#(x)) /«!. This proves the result. Q
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An immediate consequence is the following result.

Corollary 3.43. Let u € .'(R"). If U is supported in the singleton {Co},
then u is a finite linear combination of functions (—i¢)*e'%, where a € IN{.
In particular, if Ul is supported at the origin, then u is a polynomial.

Proof. Proposition 3.42 gives that % is a linear combination of derivatives
of Dirac masses at ¢, i.e.,

il\ = Z aaa“(%o.
|a|<k
Then, Proposition 3.36, Example 3.31 and Example 3.29 yield
w= Y ax(3%,)" = Y a0,

|| <k || <k

= Z aa(i‘:)a% = 2 aam

|| <k || <k

:(271)_”/2 Z 1, (i€)%e 6%
Ja| <k
=2r) ™2 Y ay(—ig)%et . Q

|| <k

Proposition 3.44. Distributions with compact support are exactly those
whose support is a compact set, i.e.,

u € &'(R") <= supp u is compact.

Proof. To prove this assertion, we start with a distribution u with compact
support. Then, there exist C,N,m > 0 such that (3.9) holds. For a €%
function f whose support is contained in B(0, N)¢, the expression on the
right in (3.9) vanishes, and we must therefore have (u, f) = 0. This shows
that the support of u is contained in B(0, N); hence, it is bounded, and
since it is already closed (as an intersection of closed sets), it must be
compact.

Conversely, if the support of u as defined in Definition 3.38 is a com-
pact set, then there exists an N > 0 such that suppu C B(0,N). We take
n € 2 that is equal to 1 on B(0, N) and vanishes off B(0, N +1). Then,
for h € 2, the support of (1 — 1) does not meet the support of u, and we
must have

() = (u, hop) + (u, (L= 1)) = {u, hp).
The distribution u can be thought of as an element of &’ by defining for
fee(R")

(u, f) = (u, fr).
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Taking m to be the integer that corresponds to the compact set K =
B(0,N +1) in (3.7) and using that the L® norm of 9*(f#) is controlled
by a finite sum of seminorms p, n+1(f) with |a| < m, we obtain the valid-
ity of (3.9) for f € €. Q

For distributions with compact support, we have the following impor-
tant result.

Theorem 3.45. If u € &'(IR"), then U is a real analytic function on R"™. In

particular, 1l € Gpoly Moreover, 1 has a holomorphic extension on C".

Proof. Since u € &' C ./, we have for f € .%¥

@,y =t ) = ( [ e ")
=/ u <e’i"'(')) f(x)dx,

R"
provided that we can justify the passage of u inside the integral. The
reason for this is that the Riemann sums of the integral of e~™**¢ f(x) over
R" converge to it in the topology of €, and thus the linear functional
u can be interchanged with the integral. To justify this, we argue as in
the proof of Theorem 3.37. For each N € IN, we consider a partition
of [-N, N]" into (2N?)" cubes Q,, of side length 1/N and let y,, be the
center of each Q. For « € IN7}, let

ZNZ n

@n)" .
Dy() = X, e (i) fm)|Qul = [ e (i) (x)d
m=1

We must show that for every M > 0, sup |Dn(&)| converges to zero as
gl<M

N — oo. Setting ¢(x) = (—ix)*f(x) € ., we write
(2N2)"
~iym-g — e ™o (x)]dx —/ e~ Co(x)dx.
2 |l gClde— [ e ()

Using the mean value theorem, we bound the absolute value of the ex-
pression inside the square brackets by

Vi Ck(+ e v
for some point z,, = x + 6(y,, — x) in the cube Q,, where 6 € [0, 1]. Since
2+ |zm| > 1+ |x| if N > y/n/2, and then for || < M,

Cx 1+|§| N (1 + 1))
E / i EE s L / A+ )k &

VAN =1y
<C1<(1+M)/0 A5k <Ck(1+M) <o
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provided K > n, and for L > n,

dy o pn=ldy Wn—1 1 m—L
i TR Sty e < TN
it follows that sup |Dy(&)| — 0 as N — oo by noticing ¢ € ..
flm
Let p(&) b|e|a polynomial; then, the action of u € &’ on the €* func-
tion & — p(&)e ™*¢ is a well-defined function of x, which we denote by
u(p(-)e ™). Here, x € R", but the same assertion is valid if x € R" is
replaced by z € C". In this case, we define the dot product of ¢ and z via
n

G-z= k21 CkZk-
It is straightforward to verify that the function of z
F(z) = 2m) " 2u(e =0))

defined on C" is holomorphic, in fact entire. Indeed, the continuity and
linearity of u and the fact that (e~ %" —1)/h — —i¢; in C*(R) as h — 0,
h € C, imply that F is holomorphic in every variable and its derivative
with respect to z; is the action of the distribution u on the €% function

& (—igy)e HmE0,
By induction, it follows that for all « € INjj, we have

o9 F = u ((—i())me M),

Since F is entire, its restriction on R", i.e., F(xy,- -+ ,x,), where Xj = Re zZj,
is real analytic. Additionally, an easy calculation using (3.9) and Leibniz’s
rule yields that the restriction F on R" and all of its derivatives have
polynomial growth at infinity.

Therefore, we conclude that the distribution #(x) can be identified
with the real analytic function F(x) whose derivatives have polynomial
growth at infinity. Q

§3.4 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply
them to the study of the basic class of linear operators that occur in Fourier
analysis: the class of operators that commute with translations.

e D
Definition 3.46. A vector space X of measurable functions on R" is

called closed under translations if for f € X we have 7/f € X for all
y € R". Let X and Y be vector spaces of measurable functions on R”
that are closed under translations. Let T be an operator from X to Y.
We say that T commutes with translations or is translation invariant
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if
T(t'f) = ?(Tf)
forall f € Xand all y € R".

It is automatic to see that convolution operators commute with trans-
lations. One of the main goals of this section is to prove the converse, i.e.,
every bounded linear operator that commutes with translations is of the
convolution type. We have the following:

Theorem 3.47. Let 1 < p,q < oo. Suppose T is a bounded linear operator
from LP(R™) into L1 (IR”) that commutes with translations. Then, there
exists a unique tempered distribution u such that

Tf=uxf ae, Vfe.

The theorem will be a consequence of the following lemma.

( )

Lemma 3.48. Let 1 < p < oo. If f € LP(R") has derivatives of all orders
< n+ 1 in the LV norm, then f equals almost everywhere a continuous
function g satisfying
sOI<C Y l*fllp
la|<n+1

where C depends only on the dimension n and the exponent p.
\, A

Proof. Let { € R". Then there exists a Cj, such that
A+ P2 <A+ G|+ +la)™ <G} (e

|a|<n+1

Let us first suppose p = 1, and we shall show ? € L'. By part (viii)
and part (x) in Proposition 3.2, we have

F@I<CL+1gP) D2 3 &IF@)]

|| <n+1
=C)(1+ (g2~ D72 Y 1377 (@))

|| <n+1
<C'(A+EP)~ D2 N 8t

la|<n+1

Since (1 + |¢]?)~(**1)/2 defines an integrable function on R”, it follows
that f € L1(R") and, letting C""" = C” S (1 + [2]?)~(*+1)/24¢, we obtain

IFli<c” Y 11o%f]h

la|<n+1

Thus, by Theorem 3.5 due to f,f € L', f equals almost everywhere a
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continuous function ¢ and by part (x) in Proposition 3.2,

20) < llflle < @) 2[fli<C X [3%FIh.
la|<n+1
Suppose now that p > 1. Choose ¢ € Z(R") such that ¢(x) =1
if x| < 1 and ¢(x) = 0 if |x| > 2. Then, it is clear that f¢ € L'(IR").
Thus, by the above argument, f¢ equals almost everywhere a continuous
function h such that

O <C Y [I*(fo)la-

la|<n+1

By Leibniz’ rule for differentiation, we have 9*(fp) = ¥ ,V,a% fo'e,
“LH-I/:D(
and then

o (Follh < [

Ia”flla”qvldx
‘ ‘\ ntv= ay

lyl

Y, Csup ()] | [0"f(x)ldx

ptv=a  |x|<2 |x[<
<A Y / 9" f(x)|dx < AB Y 0" £,
lul<la] 7 1¥1<2 l<al

where A > C'||0"¢||e, |v| < |&|, and B depends only on p and n. Thus,
we can find a constant K such that

hO)| <K} [lo*fll,

la|<n+1

Since ¢(x) = 1if |x| < 1, we see that f is equal almost everywhere to
a continuous function g in the sphere of radius 1 centered at 0; moreover,

8(0)[ =[R(O) <K} [l0%fll,.

la|<n+1

However, by choosing ¢ appropriately, the argument clearly shows that f
equals almost everywhere a continuous function on any sphere centered
at 0. This proves the lemma. Q

Now, we turn to the proof of the previous theorem.
Proof of Theorem 3.47. We first prove that
FTf=Tof, Vfe.7(R"). (3.22)
In fact, if h = (0, - - - S, ,0) lies on the j-th coordinate axis, we have

™Tf)=Tf T("f)-Tf _(T"f—Ff
hj B hj _T< hj )

since T is linear and commuting with translations. By part (iii) in Proposi-

tion 3.13, we have f LN aa—}j; in .7 as |h| — 0 and in the L” norm. Since
(Tf) Tf %Tf

T is a bounded operator from L? to L1, it follows that = 7

m



3. Fourier Transform and Tempered Distributions

L7 as |h| — 0. By induction, we obtain (3.22). By Lemma 3.48, Tf equals
almost everywhere a continuous function gy satisfying

gr(O)<C Y IA(THlls=C Y ITE"f)l

|Bl<n+1 |Bl<n+1
<t ¥ 10l <C ¥ Ifls
|Bl<n+1 |ac|<m, | B <n+1

Then, by Theorem 3.23 (i), the mapping f + g¢(0) is a continuous linear
functional on ., denoted by u;. We claim that u = u7 is the linear
functional we are seeking. Indeed, if f € ., using Theorem 3.37, we
obtain

(w5 f)(x) =(0, T F) = (w,T7F) = (@, 77f) = (w, T7f)
=(T(x7*f))(0) = (x7*Tf)(0) = Tf(x).
We note that it follows from this construction that u is unique. The

theorem is therefore proved. Q

Now, we give a characterization of operators commuting with trans-
lations in p = 2.

Theorem 3.49. Let T be a bounded linear transformation mapping L?(R")
to itself. Then T commutes with translation iff there exists an m € L*(R")
such that Tf = u* f with i = (27r)~"?m, for all f € L>(R"). We also
have [|T|| = [|m[e-

Proof. Now, we prove the necessity. Suppose that T commutes with trans-
lations and || Tf||2 < ||T||||f]2 for all f € L?2(R"). Then, by Theorem 3.47,
there exists a unique tempered distribution u such that Tf = u * f for all
f € .. The remainder is to prove i € L*(R").

Let m = (27r)"/?il, from

lm@ll2 =T 9l = llux ol < [ Tllll@ll2 = TPl Vo €.
it follows that

[ (I = ) [gPdg > 0, Ve e.5.

This implies that ||T||?> — |m|> > 0 for a.e. ¢ € R". Hence, m € L*(R")
and [|m|e < [|T]]

Finally, we can show the sufficiency easily. If 4 = (27)™"/?m €
L*(R"), the Plancherel theorem immediately implies that

ITfll2 = llux fll2 = [[mfll2 < [[mlleol| f]2/
which yields ||T|| < ||7]|co-
Thus, if m = (271)"/?4 € L*®, then || T|| = ||m]|co- Q
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§3.5 Fourier multipliers on L7

We have shown that the translation invariant LP-L7 operators are convolution-
type operators in Theorem 3.47. In this section, we briefly introduce
Fourier multipliers on L.

e A
Definition 3.50. Let 1 < p < oo and m € .%’. m is called a Fourier
multiplier on LP(R") if the convolution m" % f € LP(R") for all f €
< (R™), and
]l e, ey = (27) 7"/ H;’rp lm £l
=1

is finite. The linear space of all such m is denoted by M, (R").
\ J

Since . is dense in L? (1 < p < o), the mapping from . to L”:
f — m" x f can be extended to a mapping from L? to L with the same
norm. We write m" * f also for the values of this extended mapping.

For p = oo, we can characterize M,. Considering the map:

fm'xf forfe.?,

we have
me Mo < [(m’+f)(0)| <Clfle, fes. (3.23)
Indeed, if m € Mo, we have m" * f € (fp oly by Theorem 3.37, and then
mY #* e
o« o) < 12 F ey )<y

1 les
On the other hand, if |(m" x £)(0)| < C||f||«, We can obtain
I flloe = sup [(m” * f)(x)] = sup [[m" * (f(x+))](0)]

xeR"” xeR"?
<Clf(x + oo = Cll flleos
which yields m € M.

However, (3.23) also means that m" is a bounded measure on IR" since
the dual space of L is the space of all bounded finitely additive signed
measures on R" that are absolutely continuous w.r.t. Lebesgue measure.
Thus, M is equal to the space of all Fourier transforms of bounded mea-
sures. Moreover, ||m||)t,, is equal to the total variation norm of m". In view
of the inequality above and the Hahn-Banach theorem, we may extend the
mapping f — m" % f from . to L* to a mapping from L* to L without
increasing its norm. We also write the extended mapping as f +— m" x f
for f € L*™.
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4 )

Theorem 3.51. (i) Let 1 < p<ooand1/p+1/p’ =1, then, we have
Mp(R") = My (R")  (equal norms). (3.24)
(i) Mi(R") = {m e S (R"):m" is a bounded measure on R"}, and
[, ey = (270) 2 " 1.
(iii) Mp(R") = L*(IR") with equal norms.
(iv) Let 1 < po, pr < occand1/p = (1—06)/po+6/p1 (0< 6 < 1), we
have Ym € M, (R") N M,, (R")

gy < Il ol oy (325
(v) The norm || - || e (rey decreases with p € [1,2], and
My =M, =M, > My, (1<p<qg<2). (3.26)
& W,

Proof. (i) Let f € LP, g € LV and m € M,,. Then, we have

(27f)”/2\|mllm,— sup |m¥xglly = sup [(m"xg f)l
lgll, =1 I Fllp=llgl, =1
= sup |(m'xgx*f)(0)
IFllp=1gl,=1
= sup |(m"xfxg)(0)
I llp=1gl,i=1
= sup [(m'xf,3)
I llp=lgli=1
= sup [ x fllp = ()" ml,
p—l

(ii) It has already been established because of M; = M.

(iii) It follows from Theorem 3.49 immediately.

(iv) It follows from the Riesz-Thorin theorem that the mapping f +—
m" x f maps LP* — L with norm |[m|[», and LP' — LP* with norm
Imllng,

(v) Since 1/g = (1—6)/p+6/p’ forsome fand p < g <2< p/, by
using (3.25) with po = p, p1 = p’, we see that

Imlve, < llmlla,,
from which (3.26) follows. d

Proposition 3.52. Let 1 < p < oo. Then, M,(IR") is a Banach algebra
under pointwise multiplication.

Proof. 1t is clear that || - ||at, is @ norm. Note also that M, is complete.
Indeed, let {m;} be a Cauchy sequence in M. So does it in L* because of
M, C L*™. Thus, itis convergent in L™ and we denote the limit by m. From
L® C ./, we have m) « f — m" « f for any f € . in sense of the strong
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topology on .#”. On the other hand, {m/ % f} is also a Cauchy sequence
in L7 C ./, and converges to a function ¢ € L”. By the uniqueness of
limit in ., we know that g = m" x f. Thus, ||m; —m||a, — 0 as k — co.
Therefore, M, is a Banach space.

Let m; € M, and my € M. For any f € ., we have
(270) 72| ((muma)) " # fllp =(270) 7" || (m1)" 5 (m2)”  f|
<@7) "2 [, || (m2)" % 1l
<[, lmzllae, I 1l
which implies mym; € M, and
[mymal|ae, < llmallae, [[m2]av, -

Thus, M, is a Banach algebra. Q

The next theorem states that M,(IR") is isometrically invariant under
affine transforms' of R".

e

Theorem 3.53. Let a : R" — R¥ be a surjective affine transform with n > k,
and m € M,(IR¥). Then

[[m o allye, ey = |, @re-
In particular, we have

16°m[ e, rery =[]l (R7), Ve >0, (3.27)
7l v, (rey =11l v, (R (3.28)
[Im(Cx, - Nlave, ey =lmllae, ), Y2 #0, (3.29)
where (x,§) = i S
i i=1 )

Proof. 1t suffices to consider the case that a : R" — RF is a linear trans-
form. Make the coordinate transform

which can be written as 7 = A~'¢ or & = Ay where det A # 0. Let A" be
the transposed matrix of A, 1" = (1, , ;) and " = (Pgsr, -+, 7). It
is easy to see, for any f € Z(R"), that

¢Em(a(¢))F()g
An)y
=[detA| [ e m(y)f(An)y

F Y (m(a(E

—|detA|/ ”‘A”m( )

1 An affine transform of R" is a map F : R" — R" of the form F(p) = Ap + q for all
p € R", where A is a linear transform of R” and q € R".
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AT (') F((AT) 1) () dty

( /]R e NWW(’?’:U"W’?") dy’
A () (ZHFAT) ) () (AT 2) )y
AT ) (1 (FAT) )] (0 (A7)
=7t [m(n) ([0 (FAT)N]) O, (AT))] ((ATx))
= [ m'W)f(AT) (AT — i (AT))y

Rk
It follows from m € M,(RF) that for any f € .7(R")

(20) 2|77 (m(a(€))) * FIIF g
(17 (m(@(@) )1} o

I
T

p
= | L m@OFAn) (AT =y (AT ay
R LP(R?)
p
—[det A" [ () F((AT) N~y 2y
]Rk Lp(]Rn)
- _ P
<l det Al e ey [IFCAT X Dl [ g
=[det A" [l 5 g LF(CAT) Ny e
=l Hf||Lp R")
Thus, we have
[l (a(-) e, ey < NIl (re)- (3.31)
Taking f((AT)"!x) = fi1(x') fa(x""), one can conclude that the reverse in-
equality of (3.31) also holds. Q

The Fourier multipliers can also be defined on certain vector-valued
L? spaces. We will use results for Fourier multipliers on LF with values
in a Hilbert space. Therefore, we consider only this case. Let H be a
Hilbert space, and consider the space . (R", H) or .(H) of all mappings
f : R" — X, such that (1+ |x])N|0*f(x)|s¢ is bounded for each « € N/
and N € INy. The space £(.%(Hp),H1) consists of all linear continuous
mappings from . (Hy) to Hy, where Hy and H; are Hilbert spaces. This
space is . if Hp = H; = C. Clearly, we may define the Fourier transform
on . (Hp) and on L(.(Hp), H;) in the same way as before. The integrals
converge in Hp, and it is obvious that the inversion formula holds. We
shall also use the notation .’ (Ho, H;) for £L(7(Hy), Hy).
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r 2
Definition 3.54. Let 3y and H; be two Hilbert spaces with norms | - |o

and | - |1, respectively. Consider a mapping m € ./ (Ho, H1). We write
m € M, (Ho, H,) if for all f € 7 (Hy) we have m" x f € LP(H;) and if
the expression

sup | *fHLP(SHl)
HfHU%}%):l

is finite.  The last expression is the norm, |[[m|[y, (3¢, 5¢,) in

M, (3o, 31).
. J

Theorems 3.51 and 3.53 have obvious analogues in this general situa-
tion. The proofs are the same with trivial changes. Now, we give a simple
but very useful theorem for Fourier multipliers.

e \
Theorem 3.55 (Bernstein multiplier theorem). Assume that k > n/2 is

an integer, and that 9*m € L*(L(Ho, 31)) for |a| = 0 and k with nonzero
norms. Then, we have m € My (3o, I1) for 1 < p < oo, and

n/2k
Imllag, < Cllmll3="/2(‘sup [|2*m]l2)
lae|=k
\. J

Proof. Clearly, m € //(Ho,H1). Let t > 0. By the Cauchy-Schwarz in-
equality and the Plancherel theorem, we obtain

A e

= ot ’x|7k|x|k‘mv(x)|L(:H0,:H1)dx < CH/2k |51‘1P [0%m|| 122 (3¢0,3¢1))-
w|=k

Similarly, we have
/|x<t [mY (%) | £ (3¢,9¢,) % < Ctn/2|lmHL2(L(9{0,9{1))~

Choosing t such that ||m|, = t~* sup ||0*m||,, we infer, with the help of
la|=k
Theorem 3.51, that

i, <llmllae, = (20)™"2 | [ (x)] £ (36, 90,4
IRH

n/2k
<Cjmlly "% (lsupk Ha”‘mHz> - Q
al=

Remark 3.56. 1) From the proof of Theorem 3.55, we see that m" € L' in
other words, it is equivalent to the Young inequality for convolution, i.e.,
i 5 £lly < VIl £ for any 1 < p < co.

2) It is not valid if the r.h.s. of the inequality is equal to zero because
such a t € (0,00) does not exist in this case in view of the proof. For
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example, one can consider m = X[_1/21/2 € L2, then [[om]|; = 0 but
mV(&) = (2m)~V 2sinc% ¢ L', where the sinc function is defined by
sinc(¢) = % for ¢ # 0 and sinc(0) = 1.

Exercises

Exercise 3.1. Prove Proposition 3.12.

Exercise 3.2. Let

_ oy gl 19— Wlep
uc,BelN" 1+[p— ¢|aﬁ

Prove the space (.7, p) is a complete metric space.

Exercise 3.3. [Spi74, Exercise 5.3, 5.4 with answers]

(1) In R, find the Fourier transform of

) = {1, |x| < a,

0, |x|>a.

(i1) Use the result of (i) to evaluate / ™ sinfag) CC 0s(x¢) dac.

* smx
dx

(iii) Deduce the value of /

Exercise 3.4. For all a > 0, prove

/T Call I'((n+1)/2)
(2m) /2e=al ‘(C) = (a2+\§\2)(”+1)/2' Cn = T nD/z (3.32)

Exercise 3.5. Let n = 1 and

1 ¢>e
(&) = 1€ng
E’ 0<¢<e

g(¢) =-g(=¢), ¢<o.

It is clear that g(¢) is uniformly continuous on R and g(¢) — 0 as || — oo.
Prove that there is no integrable function whose Fourier transform is g.

Exercise 3.6 (Hardy-Littlewood-Paley theorem on R"). Let w be a weight
function on R”, i.e., a positive and measurable function on IR”. Then, we
denote by LP(w) the LP-space with respect to wdx. The norm on L?(w) is

Al ) = (/]R If(X)I’”W(x)dxy/p.

Assume p € (1,2]. Use the Marcinkiewicz interpolation theorem to prove

I fllrg-ne-my < Cpllfllp-
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Exercise 3.7 (Bernstein’s inequality[Gral4a, Exercise 2.3.11]). Let f be a
bounded function on R" with f supported in the ball B(0,R). Prove that
for all multi-indices a, there exists a constant C,, (depending only on «
and the dimension #) such that

18 Flleo < Carpa RI™| ] eo-

Write f = f *hy g, where h € .(R") whose Fourier transform is
equal to one on the ball B(0,1) and vanishes outside the ball B(0, 2).

Exercise 3.8 (Homogeneous distributions[Gral4a, Exercise 2.3.9]). A dis-
tribution in .’/ (IR") is called homogeneous of degree v € C if for all A > 0
and for all ¢ € .(R"), we have

(u,8%p) = A7""(u, ).

(i) Prove that this definition agrees with the usual definition for func-
tions.
(ii) Show that the Dirac mass §p is homogeneous of degree —n.
(iif) Prove that if u is homogeneous of degree <y, then 0*u is homogeneous
of degree v — |a|.
(iv) Show that u is homogeneous of degree 7y iff il is homogeneous of
degree —n — 1.

Exercise 3.9. [Gral4a, Exercise 2.5.11] Suppose that u € C®(R" \ {0}) is
homogeneous of degree —n +it, T € R. Prove that the operator given by
convolution with u maps L?(R") to L?(R").






The study of singular integrals is one of the most important topics in
harmonic analysis. The Hilbert transform is the prototypical example of a
singular integral. This is a particularly important operator for several rea-
sons: it is a model case for the general theory of singular integral operators;
it is a link between real and complex analysis; it is related to summability
for Fourier integrals in L” norms. We will derive its L¥ boundedness and
the maximal Hilbert transform.

Hilbert Transform

§4.1 Hilbert transform

The Hilbert transform is given formally by the principal value integral

@:pM;AﬂﬁJMMﬂml D0 @

e—=0 7T J)t|>e t

It is not immediately obvious that Hf(x) is well-defined even for nice
functions f. We first observe that the Hilbert kernel ky(x) = p.v. = €
<'(R). Indeed, we can write for any ¢ € .

<p.v. ch,gb> =lim @dx

e—0 |x‘>g X
UL PR PN
<Jx|<1 x =1 x

this holds since the integral of 1/x on ¢ < |x| < 1 is zero. It is now
immediate that for any ¢ € . (R)

1 /
(P )| <2010/ + Ille),

which implies kg € /(R). Thus, for f € (R), it follows from Theo-
rem 3.37 that Hf = ky * f is a C* function, that is, Hf is also well-defined
for f € /(R), although it does not map .7 to itself.

For f € .(R), by symmetry and Proposition 3.10, we have for |x| > 2
nixHf (x / f
<[|t|<1

e—0 e t
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xf(x—t B o

+/t>1 t/f tdt‘

iy [ (x—t)f(x—t)—f()dt+ (x—Dfx-1),
<Jt|<1

e—0 Je t t]>1 t

1 dt
< "(x — 6t)|dodt + C
/t|<1/ ’(xf) (x )| 1 M(l"i‘ \x—t])3

/ / dodt +C/ dt
e do (T+]x—6t]) t|>1rx|<1+\x—t\>2

1 dpdt
f kT
t<1Jo (14]x[/2) \x! 1+!x—t\
C

x|’
since |x — 0t > |x| — |t| > |x|/2 for |t| < T and |t|(1+ |x —¢t]) > |t| + |x —
t| > |x| for |t| > 1. Thus, for f € ., we obtain the asymptotic

lim xHf(x / f. 4.2)

|x|—o00

N

N

Hence, if f has nonzero mean then Hf only decays like ‘17‘ at infinity. In
particular, we already see that H is not bounded on L.
If f € Cl, then we can restrict the integral to a compact interval t €

[—R, R] for some large R depending on x and f, and use symmetry to
write

flx—t) flx—t)— f(x)
|t]>e t at = /<t|<R a.

t

The mean-value theorem then shows that w is uniformly bounded
on the interval t € [—R, R] for fixed x and f, and thus, the limit actually

exists from the dominated convergence theorem.

Moreover, from the above arguments, it follows that H at least maps
Z(R) to L?(R). It follows from the definition in (4.1) that H commutes
with translations. It is also formally skew-adjoint, i.e., the adjoint operator
H* = —H, indeed by symmetry we have for f,g € .7,

/Hf( dx—//kH x —y) f(y)dyg(x)dx
=~ [ [ Fknty - vg()axdy

=— VHg(y)
/IR fy)Hg(
Similarly, the dual operator H' = —H, i.e.,
[ Hf)g0dx = [ fn)Hg(y @3

Now, we give an example.
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Example 4.1. Consider the characteristic function x|, of an interval [a, b].
It is a simple calculation to show that

H(Xou)(3) = 210 241 )

Let us verify this identity. By the deflrutlon, we have

L., X[a,b](x_y) 1., 1
i la) () = 7 /I}/|>s ?dy - Ell—%/ e g

x—b<y<x—a Yy
It is clear that it will be —co and +co at x = a2 and x = b, respectively.
Thus, we only need to consider three cases: x —b > 0, x —a < 0 and
x —b < 0 < x — a. For the first two cases, we have

1 *a1 |x — a|
H X)=— / —d l
Kap) ()= | = x|
For the third case, we obtain (without loss of generahty, Wwe can assume
e < min(|x —a|, |x —b|))

Hxs) (x) = nygg(/xbnyr/ )

zllim(ln +ln ”“”’)
7T e—0 |x — b| €

L x—al

e
where it is crucial to observe how the cancellation of the odd kernel 1/x
is manifested. Note that H(x[,))(x) blows up logarithmically for x near
the points 2 and b and decays like x~! as x — 4-c0 by (4.2) (or a direct
computation with the help of L'Hospital’s rule). See the following graph
witha=1and b =3:

The following is a graph of the function H(x|_10,0u[1,2]u(47]):



100 4. Hilbert Transform

T 3 T T T T g w1z &

The Hilbert transform is connected to complex analysis (and in par-
ticular to Cauchy integrals) by the following identities.

4 )
Proposition 4.2 (Plemelj formula, [Tao06]). Let f € C'(IR) obey a quali-
tative decay bound f(x) = Of(<x>_1) (say, these conditions are needed just

to make Hf to be well-defined) where (x) = \/1+ x2. Then, for any x € R,
1 f) _ £f() +iHf(x)
27'ciel—r>%/]1<y—(xiis)dy_ 2

. A

Proof. By translation invariance, we can take x = 0. By taking complex
conjugates we may assume that the =+ sign is +. Our task is then to show
that

im L [ S8 g Leg) - i " ({(_y])/dy =0.

e—0 271 JR Y — i€ 2
Multiplying by 27ti and taking the change of variables y = ew, it reduces
to showing

imy [ ftew) (

e—0 JR

1 )
- X{|w>1}w> dw — mif (0) = 0.

w—1

/ LI 1 dw
R \w—i X{lwl>1} 7,

1 1
= < . — > dw —|—/ L -dw
wj>1 \W—1 W lw|l<1 W —1
. dw _/ dw
w1 1+w?  Jjw>1 w(1+ w?)

+/ de—ki/ _dw
wl<t 14 w? lwj<1 14 w?

i
R 14w? T

Thus, we only need to show

iy [ (F(ew0) = £0) 525 = Xty ) de =0

e—0 JR w—1
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1 1‘
= — dw+/
w—1i w lw|<1

B dw +/ dw
lw|>1 w1 + w? lw|<1 /1 4+ w?
</ dw + dw
|w

>1 w0 <1

=2+2=4,

Since f is bounded and

1 1
/R o Mul>1y, dwé/

w|>1

w—1

the claim follows from the dominated convergence theorem. Q

Now suppose that f not only obeys the hypotheses of the Plemelj
formula but also extends holomorphically to the upper half-plane {z € C :
Imz > 0} and obeys the decay bound f(x) = Of(<x>_1) in this region.
Then, Cauchy’s formula gives

LY f)
—1 — =y =
27ti el—%/uzy— (x + ie) y=fx)
and

f)

Zm'sg%/u{y— (x — ie)
Thus, by either of the Plemelj formulae we see that f(x) +iHf(x) = 2f(x),
ie, Hf = —if in this case. In particular, comparing real and imaginary
parts we conclude that Inf = HRef and Ref = —HImf, so Ref =
—H?Re f. Thus, for reasonably decaying holomorphic functions on the
upper half-plane, the real and imaginary parts of the boundary value are
connected via the Hilbert transform. In particular, this shows that such
functions are uniquely determined by just the real part of the boundary
value.

dy = 0.

The above discussion also strongly suggests the identity H> = —1.
This can be made more manifest by the following Fourier representation
of the Hilbert transform.

Proposition 4.3. If f € .(R), then
HJ(¢) = ~isgn ()7 (0), ae. (€ R (45)

Proof. Since the Hilbert transform is odd, a symmetry argument allows
us to reduce to the case ¢ > 0. Then, it suffices to show that w has a
vanishing Fourier transform in this half-line. Define the Cauchy integral
operator
1 fy)
= _— . 4.
Cef (%) 27ti /]R y—(x— is)dy (4.6)

The Plemelj formulae show that these converge pointwise to w as
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e — 0. Since f € .7, it is also not hard to show via the dominated conver-
gence theorem that they also converge in L2. Thus, by the L2 boundedness
of the Fourier transform, it suffices to show that each of the C.f also has
a vanishing Fourier transform on the half-line. Fix ¢ > 0, we can truncate
and define
1
CS,Rf(x) = % A ‘y_]zgcy)_is)X{y—x<R}dy'

By the dominated convergence theorem, we can show that C, g f converges
to C.f in L2 as R — oo, so it will suffice to show that the Fourier trans-
forms of Corf converge pointiwse to zeros as R — oo on the half-line
¢ > 0. From the Fubini theorem, we easily compute

Ty L[ —ixe fy)
Ce,Rf(g) o /]Re R Y — (x — ie)X{\y—xKR}dydx
L[ iy iy X{YI<R} 4,1
= iy'e =y )8 iy —of Y
27Ti/1Re (/IRe f(x y)dx> —y’—i—isdy
—sz(g)/]l{_@_ig)?(ﬂykla} Y
Then, by shifting the contour to the lower semicircle of radius R and then

letting R — oo, we obtain the result. a

From this proposition and Plancherel’s theorem, we conclude that H
is an isometry:

[Hfll2 = [Ifll2,  Vfe€Z(R). (4.7)

Because of this, H has a unique dense extension to L?(R), and formula
(4.5) is valid for all f € L?(R).

It is obvious, for the dilation operator 6° with ¢ > 0, by changes of
variables (ey — v), that

(H5)f(x) =lim lwa@Xy—sy)dy
— lim FEX=9) 0 st £
=l |y W= HfR),

Therefore, Hé® = 6°H; and it follows obviously that Hé* = —6°H if ¢ < 0.

These simple considerations of dilation “invariance” and translation
invariance characterize the Hilbert transform.

( )
Proposition 4.4 (Characterization of Hilbert transform). Suppose T is a

bounded linear operator on L?>(IR) which satisfies the following properties:
(i) T commutes with translations;
(ii) T commutes with positive dilations;

(iif) T anticommutes with the reflections.

Then, T is a constant multiple of the Hilbert transform.
\ V.
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Proof. Since T commutes with translations and maps L2(R) to itself, ac-
cording to Theorem 3.49, there is a bounded function m(¢) such that

]/?(C) = m(é‘)?(tj) Assumptions (ii) and (iii) may be written as Té°f =
sgn (¢)6¢Tf for all f € L2(R). By part (vi) in Proposition 3.2, we have
T5°F(2) =m(@)5F(8) = m(@)[el "F(&/e),
sgn (e)5°TF (&) =sgn ()¢l Tf(§/¢) = sgn (e)[e|'m(E/)F (& /e),

which means m(ef) = sgn(e)m((), if ¢ # 0. This shows that m(¢) =
csgn (&), and the proposition is proven. Q

§4.2 L” boundedness of Hilbert transform

Kolmogorov’s theorem asserts that the Hilbert transform satisfies a
weak type (1,1) estimate. He proved this using complex analysis. Here,
we shall give the real analysis proof based on the Calderon-Zygmund de-
composition since it goes over to dimension 4 > 1. The next theorem
shows that the Hilbert transform, now defined for functions in L%, can be
extended to functions in L?, 1 < p < co.

. “
Theorem 4.5. The following assertions hold:

(i) (Kolmogorov’s theorem) H is of weak type (1,1): for f € L}(R) N
L*(R)
C
{x € R: [Hf ()] > a}] < S|lflhn.

(ii) (Riesz’s theorem) H is of type (p,p), 1 < p < oo: for f € LP(R) N
L*(R)

IEflp < Cpll £l
\ J

Proof. (i) Fix &« > 0. From the Calderén-Zygmund decomposition of f
at height & (Theorem 2.17), there exist two functions ¢ and b such that
f=g+band

M) gl < |Ifll1 and ||g]|e < 2&, thus ¢ € L' N L? and so is b.

(2) b = L. bj, where each b; is supported in a dyadic interval I; satis-
]
fying fI]_ bj(x)dx = 0 and ||b;||1 < 4«|I;|. Furthermore, the intervals I; and

I have disjoint interiors when j # k.
@) T < a M flh-
]
Let 21; be the interval with the same center as [; and twice the length,
and let QO = U;I; and Q* = U;2I;. Then, |Q*] < 2|Q| < 227 1|f]|;.
Since Hf = Hg + Hb, from parts (iv) and (vi) of Proposition 1.15,
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(4.7) and (1), we have
(Hf)«(a) < (Hg)«(a/2) + (Hb)+(a/2)
S(a/z)_z/]R |Hg(x)[Pdx + Q| + [{x € Q"+ |Hb(x)| > a/2}]

é;A|g(x)|2dx+2a_1||f|l1 + 207! /]R\Q* |Hb(x)|dx
<> [Igldx+ 20fl+2 [ 3 Hb()ldx

X JR g n© 1 (14 ]R\Q* ] ]

8 2 2
<7 - - 1 .
\Jvm+ﬁvm+a;AmHHmmux

For x ¢ 21;, we have

Hbj(x)zlp.v./lbj(y)d :1/1 5) 4,

T X =y T x—y
since suppb; C Ij and |x —y| > [[;|/2 for y € I;. Denote the center of I;
by Cj; then, since b]- is mean value zero, we have

b.
/ |Hbj(x)]dx:/ 1/ ](y)dy‘dx
1 1 1
— b - d
R =
1 ly — ¢l
<—/b- (/ | . dx)d
AV R e e e A

1 ||
<= [ 1p; / g )d.
LI ([, )

The last inequality follows from the fact that [y — ¢;| < |I;|/2 and |x —y| >
|x —cj|/2 due to |x — ¢j| > |I;|. The inner integral is bounded by

® 1 1
zyu/ —dr = 2|l =2
QRS "l

Thus, by (2) and (3),
10 4
(Hf)s() *HfHHr*Z/Ib Ny < —fll+— ) 4allj]
]

10 161 10 + 16/ T

S+ — 2l fllh = ————Ilflk-

(i) Since H is of weak type (1, 1) and of type (2,2), by the

Marcinkiewicz interpolation theorem, we have the strong type (p, p) in-

equality for 1 < p < 2. If p > 2, we apply the dual estimates with the
help of (4.3) and the result for p’ < 2 (where 1/p+1/p’ = 1):

|Hfll, = sup |[(Hf,g)|= sup [(f Hg)|
gl <1 gl <1
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<Ifllp sup [[Hgll, < Cpllfllp-

gl <1

This completes the proof. Q

Remark 4.6. i) Recall from the proof of the Marcinkiewicz interpolation

theorem that the coefficient is

2 [(1o+ 16/m)p , 2p ]W
p 7

p p—1 2 —

1<p<?,
Cp:
-2

Therefore, the constant C;, tends to infinity as p tends to 1 or co. More
precisely,

C, = O(p"/?') as p — oo, and C, =0((p— )" VYP)asp — 1.

_ 1/p'
2(]0pl) {(10—1—16/7{);94—]92]9] , p>2

The best constant C,, is given by

T
tan —, 1 <2,
anzp <p

cotl 2<p <o
2p1 P ’

which is due to [Pic72], see also [Gral4a, Remark 5.1.8].
ii) The strong (p, p) inequality is false if p = 1 or p = oo, which can

Cp:

be easily seen from the previous example Hx(, s, = %ln K:ZI which is
neither integrable nor bounded. See the following figure.
’ The integra
3 4 H ] T E] 9 10 g

iii) By using the inequalities in Theorem 4.5, we can extend the
Hilbert transform to functions in LF, 1 < p < oo.

If f € L' and {f,} is a sequence of functions in .7 that converges
to f in L!, then by the weak (1,1) inequality, the sequence {Hf,} is a
Cauchy sequence in measure: for any ¢ > 0,
lim_|{x € R: |(Hf, ~ Hfn)(x)| > e} =0.

m

Therefore, it converges in measure to a measurable function, which we
define as the Hilbert transform of f.

If feLF,1<p<oco and {f,} is a sequence of functions in .7 that
converges to f in L? by the strong (p, p) inequality, {Hf,} is a Cauchy
sequence in L7, so it converges to a function in L” which we call the
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Hilbert transform of f.
In either case, a subsequence of {Hf,}, depending on f, converges
a.e. to Hf as defined.

§4.3 The maximal Hilbert transform and L” boundedness

Definition 4.7. The truncated Hilbert transform (at height ¢) of a func-
tion f € LP(R), 1 < p < oo, is defined by

H(e)f(x) - 1 fx=y) dy = 1/ Mdy.

Tlyl>e Y TCJ|x—yl>e X — Y

Observe that H'® f is well-defined for all f € LP(R), 1 < p < co. This
follows from Holder's inequality since 1/x is integrable to the power p’ on
the set |x| > e.

Clearly, the Hilbert transform of f € . can be given by
Hf (x) = lim H® £ (x). (4.8)
e—

We now introduce the maximal Hilbert transform.

Definition 4.8. The maximal Hilbert transform is the operator
HOf(x) = sup [HO f(x)] (49)
e>0

defined forall f € LP,1 < p < oo.

Since H® f is well-defined, H*) f makes sense for f € LP(R), al-
though for some values of x, H*) f(x) may be infinite.
Example 4.9. Using the result of Example 4.1, we obtain that

1 |x — a|
(%) = =
H X[u,b](x) T ‘11’1 ’x — b| ‘HX[u,b](x)‘ :

However, in general, H*) f(x) # |Hf(x)| by taking f to be the character-
istic function of the union of two disjointed closed intervals. (We leave
the calculation to the readers.)

The definition of H gives that H(®) f converges pointwise to H f when-
ever f € Z(R). If we had the estimate [|H*)f||, < C,| f||, for f € LP(R),
1 < p < oo, then it follows that H(®) f converges to Hf a.e. as ¢ — 0 for
any f € LP(R). This limit a.e. provides a way to describe Hf for general
f € LP(R). Note that Theorem 4.5 implies only that H has a (unique)
bounded extension on L7, but it does not provide a way to describe Hf
when f is a general L? function.
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The next theorem is a simple consequence of these ideas.

e D
Theorem 4.10. There exists a constant C such that for all p € (1,00), we
have

IHO £, < CmaX(P,( D=)I£1lp- (4.10)
Moreover, for all f € LP(IR), H'®) f converges to Hf a.e. and in LP.
\, v,

Proof. Consider the Poisson kernel and conjugate Poisson kernel with
e>0

1 e 1 x
f=awre U avye
which satisfies the identity with
—M — P.(x) +iQu(x).
Since
/ooei(eris)CdC _ 1 _
0 i(x + ie)

and by Fubini’s theorem for f € L?(RR)

/0 PlrHied g o x f(x // y+l€§d§f (x —y)dy
N E——

o]

:(27.()1/2/ p i (x-+ie §f(€>d€

0
it follows that

o . BN 1 ]
/O e HOEE (2) dE = S[(Pex f)(x) +1(Qe  f) (%)) (4.11)
Because P; and Q. are even and odd functions of x, respectively, since

Poxf=Poxf, Q*f=—Qcxfand f = ?, using (4.11) with f and 7, we

obtain
(P f)(x /f &)eielel gz — (e—s\a})V
(Qex f)(x) = =i [ F(@)ee ¥l sgn (£)dz
= — i (sgn(@)e 7).’

As a result, we obtain that the Fourier transforms of P; and Q; (taken in
L?) are given by
Pi(§) = (2m) 712, Qu(@) = —isgn (§)(2m) V2L

It also follows that [, Pe(x)dx = (271)1/2P;(0) = 1 and then {P,}eo is an
approximate identity.
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Thus,

FxQe=—isgn(&)e FIf = e HF = P« HY,
which implies for all f € LN L?

f*Qe=HfxP, &e>0. (4.12)
Then, we have
(s)f:H(£)f_f*Q8_|_Hf*Pe, (4.13)
Using the identity
(e) _ _ et flx—t) ]
HOR) = (F2 Q) == | [ e [ T
1
= /Rf(x — )pe(t)dt, (4.14)
where (x) = e (e 'x) and
t 1
oo il if [t] > 1,
t .
R if [t <1

Note that ¢ has an integral of zero since ¢ is an odd function and is
integrable over the line. Indeed,

Jowora=f Ly =g [
1|2 +1 + 1t <1 2 +1
£]
t+/ ———dt
/t>1 t2+1 )| ] <1 241
/oo dtZ +/l dtZ
1 (2+1)82 0o 241
/°° ds /1 ds
= + | —
1 (s+1)s  Jo s+1
© /1 1 L ds
= - — d
/1 s s+1> T sy

} + [In|s + 1|1}

The least decreasing radial majorant of 1 is
1

2+ 1)t
(1) = sup [p(s)| = ¢ FH DI
ls|>] > if |t <1,
since the function g(x) = 5 is increasing for x € [0,1] and decreasing
for x € (1,00). It is easy to see that ||¥||; = In2+ 1. It follows from

if [t > 1,
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Theorem 2.10 that
1
sup [HO £(x) — (f 5 Qo) ()] < 22 Mp(x). (4.15)

e>0 T
In view of (4.13) and (4.15), from Theorem 2.10 we obtain for f € L2(R) N
LP(R) that

[HY f(x)| =sup [HY f(x)]

e>0

<sup [Hf(x) = (f * Qe) (x)| + sup [HS # P|
e>0 e>0
In2+4+1

<

Mf(x) + M(Hf)(x).

It follows immediately from Theorem 2.6 and Theorem 4.5 that H () is LP
bounded with norm at most C max(p, (p — 1)72) since L?>(R) N LP(R) is
dense in LP(R).

Applying Theorem 2.9 to (4.14), we have ll_r:% IHEf — (f % Qe)ll, =0

since ¢ has an integral of zero. By Theorem 2.9, we also have lina I|Hf =
e—
P — Hfl|, = 0. Thus, from (4.13), it follows that lim |HE f — Hf||l, =0,
e—

and therefore, we also have H®) f — Hf a.e. as ¢ — 0. Q

Exercises

Exercise 4.1. [Zho99, Exercise 1, on p.143] Let f € L?(R), xf € L?(R)
and [ f(x)dx = 0. To show that Hf € L!(R), where H is the Hilbert
transform.

Exercise 4.2. [Gral4a, Exercise 5.1.3]

(i) Calculate the Hilbert transform of the following functions: e’* cosx,
sinx, sin(7tx) / 7tx, where x € R.

(ii) Show that the operators given by convolution with the smooth func-
tion sint/t and the distribution p.v. cost/t are bounded on L*(RR)
whenever 1 < p < co.

Exercise 4.3. [Gral4a, Exercise 5.1.4] Calculate the distribution function of
the Hilbert transform of the characteristic function of a measurable subset
E of the real line of finite measure, i.e., (Hxg).(«).






Calderon-Zygmund Singular Integral Operators

In this chapter, we consider singular integrals whose kernels have the
same essential properties as the kernel of the Hilbert transform.

§5.1 Calderén-Zygmund singular integrals

We can generalize Theorem 4.5 to obtain the following result.

e ™
Theorem 5.1 (Calderén-Zygmund Theorem). Let K be a tempered distri-
bution in R" that coincides with a locally integrable function on R™ \ {0}
and satisfies

R(@)] < (2m)~"/?B, (5.1)

and the Hormander condition
/ K(x —y) — K(x)|dx <B, yeR". (5.2)

x|=2|y|
Then we have the strong type (p, p) estimate for 1 < p < oo

IK* fllp < Cpll fllp, (5.3)

and the weak type (1,1) estimate

C
(K £)a(@) < <l 654
\_ WV,

We will show that these inequalities are true for f € .7, but they
can be extended to arbitrary f € L7 as we did for the Hilbert transform.
The Hormander condition (5.2) is often deduced from another stronger
condition as follows.

Proposition 5.2. The Hormander condition (5.2) holds if

IVK()| < [z

Vx # 0. (gradient condition) (5.5)

Proof. By the integral mean value theorem and (5.5), we have

1
[ K=y =K@l < [ VK= oy)lylaodx
|x|>2]y] |x|=2y| JO
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Cly| / / Cly|
e ——dxd0
/ /x|>2|y| [xx — Oy[m+t 9y!”+1 2 (lx]/72)m
<L2"MICly|wy 1 /l " —dr = 2""1Cly|w, 12|y| =2"Cwy_1.
This completes the proof. Q

Proof of Theorem 5.1. Let f € ¥ and Tf = K f. From (5.1), it follows that
ITfll2 =ITFll2 = 27)" 2||KF I
<(27)"?|Rlslfll2 < BIf ]l (5:6)
=B||fll2

by the Plancherel theorem (Theorem 3.16) and part (vii) in Proposition 3.2.
It suffices to prove that T is of weak type (1,1) since the strong (p, p)
inequality, 1 < p < 2, follows from the interpolation, and for p > 2 it

follows from the duality since the conjugate operator T’ has kernel K'(x) =
K(—x), which also satisfies (5.1) and (5.2). In fact,

(Tf,<p>:/ Tf(x) xdx:/n/nKx— y)dye(x)dx
= [ ] K-ty - xexfdy = [ [ (K o))y

=(f, T'p).
To show that f is of weak type (1,1), fix & > 0 and from the Calderén-
Zygmund decomposition of f at height «, then as in Theorem 4.5, we can
write f = g 4 b satisfying

@ ligll < [Ifllx and [Iglleo < 2"a
(ii) b = }_bj, where each b; is supported in a dyadic cube Q; satisfying
j

/b( x)dx = 0 and ||b;]l; < 2"+1a|Qj],
Q

]
where the cubes Q; and Qy have disjoint interiors when j # k;

(i) LIQjl <a M fls.
J

The argument now proceeds as in Theorem 4.5, and the proof reduces
to showing that
/IRH\Q]’f

where Q]?* is the cube with the same center as Q; and whose sides are

Th;(x)|dx < C /Q [by(x)dx, (5.7)

2y/n times longer. Denote their common center by c;. Inequality (5.7)
follows from the Hormander condition (5.2). Indeed, since each b; has
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zero average, we have for x ¢ Q;‘

Th(x) = /Q K(x — y)bj(y)dy = /Q [K(x — y) — K(x — ¢;)]b (y)dy,

j ]
then,

/ Tbj(x)|dx</ /
R'\Q; Q \/R"\Q;

By changing variables x —¢; = x’ and y —¢; = v/, and the fact that
|x —¢j| = 2|y —cj| for all x ¢ Qi and y € Qj as an obvious geometric
consideration shows, and (5.2), we obtain

/ \ \K(x—y)—K(x—cj)|dx</ K(x' — y') — K(x')|dx' < B.
R™\Q;

K(x —y) - K(x —¢)) !dx> 16 (y)|dy.

¥ [Z2]y|

Since the remainder proof is (essentially) a repetition of the proof of Theo-
rem 4.5, we omit the details and complete the proof. Q

There is still an element that may be considered unsatisfactory in our
formulation because of the following related points:

1) The L? boundedness of the operator has been assumed via the hy-
pothesis that K € L* and not obtained as a consequence of some condition
on the kernel K.

2) The results do not directly treat the “principal-value” singular in-
tegrals, which exist because of the cancellation of positive and negative
values. However, from what we have done, it is now a relatively simple
matter to obtain a theorem that covers the cases of interest.

r D
Definition 5.3. Suppose that K € L] (IR"\ {0}) satisfies the following
conditions:

|K(x)| < Blx|™", Vx#0,

/ (K —¥) —K()ldx < B, ¥y #£0, (5.8)
x|>2|y

and
/ K(x)dx =0, Y0 < Ry < Rp < oo. (5.9)
R1<|x|<Ry

Then, K is called the Calderon-Zygmund kernel, where B is a constant

independent of x and y.
\ /

For L2 boundedness, we have the following lemma.

[ Lemma 5.4. Suppose that K satisfies conditions (5.8) and (5.9) of the above ]
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definition with bound B. Let

K(x), |x| > ¢,
K —
() { 0, x| < e

Then, we have the estimate

sup [K:(&)| < (27) "/2CB, &> 0, (5.10)
¢

where C depends only on the dimension n.
\\ v

Proof. First, we prove inequality (5.10) for the special case ¢ = 1. Since
K1(0) = 0, we can assume § # 0 and have

RO = [, e e

= e Ky (x)dx
|x|<27/|g]

+/ e EK (x)dx
27/ 1¢]<|x|

=1+ b.
By condition (5.9), [} <3,/ (z K(x)dx = 0 for |¢| < 271, which implies

/ Ki(x)dx =0, V¢ #D0.
|x|<27t/|¢]
Thus, |,

<an/ie] €Ki = [y cpnygle™™ ¢ ~ 1]Kq (x)dx. Hence, from
the fact |¢®® — 1| < || and the first condition in (5.8), we obtain

mi< [ IllelKildx < Ble| x|
|x[<27/]¢] [x|<27/[g]

(9 —n/2 /el 1-n/2
=(27t) " “wy,_1B|¢]| ; dr = (2m) wy—1B.

To estimate I, choose z = z(&) such that e~z = —1. This choice
can be realized if z = 7¢/|¢|?, with |z| = 7/|&|. By changing variables
X +z =y, we obtain

/ e K (x)dx = —/ e IFEEK (x)dx = —/ e VK (y — z)dy
n n Rn

=— / e K (x — z)dx,
IR}’!

which implies [p, e €Ky (x)dx = § [p.e” ™ ¢[Ki(x) — Ky (x — z)]dx, then

we have
= fa )00
" |x|<2m/[¢]

:E/Rn TR (x) — Ky (x — z)]dx
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- / e Ky (x)dx
|x|<27/[g|

1 .
=— lim e O (x) — Kq(x — z)]dx
2 A el e [Kq(x) — Kq( )l

1 —ix-E
- = e Ky (x)dx
2 J|x|<2r/ (| )
1 —ix-¢
— = e Ki(x —z)dx.
2 J|x|<2m/ || ( )

The last two integrals are equal to, in view of integration by parts,
1

. 1 .
- = e EKy (x)dx — 7/ e UK (y) d
2 J|x|<27m/|¢| 1(x) 2 Jly+z|<2m/|E| 1)y
1 i€ 1 v
=—= e Ki(x)dx + = e CR, (x)dx
2 J|x|<27m/|¢| 1(x) 2 Jixtz|<2m/|¢] 1(x)
__1! e EKy (x)dx
2 Jix|<2m/|g|< x+2]
1

- —ix-¢

2 acamrigent T
For the first integral, we have 27t/ |¢| > |x| >
|x + 2| = [z] > 27/[¢| = 7/[¢| = n/[¢], and
for the second one, 27t/|&| < [x| < [x +z| +
|z| < 37/|¢|. These two integrals are taken
over a region contained in the spherical shell,
/|| < |x| < 37m/|E| (see the figure), and
are bounded by }Bw,_1In3 since |K;(x)| <
Bl|x|™". By |z| = m/|¢| and condition (5.8),
the first integral of I, is majorized by

1
5 |K1(x —z) — Ky (x)|dx
x|>27/ I
_1 1Ky (x — 2) — Ky (x)|dx < 2B
"2 i ! 27

Thus, we have obtained
I 1 1
K1 (§)] < (27)7"/2 <2ﬂwn_1B + 5B+ 5Bwa ln3> < Cu(277) /2B,

where C depends only on n. We finish the proof for Kj.

To pass to the case of general K, we use a simple observation (dilation
argument) whose significance carries over to the whole theory presented
in this chapter.

Let 6° be the dilation by the factor € > 0, i.e., (6°f)(x) = f(ex). Thus,

if T is a convolution operator

Tf() =g f(x) = [ o(x=y)f iy,
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then

& Tof(x) = / p(e 'x —y)fley)dy

.
—e [ @l (x —2)f(2)dz = e+ f,

where ¢.(x) = ¢ "p(¢7'x). In our case, if T corresponds to the kernel
K(x), then 6¢ 'Té¢ corresponds to the kernel ¢ "K(¢~!x). Note that if K
satisfies the assumptions of the theorem, then ¢ "K(e 'x) also satisfies
these assumptions with the same bounds. (A similar remark holds for the
assumptions of all theorems in this chapter.) Now, with a given K, let
K’ = ¢"K(ex). Then, K’ satisfies the conditions of the lemma with the same
bound B, and so if we denote
/ K'(x), |x[ =1,
Kilx) = { 0, x| <1,
then we know that |I/<Z (&)] < (2m)~"/2CB. The Fourier transform of
e "Ki(e71x) is a(eé‘) which is again bounded by (27r)~"/2CB; however,
¢ "K{ (¢ 1x) = K¢(x); therefore, the lemma is completely proved. Q

( )

Theorem 5.5. Suppose that K is a Calderon-Zygmund kernel. For ¢ > 0
and f € LP(R"), 1 < p < oo, let

TOfI= | fE=KE)dy: (5.11)
Then, the following conclusions hold:
(i) We have
1T £y < Apl£lly (5.12)

where A, is independent of f and e.
(ii) Forany f € LP(R"), lin(} T'€) f exists in the sense of the LP norm. That
&=

is, there exists an operator T such that
Tf(x) = pv. [ KW)f(x=y)dy.
(i) (ITfllp, < Apllfllp for f € LP(R™).

. A

Proof. Since K satisfies conditions (5.8) and (5.9), then K¢(x) satisfies the
same conditions with bounds not greater than CB. By Lemma 5.4 and
Theorem 5.1, we have that the L? boundedness of the operators {Ke}:~0
is uniform. Thus, (i) holds.

Next, we prove that {T(E) f1}es0 is a Cauchy sequence in L provided
f1 € €L(R"). In fact, we have

TOf(x) = T fi(x) = [

ly|>e

K()filx—y)dy = [ K@)flx—y)dy

ly|=1
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—sgn (7 —¢) / KO[fix =) = fi()dy,

min(e,7) <|y|<max(e,

because of the cancellation condition (5.9). For p € (1,c0), we obtain, by
the mean value theorem with some 6 € [0, 1], Minkowski’s inequality and
(5.8), that

95 -1l < | [ KNIV A1~ 6 lyldy

(e7)<ly|<max(en)

p
<[ KWV filx = 9) | lyldy
min(e,) <|y|<max(e,n)

<C |K(y)|lyldy

min(e;7)<|y|<max(e;)

<CB ly| =" dy

min(e,7) <|y|<max(e, )
max(e,n)
—CBuw, 1 / dr
min(e,n)

=CBw;,_1|ny — €|

which tends to 0 as ¢, — 0. Thus, we obtain T(®) f; converges in L? as
¢ — 0 by the completeness of L.

Finally, an arbitrary f € LP can be written as f = f; + f, where f;
is of the type described above and || f2|, is small. We apply (5.12) for f,
to obtain || T £, < C|f2]|p; then, we see that lgr(} T(®) f exists in the L?

norm; and that the limiting operator T also satisfies the inequality (5.12).
Thus, we complete the proof. Q

Remark 5.6. 1) The linear operator T defined by (ii) of Theorem 5.5 is
called the Calderén-Zygmund singular integral operator. T'®) is also
called the truncated operator of T.

2) The cancellation property alluded to is contained in condition
(5.9). This hypothesis, together with (5.8), allows us to prove the L?
boundedness and the L? convergence of the truncated integrals (5.12).

3) We should note that the kernel K(x) = -1, x € R clearly satisfies
the hypotheses of Theorem 5.5. Therefore, the Hilbert transform exists
in the sense that if f € LP(R), 1 < p < oo, then

lim 1 Mdy

20T Jylze Y
exists in the L¥ norm, and the resulting operator is bounded in L”, as
shown in Theorem 4.5.
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§5.2 The method of rotations and singular integral with odd ker-
nels

We first introduce the homogeneous singular integrals.

( )
Definition 5.7. Let Q € L'(S""!) have a mean value of zero. For
0<e<N<oand fe |J LP(R"), we define the truncated singular

1<p<oo
integral
Qy/lyl)
TEN) £ () = / x —y) =W 5, (5.13)
(@) f( ) s<|y|<Nf( ]/) ’y|n Y
. J
( )
Definition 5.8. Let Q) € L'(S""!) have a mean value of zero. We de-

O(x/]x])

note by Tq the singular integral operator whose kernel is p.v.

ie., for f € S (R") "
Tof(x) = pa S 3) = tm TGV (),
N—o0
The associated maximal singular integral is defined by
Tg*)f = sup sup \TS’N)ﬂ. (5.14)
L 0<N<co0<e<N )

We note that if () is bounded, there is no need to use the upper trun-

cation in the definition of Tg’N) given in (5.13). In this case, the maximal

singular integrals can be defined as

15 f = sup TS f|, (515)
e>0
where for f € |J LP(R"), e > 0 and x € R", Tg)f(x) is defined in

1<p<oo
terms of absolutely convergent integral

Qy/
Ty f(x) = / L,Wf (x —y)dy.
yize vl
To examine the relationship between Tg) and Tg*) for O € L®(S" 1),
notice that
]Tg'N) f(x)‘ < sup ‘TS’N) f(x)‘ . (5.16)
0<N<oco
Then, for f € LP(R"), 1 < p < oo, we let N — oo on the Lh.s. in (5.16),
and we note that the limit exists in view of the absolute convergence of
the integral, which is |T((;e ) f(x)|. Then we take the supremum over ¢ > 0

to deduce that T(()*) is pointwise bounded by T(()* *). Since Tg’N) = Tg ) _
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T(()N), it also follows that Tg*) < ZT((;). Thus, Tg) and T(()* *) are pointwise
comparable when () lies in L®(S"1).
A simple procedure called the method of rotations plays a crucial role

in the study of operators with odd kernels. This method is based on the
use of directional Hilbert transforms.

Fix a unit vector § € R". For f € ./(R"), let

Hof (1) = ~pv. | - )2 (5.17)

We call Hyf the directional Hilbert transform of f in the direction 6. For
functions f € .(R"), the integral in (5.17) is well-defined since it con-
verges rapidly at infinity, and by subtracting f(x), it also converges near
zero.

Now, we define the directional maximal Hilbert transforms. For a
function f € |J LP(R")and 0 < &¢ < N < oo, let

1<p<eo
(&,N) _1/ dt
H =— —t0)—,
N = [ s
Hé**)f(x) = sup ‘HéS,N)f(x)’ )
0<e<N<oo

We observe that for any fixed 0 < ¢ < N < oo and f € LP(R"), H(gs’N)f is
well-defined a.e. Indeed, by Minkowski’s integral inequality, we obtain

(eN) 2 N
HH9 f L (RY) < 7.[HfHU’(]R")ln - <%
which implies that Hég’N) f(x) is finite a.e. Thus, Hé**) f is well-defined for
fe U LP(R").
1<p<oo

Note that for f € LP(IR"), we have by Minkowski’s inequality

(eN) / 1Qy/ly))|
T < R
|| (@) fHP ||f||P €<|y|<N |y’n

N @) ! _
=Wl [ [ O o yyan

N
=AU g1y In

which implies that (5.13) is finite a.e. and therefore well-defined a.e.

Theorem 5.9. If Q) is odd and integrable over S" 1, then Ty and T(()**) are LP
bounded for all 1 < p < oo. More precisely, Tq initially defined on Schwartz
functions has a bounded extension on LV (R™) (which is also denoted by Tg).
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Proof. Let e; be the usual unit vectors in "1 The operator H,, is the
directional Hilbert transform in direction e;. Clearly, H,, is bounded on
LP(R") with norm bounded by that of the Hilbert transform on LP(R).
Indeed, by Theorem 4.5, we have

I sy = | 0 e
ey Lp ]R” 7T £—0 |t‘25 ! t LF’(IRn)
, dt||?
B L.
7T e=0 J|t|>e t Lr(R")
p
< ||H||LP(R)%LP(IR)||f(x1’x,)HL§1(1R) Lf, (Rr-1)

:HHHIZP R)—LP(R ||fHLP R*)"

Next, observe that the following identity is valid for all matrices A €
O(n) (the setof all n x n orthogonal matrices):

He f(x) == pv. [~ flx—tae)
dt

—pv/ f(A(A™ X—t€1))t
=H,, (fo A)(A 1x). (5.18)

This implies that the L” boundedness of Hy can be reduced to that of H,,.
We conclude that Hy is L bounded for 1 < p < oo with norm bounded
by the norm of the Hilbert transform on L?(R) for every 6 € §" 1.

Identity (5.18) is also valid for Hég’N) and Hé**). Consequently, Hé**)
is bounded on L?(R") for 1 < p < co with norm at most that of H**) on
L?(R) (or twice the norm of H*) on L?(R)).

Next, we realize a general singular integral T, with () odd as an av-
erage of the directional Hilbert transforms Hy. We start with f € .(R")
and the following identities:

Q(y/lyl) B N i
/e<|y|<N A /SH 0(9)/g fx = 10)—do (6)

ly|"
= [ 00 [ " fx 4 0) Ldo(e)

= [ 00 [ s ace),

where the first one follows by switching to polar coordinates, the second
one is a consequence of the first one and the fact that () is odd via the
change variables 6 — —6, and the third one follows from the second one

by changing variables r — —r. Averaging the first and third identities, we
obtain

dt

O/l ¢,
/e<|y|<N ly|" USSR
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_1 flx=19)
2 SHQ(G) /s<|r<N r drdo (6) 619
:g - QO)HS N £(x)do (6). (5.20)

Since ) is odd and thus has a mean value of zero, we can obtain

(5.19) :% /SH () /e<|r|<1 f(x —r8) _f(x)drda(e)

r

1 f(x—r0)
5 [0 /1 o (6),

Because f € .7, the inner integrals are uniformly bounded, so we can
apply the dominated convergence theorem to obtain

Tof(x) =5 | ©6)Hof (x)do(0). (5.21)

From (5.20), we conclude that
15770 < T [ 100)1Hy ™ f(x)do(0). (5.22)
The L? boundedness of T and T(()**) for () odd are then trivial con-
sequences of (5.22) and (5.21) via Minkowski’s integral inequality. a

Remark 5.10. It follows from the proof of Theorem 5.9 and from Theo-
rem 4.5 and Theorem 4.10 that whenever Q) is an odd function on "1,
we have

O(pl/”/), as p — oo,
O((p— 1)_1/”), asp — 1.

I Tallr—e, 1 TS o <11 {

We now define the n Riesz transforms. For f € LF(R"),1 < p < oo,
we set

Ri=Tn, j=1--,n (5.23)
with Q;(x) = cn‘% where ¢, = % We can also define the maximal

(*)
j
T((; *), respectively. Then, we have:

Riesz transforms R:"’ and the maximal singular integral R as TS; ) and

j

Corollary 5.11. The Riesz transforms R; and the maximal Riesz transforms
R](*) are bounded on LP(R") for 1 < p < oo.

Proof. The assertion follows from the fact that the Riesz transforms have
odd kernels. Since the kernel of R; decays similar to |x|™" near infinity, it

follows that R](-*) f is well-defined for f € LP(IR"). Since R](*) is pointwise
bounded by R](**), and the conclusion follows from Theorem 5.9. Q
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§5.3 L2 boundedness of homogeneous singular integrals

In this section, we compute the Fourier transform of
p-v.Q(x/|x])/|x|".

This provides information on whether the operator Tq, is L* bounded. We
have the following result.

4 R
Theorem 5.12. Let Q € LY(S"!) have a mean value of zero. Then, the
Fourier transform of

Q(x/|x])
n/2
(27T)" < p.v. i
is a finite a.e. and a homogeneous function of degree O given by
1 el
m(e) = /S [mw - Dsgn (@ )| 0Odox). (6529
\, v

Proof. Since K(x) = Q(x/|x|)/|x|" is not integrable, we first consider its
truncated function. Let 0 < ¢ < 57 < o0, and

Qx/|x|)

0, otherwise.

Clearly, Ko, € LYR"). If f € I%(R"), then K, *f(Z) =
(271)"2Ke (8) £ (2).

It is convenient to introduce polar coordinates. Let x = rx/, r = |x|,
x' =x/|x| €5"!,and & = R&, R = |&]|, &' = &/|¢| € S*~1. Then we have

(27-[)”/2@(6) :/ eiix'ng,ﬂ(x)dx :/ eiifo

e<|x|<y | x|

dx

n

T s
=/ Q(x") </ e iRIxE r_”r”_ldr) do(x)
Sn= €
Ui . Y
= Jos Q(x") </£ g IRrG Eif) do(x).

Since
/ AN
/Sn—l Q(x")do(x") =0,

we can introduce the factor cos(Rr) (which does not depend on x’) in the
integral defining K, (). We shall also need the auxiliary integral

n . !zl d
Liy(6,x) = [ — cos(RN))T, R>0.



§5.3. L? boundedness of homogeneous singular integrals

Thus, it follows

)Ry (@) = [ Ton (&) o).

Now, we first consider I, (¢, x). For its imaginary part, by changing
the variable Rr(x’ - {’) = t, we have

123

Im 1, ,(&x) = — /” Sin(er"'fJ’))dr

€

Ry|x"-¢'| gin ¢
—sen(x' - & — I}
B0 E) Jegeay

is uniformly bounded (i.e., |Im I ; (¢, x")| < 4) and converges to

—sgn (v 8) [Tt =~ Zsgn ('),

ase — 0and 7 — oco.

For its real part, since cosr is an even function, we have

Rel, (¢ x") = /j[cos(Rr|x’ &) - cos(Rr)]?

+1, then Rel, (&, x") = 0. Next, we assume x" -’ # 1. By
the fundamental theorem of calculus, we can write

/’7 cos(Ar) — cos(ur)

oA Ay
. dr = —/ / sin(tr)dtdr = —/ / sin(tr)drdt
e Ju u Je

B /7\ /'7 9y Cos(tr)drdt B /A cos(tn) — cos(te)
oJe t L

t

Ay A i An Ay A
cossds_/ Cos(ts)d _ sms‘ +/ su;sd _/ cos(ts)dt
woof S wn Juy S "
0 / Sdt = —In(A/p) =

by the dominated convergence theorem with
A A
/ coslte) | 4 < / Lat—ma/p).
" t wot
Take A = R|x’ - {’|, and p = R. Therefore,

lim Re (L, (¢, x")) = /Ooo[coer(x' &) —coer]dr In(1/|x" - &).

If x'- & =

dt

In(u/A), asn — o0, & =0,

Next, we need to show that Kg\q (¢) is finite for a.e. ¢ € R". Now
we assume 0 < ¢ < 1 < 5. For the case x’ - ' # +1, we obtain from the

previous identity
Ry coss R coses
/ ds — / ds
Rylg'-x'| 8 R[g"-x'|

S
Ry 1 R 1
< / Lis+ / L s
Ryl2 x| S Rlgr| §

\ Rel, (¢, x')| =
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=2In(1/1]&" - X'|).

By the properties of I just proved, we have
(27r)n/2|@(€)| g/SH [4+2In(1/[& - '])] |Q(x) |do(x) (5.25)
<4||Q||L1(Sn71) —}—2/5%1 ln(1/|§/ . x/‘)|Q(x’)|d(T(x’).

For n = 1, we have 8° = {-1,1} and then [, In(1/Z" -
x'NQ(x")|do(x’) = 0. For n > 2, if we can show

L L 1/ X D10 lde()de () < e,

then, @(C ) is finite a.e. on S"~!. We can select an orthogonal matrix A
such that Ae; = ¥/, and thus, by changing the variables,

/s /s In(1/1¢"- )| Q(x') |do (x)do (&)
- /sn,l /_D,H In(1/[¢" - Aer|)do (§)|Q(x") o (x')
= [ Lm0l AT D @IO o (x)

A—lé/:
=== 10y [, 00/ Dde),

If for ¢; € 0,7] (j=1,---,n—2)and ¢,,_1 € [0,271], let

k—1 n—1
Y1 = Ccos ¢y, Yy = Cosqbknsinq)j, (k=2,---,n—1), yp = Hsinqb]-,
j=1 j=1

then the volume element dog,-1(y) of the (n — 1)-sphere is given by

n—2 )
dogi(y) =] [ sin™ "7 ¢;dprdes - - dpu—1
j=1

n—2 .

= sin"_3(4)1) dyl H Sil’ln_l_] 4)] d(Pz tee d4)n_1
j=2

=(1— 1) " 2dydog. 2(y),

due to dy; = sin(¢;)d¢; and sin¢; = /1 — y2. Then, we obtain with the
notation ¥ = (Y2, Y3, .., Yn),

L, n1/lyi)de(y)
1
= [ (/) [, =) 2o (g)dy,
—wn [ (/a1 - )0
n—2 1 W1 yl) Y1

1
=2wn-2 / In(1/[y2]) (1 = )"~ 2dy,
0
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/2

:2wn_2/ In(1/ cos8)(sin#)"2d8 (let y; = cosB)
0

:Za)n_zIz.

For n > 3, by integration by parts, we have
T/2 /2
I < / In(1/ cos ) sin0dO = / sin0d6 = 1.
0 0

For n = 2, we have by changing variables

/2 t/2
I :/ In(1/ cos 0)df = —/ In(cos 6)d6
0 0
/2 /2
- —/ Insin (2 —0) do = —/ In(sin 6)d6
0 2 0

/2
:—/ ln(ZsmgcosG)dG
0 2

n/2 0 0
:—/ <ln2—|—1nsm2+1ncos )d@
0

T /4 /4
:—Ean—Z/ lnsinxdx—Z/ In cos xdx
0 0

T /4 /2
:——1n2—2/ Insin xdx — 2 In sin xdx
2 0 /4
- _ gln2+212,

which yields I = 7 In2.
In view of the limit of I, (&, x') as ¢ — 0, # — co just proved, we
obtain

(2m)"? 1im Ko, (§) = m(§), ae.

§ro0

By the Plancherel theorem, if f € L*(R"), K, * f converges in the
L2 norm as ¢ — 0 and 7 — oo, and the Fourier transform of this limit is
m(¢ )?(g) From the formula of the multiplier m(¢), it is homogeneous of
degree 0 in view of the mean zero property of (). Thus, we obtain the
conclusion. Q

Remark 5.13. 1) In the theorem, the condition that () is mean value zero
on §"~1 is necessary and cannot be neglected. Since in the estimate

L N[

the main difficulty lies in the first integral. For instance, if we assume
Qx) =1 € LY(S" ), f(x) = xjy<1(x) € L*(R"), then this integral is
divergent for |x| < 1/2 since

Qy/lyl) / 1 / 1
—2 2 f(x —y)dy = —dy > —dy = oo.
/” ly|" fx=y)dy x—yl<1 [y Y yl<i/2 |y|" Y

2) The proof holds under very general conditions on (). Write
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Q = Q.+ Q, where Q, is the even part of ), Q,(x) = Q.(—x), and
0y (x) is the odd part, Qy(—x) = —y(x). Then, because of the uni-
form boundedness of the sine integral, i.e., ImI,(g, x'), we required
only [g,1 |Q(x")|do(x") < oo for the odd part; and for the even part, the
proof requires the uniform boundedness of

L 101/ ¢ o (),

In addition, In(1/[¢" - x’|) is not bounded but any power (> 1) of it is
integrable. We immediately obtain the following corollary and leave the
proof to readers.

-
Corollary 5.14. Given a function Q) = Q. + Q, with mean value zero on

S"=1, suppose that the odd part Q, € L*(S"~!) and the even part Q, €
L9(S"1) for some q > 1. Then, the Fourier transform of p.v. Q(x")/|x|" is
bounded.

\L

If Qe LY(S" 1) is odd, ie., Q(—x) = —Q(x) for all x € S* !, then
/ Q(x)In(1/[¢ - xl)do(x) =0, VG es" .
Sn=

Thus, m € L®(R") in view of Theorem 5.12. We have the following result
by Theorem 3.49.

Corollary 5.15. Given an odd function Q € L}(S"1), then the singular

integral Tof(x) := p.v. / (Wf(x — y)dy is always L? bounded.
R

§5.4 Singular integral operators with Dini-type condition

In this section, we shall consider those operators that commute not
only with translations but also with dilations. Among these we shall
study the class of singular integral operators, falling under the scope of
Theorem 5.5.

If T corresponds to the kernel K(x), then as we have already pointed
out, 5 ' Té* corresponds to the kernel e "K(e~'x). Therefore, if 6¢ ' To¢ =
T, we are back to the requirement K(x) = e "K(e'x), ie., K(ex) =
e "K(x), ¢ > 0, that is, K is homogeneous of degree —n. Put another
way

O(x)
K(x) = —+, 5.26
=" (5.26)
with () homogeneous of degree 0, i.e., Q(ex) = Q(x), e > 0. This condition
on () is equivalent to the fact that it is constant on rays emanating from
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the origin; in particular, () is completely determined by its restriction to
the unit sphere 5" 1.

Let us try to reinterpret the conditions of Theorem 5.5 in terms of Q).

1) By (5.8), Q(x) must be bounded and consequently integrable on

Ox—y) _ Q) < ich i

<>2ly| | Tyl ik dx < C which is not
easily restated precisely in terms of (). However, what is evident is that
it requires a certain continuity of (). Here we shall content ourselves in
treating the case where () satisfies the following “Dini-type” condition

suggested by (5.8):

§"-1. and another condition f‘

: ._ B / ! w(n)
ifw(n) = sup |Q(x) —Q(x')|, then —17 dn < oo. (5.27)
le—x'|< 0
=1
Of course, any () that is of class €! or even merely Lipschitz continu-
ous satisfies the condition (5.27).

2) The cancellation condition (5.9) is then the same as the mean value
zero of Q) on "1,

e N
Theorem 5.16. Let Q € L®(S" 1) be homogeneous of degree 0 with mean
value zero on S"~1, and suppose that Q) satisfies the smoothness property
(5.27). For 1 < p < coand f € LP(R"), let

TOf) = [ S y)y. 629)

() Then, there exists a bound A, (independent of f and ¢) such that

T £llp < Apl£lp-
(ii) lin% T f = Tf exists in LP, and
e—

ITAllp < Apllflp-

(iii) If f € L?(R"), then the Fourier multiplier m corresponding to T is a
homogeneous function of degree 0 expressed in (5.24).

Proof. Conclusions (i) and (ii) are immediately consequences of Theorem 5.5,

once we have shown that any K(x) of the form (‘)x(f,i) satisfies
[ K= y) = K()ldx < B, (5.29)
|x[=2ly|
if () is as in condition (5.27). Indeed,
Q(x —y) — Q(x) { 1 1 ]
K(x—vy) —K(x) = +0>Kx) | — — —|.
L P A (S TG
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The second group of terms is bounded since () is bounded and

1 1
L 5~ el |
xz2lyl | lx —y[" x| x| >2ly|
[|x] =[x =yl iy x| |x =yl
— - dx
Ix|>2]y] !x—yl | x|

<[yl Yl e — g
x| >2ly| Z

[x]" =[x —y|"
|x = y["[x[*

dx

<[, W13 2 2 (2] /2 dx (o Jx =yl > [x] — |yl > 120/2)

= vl ZZ” Tx| ™"t = 2(2" = 1)y x| 7" dx

|x[>2y] [x[>2y]

1
=2(2" = Dlylwn-157~

2" — 1) wy_1.
2|]/| ( ) 1

Now, we estimate the first group of terms. Let 6 be the angle with
sides x and x — y whose opposite side is y in the triangle formed by vectors
x,yand x —y.

Since |y| < |x|/2 < |x|, we have § < Z and so cos § > cos T = 1/V/2.

xT

Moreover, by the sine theorem, we have sinf <

Ez ‘I On the other hand, in the triangle formed by

0P := \x\'@ ] and PQ = = y| ]’

clear that § = ZPOQ and % = % by the sine

it is

theorem. Then, we have

xX—y X — PG| = sinf  sinf
lx—yl |« sin(Z—9)  cos$

o

Thus, the integral corresponding to the first group of terms is dominated

by
2"/ w<2|y|> dx =2"w,_ 1/ (2|y|/r)
|x[>2]y] x|/ x| z|

w
2w, 1

in view of changes of variables 7 = 2|y|/r and the Dini-type condition
(5.27).

Part (iii) is the same as the proof of Theorem 5.12 with minor mod-
ifications. Indeed, we only need to simplify the proof of (5.25) due to
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Q € L®(S"1). We can control (5.25) by
4(4)”,1”0”[400(57171) -+ 2||Q||Loo(sn—l) /Sn—l 11’1(1/|€” . x/|)d0'(x/)’
where the integral in the last term is equal to

L, @/l Ddo(y) < C,

which have been estimated in Theorem 5.12. Thus, we have completed the
proof. Qa

Theorem 5.16 guarantees the existence of the singular integral

lim Q(Z)
e=0 Jy|ze |yl

f(x—y)dy (5.30)

in the sense of convergence in the L? norm. The natural counterpart of this
result is that of a.e. convergence. For the questions involving a.e. conver-
gence, it is best to also consider the corresponding maximal function.

r 2
Theorem 5.17. Suppose that Q) satisfies the conditions of Theorem 5.16. For

feLP(R"), 1< p < oo, consider

G _ Q(y)
T( )f(x) = /|y|>€ e flx—y)dy, e>0.

(The integral converges absolutely for every x.)
(i) ling T(®) f(x) exists for almost every x.
£—
(ii) Let T™ f(x) = sup |T@ f(x)|. If f € L*(R"), then the mapping T*)
e>0
is of weak type (1,1).
(i) If1 < p < oo, then [T fl, < Aplflly-

\\ J

Proof. The argument for the theorem presents itself in three stages.

The first is the proof of inequality (iii), which can be obtained as a rel-

atively easy consequence of the existence of lir% T() in LP, already proven
£—

in Theorem 5.16, and certain general properties of “approximations to the
identity” as follows.

Let Tf(x) = lin% T(®) f(x), where the limit is taken in the L? norm.
£—

Its existence is guaranteed by Theorem 5.16. We shall prove this part by
showing the following Cotlar inequality for f € LP(R") with p € (1, 00)

T f(x) < M(Tf)(x) + CMf (x).

Let ¢ € 2(R") be a smooth nonnegative decreasing radial function,
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which is supported in the unit ball with integral one. Consider

QO(x)
Ke(x) = { CiR

0, x| < e.
This leads us to another function ® defined by
D =¢xK—-Kj, (5.31)
where ¢ * K = hm(p * Ke = hm f|x s K(x = y)e(y)dy.

We shall need to prove that the smallest decreasing radial majorant ¥
of ® is integrable (so as to apply Theorem 2.10).

If |x| < 1, then
/R” K(y)o(x — y)dy‘ = /R K(y)(¢(x —y) — ¢(x))dy

< [ IK@llol—y) ~ play < ¢ [ PED 200Ny, <,

R ly|"

|®f =[¢*K]| =

since the mean value zero of Q) on §"~! implies Jrn K(y)dy = 0 and by the
smoothness of ¢. If 1 < |x| < 2, then ® = ¢ * K — K is again bounded by
the same reason for ¢ * K and the boundedness of K in this case. If |x| > 2,
we have

@) = [ K= y)olydy —K(x) = [ [K(x—y) ~K(x)]gly)dy.

Similar to (5.29), we can obtain the bound for |y| < 1 and thus |x| > 2|y|,

2 _ (n
rK<x—y>—I<<x>r<z"w(|"f,‘) X 202" — )| oy ] 2]+

<'w (, ,)|x| " 422" — 1) ey l2] Y,

as in the proof of Theorem 5.16 since w is increasing. Thus, due to ||¢||; =
1, we obtain for |x| > 2

|[@(x)[ <2"w <‘ |> x| 7"+ 2(2" = 1) [| Q] o g1y x|~
Therefore, we obtain [¥| < C for |x| < 2, and

Y] <2 () 17" 22" = DO 704,
for |x| > 2, and then we can prove that ¥ € L'(IR") with the help of the

Dini-type condition.

From (5.31), it follows, because the singular integral operator T : ¢ —
@ * K commutes with dilations, that

gex K — Ko = @,  with ®,(x) = ¢ "®(x/e). (5.32)
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Now, we claim that for any f € LP(R"), 1 < p < oo,

(@e %K) * f(x) = Tf * ge(x), (5.33)
where the identity holds for every x. In fact, we notice first that
(e x Ks) % f(x) = Tsf * @e(x), V6>0 (5.34)

because both sides of (5.34) are equal for each x to the absolutely con-
vergent double integral [, f|y|> s K(y)f(z — y)pe(x — z)dydz. Moreover,

Ve € LV (R"), with 1/p +1/p' =1, 50 ¢ * Ks — @¢ * K in L' since

Q
lge (ks =Kl = | [ W ypay
yl<s |yl

p/

/

_ Q(y) ) — o
=| [,y (ol =)~ @)y

p

Q(y)
</ Voe(x — 8y)|d
TS

LWy -1]| Q[ o (gn-1)[[V@elly — 0, as 6 — 0,

by Minkowski’s inequality. We also have T;f — Tf in L7, as 6 — 0, by
Theorem 5.16. It follows (5.33), and so by (5.32)

TOf =Kex f = gex Kx f = @ex f = Tf % g — f  Pe.

Passing to the supremum over ¢ and applying Theorems 2.10, 2.6 and
5.16, we obtain the Cotlar inequality and

1T Fllp <[ sup | T * @elllp + [ sup | f * P
e>0 e>0

SCIM(TAlp + ClIMfllp < CITFNlp + ClIfllp < ClLflp-
Thus, we have proved (iii).

The second and most difficult stage of the proof is conclusion (ii).
Here, the argument proceeds in the main as in the proof of the weak type
(1,1) result for singular integrals in Theorem 5.1. We review it with delib-
erate brevity to avoid a repetition of details already examined.

For a given & > 0, we split f = ¢ + b as in the proof of Theorem 5.1.
It is easy to check the part for g with the help of the Cotlar inequality.
Therefore, we only consider the part for b.

We also consider for each cube Q;
its mate QF, which has the same center
c¢j but whose side length is expanded
2y/n times. The following geomet-
ric remarks concerning these cubes are
nearly obvious.

i)If x ¢ QF, then |x —¢;| > 2|y —¢j
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for all y € Qj, as an obvious geometric
consideration shows.

i) Suppose x € R" \ U;Q; and as-
sume that for some y € Q;, [x —y| = &
Then, we have (v/n — 3){(Q) < & <
4(2\/5—1— DUQ)) = (n+ 4)6(@). It follows that sup [x —z| < ¢+
ZEQj
Vil(Q)) < e+ \/ﬁﬁ If we take v, = 1+ f\f] and r = y,¢, then the
2 2
closed ball centered at x of radius ¢ contains Qj, i.e., B(x,r) D Qj-

iii) Under the same hypotheses as ii), we have inéc lx —z| > (Vn—
zeQj

1E(Q) = vye by taking ), = \/f}% Thus, we obtain |x —y| > ¢ for
n
every y € Q;.

2
With these observations and following the development in the proof
of Theorem 5.1, we shall prove for x € R" \ U;Q3,

sup [T®b(x)| < Z/Q [K(x = y) = K(x = ¢)[1bj(y) |dy
] ]

e>0
1
+Csu 7/ b(y)|dy, (5.35)
7’>§ m(B(X,T’)) B(x,r)| (y)’ y

with K(x) = 2.

|x [

The addition of the maximal function to the r.h.s of (5.35) is the main
new element of the proof.

To prove (5.35), fix x € R"\ U; ]’.‘, and ¢ > 0. Now the cubes Q; fall
into three classes:

Dforally € Q, [x—y| <e
2)forally € Qj, |x —y| > ¢
3) there is a y € Q; such that [x —y| = &.

We now examine

() = 1 [ Kelx = y)by)ay. (5.36)
] ]

Case 1). Ke(x —y) = 01if |x — y| < ¢, and thus, the integral over these
cubes Q; in (5.36) is zero.

Case 2). K¢(x —y) = K(x —y), if |[x — y| > ¢, and therefore the integral

over Q; equals

/QK<x—y)bj(y)dy=/Q[K(x—y)—K(x—cj)]bj(wdy-

] j
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This term is majorized in absolute value by
1K= y) = K(x = e))lby(y) Iy,
]

which expression appears in the r.h.s. of (5.35).

Case 3). We write simply
Kttty < [ K-l
Qj Qj
= Ke(x —y)||bi(y)|dy,
e K DI )l

by ii), with r = 7,e. However, by iii) and because Q)(x) is bounded, we
have
C

= (et

Q(x—y)

Ke(x — =
‘ 8( y)| ’X—y’”

Thus, in this case,

Js

If we sum over all cubes Q;, we finally obtain, for r = 7,¢,

T@b(x)| < Z/Q [K(x —y) = K(x = ¢)[[bj(y)dy
j N

C
b S bl
Br) BW)\ (y)|dy

Taking the supremum over ¢ gives (5.35). This inequality can be written in
the form

C
Ke(x = y)bj(y)dy| < 7
e(x = ¥)b;(y) y’ |B(x,7)] JojnB(xr)

10 (y)|dy.

j

T™b(x) < £(x) + CMb(x), x € R"\U;Q},
and so
[{x € R"\ U;Q; : TOb(x) > a/2}]
<Hx e R"\U;Q7 : Z(x) > a/4}| 4+ [{x € R"\ U;Qj : CMb(x) > a/4}|.

The first term in the r.h.s. is similar to (5.7), and we can obtain

[ E(xdx <ol
]R”\UjQ;

which implies [{x € R"\ U;Q; : X(x) > a/4}| < 5[|b[li by Chebyshev’s
inequality. For the second one, by Theorem 2.6, i.e., the weak type estimate
for the maximal function M, we obtain [{x € R"\ UiQ;r CMb(x) >
a/4}| < €||bll;. The weak type (1,1) property of T() then follows as in
the proof of the same property for T, in Theorem 5.1 for more details.

The final stage of the proof, i.e., (i), the passage from the inequalities of
T() to the existence of the a.e. limits, follows the familiar pattern described
in the proof of the Lebesgue differential theorem (i.e., Theorem 2.12).
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More precisely, for any f € LP(R"), 1 < p < o, let

Af(x) = [limsup T® f(x) — liminf T® f(x)|.

£—0 e—0

Clearly, Af(x) < 2T™ f(x). Now for any § > 0, write f = f; + f, where
fi €l and | fall, <.

We have already proved in the proof of Theorem 5.5 that T(¢) f; con-
verges uniformly as ¢ — 0, so Afi(x) = 0. By (5.12), we have [|Afz|, <
2A4]f2llp € 2Ap0 if 1 < p < co. This shows that Af, = 0 a.e.; thus, by
Af(x) < Afi(x) + Afa(x), we have Af = 0 almost everywhere. Therefore,
PL% T() f exists a.e. if 1 < p < 0.

In the case p = 1, we obtain similarly
A Ab
[ Af(x) > a}f < — ol < =~

and so again Af(x) = 0 a.e., which implies that lin(1) T(®) f(x) exists a.e. O
£—

§5.5 Vector-valued analogues

It is interesting to note that the results of this chapter, where our func-
tions were assumed to take real or complex values, can be extended to the
case of functions taking their values in a Hilbert space. We present this
generalization because it can be put to good use in several problems. An
indication of this usefulness is given in the Littlewood-Paley theory.

We begin by quickly reviewing certain aspects of integration theory in
this context.

Let H be a separable Hilbert space. Then, a function f (x), from R" to
H, is measurable if the scalar valued functions (f(x), ¢) are measurable,
where (-,-) denotes the inner product of H, and ¢ denotes an arbitrary
vector of H.

If f(x) is such a measurable function, then |f(x)| is also measurable
(as a function with nonnegative values), where | - | denotes the norm of .

Thus, LP(R",H) is defined as the equivalent classes of measurable
functions f(x) from R" to J{, with the property that the norm ||f|, =
(Jgo |f(x)|Pdx)1/P is finite, when p < oo; when p = oo there is a similar
definition, except || f |l = esssup |f(x)].

Next, let H; and H;, be two separable Hilbert spaces, and let £(H;, H>)
denote the Banach space of bounded linear operators from 3(; to H,, with
the usual operator norm.

We say that a function f(x), from R" to £(3;,H>), is measurable if
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f(x)¢ is an Hy-valued measurable function for every ¢ € 3. In this case,
|f(x)| is also measurable, and we can define the space LP(R", £L(H1, Hz)),
as before; here again | - | denotes the norm, this time in £(H;, H3).

The usual facts about convolution hold in this setting. For example,
let f € LP(R",H;) and K € LI(R", L(Hy, Hz)), then g(x) = [r. K(x —
y)f(y)dy converges in the norm of H, for almost every x, and by the
Cauchy-Schwarz inequality

I < [ KG=nf@)ldy < [ |Kx=)lIfw)ldy.
Additionally, |[g]|, < [[K||gllfllp,if1/r =1/p+1/q—1, with1 <7 < 0.
Suppose that f € L'(IR",3(). Then we can define its Fourier transform

F@) = [ e,

which is an element of L®(R", K). If f € L'(R", K) N L*(R", ), then? €
L*(R", ) with ||f|l2 = || f|l2- The Fourier transform can then be extended
by continuity to a unitary mapping of the Hilbert space L?(IR", () to itself.

These facts can be obtained easily from the scalar-valued case by in-
troducing an arbitrary orthonormal basis in .

Now suppose that H; and H, are two given Hilbert spaces. Assume
that f(x) takes values in 3{;, and K(x) takes values in £(%H;, H). Then

Tf(x) = [ KO)f(x=y)ay,

whenever defined, takes values in H,.

r N
Theorem 5.18. The results in this chapter, in particular Theorems 5.1, 5.5,

5.16 and 5.17, and Proposition 5.2 are valid in the more general context where
f takes its value in 3y, K takes its values in £(Hy, H) and Tf and T f
take their values in 3y, and throughout, the absolute value | - | is replaced by

the appropriate norm in Hy, L(Hy, Ha) and Hy, respectively.
\ /

This theorem is not a corollary of the scalar-valued case treated in
any obvious way. However, its proof consists of nothing but an identical
repetition of the arguments given for the scalar-valued cases if we take into
account the remarks made in the above paragraphs. Therefore, we leave
the proof to the interested reader.

Remark 5.19. 1) The final bounds obtained do not depend on the Hilbert
spaces JH; or H, but only on B, p, and n, as in the scalar-valued cases.

2) Most of the argument goes through in the even greater generality
of Banach space-valued functions, appropriately defined, one can refer
to [Gral4a, pp. 385-414]. The Hilbert space structure is used only in L?
theory when applying the variant of Plancherel’s formula.
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The Hilbert space structure also enters in the following corollary.

( )

Corollary 5.20. With the same assumptions as in Theorem 5.18, if in addi-
tion

ITfl2=cllfll; ¢>0, feL*(R",),
then ||fll, < ALITf Il if f € LP(R", 30), 1 < p < oo.

L W,

Proof. We remark that L?(IR",};) are Hilbert spaces. In fact, let (-,-);
denote the inner product of 3(;, j = 1,2, and let (-, -); denote the corre-
sponding inner product in L?(IR", 3;); that is,

(fg) = [ (FG),0x))ax

Now, T is a bounded linear transformation from the Hilbert space
L*(R", %) to the Hilbert space L?>(IR",3,), and thus, by the general
theory of inner products (see the theory of Hilbert spaces, e.g., [Din07,
Chapter 6, p279]), there exists a unique adjoint transformation T*, from
L2(R", H,) to L?(R", 31 ), which satisfies the characterizing property

(Tfi, f2)2 = (fi, T*f2)1, with f; € L*(R", %;).

However, in view of the polarization identity, our assumption is equiva-
lent to the identity

(Tf,Tg)2 = c2<f,g>1, forall f,g € LZ(IR”,H-Cl).

Thus, using the definition of the adjoint, (T*Tf,g)1 = c*(f,¢)1, the as-
sumption can be restated as

T*Tf = c*f, f € L*(R",3). (5.37)

T* is again an operator of the same kind as T, but it takes a function
with values in H; to functions with values in H;, with the kernel K*(x) =
K*(—x), where * denotes the adjoint of an element in £(H;, H>).

This is obvious on the formal level since

(T )= [ [ (KG = 0)Ai0), folx))adydx
= [ o 00K (= 0) ety = (3,7 o

The rigorous justification of this identity is achieved by a simple limiting
argument. We will not tire the reader with the routine details.

This being said we have only to add the remark that K*(—x) satisfies
the same conditions as K(x), and so we have, for it, similar conclusions as
for K (with the same bounds). Thus, by (5.37), for f € (L2 N L?)(R", H;),

ENflly = T Tfllp < AplITS -
This proves the corollary with A}, = A,/ c¢? in view of the density argu-
ment of L> N LF in L? for 1 < p < oo. a
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Remark 5.21. This corollary applies in particular to the singular integrals
commuted with dilations; then, the condition required is that the multi-
plier m(&) has a constant absolute value. This is the case, for example,
when T is the Hilbert transform, K(x) = -1, and m(&) = —isgn (&).

x’

§5.6 Littlewood-Paley square function theorem

In harmonic analysis, Littlewood-Paley theory is a term used to de-
scribe a theoretical framework used to extend certain results about L? func-
tions to L? functions for 1 < p < oo, in which the Littlewood-Paley square
function theorem is a fundamental result.

Definition 5.22. Let ¢ be a real-valued function in Z(R") that is
supported in A = {¢:27! < |¢] <2} and satisfies Y ¢2(¢) = 1 in
kez

R" \ {0}, where ¢ (&) = ¢(27%¢), we call ¢ a Littlewood-Paley func-
tion.

It is not completely obvious that such a function exists.

( Lemma 5.23. A Littlewood-Paley function exists. ]

Proof. By the €* Urysohn lemma (i.e., Theorem 3.21), there exists a func-
tion f € 2 such that f € [0,1, f = 1 on {¢ : |&] < 1/2} and
supp f C {&:|&| < 1}. Thus, we can take f(&) = f(&/2) — f(&), which is

nonnegative, supported in A. Then,

supp f(27°¢) € {¢: 271 < g <27}
Therefore, the sum
F@) =) f27%)
kez
contains at most five nonvanishing terms for each ¢ # 0. Clearly, F € .77,
and F(&) > 0 for & # 0. We set ¢(¢&) = f(&)/F/2(¢). Obviously, ¢ € .7,
and satisfies the conditions since F(27/¢) = F(&). Q

r N
Definition 5.24. For f € L, we can define Qi f = (271) /2 (¢y)" * f =

~\V
<¢k f) . We define the square function Sf by

1/2
Sf(x) = (Z |Qkf(x)|2> :
keZ

From the Tonelli theorem and the Plancherel theorem, it is easy to see
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that

1£ll2 = 11S£12 (5.38)
and of course this depends on the identity Y. ¢#(&) = 1. We are interested
kezZ

in this operator because we can characterize the L¥ spaces similarly.

( )
Theorem 5.25 (Littlewood-Paley square function theorem). Let 1 <

p < oo. There is a finite nonzero constant C = C(p,n,$) such that if
f € LP, then

CH Nl < 1S£llp < Coll £llp-

\, J/

Proof. We prove this theorem via the Calderén-Zygmund Theorem (i.e.,
Theorem 5.1) and Proposition 5.2 by considering a vector-valued singular
integral with the kernel

K(x) = (-, (2m) "2 ¢" (2%), - - ),

ie, Kxf = (+++,Qf,-++). Clearly, K € ' (R")N L]

loc(R™). Then, it
follows

K@) = @m)™" ¥ ¢ = (2m) ™

kez
We write out the norm of K
K(x)? = (2m)™" ) 229" (2"x) .
kez
We choose N such that 2V < |x| < 2N*! and split the sum above at
—N. Recall that ¢V € (R") and decays faster than the reciprocal of
any polynomial. To estimate the gradient, we observe that VK(x) =
(-, (2m) 22+ Dkg gV (2kx), - -). Near 0, ie., for k < —N, we use
that V¢V (25x)| < C. For k > —N, we use that |V¢"(x)| < C|x|"2
Thus, we have

IVK(XHZ <C ( Z 22k(n+1) + Z 22k(n+1)(2k+N)2(n+2)> _ C272N(n+1).
k<—N k>—N

Recalling that 2N ~ |x|, we obtain the desired upper-bound for |[VK(x)| <

C|x|~(**1). Therefore, by the vector-valued version of Theorem 5.1 and

Proposition 5.2, i.e., Theorem 5.18, we obtain the right-hand inequality in

the theorem

1/2
ISfllp = <E|Qkf|2> = [Kx fllp < Cpll fllp-

keZ
p

For the converse inequality, it follows from Corollary 5.20 due to (5.38).
Q
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§5.7 Mikhlin and Hormander multiplier theorem

We introduce a partition of unity to be frequently used later.

e 2
Lemma 5.26. There exists a function ¢(R"), such that

(i) suppp ={¢: 271 <[¢] <2}
(i) ¢(¢) >0for27t < g <2
(i) L @(27%¢) =1for & #0.

L J

Proof. The proof is similar to that of Lemma 5.23. Choose any function
f € % such that (i) and (ii) are satisfied. Then,

supp £(27°¢) = {¢: 271 < g <21}
Therefore, the sum
F@) =) f(27%¢)
kez
contains at most five nonvanishing terms for each ¢ # 0. Clearly, F € .77,
and F(§) > 0 for ¢ # 0. Let ¢ = f/F. Obviously, ¢ € ., and satisfies (i)
and (ii). Since F(27/¢) = F(&), ¢ also satisfies (iii). Q

e )
Theorem 5.27 (Mikhlin multiplier theorem). Let 3y and 3, be Hilbert

spaces. Assume that m is a mapping from R" to £(Ho, H1) and that

21*0gm (D)l eaeo3e) < A Nl <K, (5.39)
for some integer k > n/2. Then m € M,(Ho, H1), 1 < p < oo, and
[mlae, < CpA.
\ J

Proof. We use the vector version of the Calderén-Zygmund theorem (i.e.,
N\ V
Theorem 5.1) to prove it. Denote T, f = (mf) = 27)"?m" x f =

K f. It is clear that K € .%/(R") N L. (R") by the assumption. For
convenience, we denote | - | (3¢, 3¢,) by |- |- Thus, taking k = 0 in (5.39),

we have |K| = (271)7"/2|m(&)| < (271)""/2A. Thus, we only need to verify

/ |K(x —y) — K(x)|dx < C uniformly in y. (5.40)
[x|>2ly]

Denote ¢j(&) = ¢(27/¢), where ¢ is given by Lemma 5.26. We write

m(¢) =Y mj(¢), wherem;= gjm.
jez

Let us now prove (5.40) assuming (5.39) holds for |a| < k. By the
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Plancherel theorem and Leibniz’ rule, we obtain
/ ]x"‘m x)|[2dx C/ [0zm;(G) &) |Pdé
RFI
Y CumdEm(§)Ze;(6)| dg

—C/
a1+ar=na

<A’ Y / 22l |2l
el~2

N1 t+ar=n

2

<CA2J(n=2lal),

Using the Cauchy-Schwarz inequality and applying the above with || =
0, we have

/ mY (x)|dx < CA(2/R)"/2,
x|<R

By applying the above with |a| = k, we obtain

1/2 1/2
[ ot ([ pemppe) ([ )

<CA(2R)> 7%, (5.41)
Choosing R ~ 277, we find

/ |m (x)|dx < CA uniformly in j.
Arguing in the same way, we have
/ VY (x) dx < CA2.
Rﬂ

In particular, by the mean value theorem, this shows

[ Imy (e =) = m) () dx < CA2y. 542)
Thus, we have from (5.42) and (5.41)

/xl>2|y| Kl =) = K(x)ldx < /x|>2| | mj (¢ = y) = my (x)ldx

jEZ

<CA Y 2lyl+Cc Y / dx

2i<|y| ! 2/>M 1/ |x[2ly \
<SCA+CA Y (2y)):?
>y~
<CA.

This completes the proof by the vector version of the Calderén-Zygmund
theorem (Theorem 5.1), i.e., Theorem 5.18. a

Remark 5.28. This result is sharp in the sense that the L! and L* bounds

can fail. To see this, let us consider the Hilbert transform, which es-

sentially corresponds to taking m"(x) = % inn = 1. We know that
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m(&) = csgn (&), which satisfies the condition (5.39) with k = 1. How-
ever, as we have shown before, the Hilbert transform is not bounded on
L! or L*™.

Example 5.29. One application of the Mikhlin multiplier theorem is the
following “Schauder” type estimate, which is useful in the setting of
elliptic PDEs: for any i,j =1,--- ,n,1 < p < o, and any f € . (R")

0 f
< Cl\Af]ly-
‘ axiaxj ) || f”P
Indeed, this is equivalent to m;;() := %, which is a consequence of the

Mikhlin multiplier theorem.

The proof of the theorem leads to a generalization of its statement,
which we formulate as a corollary. We leave the proof as an exercise.

r ~
Corollary 5.30 (Hormander multiplier theorem). Let Hy and JH; be

Hilbert spaces. Assume that m is a mapping from R" to L(Ho, H1) and
that

M ()| ¢ (360,90,) <A,

2 5.43
Sup R2|D(‘*71/ agm(§>‘ dg <A, ’0(| gk, ( )
0<R<co R<|Z|<2R £(30,3¢1)
for some integer k > n/2. Then, m € Mp(Ho, Hy), 1 < p < oo, and
[Imlae, < CpA.
N V.

Exercises

Exercise 5.1. Let () be an integrable function with mean value zero on
the sphere §"~!. Suppose that ) satisfies a Holder condition of order
0 <« < 1onS" L. This means that

Q(x) = Qy)] < Bolx —y[*

for all x,y € S"~1. Prove that the function K(x) = Q(x/|x|)/|x|" satisfies
Hoérmander’s condition with a constant at most a multiple of By + || Q|-

Exercise 5.2. [Gral4a, Exercise 5.1.8] Let Qy ) be the jth conjugate Poisson
kernel of P, defined by

(i) Calculate the Fourier transform of Qg ),
(if) Conclude that R;P, = Qy) and for f € L?>(R"), we have R;f * P, =
FQy).
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Exercise 5.3. [Gral4a, Exercise 5.1.5] Let 1 < p < oo and let T be a linear
operator defined on . that commutes with dilations. Suppose that there
exists a constant C > 0 such that for all f € .(R") with L¥ norm one we
have

[{x:[Tf()[ > 1} <C

Prove that T admits a bounded extension from L?(IR") to LP*(IR") with
norm at most C!/7.

Try functions of the form A~"/7 f(A~1x)/||f|, with A > 0.

Exercise 5.4. [Gralda, Exercise 5.2.6] For Q € L'($""!) and f € L] (R"),
define

1
Mof(x) = sup g [ 10/ IyDIIf ) ldy

Apply the method of rotations to prove that Mg maps L (IR") to itself for
1<p<oo.

Exercise 5.5. Prove Corollary 5.30 .

Exercise 5.6. [Gral4b, Exercise 6.2.5] Suppose that ¢(¢) is a smooth func-
tion on R" that vanishes in a neighborhood of the origin and is equal to
1 in a neighborhood of infinity. Prove that the function ¢l () is in
M, (R") for 1 < p < oo for every ¢;.

Exercise 5.7. [Gral4b, Exercise 6.2.7] Let {({) be a smooth function on the
line that is supported in a compact set that does not contain the origin and
let a; be a bounded sequence of complex numbers. Prove that the function
m(&) = 'ZZ 2;0(277¢) is in M,(R) forall 1 < p < co.

jE

Exercise 5.8. Let P be a polynomial with complex coefficients, of degree
greater than or equal to 1, without a real root.

i) Prove that sup1/|P(x)| and sup |P'(x)/P(x)| are finite.
x€R xeR

S
ii) Prove that, for all p > 1, 1/P(In|x|) € M,(R).

Exercise 5.9. Let x € R. Is (1+ |In !xH)fl/z

Exercise 5.10. [Gral4b, Exercise 6.1.3, 6.1.2, 6.1.4] Let ¥ be an integrable
function on R" with mean value zero that satisfies

¥ ()] < B(1+[x])™", /]R [¥(x —y) —¥(x)|dx < Bly|*,

a Fourier multiplier?

for some B, ¢, ¢ > 0 and for all y # 0. Let ¥; =+ "¥(x/t).

(i) Prove that [¥(&)| < cyeeBmin(|Z|™n(1e/2) |Z|=¢) for some constant
Cpnee and conclude that

keZ

1/2
(Z I‘I’zk*f\2> < CuBJ|f ]2
2
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(ii) Prove that for some constant C, s < oo we have

Y AN G (r—kx\|2 v
sup ([“RODPY )+ sup (LR OR) <o

GER” CER" \kez

(iii) Prove that there exists a constant C,, such that for all f € L?(R") we

have
dt\ /2
</ \f*‘I’t|2>

i) Make use of the identity
¥@) = [ e W@ = - [ et (- y)dr,
R" R”

e when || > 1. For || < 1 use the mean value property

< CnBHfHZ-
2

where y = 2‘5

of ¥ to write ¥(& = [ge(e7*¢ —1)¥(x)dx and split the integral in the
regions |x| <1 and x| > 1.

Exercise 5.11. [Gral4b, Exercise 6.2.8] Let E(C) be a smooth function on
R" supported in a compact set that does not contain the origin and let
Ajgf = 9’_1(6(2_j§)f(§)). Show that the operator

Y ASf

j<N

f — sup
NeZ

is bounded on L?(R) when 1 < p < oo.
Pick ¢ € .7 satisfying ¥ 9(277/¢) = 1 on R"\ {0} with supp 9 C
jez

{¢:271 < |¢| <2}. Then, AZ)AJQ = 0if |j — k| < co, and we have
G — A G — NAR A9 X
LA= Y MY A=) ALAI- ) ALY A
j<N k<N+cy  j<N k<N+co  j k<N+cy j>N
which is a finite sum plus a term controlled by a multiple of the operator
fM (2 A?f) :
jez
where M is the Hardy-Littlewood maximal function.

Exercise 5.12. [Gral4b, Exercise 6.2.9] Let ¢ be given in Lemma 5.23. Let
Ajg = (go(Z_fZ)@)v. Prove that

E Aj g—gll —0
iI<N
p
as N — oo for all g € /(R"). Deduce that Schwartz functions whose
Fourier transforms have compact supports that do not contain the origin
are dense in LP(R") for 1 < p < oo.
Use the result of Exercise 5.11 and the dominated convergence the-
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orem.



In this chapter, we introduce the Riesz and Bessel potentials. Based
on these potentials, we introduce the general Sobolev spaces, i.e., Bessel
(Riesz) potential spaces.

Riesz and Bessel potentials

§6.1 Riesz potentials and fractional integrals

The Laplacian satisfies the following identity for all f € . (R"):
—AF(@) = EFF @), (6.1)

From this, we replace the exponent 2 in |¢|> by a general exponent s
and thus define (at least formally) the fractional power of the Laplacian by

(—8)"2f = (1¢1F)

Of special significance will be the negative powers s in the range —n <
s < 0. In general, with a slight change in notation, we can define

V

(6.2)

r N
Definition 6.1. Let s > 0. The Riesz potential of order s is the operator
i = (=)= (6.3)
For0 <s <mnand f € L] (R"), I is actually given in the form
1
i x:—/ x — " £ (y)dy, (6.4)
sf (x) 76) Jro [x —yI7" f(y)dy
with
_n F(S/Z)
§) =2"22°
=2 G =52
\ /

Now, we state two further identities that can be obtained from (6.2) or
(6.3) and that reflect the essential properties of the potentials I;:

L(Lif) = Lstf, f€S,5t>0,s+t<mn; (6.5)
A(Lf) = L(Af) = —Lof, f€7,n=232<s<n (6.6)

The deduction of these two identities has no real difficulties, and these
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are best left to the interested reader to work out.
A simple consequence of (6.5) is the n-dimensional variant of the Beta

function,!

fo =l ey ey = T e i, )
]Rn

with s, > 0 and s +t < n. Indeed, for any ¢ € ., we have, by the
definition of Riesz potentials and (6.5), that

o b=yl 7y (z - )
= [yl / =y "z —y = (x = y))dxdy
= [ W7 (6) kg (z = n)dy = 17Ok (Lp) () = V()T Ler19(2)

We have considered the Riesz potentials formally and the operation
for Schwartz functions. However, since the Riesz potentials are integral
operators, it is natural to inquire about their actions on the spaces L (R").

For this reason, we formulate the following problem. Given s € (0,n),
for what pairs p and g, is the operator f — I;f bounded from LP(R") to
L7(IR")? That is, when do we have the inequality

1sfllg < All£1l? (6.8)

There is a simple necessary condition that is merely a reflection of the
homogeneity of the kernel (7(s))~!|y|~"**. In fact, we have

Proposition 6.2. If inequality (6.8) holds for all f € . and a finite constant
A, thenl/q=1/p —s/n.

Proof. Let us consider the dilation operator ¢, defined by 6°f(x) = f(ex)
for ¢ > 0. Then clearly, for ¢ > 0 and any f € .(R"), we have

€ — 1 —n-rs
(0@ =5 o =9l ey

=y

1
=" / x — e tz| 7" f(2)dz
5 J e
=¢ ° f(ex). (6.9)
Noticing that
165 fllp =€ Pllf s N1 Lsfllg = €77 LS | (6.10)

IThe Beta function, also called the Euler integral of the first kind, is a special function

defined by B(«,B) = f t#=1(1 — t)P~1dt for Rea > 0 and Rep > 0. It has the relation
with I'-function: B(a, ) = F( ) (ﬁ)/r(uc + B).
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By (6.8), we obtain

|Lfllg =16 18 Flly = 9 15°F |
SASTVI5f |, = AeTATP £,
If s+n/qg—n/p >0, lete — 07 if s+n/g—n/p <0, lete — oo,
we always have ||;f||; = 0 for any f € (IR"). However, if f # 0 is

nonnegative, then I;f > 0 everywhere and hence || I;f||; > 0; thus, we can
conclude the desired relations

1/g=1/p—s/n. Q

Now, we give the following Hardy-Littlewood-Sobolev theorem of
fractional integration. The result was first considered in one dimension
on the circle by Hardy and Littlewood and n-dimension by Sobolev.

e N
Theorem 6.3 (Hardy-Littlewood-Sobolev theorem). Let 0 < s < n,

1<p<g<oo,l/gq=1/p—s/n.
(@) If f € LP(R"), then the integral (6.4), defining I;f, converges abso-
lutely for almost every x.
(ii) If, in addition, p > 1, then || Lsf|l; < Apqllfllp-
(iii) If f € LY(R"), then |{x : |Lf(x)| > a}| < (AaY|f]1), for all & >
0. That is, the mapping I, is of weak type (1,q), with1/q=1—s/n.

\, /

Proof. We first prove parts (i) and (ii). Let us write

YORF) = [y Ry [ eyl )y
=:Ls(x) + H,(x).

Divide the ball B(x,6) into the shells E; := B(x,2776) \ B(x,270*1s),
j=0,1,2,.., we have

/\x y " )y | <

2:/ f*l)ﬂﬁwﬂwuy

|Ls(x

/ﬁx—m F )|y

< 2~ ]+1 n+s d
;%szw< 8) " f )y

_i (2_(f+1)5)—n+s|B x,2” ](S |/ |d
- B(x,270)] Bx216) Y

) (2*(]'+1 ) n+sV (2 ](S) /
B d
]Z(:) |B(x,2770)] A
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S V, 652
<Vu0°2" Y 27 Mf(x) = 2S_le(x).

j=0

Now, we derive an estimate for H;(x). By Holder’s inequality and
the condition 1/p > s/n (i.e., g < o), we obtain

1/p'
H < / . (—n—i—s)p’d)
Ha <Al ([, b=y

1/p'
=l ([, e arao)
’ 1/17,
_ 1/P “pr (/ —n+s)p +n_1d1’>

1/p
Wy — n/p' —(n—s s—n
:<<_>p_> Il = Clos,p)6 P

By the above two inequalities, we have
() If ()] < Cn, )8 Mf (x) + C(n,5, p)& /P fllp =t F(6)-

Choose § = C(n,s,p)[||fll,/Mf]P/", such that the two terms of the rh.s.
of the above are equal, i.e., the minimizer of F(J), to obtain

[Y($)Ef ()] < CMF() P | FI"

Therefore, by part (i) of Theorem 2.6 for maximal functions, i.e., Mf
is finite almost everywhere if f € L¥ (1 < p < o), it follows that |I;f(x)|
is finite almost everywhere, which proves part (i) of the theorem.

By part (iii) of Theorem 2.6, we know || Mf||, < A,||f]l, 1 < p < o0);
thus,

1-ps/ /
I1:Flly < CIMFI P/ IA 15" = CIfll
This gives the proof of part (ii).

Finally, we prove (iii). Since we also have |Hs(x)| < ||f]16 "%, taking
w = ||f]107""5, e, 8§ = (||f|l1/a)""=9), by part (ii) of Theorem 2.6, we
obtain
{x  [Lf ()| > 2(v(s)) " a}|
SHx s [Lo(x)[ > at| + [{x: [Hs(x)] > a}]
<[H{x:|CEMSf(x)| > a}|+0

C —
<ol = Clllfll/a =) = Cll fll2 /a)?.
This completes the proof of part (iii). 0
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§6.2 Bessel potentials

While the behavior of the kernel ((s))~!|x|7"** as |x| — 0 is well
suited for their smoothing properties, their decay as |x| — oo worsens as s
increases.

We can slightly adjust the Riesz potentials such that we maintain their
essential behavior near zero but achieve exponential decay at infinity. The
simplest way to achieve this is by replacing the “nonnegative” operator
—A by the “strictly positive” operator I — A, where I = identity. Here the
terms nonnegative and strictly positive, as one may have surmised, refer
to the Fourier transforms of these expressions.

e D
Definition 6.4. Let s > 0. The Bessel potential of order s is the opera-

tor
Jo = (I—a)="?
whose action on functions f is given by
NN \/
of = @) (CF) = Gex f,

where

Gi(x) = @0 (@) (@), (&) = A+

\, J

Now we give some properties of G;(x) and show why this adjustment
yields exponential decay for G at infinity.

r \
Proposition 6.5. Let s > 0.

. B 1 © P s dt

i) Gs(x) = (47{)”/21"(5/2)/0 et

(ii) Gs(x) >0, Vx € R"; and G, € LY(R"); precisely, [g. Gs(x)dx =
1.

(iii) There exist two constants 0 < C(s,n),c(s,n) < oo such that

Gs(x) < C(s,n)e_‘x‘/z, when |x| > 2,
and
1 < Gs(x)
c(s,n) = Hs(x)
where H; is a function satisfying

< c(s,n), when |x| <2,

X"+ 14+ 0(|x[*"F2), 0<s<mn,

2
Hy(x) = lnm+1+0(|x|2), s=mn,

1+0(]x]™), s >mn,
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as|x|—>0
(iv) Gs € LV'(R") forany 1 < p < oo and s > n/p.

Proof. (i) For A,s > 0, we have the I'-function identity

1 ®© dt
A2 — / —tAys/20L
/) b ¢ T

which we use to obtain
1 e 2 dt
S = —te—tlglPps /270
(¢) T/2) /0 e'e t i
Note that the above integral converges at both ends (as || — 0, or co).

Now, taking the inverse Fourier transform in ¢ and using Theorem 3.3,
we obtain

1 o 2 dt
G —(2 —-n/2 Lg;—l —t ,—t|¢] ts/27
S(x) ( 71') F(S/Z) ¢ 0 e e t

1 0 2 dt
_ —n/2 —t g—1 —t|¢] s/2

_ 1 /°° o to son dt
_(4n)n/2r(s/2) 0 t
(ii) We have easily” [, Gs(x)dx = (271)”/26\5(0) = 1. Thus, G; €
LY(R™).
(iii) First, we suppose |x| > 2. Then t + '3 B | >t+1andalsot+ i | >
|x|. This implies that

2
R )
4t 2 2t 2

from which it follows that when |x| > 2

1 ® t 1 sadt I _lal
Gs(x) < (47{)”/2F(s/2)/0 e Ze 2f 2 Se < C(s,n)e” 2,
2ls=nl/27(|s—n| /2
where C(S,n) = WM for s # n, and C(S,n) = (47()”/;{71-(5/2) for

S = n since
0 1
/ e_ée_%ﬂ </ e 2t—+/ e 2dt = / e yderZe‘l/z
0 t 1/2 y
<2/ ey +2 <4,

Next, suppose that |x| < 2. Write Gs(x) = Gl(x) + G?(x) + G2(x),
where

1 |x‘2 |X\2 s—n dt
Gl :—/ ey
s (%) @) 20 (s/2) Jo © € ' ;

G2(x) = iz e e D
(47)"/2L (s/2) Jixp2 t’
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1 o <2 su dt
G3 :—/ “lemart T =
s(x) (47.[);1/21"(5/2) 4 e e : t

Since t|x|? < 16 in G!, we have e~I* = 1+ O(t|x[?) as |x| — 0; thus,
after changing variables, we can write

1 x> U otk -1 s dt
Gsx) = (4n)n/2r(s/z)/ e ety
_ |x|s n /1 e*%ts . dt + (|x’s—n+2) /1 e*%t%dt
~ (4m)"/2T(s/2) Jo (47r)1/2T (s /2)

_ 2n7s72|x|sfn /oo e_y %diy—’_zn s— 4o(|x|s n+2)/ _y . de
T (/) ha Yy T a2 bt Yy

=cL |x|*"" +O(|x[*"*?), as|x| = 0.
XZ
Since 0 < % % and 0 < t < 4 in G2, we have e~ 17/4 < et <1,

thus as |x| — 0, we obtain
|x|sfn zsfnjtl

n—s n—s’ s<n
. _ _
G2(x) ~ pem2ft ) oy 2 s=n
8 2 t [x]” ’
|x] 25*?14’1
, s>n
s—n

Finally, we have e~1/4 < e*% < 1in G2, which yields that G2(x)
is bounded above and below by fixed positive constants. Combining the
estimates for Gg (x), we obtain the desired conclusion.

(iv) For p = 1 and so p’ = oo, by part (iii), we have ||Gs||» < C for
5> n.

Next, we assume that 1 < p < o0 and so 1 < p’ < co. Again by part
(iii), we have, for |x| > 2, that Gf < Ce P'1*1/2 and then the integration
over this range |x| > 2 is clearly finite.

On the range |x| < 2, it is clear that f <2 G ( )dx < C for s > n. For

the case s = n and n # 1, we also have f x|<2 ( )dx < C by noticing

that
2 q 2 2 q
/ <ln> dx:C/ (m) gy < C
<2\ [x] 0 r

for any q > 0 since lir% r*In(2/r) = 0. For the case s = n = 1, we have

r—

2

/ (In —)7dx —2/ (In2/7) qdr—4/ (In1/r)%dr
x<2 ||
:4/ He~tdt = 4T(q + 1)
0

forg >0 by changing the variable r = e~!. For the final case s < n, we

havef0 re=mr'yn =14y < Cif (s —n)p’ +n > 0,ie.,s > n/p.
Thus, we obtain ||G;||,; < C forany 1 < p < 0 and s > n/p, which
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implies the desired result. Q

“Or use (i) to show it. From part (i), we know Gs(x) > 0. Since [, e Xt gy = /2,
by Fubini’s theorem, we have

1 o \X\Z s—n dt
Gile)dr = [ s [ele i S
/]R" s(x)dx . (4n)”/2F(s/2) e e dx
*t M s—n dt
~ 4n) n/zr (s/2) / / Stz

s—n t 1 o S
“Hant)" 2 d = T6/2) / et ldr = 1.
J0

(47r)”/2F(s/2) /

We also have a result analogous to that of Riesz potentials for the
operator Js.

( )
Theorem 6.6. (i) For all 0 < s < oo, the operator J; maps L"(IR") into
itself with norm 1 forall 1 <r < o0
(i) Lt 0 <s <mand1 < p < q < oosatisfyl/q=1/p —s/n. Then
there exists a constant Cys , > 0 such that for all f € LP(R"), we have

1Jsfllg < Caspll fllp-

(iii) If f € LY(R"), then |{x : |Jsf(x)| > a}| < (Cusa||f|l1)7, for all
« > 0. That is, the mapping Js is of weak type (1,q), with 1/q =
1—s/n.

\, A

Proof. By Young's inequality, we have ||Jsf|| = ||Gs * f|l» < [|Gs|1If]lr =
| f]l;- This proves result (i).

In the special case 0 < s < n, we have, from the above proposition,
that the kernel G; of J; satisfies

x|, ]
Gs(x) ~ {g|x|/2’ x|

\\/ //\

Then, we can write

]Sf(x) <Chs [/ <2

X

F=yllyl "y o+ [ G y)le 2y

<Coe [1UME@ + [ 17— y)leV2ay]
We can use the function e~1¥//2 € L" for all 1 < r < oo, Young’s inequality
and Theorem 6.3 to complete the proofs of (ii) and (iii). a

§6.3 General Sobolev spaces H;, and H;

We start by weakening the notation of partial derivatives by the theory
of distributions. The appropriate definition is stated in terms of the space
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Z(R").

Let 0* be a differential monomial, whose total order is |a|. Suppose
we are given two locally integrable functions on R”, f and g. Then, we say
that 0*f = g (in the weak sense), if

f) p(x)dx = (=) | g(x)p(x)dx, Voe.7. (6.11)
IRH ]Rn

Integration by parts shows us that this is indeed the relation that we
would expect if f had continuous partial derivatives up to order |«|, and
0" f = g had the usual meaning.

Of course, it is not true that every locally integrable function has par-
tial derivatives in this sense: consider, for example, f(x) = /X" How-
ever, when partial derivatives exist, they are determined almost every-
where by the defining relation (6.11).

In this section, we study a quantitative way of measuring the smooth-
ness of functions. Sobolev spaces serve exactly this purpose. They mea-
sure the smoothness of a given function in terms of the integrability of its
derivatives. We begin with the classical definition of Sobolev spaces.

e 3
Definition 6.7. Let k € INg and 1 < p < oo. The (LP-)Sobolev space of

order k (on R") is defined by
WEP(R™) = {f € LP(R") : 3*f € LP(R") for all |a| < k},

where 9°f must be understood in the sense of ./(R"), i.e., (6.11).
Moreover, we define

1/p
(znwmﬁ , if1<p <o,
£ e ey = § el <k

max ||0* , if p = co.
max 7] p

where 900 f = f.

L J

The index k indicates the “degree” of smoothness of a given function
in W5P. As k increases, the functions become smoother. Equivalently, these
spaces form a decreasing sequence

LF OWY S W 5 ...
meaning that each W*17(R") is a subspace of Wr?(IR") in view of the
Sobolev norms.

We next observe that the space W*? (IR") is complete. Indeed, if {f,}
is a Cauchy sequence in WK, then for each «, {0*fu } is a Cauchy sequence
in L7, |a| < k. By the completeness of L?, there exist functions f (@) such
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that f (@) — ligln 0" fi in L7, then clearly

—1\“\/ ma”‘d:/a“md / ®) pdx,
) ) 0 pdx = | O fupdx = | fVgdx

for each ¢ € .. Since the first expression converges to

1)l % pdx,
(—1) )
]Rn

it follows that the distributional derivative 8" f is f(*). This implies that
fm — f in WEP(R") and proves the completeness of this space.

Now, we generalize the Riesz and Bessel potentials to any s € R by
Ff =7 ), fes(R"),0¢ suppf, (6.12)
Ff =7 f), fes (R (6.13)
It is clear that I ° = I; and J~° = J; for s > 0 are exactly Riesz and Bessel

potentials, respectively. We also note that J° - J' = J**! for any s,t € R
from the definition.

Observe that the condition 0 ¢ supp f in (6.12) induces that ||I° f Il
does not satisfy the condition of the norms when s € N, since for k > m &
N we have I¥P(x) = 0in .#’ for any P € &, where &, denotes the set of
all polynomials of degree less than or equal to m. Indeed, we have for any
a € IN§ with [a] =m < kand any g € .¥

/n(Ikx”‘)g(x)dx :/ x“@k\v (x)dx
= [ 0o () (x)dx
=(2m)"%i 7 |3 (1219)| (0) = 0.

It is not good to focus upon .#’(IR") when we consider the homogeneous
spaces. We need to work on the quotient space ./(R")/Z(IR"), where
& denotes the set of all polynomials. Generally speaking, it is slightly
nasty to consider the quotient space; handling the representative is not
so intuitive. Therefore, we seek to find an expression of the quotient
S (R")/ 2 (R"). From this standpoint, we give the following definition.

( )

Definition 6.8. Define the Lizorkin function space ./ (R")"

S (R") = {f € .Z(R"): /]R x“f(x)dx =0, Va € ]Ng}, (6.14)

with the topology induced by .(R") . The Lizorkin distribution
space /' (R") is the topological dual space .7 (R").

It also uses the symbols .#) or .%w in other references, e.g., [Jaw77; Saw18].
. J

The main advantage of defining the class .7 is that for given f € .7,



§6.3. General Sobolev spaces H}, and H5 155

the function given by ¢ = .7 ~1[|Z|* f] is in .. In fact, for f € .7,
f e < (0°F)(0) =0, Va € NI

We have the following fundamental theorem.

Theorem 6.9. As a linear space, we have the following isomorphism

S (R") = . (R")/ 2 (R").

Proof. Foreachu € .#/(R"), let J(u) be the restriction of u on the subspace
S (R") of .(IR"). Then ] is a linear mapping from .7’ (R") to .7/ (R").

First, we claim that the kernel of | is exactly Z(R"), i.e., ker(J) =
{ue s :J(u) =0in '} = 2. In fact, if (u,¢) = 0 for all $p € ./ (R"),
then (i, ) = 0 for all ¢ € .Z(R"), ie, (i, ) = 0 for all Y € .7(R")
supported in R" \ {0}. It follows that 4 is supported at the origin and
thus # must be a polynomial by Corollary 3.43. This proves that the
kernel of the mapping J is Z(R").

We also claim that the range of ] is the entire .#/(IR"). Indeed, given
v € /'(R"), v is a linear functional on .#(IR"), which is a subspace of the
vector space ., and | (v, ¢)| < p(¢) for all ¢ € .7, where p(¢) is equal to
a constant times a finite sum of Schwartz seminorms of ¢. By the Hahn-
Banach theorem, v has an extension V on . such that [(V,®)| < p(P)
for all ® € .. Then, J(V) = v, and this shows that | is surjective.

Combining these two facts, we conclude that there is an identification

7 (R")/ 2 (R") = 7' (R"),
as claimed. ]

In view of the identification in Theorem 6.9, we have that uj —u in
S iff uj, u are elements of Z" and

(uj, ¢) = (u, )
as j — oo for all ¢ € .. Note that convergence in .7 implies convergence

in ., and consequently, convergence in .’ implies convergence in ..

The Fourier transform of . (IR") functions can be multiplied by |¢[*,
s € R, and still be smooth and vanish to infinite order at zero.
Indeed, let ¢ € . (R"). Then, we show that 9;(|¢ ) (0) exists. Since

every Taylor polynomial of ¢ at zero is identically equal to zero, it follows
from Taylor’s theorem? that |§(&)| < Cp|&|M for every M € N, whenever

2Let f : U — R be a real-valued function defined on an open subset of R". Suppose
that f € €k+1(U), let P be a point of U such that B(P,5) C U for some § > 0. For any
h € R" with [h| < 4, there exists a real number ¢ = cp, € [0,1] such that

k
F(P+h) = (2 il.Hf(f)(P)(h)> e (P + e ),

i=0 "’
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¢ lies in a compact set. Consequently, if M > 1 —s,

te;|°p (te;
o 090
t—0 t
where ¢; is the vector with 1 in the jth entry and zero elsewhere. This

shows that all partial derivatives of |Z|*¢(¢) at zero exist and are equal to
zero.

By induction, we assume that 9*(||°¢())(0) = 0, and we need to

prove that
9;0"(1°$(2))(0)

also exists and equals zero. Applying Leibniz’s rule, we express 3*(|Z[5p(&))
as a finite sum of derivatives of |Z|° times derivatives of ¢(&). How-
ever, for each || < |a|, we have |0P$(¢)| < Cmpl|EIM for all M € Ny
whenever |§| < 1. Picking M > |a| + 1 —s and using the fact that
|0 P(|E]%)| < Cqu|E]P~14+IPl, we deduce that 8]-8“(|§|5$(§))(0) also exists
and equals zero.

We have now proved that .7 (|[p(&)) € . for ¢ € . and all
s € R. This allows us to introduce the operation of multiplication by |¢|°®
on the Fourier transforms of distributions modulo polynomials. For s € R
and u € .#'(R"), we define another distribution .# ~1(|&[*1l) € .#’'(R") by
setting for all ¢ € . (R")

(U Fi) ) = (] - [°9).
This definition is consistent with the corresponding operations on func-
tions and makes sense since ¢ € .# implies that | - |°¢ also lies in . (R"),

and thus, the action of u on this function is defined.

Moreover, recall (¢) = (1 + |¢]?)!/?, since for any s € R the function
(Z)® is a smooth function satisfying

‘ag <€>S | < Cs,zx(l + ’C’)Silal for all g c R"

for all « € NJ and some Cs, > 0. Thus, ()’ € G;"dy(]R”). Hence,

(§>s?(§) € Z(R") for all f € #(R") from Proposition 3.11. By dual-
ity (&)° f € '(R") for all f € ./(R"). Therefore, J* : 7' (R") — ' (R")
is well-defined for any s € R.

Next, we shall extend the spaces W7 (R") to the case where the num-
ber k is real.

where Hy(f)(P)(h) = ¥ (1) (8*f)(P)* for i € N and Ho(f)(P)(h) = f(P) with () =

|a|=i

— 1 fora € ING.

!
apl-ag,!
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e N
Definition 6.10. Let s € R and 1 < p < co. We write

1 Wl = 1Efllpr [1f e = 1 fllp-
Then, the homogeneous Sobolev space H;(]R”) is defined by
Hy(R") = {f € '(R") : ||fllgs < oo},
and the nonhomogeneous Sobolev space H,(R") is defined by
Hy(R") = {f € #/(R") : [|flluy < oo}

If p = 2, we denote H5(IR") by H*(R") and H5(R") by H*(R") for
simplicity.
\ J

It is clear that space Hp,(IR") is a normed linear space with the above
norm. Moreover, it is complete and therefore Banach space. To prove
the completeness, let {f,} be a Cauchy sequence in H;. Then, by the
completeness of L7, there exists a ¢ € L? such that

| fn = T8l = | fin — &llp = 0, asm — oo.
Clearly, ] °¢ € .#” and thus Hj, is complete.

We give some elementary results about Sobolev spaces.

s N
Theorem 6.11. Let s € R and 1 < p < oo, then, we have

(1) & is dense in H;, 1<p<oo.

(i) Hy* < Hj, Ve > 0.

(iii) H, < L%, Vs > n/p.

(iv) Suppose1 < p < ocoands > 1. Then f € H;(IR”) iff f € H;*l(]R”)
and for each j, % € H;fl(lR"). Moreover, the two norms are equiva-
lent:

of

ax]'

n
Iy ~ W + 3
=

(v) Hy(R") = WFP(R"), 1 < p < oo, Vk € N.
\ y
Proof. (i) Take f € Hj, ie., J°f € LP. Since .’ is dense in L? (1 < p < 0),
there exists a ¢ € . such that
1f =Tl = I f —glly

is smaller than any given positive number. Since [°¢ € ., . is dense in
H;.

P

(ii) Suppose that f € Hffs. By part (i) in Theorem 6.6, we see that J,

maps L? into L with norm 1 for ¢ > 0. From this, we obtain the result

s—1
HF’
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since

Il = W fllp = T fllp = T fllp < I Fllp = 11 fll e

(iii) By Young's inequality, the definition of the kernel G,(x) and part
(iv) of Proposition 6.5, we obtain for s > 0

1fllee =171 [(2) ™ (2)° £]
=) "2 FHE) T P fllee
<@m)ALFTHE) T I IF Sl
=[Gs () l1f 5 < ClIf -
1

(iv) From the Mikhlin multiplier theorem, we can obtain ¢; (§) = €
M, for 1 < p < o0, and thus,

’ of

ax]-

A

oo

~

=7 &Y @) Flll,
Hy !
=17 7@ " & @) Allly
=2m) "I T g+ T f Dl
<CIFfllp = Cllf e
Combined with || f HH;ﬁ < || f I, we obtain
of
ox;

j

11l

< Cllfllmg-
Hy!

Now, we prove the converse inequality. We use the Mikhlin multiplier

theorem once more and an auxiliary function 0 < x € €*°(R) with x(x) =
1 for |x| > 2 and x(x) = 0 for |x| < 1. We obtain

1
¢) (1 + ZX(C]')|C]'|> € My, x(6)I6j1¢; " € M, 1 < p < oo,
i=1

and then
[RlhH ZHISpr = .77 I £l
<C + Y x(@)Ighr lf]”p
j=1
<C||fHHs 1+C Z ‘:] |§]’§ ]S 1ax])
j=1 p
n af
<C s—1 +C
Il +C R |5

Thus, we have obtained the desired result.
(v) It is obvious that WO? = Hg = LP for k = 0. However, from part

(iv), if k > 1, then f € HE iff f and % € H5™!, j =1,..,n. Thus, we can
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extend the identity of Wkp = H’; fromk=0tok=1,2,... Q

Due to (ii) of Theorem 6.11, we will also use the notation H~* = |J H®
S

and H® = (N H®. The inclusion .¥ C H® C H *® C .’ are immediate,
S

they are all strict. It is not true that . = H™ by taking f(x) = (x)~*",

which satisfies f € H® but f ¢ .#; nor is it true that H~® = .¥” since the
control of the growth of f at infinity is not sufficient, or on the Fourier side
the smoothness of f is not surfficient, i.e., f is not a function.

We continue with the Sobolev embedding theorem.

Theorem 6.12 (Sobolev embedding theorem). Let 1 < p < p; < oo and

s,s1 € R. Assume that s — % =51 — ﬁ. The following conclusions hold

S $1 T8 151
Hp — le, Hp — le.

Proof. 1t is trivial for the case p = p; since we also have s = s; in this

; 1 _ 1 s—s s
case. Now, we assume that p < p;. Since ;- = ; — >, by part (ii) of

p1 p
Theorem 6.6, we get

Il = W fllpe = 1P fllpy = Ws=si P Fllpe < CIPAllp = Cllf ;-

Similarly, we can show the homogeneous case.

Theorem 6.13. Let 5,0 € Rand 1 < p < oo. Then |7 is an isomorphism
between Hy, and Hy,™°.

(IR ) U

Proof. 1t is clear from the definition.

Corollary 6.14. Let s € Rand 1 < p < oo. Then

! _
(Hy)' = H,".

(N ),

Proof. Tt follows from the above theorem and (L?)' = LV if 1 < p < c.

Exercises

Exercise 6.1. For 0 < s < n, define the fractional maximal function

° =su _ X —
M) =sup s [ 1)l

where V,, is the volume of the unit ball in R".

(i) Show that for some constant C we have

M*f < CLf
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for all f > 0 and conclude that M® maps L? into L7 whenever the
Riesz potential I; of order s does.

(ii)) Lets >0,1<p < %,1 <q<oosuchthat%: —%+%. Show that
there is a constant C > 0 (depending on the previous parameters)
such that for all positive functions f we have

/ 1-sp/
1L £l < CIMMPFIF AL
For f # 0, write I,f = I; + I, where

h=[  fWlyf Ty, b= [ )yl
|x—y|<o |x—y|>6

Show that I; < C&*MO(f) and that I(f) < C&~"/PM"/Pf. Optimize over
5 > 0 to obtain I;f < C(M"/?f)sP/"(MOf)1=sP/" from which the required
conclusion follows easily.

= |

Exercise 6.2. Find all s € R such that the Dirac distribution dy is in H*(R").

Exercise 6.3. Let 1 < p < coand s € IN.

(i) Suppose that f € Hy(R") and ¢ € #(R"). Prove that ¢f is also an
element of Hj(IR").

(ii) Let v be a function whose Fourier transform is a bounded and com-
pactly supported function. Prove that if f is in H*(R"), then so is

vf.
Exercise 6.4. Consider the equation
u+Au=0 in (0,T) xR",
with the initial condition
Ulg—o =up onR",

where 1y € H(IR") for an s > 0. Prove that there exists a solution u
belonging to the space C([0, T|; H*(R")).



In this chapter, we introduce the Hardy and BMO spaces, and the
duality between them. We also introduce the Carleson measures and their
relations with BMO functions.

Hardy and BMO Spaces

§7.1 Hardy spaces

Hardy spaces are function spaces designed to be better suited to some
application than L!. We consider atomic Hardy spaces in this section.

e N
Definition 7.1 (p-atom). Let Q be a cube in R”, 1 < p < o0 and p’ be

its conjugate exponent. A Lebesgue measurable functiona : Q — C is
called a p-atom on Q if
(i) suppa C Q,
(i) flall, <1QI7V7,
(iii) [, adx = 0.
We denote the collection of p-atoms on Q by Ag and AP = Ug A’é.
\ /

| Remark 7.2. Note that (i) along with (ii) implies that [ja||; < 1.

r \
Definition 7.3 (7). Let 1 < p < oo and f € L}(IR"). We say that
f € HP if there exist p-atoms {a;};en C AP and (A;)ien € £1(IN)
such that

o0
= Z)\zﬂi/ a.e.,
i=1

and define the norm

I fllgr = inf {} A - f =) Aiai},

where the infinimum is taken over all possible representations of f.
" J

Remark 7.4. From ();) € ¢* and ||a;||; < 1, it follows that Y A;a; converges
in L1(R"). For f € L'(R"), then the equality f = }_A;a; holds in L1(R").
We could certainly give a similar definition in the more general setting
of f € '(R"). Then, we ask about the convergence of the series in
the sense of .#/(IR") in the definition. As L!(IR") embeds in .7’ (IR"), it
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| coincides with the L! function ¥ A;a; after identification.

We have the following completeness and embedding relations, whose
proofs are left to the reader.

Proposition 7.5. (i) For 1 < p < oo, (K7, || - ||4c1») is a Banach space.
(if) For 1 < p < r < oo, we have

KV ¢ KV KW c L.

We begin with the construction of dyadic cubes on R".

4 )
Definition 7.6 (Dyadic cubes). Let [0,1)" be the reference cube and let
j € Z and k € Z". Then define the dyadic cube of generation j with
lower left corner 2~ /k

Qi = {x ER":2x—ke [0,1)”},
the set of generation j dyadic cubes
Q] = {Qj,k 1k e Zn},
and the set of all dyadic cubes

Q=J9={Qjx:j€ZandkeZ"}.
jez

We define the length of a cube to be its side length £(Q;x) = 277,

\\ J

The crucial property of dyadic cubes is the nesting property: if two
dyadic cubes overlap, then one must contain the other. This leads to a
dyadic version of Vitali-type covering lemma (Lemma 2.5):

4 A
Lemma 7.7 (Dyadic Vitali-type covering lemma). Let Q1,---,Qn be a
finite collection of dyadic cubes. Then there is a subcollection Qu,, -, Qn,
of disjoint cubes such that

QulJ U=l -Uow

\\ v

Proof. Take the Q, to be the maximal dyadic cubes in Qy,---,Qn, ie.,
the cubes that are not contained in any other cubes in this collection.
The nesting property then ensures that they are disjoint and cover all of
Q1, -+, QN between them. a

If we define the dyadic maximal function

1
Maf () 1= sup o /Q F(y)ldy

where Q ranges over the dyadic cubes that contain x; then, the same argu-
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ment as before gives the dyadic Hardy-Littlewood maximal inequality

[Mafllreorey < [ FIlL ey, (7.1)
(with no constant loss whatsoever!) which then leads via Marcinkiewicz
interpolation to

[IMafllr@wny < Cpll fllr ey,
forl<p<oo

If we consider a Qg € Q, let D(Qp) be the collection of dyadic subcubes
of Qo, then we may define

M )|d
Af(x) QeDSlQlop )05 |Q| / ’f ’ Y

for x € Qo and f € L] _(Qo). We also have the weak type (1,1) and type
(p, p) estimates for p € (1, o0].

Theorem 7.8 (Equivalence of 1! spaces). For1 < p < oo, H{1® = 31»
with equivalent norms.

Proof. (i) We establish the Calderén-Zygmund decomposition of func-
tions. More precisely, for a given p-atom a, we show that there exists
a decomposition 2 = b + ¢ where b € H* with ||b] 401, < 1/2 (due to
lallscis < 1) and g € 34 with [|g]lsci < C(n, p).

Let Q be a dyadic cube in R” such thata € .APQ. Let D(Q) denote the
dyadic subcubes of Q. We have

A P rd
velal = !Q\/ lal?d \Q!P

Fix & > 0 with a? > Avg |a|? to be chosen later and let
Q

Ec={x € Q: [(Malal)(x)]/7 > a}.

If E, # @, then for x € E,, there exists a Q; € D(Q) such that x € Q;
and Avg |a|P > af. Let B be the collection of all such cubes. Since Q is

counta}lale, B is also countable. Then, for every Q; € B, we have Q; C E,;
therefore, E, = Ug,es Q;- The nesting property ensures that E, = U2 Q;
where Q; € D(Q) is maximal for the property that Avg|a|? > a?. We also

Qi

have E, # Q. Set
b; = (a — Avga)xo,

i

and b = OZOZ b;. Then, let g =a —b.
i=1
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Let us see the properties of b;. First, suppb; C Q; and

bidx =0.
Qi

Due to fQ la|Pdx = |Q1\Avg|a|” and | Avga| < (Avg|a|?)!/?, we also have

i Qi

1/p ,
oy < (f laPax) "+ |AveallQr = 107,
Qi

where A; = 2[Avg |a|P]}/?|Q;| > 24]|Q;| > 0. Thus, a; = {b; is a p-atom.
Q ’

By the Holder inequality and the dyadic maximal inequality, we ob-

tain
™ 1/p . VP Te 1/p'
=23 | [ lopax] @i <2 |E [ apa| | E o
Qi i—17/Qi i=1

i=1 i=1

KL AT
<2 [/ |a\’”dx] |Eo |17 gz[/ ]a|”dx} Ll
Q Q aP

— 1-p —p/p' 1-p — 1A\
2||al/ba <2|0Q 4 2( > .

™o
=

Now, we choose « such that

that is,

A

1Ql’

with ¢, = 41/(P=1)_ Then, it follows that ||b| 401, < 1/2.
Next, we consider g, i.e.,

a in Q\ E,,
&= Avga in Q;, for each i.

In Q\ E,, since |a]P < Mala|? < af ae., we have [g| < a a.e. In Q;, by
maximality of Q; and the Holder inequality, it yields

| Avga| < Avg|a| < 2" Avg |a] < 2"(Avg |a|P)1/P < 2"a,
Qi Qi Q; Q;
where /Q\Z is the parent cube of Q;. Hence, |g| < 2"a. It follows that

X =

n

2" ¢
Iglleo < 2"a = =22
8 Q|

We also have | 08 = /. 0@ =0,50 2,}—% g € AQ which implies that g € Flee
with |[g]|gc1e < 2"cy.
(ii) Fix fo € HP with fy # 0. We show that there exists a decompo-
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sition fo = f1 + ¢° with
2 0 4 n
Ifillserr < 3l follacr, Mg s < 32%¢pll follser-

(o)
In fact, for every e > 0, there exists an atomic decomposition fy = ). A;a;

such that
(e}
YAl < Ml follger + &
i=1

Applying (i) to each 4; to find a decomposition a; = b; + g; with ||b; |51, <

1/2. Then, f1 = }_ A;b; exists since HLP is a Banach space, and
i=1

1 fillgerr < Z Ail < HfoHsmn +e).
Thus, we may choose ¢ = ||fol|5¢1,/3, then ||fills0, < 3| follgee- Let
0
8

space and 18ill5c1 < 2"cp, we find

Z Aigi, where the sum converges in H** because it is a Banach

4
18|51 < 2"cp ([l follgcr +€) = 32"¢pl follgcrs-
(iii) We iterate

fo=f+45"
fi=f+4g,
fr=f+4%

and so for each k,
fo=fe+g®+g + -+
Of course, as k — oo, fy — 0 in HP due to || fil|4ar < (%) |l foll3c» and
Qg+t gkfl converges to 8 in > with
Isloc < 5270 15 (3 ) Uslaas =20 Dl ol

By Proposition 7.5, convergence in Flee implies convergence in HLP and
thus fo = g and fo € HV™. Qa

This motivates the following definition.

Definition 7.9 (Hardy space H'). We define Hardy space 3! to be any
HLP for 1 < p < oo with the corresponding norm.

Now, we state a characterization of this space.
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Definition 7.10. Let a,b > 0. Let ® € ¥ (R") and f € %/(R"). We
define the smooth maximal function of f with respect to ® as

M(f; ®)(x) = sup [(®ex f)(x)]-

Then, we recall the following result, and one can see [Gral4b, Theo-
rem 2.1.4] and subsequent discussion therein.

r 2
Theorem 7.11. For any ® € .% with [, ®(x)dx = 1 and any bounded
f € " (R"), the following quasinorms are equivalent

£ llaer ~ 1M(f; @) |,

with constants that depend only on ® and n.
. v

§7.2 BMO spaces

§7.2.1 Definition and basic properties of BMO

Functions of bounded mean oscillation were introduced by F. John
and L. Nirenberg [JN61] in connection with differential equations.

4 A
Definition 7.12. The mean oscillation of f € L] (IR") over a cube
Q C R" is defined as

- 1
fa=1g1 /Q () — g flix,

where Avg f is the average value of f on the cube Q, i.e.,
Q

1
Aggf = |Q|/Qf(x)dX-

L J

4 )

Definition 7.13 (BMO). For f a complex-valued locally integrable
function of R", set

I fllmo = sup fo = sup Avg |f — Avg f|,
Q Q Q Q

where the supremum is taken over all cubes Q in IR"”. The function f
is of bounded mean oscillation if || f||pmo < oo, the set

BMO(R") = {f € Ljoe(R") : || fllBmo < o0}

is called the function space of bounded mean oscillation or the BMO
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space. J

\,

Remark 7.14. 1) BMO(IR") is a linear space, that is, if f,¢ € BMO(R")
and A € C, then f + g and Af are also in BMO(R") and

I+ gllBmo <|IfllBmo + [Ig]lB7mO,
[AfllBMo = Al fllBMO-

2) || - Ilemo is not a norm. The problem is that if ||f|gmo = 0, this
does not imply that f = 0 but that f is a constant. Moreover, every
constant function c satisfies ||c||gmo = 0. Consequently, functions f and
f + c have the same BMO norms whenever c is a constant. In the sequel,
we keep in mind that elements of BMO whose difference is a constant
are identified. Although || - ||pmo is only a seminorm, we occasionally
refer to it as a norm when there is no possibility of confusion.

We give a list of basic properties of BMO.

s N
Proposition 7.15. The following properties of the space BMO(IR") are valid:

@) If ||fllemo = O, then f is a.e. equal to a constant.
(ii) L®(R") = BMO(R") and ||f g0 < 2] fle
(iii) Suppose that there exists an A > 0 such that for all cubes Q in R"
there exists a constant cq such that

1
sgp o] /Q |f(x) —coldx < A. (7.2)

Then f € BMO(IR") and ||f||smo < 2A.
(iv) Forall f € L} (R"), we have

loc
1 1
= < su —inf/ x) —coldx < .
5 £ llBmo P a1 g |f(x) = cqldx < [|fl[Bmo
(v) If f € BMO(R"), h € R" and t"f is given by T"f(x) = f(x —h),
then " f is also in BMO(R") and

I fllemo = |1 lsmo-
(vi) If f € BMO(R") and A > 0, then the function 5*(f) defined by
M f(x) = f(Ax) is also in BMO(R") and
16" fllemo = IIfIlsmo-

(vii) If f € BMO(IR"), then so is |f|. Similarly, if f and g are real-valued
BMO functions, then so are max(f, g) and min(f, g). Moreover,

I f1llemo <2 f||Bmo,

3
| max(f, g)|lBmo <3 (Il fllsmo + [IgllBMO) »
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N\OJ

[ min(f, 8)[lsmo <5 (Il fllBmo + lIgllBMmO) -

(viii) For f € L} (R"), define

1
fllovow. = sup 51 [ If(x) — Avg fldx,  (73)
s |Bl /B B

where the supremum is taken over all balls B in R". Then there are
positive constants ¢, and C, such that
cull fllmo < [l fllBMOp, < Call fllBMO-
(ix) Let f € BMO be real valued. Then we have the following approxima-
tion by truncation. For N > 0, let
N, f(x) >N,
n(x) =4 f(x), -N<f(x) <N,
—N, f(x) <-—N.
Then, fx € L*(R"), || fnllemo < 2| fllsmo and fy — f a.e. in R™.

(x) Assume f is complex valued. Then f € BMO iff Re f, Im f € BMO
and

| Re fllemo, || Im f|lemo < || fllBmo < || Re fl|pmo + || Im f]|Bmo-

\, /

Proof. To prove (i), note that f has to be a.e. equal to its average cy over

every cube [—N, N]". Since [-N, N]" is contained in [-N —1, N +1]", it

follows that cy = cn41 for all N. This implies the required conclusion.
To prove (ii), observe that

Avg f - AVgfl Avg (Ifl +|Aggf|> < 2Agg|f| < 2/ fllo-
For (111), note that
1
I~ avg f| < If —col +| Avgf —cal If —cal + 1 [, 17 —calar

Averaglng over Q and using (7 2), we obtain that || f||pmo < 2A.
The lower inequality in (iv) follows from the last inequality while the
upper inequality is trivial.
(v) follows from Avg ' f=Avgf.
Q Q—h
For (vi), note that Avg M= Avg f and thus

|Q\/ |f(Ax) Avgé)‘f]dx— |AQ|/ Avgf]dx
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The first inequality in (vii) is a consequence of the fact that

1
~ @i~ [, \f<t>rdt\
1
-5 Q(If(x)\—lf(t)!)df'

(IF(x) - f(t)l)dt‘

'!f(X)I—Avglf!
Q

N

10l Jo
1 1
<|rg /Q () — g e + 1oy /Q\Aggf—f(t)ldt

<|f —Avg f| + Avg |f — Avg f.
Q Q Q

The second and the third inequalities in (vii) follow from the first inequal-
ity in (vii) and the facts that

max(f,9) = LS8 ming g =

We now turn to (viii). Given any cube Q in R", let B be the smallest
ball that contains it. Then |B|/|Q| = 27"V,v/n" due to |Q| = (2r)" and
|B| = V,,(y/nr)", and

g 1700 = v fldx <i2 [ 17() — Ave flas
<V\/7

~ 2;1 ’ ’ f ‘ ‘ BMOballs

f+g— If 8l

It follows from (iii) that

| fllsmo < 2" ViV || £ BMOp -

To obtain the reverse conclusion, given any ball B find the smallest cube
Q that contains it, with |B| = V,#" and |Q| = (2r)", and argue similarly
using a version of (iii) for the space BMOpqys.

For (ix), let Q be a cube and x,y € Q. Then, |fn(x) — fn(y)] <
[f(x) = f(y)] and

i) = Avg f = ,1Q| | () = ftay.
Thus, it follows

1
|Q‘/Q|fw(x) —Agng|dx
<o o U = ftw)lady
1Q? /Q Q () ‘Aggf+Aggf—f(y)|dxdy
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1
<or /Q /Q 17(x) = v f| + | Avg f = £ (vl

<2||fllBmo-

Taking the supremum over all Q yields the desired result.
For (x), we leave it as an exercise. a

From Proposition 7.15 (ii), we know L* — BMO. However, the con-
verse is false; that is, L*(IR") is a proper subspace of BMO(IR"). A simple
example that already typifies some of the essential properties of BMO is
given by the following.

| Example 7.16. In |x| € BMO(R").

Solution. For every xo € R"” and R > 0, we find a constant C,, g such that
the average of | In |x| — Cy, r| over the ball B(xo, R) = {x € R" : |x — xo| < R}
is uniformly bounded. The constant Cy, g = In|xo| if |x9] > 2R and
Cyxo,r = In R if |xp| < 2R has this property. Indeed, if |xo| > 2R, then

1
— In|x|—-C dx
Van |x_x0|<R | ‘ ’ XOrR|
1 | x| < 3 1‘)
= In—|dx<max{In—-,|In=| ) =1In2,
VuR" [x—x0|<R |X0| 2 2

since 1|xo| < |x| < 3|xo| when |x — x| < R and |xp| > 2R. Additionally, if
|xo| < 2R, then

1
In|x| —-C dx
TR o I = ool
1 |x| 1 x|
= In—|dx < n-—|dx
ViR" Jjx—xol<r | R VaR" Jixj<ar | R

1 Wno1 [
_ In |x|| dx = &1 / " inr|d
- /xgsln\xH x= S [T nrar

1 dr 3
:”/ (=1)r" lnr7 +n/ " Linrdr  (let Inr = —t)
0 1

) 3 1
gn/ te Mdt + nln3/ " ldr < . +3"In3.
0 1
Thus, In |x| is in BMO in view of Proposition 7.15 (viii). Q

Example 7.17. Let
In |x|, x <0,
X) =
f) {—ln|x|, x> 0.

Since f is an odd function, we have Avg f = % ffa f(x)dx = 0 for every
[—a.a]
interval [—a,a] C R. For 0 < a < 1, we obtain

1 1 o
=— = __
Iflmvo >3- [ 1f()ldx == ["ndx
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1 a
:E [—xlnﬂg—k/ dx] =1—Ina— oo, asa — 0.
0

Thus, f ¢ BMO, even though |f(x)| = |In|x|| € BMO by Example 7.16
and Proposition 7.15 (vii). Thus, |f| € BMO does NOT imply that f <
BMO. Since f = |f|sgnf with |f| € BMO and sgnf € L®(R") C
BMO, this also shows that the product of two functions in BMO does
not necessarily belong to BMO.

It is interesting to observe that an abrupt cut-off of a BMO function
may not give a function in the same space.

Example 7.18. The function h(x) = X{y-0 Inl=3(f(x) —Inlx|) ¢ BMO
in view of Examples 7.16 and 7.17.

A useful related fact is the following, which describes the behavior of
BMO functions at infinity.

r \
Theorem 7.19. Let f € BMO; then, f(x)(1 + |x|"™1)~ is integrable on
R”, and we have

Fx) — Avg f

Q
= Joo T e S Cllflavo

where C is independent of f, and Qo = Q(0,1) is the cube centered at the
origin with side length 1.

S J
Proof. Let Qx = Q(0, 2K, Sp = Q \ Qx_1 for k € N, Sp = Qo, and

f(x) — ngfl

¢ /sk 1+ |x|rtl ¥ keNo
Then, we have
I=I+ ) I
k=1
Since
|f(x) — Aggf !
o= [, g < [ 176 — Avs fldx < Qo o,

it suffices to prove I; < Cy||f|lsmo and ¥ Cx < 0. For x € S = Q(0,2F) \
k
Q(0,2k1), we have |x| > 2F=2 and then
1+ ’x‘nJrl >1 +2(k72)(n+1) > 4~ (n+1)ok(n+1)

Hence,

I, <4+l k) / £ (x) — Avg fdx
Q Qo
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<42 [ 1f(x) — Avgfl + | Avg f — Avg fldx

Qk Qo
<4 127K 1y ([ f oo + | Avg f — Avg £])
Qk QO
=4 17Kk () £ g0 + | Avg f — Avg f]).
Qk 0

The second term can be controlled as follows:

| AQng Avg f] < Z | Avg f — Avg f|

QO i=1 Ql Qz 1

ko1
<>;1‘Q1._1| o g
k

i Qi

<Xiorh

<k - 2"|| f |Ismo- (7.4)

Avgf\dx

Therefore,
I <4"27K(1 4+ k2| f |l smo,

where C; = Ck27% and OZO; Cr = 2C < oo due to
k=1
Y k2 =2Y K27k - Zkz" Zk+1 Zkzk
k=1 k=1 k=0
=1+Y 27%=2
k=1

This completes the proof. Q

Let us now look at more basic properties of BMO functions. As in
(7.4), if a cube Qq is contained in a cube Q,, then

1
Avgf —avgf| = 1o [ fix—Avg | <

Q1

— Ave fld
|Q|/ f g flix

1
g—/ — Avg fldx
ol Jo, f Qzgfl

IgZ: | flBmoO- (7.5)

The same estimate holds if sets Q1 and Q» are balls.

A version of this inequality is the first statement in the following
proposition. For simplicity, we denote by | f||pmo the expression given
by [/ f|lBMOL,,. in (7.3) since these quantities are comparable. For a ball B
and a > 0, aB denotes the ball that is concentric with B and whose radius
is a times the radius of B.



§7.2. BMO spaces 173

e D
Proposition 7.20. (i) Let f € BMO(IR"). Given a ball B and a positive
integer m, we have

| Avg f — Avg f| < 2"m]|f |Bmo- (7.6)
B 2mB
(ii) For any 6 > O, there is a constant C, 5 such that for any ball B(xo, R)
we have
|f(x) = ?Vg)fl
B(xo,R
R [ R < . 7.7
" (R—|—|x—x0|)”+‘5 X Cn,zSHfHBMO ( )
An analogous estimate holds for cubes with center xo and side length
R.

(iii) There exists a constant C,, such that for all f € BMO(IR"), we have

sup sup | |f(x) = (P * f)(y)|Pi(x — y)dx < Cu fllamo.  (7:8)

yERn >0 J/R”
Here

denotes the Poisson kernel.
(iv) Conversely, there is a constant C,, such that for all f € L} _(R") for

which
|f(%)]
/Rn (T [y <

we have f * Py is well-defined and
Cullfllemo < sup sup | 1f(x) = (Pr+ /)W) Pe(x — y)dx. (7.9)

yeR™ t>0
. W,

Proof. (i) We have the desired result as in (7.4).

(ii) In the proof below, we take B(xp,R) to be the ball B = B(0,1)
with radius 1 centered at the origin. Once this case is known, given a
ball B(xp, R), we replace the function f by the function f(Rx + xp). When
B = B(0,1), we have by (i)

If(x)—Aggfl
rRr (14 |x[)m+o
If(X)—A;fgf!
< - 0z
S s @y
- |f(x) — /?Vlgf|+|f}vlgf AVgfl
2k+1B 2k+1B
d
" zg/sz\sz (14 [x[)m+o :

dx
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< [[1F(x) ~ Avg flax

2k+1B 2k+1B B

n isz(nwtﬁ) /2k+1B(|f(X) — Avg f| + | Avg f — Avg f|)dx
k=0

<Vallfllswo + Y- 2709 (1 42" (k + 1)) (25)"Val fllsmo
k=0

=G, flBmo-
(iif) The proof of (7.8) is a reprise of the argument given in (ii). Set
B; = B(y,t). We first prove a version of (7.8) in which the expression
(Pr* f)(y) is replaced by Avg f. For fixed y, t, we have by (ii)
B

T () tf(x) —Agfgf|
; A < Gy : 7.10
71% R” (tz + |x —y|2)%l X n||f||BMO ( )

Moving the absolute value outside, this inequality implies
Jo 1(P# £) ) — Avg fIPy(x — y)dx
t

I\(Pt*f>(l/)—A;fgf\

< o P =1 0) = Ave

<Gyl flls™mo-
Combining this last inequality with (7.10) yields (7.8) with constant C,, =
2C).
(iv) Conversely, let A be the expression on the right side of (7.9). For
|x —y| < t, we have Py(x —y) > c,t(2t?)~("1)/2 = ¢/ =" which gives

/
c?l

Az /IR [f(x) = (Pex f)(y)|Pr(x —y)dx > = 1F(x) = (P = ) (y)|dx.

S x—yl<t
Proposition 7.15 (iii) now implies that
| fllBmo < 2A/ (Vacy,).-
This concludes the proof of the proposition. a

§7.2.2 John-Nirenberg inequality

Having set down some basic facts about BMO, we now turn to a
deeper property of BMO functions: their exponential integrability. We
begin with a preliminary example.

Example 7.21. Let f(x) =1In|x|, I = (0,b), and
Ex={xe€l:|Inx—Avgf| > a},
I
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then we have
Ex={xel:Inx—Avgf>a}U{xel:Inx—Avgf < —a}
I I

a+Avg f —a+Avg f
={xel:x>e 1 }U{xel:x<e 1

When « is sufficiently large, the first set is an empty set, and the second

—a+Avg f
set is <0,e e > Thus,

—a+A
Euj=e 08

Since

Av f—l/blnxdx—l(xlnx|b—/bdx> —Inb-1
Ig _b 0 _b 0 0 - ’

we have,
|Eo| = [Tle™1.

That is, the distribution function decays exponentially.

Although the above relation is obtained from the function In|x| over
(0,b), it indeed reflects an essential property for any BMO function in the
BMO space. The John-Nirenberg inequality gives a similar exponential
estimate for the distribution function of oscillation of an arbitrary BMO
function. The proof that we present here is based on a recursive use of the
Calderon-Zygmund decomposition of cubes.

( )
Theorem 7.22 (John-Nirenberg inequality). For all f € BMO(IR") such

that || f |lemo # O, for all cubes Q, and all & > 0, we have
[{x € Q:|f(x) — Avg f| > a}| < e| Qe 4/ Iflmwo (7.11)
Q

with A = (2")~L.
\ W,

Proof. Since inequality (7.11) is not altered when we multiply both f and
« by the same constant, it suffices to assume that || f||pvo = 1. Let us now
fix a closed cube Q and a constant b > 1 to be chosen later.
We apply the Calderén-Zygmund decomposition for the function f —
Avg f at height b in the cube Q (similar to Theorem 2.13 by replacing R"
Q

with Q).
Step 1. We introduce the following selection criterion for a cube R:

‘1R| /R () — v fldx > b (7.12)

Since

ylg| /Q (%) = Aggfldx <|lflleMmo =1<b,
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the cube Q does not satisfy the selection criterion (7.12). Set Q(O) =Q
and subdivide Q) into 2" equal closed subcubes of side length equal to
half of the side length of Q. Select such a subcube R if it satisfies the
selection criterion (7.12). Now subdivide all nonselected cubes into 2"
equal subcubes of half their side length by bisecting the sides and select
among these subcubes those that satisfy (7.12). Continue this process
indefinitely. We obtain a countable collection of dyadic cubes {Q]Q)}j
satisfying the following properties:

(A-1) The interior of every Q]O) is contained in Q(O)
-1
B1) b < [Q| " [y |f(x) — Avg fldx < 27,
Q Q)

(1) \Avgf Avgf\
QO

<D1>2\Q | < by ) —Avgf!dx<%\Q<°>(.

(E-1) |f — Avgf| b a.e. on the set Q(° \U]-Q](.l).
QO
We call the cubes Q ; M) of the first generation. Note that (C-1) is due to
the upper inequality in (B-1), and (D-1) follows from the lower inequality
in (B-1) and the fact

Q1 Jo )~ Ave flax < o = 1.

Step 2. We now fix a selected first-generation cube Q] , and we
introduce the followmg selection criterion for a cube R:

B / f (x Avgf|dx > b, (7.13)

Observe that Q}l) does not satisfy the selection criterion (7.13). We apply
a similar Calderén-Zygmund decomposition for the function f — Avg f at
ol
]
height b in every cube Qj(l). Subdivide Q](.l) into 2" equal closed subcubes
of side length equal to half of the side length of Q](-l) by bisecting the
sides, and select such a subcube R if it satisfies the selection criterion
(7.13). Continue this process indefinitely. This process is repeated for any

other cube Q](.l) of the first generation. We obtain a collection of dyadic

cubes { Ql(z) }; of the second generation each contained in some Q](l) such
that versions of (A-1)-(E-1) are satisfied, with the superscript (2) replacing
(1) and the superscript (1) replacing (0). We use superscript (k) to denote
the generation of the selected cubes.

Step 3. For a fixed selected cube Ql(z) of the second generation, intro-
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duce the selection criterion

H / f (x Avgf|dx > b, (7.14)

and repeat the previous process to obtam a collection of cubes of third

(2)

generation inside Q,”’. Repeat this procedure for any other cube QZ(Z)

the second generation. Denote by {QgS)}S the thus obtained collection of
all cubes of the third generation.

Step 4. We iterate this procedure indefinitely to obtain a doubly
indexed family of dyadic cubes Q](.k) satisfying the following properties:

(A-k) The interior of every Q}k) is contained in Q](,k b,

-1
(B-k) b < ‘Q](-k)‘ S |f(x) = Avg fldx < 2",
i (k-1)
j/
(C-K) (Avg f— Avg f’ < 2.
Q® Q-
j i
ok o] < izl

(E-k) |f Avgf| b a.e. on the setQ \U]-Q](k).
Q"

We prove (A—k)—(E—k). Note that (A-k) and the lower inequality in
(B-k) are satisfied by construction. The upper inequality in (B-k) is a con-
sequence of the fact that the unique cube Q](;{) with double the side length
of Q](k) that contains it was not selected in the process. Now, (C-k) follows
from the upper inequality in (B-k). (E-k) is a consequence of the Lebesgue

differentiation theorem, since for almost every point in Q](-k_l) \ UjQ](-k)
there is a sequence of cubes shrinking to it, and the averages of

If - A(;’g)ﬂ
-1
Qy

over all these cubes is at most b.
It remains to be proven (D-k). We have by (B-k)

Z‘QJ bZ/ Ang]dx
J

]/

=5 Z Z / — Avg f|dx

j' j corresp. to j/ Q-1
]

bz/ oy () — Av flax

Q=

]/

1 - 1
< L[| Ifllawo = 3
]I

(kfl)‘
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Having established (A-k)-(E-k), we turn to some consequences. Applying
(D-k) successively k — 1 times, we obtain

Y| < b [Q®)]. 715)
j
For any fixed j, since (C-1) | Avg f — Avg f| < 2"band (E-2) |[f — Avg f| < b
oV Q) oW
] ]
a.e. on Q}l) \ UZQZ(Z), we have

|f —Avg f| <2"b+b ae. on Qj(l) \ UlQl(z),
Q)

which, combined with (E-1), yields
If — Avg f| <2"2b ae. on QV\ Q. (7.16)
Q)

For every fixed I, we also have (E-3) |f — Av < ba.e. on Q(Z) USQS(S),
y g 1

Q”
which combined with (C-2) |Avg f — Avg f| < 2"b and (C-1) | Avg f —
o? g Q)
Avg f| < 2"b yields
Q)

|f — A\(I()gf| <2"3b ae. on Ql(z) \ U.Q%.
Q 0

In view of (7.16), the same estimate is valid on Q(O) \ USQ§3). Continuing
this reasoning, we obtain by induction that for all k > 1, we have

— Av <2'%b ae. on QO Ungk).
o
Q

This proves the almost everywhere inclusion

{x € Q:[f(x) - Avg f| > 2"kb} T U;Q}Y (7.17)
Q
forall k =1,2,3,--. (This also holds when k = 0.) We fix an « > 0. If
2"kb < a < 2"(k+1)b

for some k > 0, then from (7.17) and (7.15), we have

Hx €Q: If(x)—Aggfl > oc}

<

{x €Q:|f(x)— Avg f| >2”kb}‘
Q
<Z Q(k) < l Q(o) _ |Q|e—klnb < |Q|be—1xlnb/(2”b)

since —k <1 — 5. Choosing b = e > 1 yields (7.11). Q

The John-Nirenberg inequality tells us that logarithmic blowup, as for
f(x) = In|x|, is the worst possible behavior for a general BMO function.
In this sense the John-Nirenberg inequality is the best possible result we
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can hope for.

Having proven the important John-Nirenberg inequality (7.11), we are
now able to deduce from it a few corollaries.

e D
Corollary 7.23. Every BMO function is exponentially integrable over any

cube. More precisely, for any v < 1/(2"e), for all f € BMO(RR"), and all
cubes Q, we have
7| f(x)—Avg f|/IIfl "2
1/6‘ Q ’ BMdegl_}_zi.
QI 1—2%ey
\ /
Proof. Let h = y|f(x) — Avg f|/||fllsmo and ¥ < A = (2"¢)~1. By (7.11),
Q

we have the distribution function

ho(a) = {x € Q:[f(x) - Angl > af|fllsvo/ 1} < e[Qle~ /7,

which yields, by Theorem 1.16 with ¢(t) = ¢ — 1 (so ¢(0) = 0) and
integration by parts, that

i) Jodx =t g [ - na=1- \QI/ el
:1+|Q|{ (" Wi+ [ en ]
_1+|1Q| Oooe"‘h*(uc)doc

Then, we obtain

1 YIf(x)—Avg f1 /| fllsmo
—/ e Q dx
Q]

<1+ / e“ee A du
0
[ " 27162,)/
-1 a(1-1/(2 e'y))d -1
+e/0 e o +71—2"e'y’
thus, we complete the proof. Q

For another important corollary, we define the following.

r )
Definition 7.24 (BMO,). Let 1 < p < oo; for f € L} (R"), we define

1/p
1flleMo, = sup <AVg |f—Ang|p> ;
o \ 0o Q

and

BMO, = {f € L[, (R") : ||fllavo, < oo}
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Corollary 7.25. For all 1 < p < oo, there exists a finite constant By, ,, such
that

IflleMo, < Bpallf llBMO(R?)- (7.18)

Proof. We have from Theorem 1.17 and the John-Nirenberg inequality

1 _ _r ®°
a /Q () — g fPdx =10y | e
|Q|6‘Q‘/ aP1 *A“/HfHBMod“

{xeQ:[f(x) —Avgf\ > a}|da

=p (p)ﬂHfHBMO'

where A = (2"e)"1. Setting B, = (pI'(p)-5)V/P = (pI'(p))Y/reltl/P2n,
we conclude the proof Q

Since the inequality in Corollary 7.25 can be reversed via Holder’s
inequality, we obtain the following important L? characterization of BMO
norms.

Corollary 7.26. Forall 1 < p < coand f € L}, (R"), we have

| fllemo, ~ |1 flBmo- (7.19)

Proof. One direction follows from Corollary 7.25, and the other follows
from the Holder inequality. Q

§7.3 Duality between }{!' and BMO

The next result we give is a remarkable duality relationship between
the Hardy space H!' and BMO. Specifically, we have that BMO is isomor-
phic to the dual space of H! with equivalent norms. This means that every
continuous linear functional on the Hardy space H! can be realized as in-
tegration against a fixed BMO function, where integration in this context
is an abstract operation, not necessarily given by an absolutely convergent
integral. This relationship was first established by Fefferman and Stein in
[FS72] but using a different characterization of H'.

Theorem 7.27 (H!'-BMO duality). The dual of H' is isomorphic to BMO
with equivalent norms.

Proof. We work with 3! = 31? and BMO = BMO, with corresponding
norms || - ||5¢12 and || - [|[Bmo,, in view of Definition 7.9 and Corollary 7.26.
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(i) Take b € L*(R") and f € 32, Define
Li(f) = [ b f(x)dx,

which is well-defined since 3(1* C LL If f = f Aia;, we can apply the
i=1

dominated convergence theorem due to

[ Eptonaolds < ol 5 1o

If suppa; C Qj, then | o, @idx = 0 by definition. Thus, [|a;[[; <1 yields

Ly (a)| = < 2[[b|es,

/ (b(x) — Avgb)ai(x)dx

Qi
which implies, by Holder’s inequality, that

;/ Avgb))\a( x)dx

1/2
<y <|Qi| /Qi|b<x> ~ vl dx) (10 ) 1o Pax)

(o]
<[bllBvo, Y Ail-
i=1

|Ly(f)] =

1/2

Taking an infinimum over all possible A;, we have

1Ly ()] < [1Bllsnmos | f |12

(ii) Now take b € BMO, to be real-valued without loss of generality
(for complex-valued b, we may separate real and imaginary parts), and
f € spanA2. Let (b){, be the truncation of b given by (ix) in Proposi-
tion 7.15. Thus, |b| < |b] a.e., by b a.e., and || bx|lemo, < 2||b|lsmo,- Sup-

pose that f = f Aiaj and Ly, (f) = ): AiLp, (a;). Since b € BMO,, we have
i=1

bell (R"), which implies b € L2(suppa ). Thus, |bga;| < |ba;| € LY(R")

a.e. and by the dominated convergence theorem
/ bea;dx — ba;dx,
R" R"

ie, Ly(a;)) — Ly(a;)) as k — oo. It follows from |L (f)] <
1BellBmo, || fllzc12 < 2[[bllBMmo, [If 312 that

Lo ()] < 2[[l[B7m0, [ £l 3¢12-

(iii) By the density of span.A? in H!?, we can extend L, to the whole
of K12, Let L, denote this extension. Thus, we have shown that whenever
b € BMO; we have L, € (K'?)". Let T : BMO, — (3!?)’ denote the map
b — L, which is linear.

(iv) We show that T is injective. Let b € BMO; be such that
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L, = 0 and show that b is constant. Fix a cube Q and let L3(Q) =
{ € L*(Q) : [, fdx = 0} Note that L3(Q) C H'2. In fact, we take
feL3Q >andA= I£1121Q12, then

1

il <o

so f/A is a 2-atom. Thus, we get an expression f = Af/A, then by
definition

fllse2 <A =l fll21QI2

Thus, from
0=Ly(f) = Ly(f) = /Qbfdx, vf € Li(Q),

it follows that b|g is constant a.e., since we can take a special f = b —
Avgb € L3(Q) due to b € BMO, and then 0 = fQ |b — Avg b|*dx. By
Q

Q
exhaustion of R" by increasing Q, we deduce that b is constant.
(v) Finally, we show that T is surjective. Let L € (}'?)" and fix a cube
Q. Since L3(Q) C H'?, we have L|L5(Q) € (L3(Q))" = L*(Q) /{constants},
and thus, by the Riesz representation theorem, there exists a by €
(L3(Q))’ such that for all f € L3(Q),

f) = [ bofdx

and |[[bglli2q) = sup |L(f)] < sup |Lligaayllfllsn <
”f”L%(Q)<1 ”f”L%(Q)<1

IL]l (g¢12y/| Q2.
Let Q and Q' denote two cubes with Q C Q'. Then, whenever f €
L3(Q), we have f € L3(Q’) and

_ [ dx:/b/dx,
/QQf Q,Qf

so bg — bgy is constant a.e. in Q as before. Define b as follows:

b(x) _ b[—l,l]” (X), X € [—1, 1]”,
by () +¢j, x € [=2, 2"\ [-27 L2, > 1,

where ¢; is the constant such that b;_,; »» — bj_11» = —¢j on [—1,1]".

We show that b € BMOy, |bllpmo, < [ILl[(3a2y and L = L.
Fix Q, and let j € N such that Q C [-2/,2/]". Let k be such that
2 <k <j. Then, ¢x — k-1 = bj_okpkjn — bj_pk-1pk-1)» Which is constant on
[—2k=1,2k=11" and in particular on [—2K~1,25=1]" \ [—2K=2,2k=2]" There-
fore, b(x) = bj_5j »(x) 4 ¢j on all of [~2/,2/]" and in particular on Q.
Additionally, there exists a constant ¢ such that bj_y; 5« — by = c on the
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cube Q and so b = bg + ¢ +¢j on Q. Then,
b—Avgb =bg +c+cj— Avgbg —c—cj =bg
Q Q

since Avg b = 0. Therefore,
Q

/Q b= Avg bz = /Q [boPdx < ||L |22y QI-

The fact that L = L, follows from the fact that L(a) = L;(a) for all a €
A2, u

§7.4 Carleson measures

§7.4.1 Nontangential maximal functions and Carleson measures

e “
Definition 7.28 (Cone). Let x € R". We define the cone over x as

follows:

() = {(yt) € RT : [x—y| < £},

r a
Definition 7.29 (Nontangential maximal function). Let F : IR’rrl — C
and define the nontangential maximal function of F:
M*F(x) = sup |F(y,t)| €0, 00].
(yt)€l(x)

- J
Remark 7.30. (i) We observe that if M*F(x) = 0 for almost all x € R”, then
F is identically equal to zero on ]R’jfl. To establish this claim, suppose
that |F(x, )| > 0 for some point (xg, fp) € R"” x R*. Then, for all z with
|z — xo| < to, we have (xo,tp) € I'(z); hence, M*F(z) > |F(xo,t)| > 0.
Thus, M*F > 0 on the ball B(x, tp), which is a set of positive measures,
a contradiction.

(ii) Given a Borel measure y on R”.*!, we can define the nontangen-
tial maximal function Mj w.rt. p by replacing sup with esssup. Note
then that M, is defined p-a.e.

r a
Definition 7.31 (Tent). Let B = B(xg,7) C R" be an open ball. We

define the cylindrical tent over B to be the “cylindrical set”
T(B) = {(x,t) eR:x€B, 0<t<r}=Bx(0,71].
Similarly, for a cube Q in R", we define the tent over Q to be the cube

T(Q) = Q x (0,£(Q)].
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( )
Definition 7.32 (Carleson measure). A Carleson measure is a positive

measure y on R"! such that there exists a constant C < oo for which

u(T(B)) < C|B|
for all B = B(x,r). We define the Carleson norm as

(I(B))
I B

\ J/

¢ = sup
B

Remark 7.33. In the definition of the Carleson norm, B and T(B) can be
replaced by the cubes Q and T(Q), respectively. One can easily verify
that they are equivalent.

Example 7.34. The following measures are not Carleson measures.

(i) The Lebesgue measure dpu(x,t) = dxdt since no such constant C
is possible for large balls.

(ii) dyu(x, t) = dx4 since u(B = [B| [, % =

(iii) dp(x,t) = 24 for « € R. Note that

1 o

T dt B , 1—a>0,
u(B 0, = 18] [ 4 { %

otherwise.

Therefore, we only need to consider the case # < 1, but in this case, we
cannot obtain uniform control via a constant C.

Example 7.35. The following are examples of Carleson measures.

(1) du(x,t) = )([u,b](t)dx% where 0 < a < b < co. Then, the constant
C=Inl.

(i) dpe(y, 1) = Xro (v)dy Y. Then,

r dt r dt  r"|B(0,1 B
r)g/o |B(x,t)\T:/0 f"'B<°'1>‘t:w=H-

n n

(iii) Let L be a line in IR?>. For measurable subsets A C IR?, define
#(A) to be the linear Lebesgue measure of the set LN A. Then yu is
a Carleson measure on ]Ri. Indeed, the linear measure of the part of
a line inside the box T(B) = [xop — 1, x0 + ] X (0,7] is at most equal
to the diagonal of the box, i.e., V5r where B = [xg —r,x0 + 7], thus

H(T(B)) < V5r = *2|B|.

( )
Definition 7.36 (Carleson function). The Carleson function of the mea-

sure y is defined as

%WXM:??ME$»GMm}

Observe that ||€ (1) |l = |||« for Carleson measure .
L J
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e \
Theorem 7.37 (Carleson Lemma). There exists a dimensional constant

Cy, such that for all « > 0, all measure y on R™Y and all p-measurable
functions F : R™ — C, the set Q) = {x € R" : M*F(x) > a} is open
(thus M*F is Lebesgue measurable) and we have

u({(x,t) e R 1 |F(x,t)| > a}) < Cy /{M*PM} € (u)(x)dx. (7.20)

In particular, if y is a Carleson measure, then

#({[F| > a}) < Cullulle[{M°F > a}|. (7.21)
\L W,

Proof. We first prove that for any p-measurable function F, the set (), is
open, and consequently, M*F is Lebesgue measurable. Indeed, if xg € (),
then for any ¢ € (0, M*F(xo) — ) there exists a (yo, fo) € I'(x0) = {(y,t) €
R" x R" : |y — x| < t} such that |F(yo,to)| > M*F(xo) — e > a. If dy is
the distance from (yo, tp) to the sphere formed by the intersection of the
hyperplane to + R" (i.e., R" x {t¢}) with the boundary of the cone T'(xo),
then |xg — yo| = to — do. It follows the open ball B(xop,dy) C Q) since for
z € B(xg,dy) we have |z — yo| < |z — x0| + |x0 — vo| < do+ to —dy = to,
i.e., (yo,to) € I'(z); hence, M*F(z) > |F(yo, to)| > a.

Let {Qx} be the Whitney decomposition (i.e., Lemma 2.15) of the set
Q. For each x € Q, set §,(x) = dist (x, Q). Then, for z € Q, we have

ba(z) <V/nl(Qy) + dist (Qx, OOF)
<Vnl(Qx) +4diam (Qr) = 5vnl(Qx) (7.22)

in view of Lemma 2.15 (iii). For each Qj (centered at zj), let By be the
smallest ball that contains Q. Then By is of radius v/n¢(Qx)/2 and cen-
tered at zp. Combine this observation with (7.22) to obtain that for any
z € Qrand y € B(z,6,(2))

v — 2ol <[y —z| + |z — 20| < da(2) + V1l(Qx)/2
<%\/ﬁ£(Qk) — 11rad(By),

namely,
z € Qx = B(z,04(2)) C 11B4.
This implies that
U T(B(z6(2))) € |JT(11By). (7.23)
z€Q, k
Next, we claim that
{|F| > a} C L(J) T(B(z,64(2))). (7.24)
z€l)y

Indeed, let (x,t) € R be such that |F(x,t)| > a. Then by the def-
inition of M*F, we have that M*F(y) > «a for all y € R" satisfying
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|lx —y| < t. Thus, B(x,t) C Q, and so d,(x) > t. This gives that
(x,t) € T(B(x,6x(x))), which proves (7.24).
Combining (7.23) and (7.24), we obtain
{|F| > a} C | JT(11By).
k
Applying the measure y and using the definition of the Carleson function,
we obtain

u({|F| > a}) <Zy (11By))
<
< gan\xeu;lka%(m(x)

<Y |11B| inf ¢ (u)(x) (. Qx C 11By)
k k

| B
<11" x)dx
Z | Qxl Qk 1)
<(11v/n/2)"V, / (1) (x)dx.
Qu
This proves (7.20). It follows (7.21) in view of ||€'(u) Q
4 )

Corollary 7.38. For any Carleson measure y and every p-measurable func-
tion F on R, we have

Joon P 1) < Cllle [ U EGPE 029
forall p € [1,00).

Proof. From (7.21), applying Theorem 1.17 twice, we obtain
P )Pdp(xt) =p [ a7 p({[F| > a})d
Jo IFC Pt ) =p [ a2 (1| > )
P H{M*F > a}|da
0

:CnHyHcg/]Rn(M*F(x))pdx. Q

A particular example of this situation arises when F(x,t) = f % ®y(x)
for some nice integrable function ®. Here and in the sequel, ®;(x) =
t~"®(t+ 'x). For instance, one may take ®; to be the Poisson kernel P;.

4 )
Theorem 7.39. Let ® be a function on R" that satisfies for some 0 < C,5 <

o0

7

C

[D(x)] < A+ x)re (7.26)

Let u be a Carleson measure on R'"L. Then for every 1 < p < oo, there is a
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constant Cp, () such that for all f € LV (IR") we have
/IR (@ ) )P (x, ) < Cp(p) /R f(x)Pdx, (7.27)
"

where Cp.n(p) < C(p, )|l
Conversely, suppose that ® is a nonnegative function that satisfies (7.26)

and f|x|<1 @ (x)dx > 0. If y is a measure on Rt such that for some 1 <

p < oo there is a constant Cp, ,, () such that (7.27) holds for all f € LP(IR"),

then p is a Carleson measure with norm at most a multiple of Cp ().
\, J

Proof. 1f u is a Carleson measure, we may obtain (7.27) as a sequence of
Corollary 7.38. Indeed, for F(x,t) = (®; * f)(x), we have
MF(x) =sup sup |($s* f)(y)]

t>0 yeRr”
ly—x|<t

<sup sup [Pty — 2)|[f(2)|dz
t>0 yeR” R"
ly—x|<t

=sup sup | |@i(y — x +x —2)||f(2)|dz

t>0 yer"
ly—x|<t
<sup (sup [Py —x+-)|+|f]) (%)
t>0 yeRN
ly—x|<t
=sup(¥;*|[f])(x),
t>0
where
C, lx[ <1,
Y (x) := sup |®(x —u)| < C 1
|u|<1 T +e’ x| > 1,

by condition (7.26). Thus, it is clear that |V 1(gn) < C(Vi + wy-1/9). It
follows from Theorem 2.10 that

M*F(x) < C(n, &)M(|fI)(x).
Then, by Theorem 2.6, we obtain

[ (M E()Pdx < C(n,0) [ (M(f)(x)7dx < Clmo,p) [ 1£()]Pdx,
n ]er ]Rn
Therefore, from Corollary 7.38, (7.27) follows.
Conversely, if (7.27) holds, then we fix a ball B = B(xp,r) in R" with
center xy and radius r > 0. Then for (x,t) € T(B), we have
@ - / @ (x — y)dy = / @, (y)d
(Pr#x2p)(x) = | Crlx—y)dy= |  Pi(y)dy

> &, (1)d :/ O(y)dy = ¢, > 0,
/B o t(y)dy 50 (y)dy = cu
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since B(0,t) C x —2B(xo,r) whenever t < r. Therefore, we have from

(7.27)
1 p
ndu(x, t
/T cﬁ /T(B)c plxt)

< / » )!<<I>t*m>< )V,

Cn

< [ @) 5 P,

Cn

C
<[ an o)
:chp,n(.u)

ch

|BJ.

This proves that y is a Carleson measure with ||u|l¢ < 2"c,"Cpp(p). Q

§7.4.2 BMO functions and Carleson measures

We now turn to an interesting connection between BMO functions and
Carleson measures as follows.

4 N\

Theorem 7.40. Let b € BMO(R") and ¥ € L'(R") with [p, ¥(x)dx =0
satisfying
(¥ ()| < AL+ [x]) ™" (7.28)
for some 0 < A, < co. Consider the dilation ¥; = t ¥ (+ 'x).
(i) Suppose that
sup ¥ [F27E)P < B> < 0 (7.29)
CER" jez
and let 5,-;(t) be the Dirac mass at the point t = 27/, Then there is a
constant Cy, 5 such that
du(x,t) = Y [(¥y- * b) (x)[*dxd, - ()dt

jEZ
is a Carleson measure on R with norm at most C,s5(A +

B)?[1b/|Emo-
(ii) Suppose that

Zdt

sup | (td)| 2 < oo (7.30)

ZeR" 0
Then the continuous version dv(x,t) of du(x, t) defined by

dv(x,t) = |(F: % b) (x )|2dxdt

is a Carleson measure on R with norm at most C,s5(A +
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B)2||b||3\s0 for some constant C, ;.
(iii) Let 6, A > 0. Suppose that {K;}~o are functions on R" x R" that

satisfy
Ar
E+ |x -y
forallt > 0and all x,y € R". Let Ry be the linear operator

Ri()(x) = [ Kilxy)f@)ay,
which is well-defined for all f € |J LP(IR"). Suppose that Ri(1) =

pelle]
0 for all t > 0 and that there is a constant B > 0 such that

dxdt
/ / IR (f) ()P == < B2 f (o) (7.32)
forall f € LZ(]R”). Then for all b € BMO, the measure
dxdt
\Rt(b)(x)|2i

is Carleson with norm at most a constant multiple of (A + B)?||b||3y0-
\ J

IKi(x )| < 7 (7.31)

Proof. (i) The measure y is defined so that for every p-integrable function
F on R""!, we have

/ F(x, )du(x,t) = ¥ / (¥, #b)(x)PF(x, 2 )dx,  (7.33)
Riﬂ jeZ
since [i: 0, (t)F(x, t)dt = F(x,277).

For a cube Q C R”, let Q* be the cube with the same center and
orientation whose side length is 3y/n¢(Q), where £(Q) is the side length
of Q. Fix a cube Q C R", take F = x7(g), and split b as

b= (b— Avgb)xg- + (b — Avgb)x (o) + Avgb.
Q Q Q

Since ¥ has a mean value of zero, ¥, ; * Avgb = 0. Then, (7.33) gives
Q

W(T(Q)) = /|‘Y2]*b( )2dx < 25, + 25,
2~ ]<f
where

D= [ (b Avg D)) ()P,

jEZ

.= Y /|‘I’2/* ((b— Avgb)x( ) (%) .
21<€
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Using Plancherel’s theorem twice and (7.29), we obtain

Z =) [ ¥ R @IpPIG= Avgbixa) )Py
je

<(r)'sup 1 ¥R [ |M/M<n>|2dn
¢ jez Q

<an2/ Ib(x) — Avg b|?dx
Qr Q

<C,B?

/ Ib(x) — Avg b|%dx + |Q%|| Avg b — Avgb|2]
Q* Q* Q* Q

<C,B?

/1o - Avg b+ ||b||%Mo|Q|]

<CuB?||bl[3umo|Ql,

in view of (7.5) and Corollary 7.25. To estimate X, we use the size esti-
mate (7.28) of the function ¥ to obtain

A27P|b(y) — Avgb|
Q
¥, % (b— Avgb)xone ) (x </ ‘ dy.  (7.34)
(2= (0= AvgEX @)D < [ ey

Denote c( as the center of Q; then, for x € Q and y € (Q*)¢, we obtain
ly = x[ = |y — cql — [eq — #|

> 2y~ eol+ 2Q) ~ e — 1 (v — col > 2e(@) = 2 u(@)
22y ol + 2@) - YuQ)

—5 (Iv=col+ L)

1
> Iy — cal +4(Q)).
Inserting this estimate in (7.34), integrating over Q, and summing over j

with 277 < £(Q), we obtain

2 Plb(y) — Avgh| \’

Q
Ty <CpA2 / / dy | dx
B o do | e @ F Teq =y

0(Q)°|b(y) —Aggm ?

oo @G =y

<C,A%|Q]

<Cus A% Q1B
in view of (7.7). This proves that

Zi + 22 < Cus(A? + B2)|Ql[16]Imo



§7.4. Carleson measures 191

which implies that y#(T(Q)) < Cps(A% 4+ B?)|Q|||b]|3p0; thus, u is a Car-
leson measure.

(ii) The proof can be obtained in a similar fashion as in (i).

(iii) This is a generalization of (ii) and is proven likewise. We sketch
its proof. Write

b= (b— Avgb)xg- + (b — Avgb)x g+ + Avgb
Q Q Q
and note that R;(Avgb) = 0 because R;(1) = 0. We handle the term

Q
containing R¢((b — Avgb)xo+) by using an L? estimate over Q* and con-
Q

dition (7.32), while for the term containing R;((b — Avgb)x(g-)-), we use
Q

an L! estimate and condition (7.31). In both cases, we obtain the required
conclusion in a way analogous to that in (i). Q

Exercises

Exercise 7.1. Prove Proposition 7.5. (Notice: Do NOT use Theorem 7.8!)

Exercise 7.2. [Gral4b, Exercise 2.1.7(a)] Let 1 < g < o0 and let ¢ € L7(IR")
be a compactly supported function with integral zero. Show that g €
FHE(R™).

Pick a function ® € Z supported in the unit ball with a nonvanish-
ing integral and suppose that supp ¢ C B(0, R). For |x| < 2R, we have that
M(g; @) (x) < CoMg(x), and since Mg € LY, it also lies in L'(B(0,2R)).
For |x| > 2R, write (®; % 8)(x) = [pa(Pt(x —y) — P¢(x))g(y)dy and use
the mean value theorem to estlmate this expression by

Ve leliglh < 217" Collg g,

since t > |x —y| > |x| — |y| = |x|/2 whenever |x| > 2R and |y| < R. Thus,
M(g, ®) € L'(R") and then g € 3! by Theorem 7.11.

Exercise 7.3. Prove (x) in Proposition 7.15.
Exercise 7.4. [Pey18, Exercise 6.8] Prove that BMO(IR") is complete.

Exercise 7.5. [Gral4b, Exercise 3.1.6] Let 2 > 1 and f € BMO(R"). Show
that there exist dimensional constants C,, C}, such that

(i) for all balls By and B, in R” with radius R whose centers are at dis-
tance aR we have

| Ang Ang| < CyIn(a+1)||fllBmo-

(ii) Conclude that

| Avg f—Avgf| < Cyln(a+1)[fllsmo-
(a+1)B, B,
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(i) Replace Avg f by Avg f and Avg f by Avg f and use the fact that
B1 2a 1 Bz aBz
aBy C 2aB; and use Proposition 7.20 (i).

Exercise 7.6. [Pey18, Exercise 6.5] Let f € Ll (IR?) be real valued only.

loc
One assumes that there exists a constant Cy such that the following hold:

e for all x, the function y — f(x,y) lies in BMO with a norm less than
or equal to Co;

e for all y, the function x — f(x,y) lies in BMO with a norm less than
or equal to Co.

(i) Show that if Q = I x ] is a square in R?, one has

1 1 1
Iﬂ/f‘m/lf(x'y)d"‘ ’Q|/Qf(x,t)dxdt‘dy < Cp.

(ii) Deduce from this that || f||gmo(r2) < 2Co-
(iii) Let P be a polynomial in two variables with complex coefficients.
Show that In |P| is in BMO and give an upper bound of its norm.

Exercise 7.7. [Pey18, Exercise 6.6] For a > 0, set g,(x) = In(x? + a).
(i) Show that, for all a and b such that 0 < a < b, one has

/b(ln(l 4 5%) —In(1 + 22))dx < 2(b — a).

Conclude that g; € BMO.

(ii) Show that, for all « > 0, one has ||g«|/BMo = |/1//BMo- Deduce from
this fact that ||« ||emo = 2| In |x|||BMmoO-

(iif) Show that if P is a polynomial of degree n with complex coefficients
(the coefficient is 1 for the term with the highest degree), then In |P|
is in BMO with a norm not exceeding n|| In |x|||gmo-

(ii) Use the monotonicity of the integral and Fatou’s lemma. (iii) To

factor P and use (ii).

Exercise 7.8. [Pey18, Exercise 6.11] Show that (In|x|)? is not in BMO(IR).
This function does not fulfil the John-Nirenberg inequality.



Standard Kernels and T(1) Theorem

We study singular integrals whose kernels do not necessarily com-
mute with translations. Such operators appear in many places in harmonic
analysis and PDEs. For instance, a large class of pseudodifferential opera-
tors fall under the scope of this theory.

This broader point of view does not necessarily bring additional com-
plications in the development of the subject except in the study of L2
boundedness, where Fourier transform techniques are lacking. The L2
boundedness of convolution operators is easily understood via a careful
examination of the Fourier transform of the kernel, but for nonconvolu-
tion operators different tools are required in this study. The main result of
this chapter is the derivation of a set of necessary and sufficient conditions
for non-convolution singular integrals to be L2 bounded. This result is re-
ferred to as the T(1) theorem and owes its name to a condition expressed
in terms of the action of operator T on function 1.

§8.1 General background and the role of BMO

We begin by recalling the notion of the adjoint and transpose operator.
One may choose to work with either a real or a complex inner product
on pairs of functions. For f, g complex-valued functions with integrable
products, we denote the real inner product by

(.9) = [ f@g)ax

This notation is suitable when we think of f as a distribution acting on a
test function g. We also have the complex inner product

(f.8) = /R f(x)g(x)dx,

which is an appropriate notation when we think of f and g as elements of
a Hilbert space over the complex numbers. Now suppose that T is a linear
operator bounded on L”. Then the adjoint operator T* of T is uniquely
defined via the identity

(Tf,8) = (f,T"g)
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for all f € L? and ¢ € L¥. The transpose operator T' of T is uniquely
defined via the identity

(Tf,8) = (f,T'g) =(T's. f)
for all f € L” and g € L”. We easily have the following relationship
between the transpose and the adjoint of a linear operator T:

r'f=TFf,
indicating that they have almost interchangeable use. In fact, it holds
(8, T*f) = (T3, f) = (T8, ) = (8, T'f) = (&, T'/),
which also implies that
TP, Tf=T7.
Because of these, in many cases, it is convenient to avoid complex conju-

gates and work with the transpose operator for simplicity. Observe that if
a linear operator T has kernel K(x,y), that is,

= / K(x,y)f(y)dy,

then the kernel of T' is K'(x,y) = K(y,x) and that of T* is K*(x,y) =
K(y, x). Indeed, we have for f,g € ¥ (R")

(T'g, ) = (Tf.8) = [ [ Kxw)f(n)dy gx)dx = [[ K(x,w)g(x)dx fly)dy

_//Ky, y)dy f(x dx_</1<y, (y)dy,f>,
and

(£,7'9) =(Tf,9) = [[ Ky f)dy gGx)dx = [[ K y)gix f(y)dy

—//Ky, g(y)dy f(x dx—(f/Ky, )dy)-

An operator is called self-adjoint if T = T* and self-transpose if T =
T!. For example, the operator iH, where H is the Hilbert transform, is
self-adjoint but not self-transpose, and the operator with kernel i(x +y)~!
is self-transpose but not self-adjoint.

§8.1.1 Standard kernels

The singular integrals we study in this chapter have kernels that sat-
isfy size and regularity properties similar to those of Calderén-Zygmund
operators of the classical convolution type. We introduce the relevant back-
ground.
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r D
Definition 8.1 (Standard kernels). The function K(x,y) defined on

R"” x R"\ {(x,x) : x € R"} that satisfies for some A > 0 the stan-

dard size condition
A

K(x,y)| < (8.1)
Ko y)| < o
and for some 6 > 0 the (Hélder) regularity conditions
Alx —x'|°
K(x,y) — K(x',y)| < , (8.2)
KCx9) ~ KO S (e s
whenever |x — x'| < 3 max(|x —y|, |x' — y|) and
VAT
K(oy) ~ Ko )] < el 3

(lx =yl + [x —y'[)"*’
whenever |y — y/| < § max(|x —y|, |x —y'|), is called a standard kernel

(or Calderon-Zygmund kernel) with constants J, A. The class of all

standard kernels with constants ¢, A is denoted by SK(4, A).
Q J

Given a kernel K(x,y) in SK(4, A), we observe that the functions
K(y,x) and K(y, x) are also in SK(J, A). These kernels have special names.
The function K!(x,y) = K(y,x) is called the transpose kernel of K, while

the function K*(x,y) = K(y, x) is called the adjoint kernel of K.

Remark 8.2. (i) Observe that if |x — x| < $ max(|x —y|, [x' — y|), then
2min(|x —yl, [¥' —y|) =lx =yl + [ =yl = [[x —y| = [x' — ]|
Zlx —yl+[x —y| - |x = ¥
>l —yl + ¥yl — 5 max(|x ], [¥' ~ y])
=max(|x —yl, [x" —y[) + min([x —y|, |x" = y])

1
— S max(x —yl, [ ~ ),
which yields
max(|x —y|, |x = y|) < 2min(|x —yl, [x" = y]),

and
1 .
Sx =yl <min(ly =yl [¥ ~ yl) < ¥yl
<max(|x —yl, [x' —y|) <2[x—yl,

i.e., the numbers |x — y| and |x' — y| are comparable. Likewise, if the
roles of x and y are interchanged.
(ii) If (8.1) holds, we assume

A

V2K (2, y) |+ [VyK(xy)| < e =y’

Vx #y,
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then K € SK(1,4""1A). In fact, if |x — x’| < 3 max(|x —y|,|x' —y|), by
the mean value theorem, we obtain, for some 6 = ox + (1 — ¢)x’ and
o € 0,1], that

Alx — x|
K| < S i
[K(x,y) — K(x', y)| <[VK (0, y)[|x — x| < 0 — gt

and from

10 —y| =lox+ (1 —0)x" —y|

1

25[\U(x—x’)+x/—y\ + (1 =) (x" —x) +x—y]]
1

> 21—yl —olx =¥+ [x 3] - (1 - o)lx — #]
1

Ayl + 18—yl e ]
1

1
25 |1x =yl + %" —y| = 5 max(lx =yl |¥" — yl)

1
> (x =yl + ¥ ~ ), 84
it follows that
471 A|x — |
(Jx =yl + |x" = y)mrt’

ie, (8.1). Similarly, we also have (8.2) whenever |y — /| < 3 max(|x —
y|,|x —y']). Thus, K € SK(1,4"1A).

K(x,y) = K(x, y)| <

Example 8.3. The function K(x,y) = |x —y|™" defined away from the
diagonal of R" x R" is in SK(1,n4"*1). Indeed, for |x — x’| < J max(|x —
y|,|x" —y|), the mean value theorem gives

nlx — x'|

|6 —y[™+!

for some 0 = ox + (1 — 0)x’ and ¢ € [0,1]. From (8.4), it follows (8.2)
with A = n4"*! and § = 1. Likewise, (8.3) holds.

[|x—y| ™" =] —y| "] <

We are interested in standard kernels K € SK(é, A) for which there
are tempered distributions W € .#/(R" x R") that coincide with K on
R" x R"\ {(x,x) : x € R"}. This means that the convergent integral
representation

(W,F) = /IR” /IR” K(x,y)F(x,y)dxdy (8.5)

is valid whenever the Schwartz function F € . (R" x R") is supported
away from the diagonal {(x,x) : x € R"}. Note that the integral in (8.5) is
well-defined and absolutely convergent whenever F is a Schwartz function
whose support does not intersect the set {(x,x) : x € R"}. Additionally,
observe that there may be several distributions W coinciding with a fixed
function K(x,y). In fact, if W is such a distribution, then so is W + dy—,
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where 6,—, denotes the Lebesgue measure on the diagonal of R*" (i.e.,
some kind of Dirac distribution).

We recall a result about the Schwartz kernel (cf. [H03, pp.128-130]) as
follows.

C 2
Theorem 8.4 (Schwartz kernel theorem). Every K € 2'(X; x X ) defines

according to

(X, ) = (Kp¢), $eI(X) ¢€P(X), (8.6)
a linear map X from 9(X3) to 9'(X1), which is continuous in the sense that
Kpj — 0in 9'(Xy1) if ¢; — 0in P(X,). Conversely, for every such linear
map X, there is one and only one distribution K such that (8.6) is valid. One

calls K the kernel of X.
\ J

Remark 8.5. The same theorem also holds when 2, 2/, X; and X5 re-
placed by .7, ./, R" and R", respectively.” The Schwartz kernel the-
orem is a philosophically useful fact, establishing a 1-1 correspondence

between the ‘most general” operators in the present context and distri-
butional integral kernels, also called Schwartz kernels.

?One can see the proof in http://math.mit.edu/"eyjaffe/Short Notes/Distribution
Theory/.

For continuous linear operators
T:(R") - 7 (R"),
it follows that there is a distribution W € .9/ (R*") satisfying
(Tf.9)=(W.9@f) 8.7)

for f,¢ € S(R"), where (¢ ® f)(x,y) = ¢(x)f(y) for all x,y € R", and
there exist constants C, N, M such that for all f, g € .(R"), we have

ol =lWgonl<c| T lehs|| T irks] 69
lal,IBI<N lal,IBI<N
Here |¢[np = sup 10%(xP¢)(x)| are the seminorms for the topology in ..

A distribution W that satisfies (8.7) and (8.8) is called a Schwartz kernel or
the distributional kernel of T.

Here, we study continuous linear operators T : ./(R") — ./(R")
whose distributional kernels coincide with standard kernels K(x,y) on
R" x R"\ {(x,x) : x € R"}. This means that (8.7) admits the absolutely
convergent integral representation

(h9) = [, [ Ky f)g(x)dsdy 59

whenever f and ¢ are Schwartz functions whose supports do not intersect.


http://math.mit.edu/~eyjaffe/Short Notes/Distribution Theory/Schwartz_Kernel_Theorem.pdf
http://math.mit.edu/~eyjaffe/Short Notes/Distribution Theory/Schwartz_Kernel_Theorem.pdf
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We make some remarks concerning duality in this context. Given
a continuous linear operator T : . (R") — .#/(R") with distributional
kernel W, we can define another distribution W' as follows:
(W F) = (W, F),
where F!(x,y) = F(y, x). This implies that for all f,¢ € .7 (R") we have

W.paf) =W, foep).

It is a simple fact that the transpose operator T of T, which satisfies

(Tg, f) =(T'f,9) (8.10)
forall f,¢ € . (IR"), is the unique continuous linear operator from .7 (R")
to ./ (R") whose Schwartz kernel is the distribution W', that is, we have

(T'f,¢) = (T, f) = (W, fR¢) = (W, ¢ f). (8.11)

We now observe that a large class of standard kernels admits exten-
sions to tempered distributions W on R?".

Example 8.6. Suppose that K(x,y) satisfies (8.1) and (8.2) and is anti-
symmetric in the sense that

K(x,y) = —K(y, x)
for all x # y in R". Then K also satisfies (8.3), and moreover, there is a
distribution W on R?" that extends K on R” x R".
Indeed, define

= lim // K(x,y)F(x,y)dydx (8.12)
|[x—y|>e

e—0

for all F € . (R?"). In view of anti-symmetry, we may write

J[ KRyt =3 ([ KGoy)lFeny) - F,0)dydx
|x—y|>e |x—y|>e

By the mean value theorem, it holds for some 6,0 € [0,1] and F €
y(IRZ")
[F(x,y) — F(y, x)|
<[F(x,y) = F(yv,y)| + [F(y,y) — F(y,x)|
[[VLF(x 4+ (1— )y, )| + [VyF(y, 0y + (1 — 0)x) J|x — y]
Clx —y|

(T X2yt

Then, by (8.1), we have

A
r—yl>e [x —y[" (1+\XI2+M )

1
<CAli // dyd
50 /ecpmyicr Jx =y <1+rx|2>"+1 s

| (W, F) | <11mC dydx
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1
L CA / dydx
xey>1 (L 2P + [y

<CA.

Thus, the limit in (8.12) exists and gives a tempered distribution on R?",
We can then define an operator T : .(R") — .’/ (IR") with kernel W via

(Tf,¢) —hm//|x y|>€K x,y)f(y)p(x)dydx

e—0

2 [ K09 - Few)dyaz,
forall f,¢ € /(R").

Example 8.7. Let A be a real-valued Lipschitz function on R. This means
that it satisfies the estimate |A(x) — A(y)| < L|x — y| for some L < co
and all x,y € R. For x,y € R, x # y, let
1
KAl = =y A - A
When |y — /| < imax(|x —y|, |x —v/|), which yields 1[x — y/| < |x —
y| <2|x —y'| by Remark 8.2, it holds
[Ka(x,y) = Ka(x,y)]|
1
x—y+i(A(x) - A(y)  x—y +i(AQx) - A(Y)) ‘
_ y—y +i(Aly) - AlY)) '
[x =y +i(A(x) = A)llx —y' +i(Alx) = A(y'))]
_ [(y—y')?* + (Aly) - A(Y)
[(x = y)? + (A(x) = A(y)]2[(x — y')?
L+ L2y —y'| _ 40+ L)ly—y
x=yllx =y " lx—yP+lx—yP
8(1+ L)y —y'|
Sx =yl =y
Since K4 is anti-symmetric, it follows that K4 satisfies (8.2), and then
Ky € SK(1,8(1+L)).

(8.13)

<

Example 8.8. Let function A be as in the previous example. For each
integer m > 1 and x,y € R, we set

Kn(x,y) = (A(x) _A(y)> L (5.14)
X—y x—y
Clearly, K;; is an anti-symmetric function. To see that each K}, is a stan-
dard kernel, notice that when |y — /| < 3 max(|x — y|, |x — y’|) we have
| Kin (2%, y) = K (%, ") |
CI(AD =AM 1 (A - AW\ 1
xX—y xX—y x—y x—y
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4(M2:;WUW_<M2:;WUM
_i_‘A(xJ)C:;(y’) 11

1
lx =yl

m

x—y x—V
grﬂﬂ—AWX;M@—A@@
xX—y x—y

m—1—j

1
lx =yl
Ax) — AlY)
x—y

A(x) — Aly) I

T vy
x—y [x = yllx —v'|
1 [(x=y)(ARx) = Ay) — (x = y) (Ax) — AY))]
|x =yl [x = yllx =yl
I U 'A
[x = yllx—y'|
a1 - Y)(A® - AW) + (<~ (AW - AW)
|x =yl [x = yllx—y'|
4 Lm |y — y,|
[x = yllx =yl
<omr— W=yl =]
T =yl =y =yl -y
m |y — y/|
D (P R F
It follows that K,,, € SK(1,8(2m +1)L™). The linear operator with kernel
(71i)~1K,, is called the m-th Calderén commutator.

gmLI’H71

§8.1.2 Operators associated with standard kernels

Having introduced standard kernels, we are in a position to define
linear operators associated with them.

4 )
Definition 8.9. Let 0 < §,A < oo, and K € SK(4,A). A continuous
linear operator T from . (IR") to ./ (IR") is said to be associated with
K if it satisfies

Tf(x) = [ KGoy)fw)dy 515)

forall f € 2 and x € supp f. If T is associated with K, then the
Schwartz kernel W of T coincides with K on R"” x R" \ {(x,x) : x €
R"}.

If T is associated with K and satisfies

IToll2 < Bll¢ll2 (8.16)




§8.1. General background and the role of BMO 201

for all ¢ € /(R"), then T is called a Calderén-Zygmund operator
associated with the standard kernel K. Such operators T admit a
bounded extension on L?(R"), i.e., given any f € L2(R") one can de-
fine Tf as the unique L? limit of the Cauchy sequence {T¢y }r, where
¢r € S (R") and ¢ — f in L2. In this case, we keep the same notation
for the L? extension of T.

In the sequel, we denote by CZO(4, A, B) the class of all Calderén-
Zygmund operators associated with standard kernels in SK(J, A) that

admit L2-bounded extensions with norm at most B.
\ J

Next, we discuss the important fact that once an operator T admits an
extension that is L? bounded, then (8.15) holds for all f that are bounded
and compactly supported whenever x & supp f.

( \
Proposition 8.10. Let T € CZO(J, A, B) be associated with K € SK(J, A).

Then for every bounded and compactly supported function f and ¢ that sat-
isfy
dist (supp ¢, supp f) >0, (8.17)

then we have the (absolutely convergent) integral representation

| Tf@edx = [ [ Kanf@e@ddr.  ©18)

Moreover, given any bounded function f with compact support, there is a set
of measure zero E(f) such that xo ¢ E(f) U supp f we have the (absolutely
convergent) integral representation

Tf(x0) = [ K(o,y)f(y)dy. 619)

L /

Proof. We first prove (8.18). Given f and ¢ bounded functions with com-
pact support, we select f;, ¢; € Z such that ¢; are uniformly bounded and
supported in a small neighborhood of the support of ¢, ¢; — ¢ in L? and
ae., fi —» fin L? and a.e., and

dist (supp ¢, supp f;) > , dist (suppg, suppf) =c >0 (820)

for all j € Z*. In view of (8.9), identity (8.18) is valid for the functions fi
and ¢; in place of f and ¢, i.e.,

[ [ K fimayax = [ g @21

By the boundedness of T, it follows that Tf; converges to Tf in L? and
thus as j — co we have

[ Th@e - [ TR

n
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< [T = TA@) gldx+ [ ITF0)] foy(x) — o)
<ITS, = T ll2llgyla + 1T ll2llgy — @ll2 = O,

ie.,
/IR” Tfi(x)¢p;(x)dx — . Tf(x)p(x)dx. (8.22)
From (8.20), it follows that as j — o

L | K fiwedydx— [ [ K f)p(x)dydx

<\ [ L K@)~ F@)gy(x)dyax

// (v, y)f(y)[¢(x) — p(x)]dydx

<A ([Ifi = fllallgill + 1 £ 11l 9y = ¢lln)
<CAc™" (I = fll2lljll2 + (I fll2ll5 — @ll2) — O

which proves the validity of (8.18). Note that the double integral on the
right of (8.18) is absolutely convergent and bounded by A(2¢) "/ f|l1 /¢
in view of (8.20).

To prove (8.19), we fix a compactly supported and bounded function
f, and we pick f; as before. Then, Tf; — Tf in 12, and thus, a sub-
sequence Tfj converges pointwise on R" \ E(f) by Riesz’s theorem, for
some measurable set E(f) with |E(f)| = 0. Given xo ¢ E(f) U supp f, we
have

Thixo) = [ K(xo, ) fu(w)dy
and letting I — co, we obtain (8.19) since T fjl(xo) — Tf(x0) and
’/IR K(xo,y) fir(y)dy — / K(xo,y)f (y)dy

<Ac | fjp = fllh < CAc™"|| fiy — fll2 = 0,
as | — oo. Thus, (8.19) holds. Q

We now define truncated kernels and operators.

4 )

Definition 8.11. Given a kernel K € SK(4, A) and € > 0, we define the
truncated kernel
K(s)(x/y) = K(x/y))ﬂxfybe

Given a continuous linear operator T from . (R") to ./(R") and
e > 0, we define the truncated operator T'®) by
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and the maximal singular operator associated with T as follows:

T()f(x) = sup [T f ()] .
e>0
Note that both T(®) and T*) are well-defined for f € Uicp<eo LP(R")

by an application of Holder’s inequality.
\ J

We investigate a certain connection between the boundedness of T
and the boundedness of the family {T®)},~( uniformly in & > 0.

r “

Proposition 8.12. Let T € CZO(4, A, B) be associated with K € SK(5, A).
For e > 0, let T'®) be the truncated operators obtained from T. Assume that
there exists a constant B’ < oo such that

sup | T 2,12 < B. (8.23)

e>0

Then, there exists a linear operator Ty defined on L2(R") such that
(i) For some subsequence €; 0, we have

/IR” T ) f(x)g(x)dx — /IR” Tof (x)g(x)dx (8.24)
asj — oo forall f,g € L2(R").
(ii) The distributional kernel of Ty coincides with K on
R" x R"\ {(x,x) : x € R"}.
(iii) Ty is bounded on L2(R"™) with norm
I Toll 212 < B'.

(iv) There exists a measurable function b on R" with ||b|| < B + B such
that

Tof — Tf = bf,
forall f € L2(R").

\, W,

Proof. (i) Since L?(IR") is separable, let { f }?° ; be a dense countable subset
of L>(R"). By (8.23), the functions T(® f; lie in multiple of the unit closed
ball of (L?)*, which is weak* compact by the Banach-Alaoglu theorem,
and then has a weak* converging subsequence due to the separability of
L?(IR"). Hence for each f;, we find a sequence {e ° , such that for each

¢ € L2(R"), we have
lim [ T D fo(x)g(x)dx = / TS (x)g(x)dx, (8.25)

]—>oo R”

for some function Tf" € L?(R"). Moreover, each {s °, can be chosen

to be a subsequence of {sk 1yee

i21, k = 2. Then, the d1agona1 sequence
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{F’? 21 = {gj}2, satisfies

lim [ T f(x)g(x)dx = / T/ (x)g(x)dx (8.26)

]—)OO R” n

for each k and g € L?. Since {f;}?°, is dense in L?(IR"), a standard ¢/4
argument gives that the sequence of complex numbers

N(j) = / T f(x)g(x)dx
= [ TOU() — ilx)lgdx+ [ T fi(x)g()dx

R
is Cauchy, and thus, it converges. Indeed, for sufficiently large j,I > k, it
holds

ING) =N < | [ T [f(x) = fi(x)]g (x)dx

Rn

+ Tgl[f() fie(x)]g(x)dx
+ / T() Fre(x)g(x) x—/ T({k(x)g(x)dx

1L Tgk<x>g<x>dx — [ T g ()
L2B|If — frll2llglla +e/4 +e/4 < e/2+e/2 ==

Now L? is complete in the weak* topology since the unit ball of L? in the
weak* topology is compact and metrizable; therefore, for each f € L?(R"),
there is a function Ty f such that (8.24) holds for all f, ¢ € L*(IR") asj — oo.
It is easy to see that Tj is a linear operator with the property Ty f, = Té("
for each k = 1,2, .... This proves (i).

(ii) Let j — oo in the integral representation

[ TOfgde = [ [ KDy f)dyg(x)dx,

the Lhs.  tends to [, Tof(x)g(x)dx and the rhs.  tends to
Jrn Jro K(x,y) f(y)dyg(x)dx whenever f,g are Schwartz functions with
disjoint supports. This gives the result.

(iii) From (8.24) and (8.23), it follows that

T f(x)g(x)dx

< B £l

I Tof|l2 < sup limsup
lgllo< jooeo 1/
(iv) We first observe that if ¢ is a bounded function with compact

support and Q is an open cube in IR”, we have

(T = T)(gx0) (x) = xo(x)(T — T)g(x), (827)
for ae. x ¢ dQ whenever ¢; is small enough (depending on x). In-

deed, since gxo is bounded and has compact support, by the integral
representation formula (8.19), there is a null set E(gxg) such that for
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x ¢ QUE(gxo) and for ¢; < dist (x, supp gxo), the Lh.s. in (8.27) , i.e
(1) = T)(gxa) () == [ K(xy)sxa)y)dy
X— \S]'
is zero due to y ¢ suppgxq for [x —y| < ¢;, which implies (8.27) for
ae. x € Q. Moreover, since gXqoc is also bounded and compactly
supported, there is a null set E(gxq:) such that for x ¢ Q°UE(gxo-)
and ¢; < dist (x, supp gxoc), we have y ¢ supp gxo:, and thus (T —
T)(gxo:)(x) = 0 which implies for a.e. x € Q
(T = T)(gxo) (x) = (T — T)g(x).
Hence, (8.27) holds for a.e. x ¢ 9Q.
Taking weak limits in (8.27) as ¢; — 0, we obtain that

(To—T)(gxQ) = xo(To—T)g, ae, (8.28)
for all open cubes Q in IR". This means that for any ¢ bounded function
with compact support and open cube Q in IR", there is a set of measure
Zero EQS such that (8.28) holds on R" \ Eg,. Consider the countable
family # of all cubes in R" with corners in Q" and set E; = ez Eg-
Then |Eg| = 0 and by linearity we obtain

(To—T)(gh) = h(To —T)g, onR"\E,
whenever £ is a finite linear combination of the characteristic functions
of cubes in .%#, which is a dense subspace of L?. Via a simple density
argument, using the fact that To — T is L2 bounded, we obtain that for all
f € L2 and g bounded with compact support, there is a null set E f,g such
that

(To=T)(gf) = f(To=T)g, onR™\ Eg,. (8.29)

Now, if B(0, f) is the open ball with center 0 and radius j, when j < f/,
we have

(To — T)x0,j) = (To — T)(XB(0,)XB(0,1)) = XB(0,j)(To — T)(XB(0,jr)), ae
Therefore, the functions (To — T)xp(o ) satisfy the “consistency” property
(To — T)xs(0,j) = (To — T)XBo,r), a-e. on B(0,))

when j < j'. It follows that there exists a well-defined measurable function
b such that

bxg,) = (To—T)xpoj, ae
Applying (8.29) with f € L? and g = XB(0,j), We obtain

(To = T)(fxp(0,)) = f(To = T)xp(,) = fb, ae onB(0,j).  (8.30)

Since the norm of T — Ty on L? is at most B + B/, we obtain from (8.30)
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that
1(To = T)(fXxB(0,j)) 2

B+ B' >sup  sup

j=1 0£fel? HfHZ
supp fCB(0,/)
[1fb]l2
sup 2 = e
0A£feL? 2
supp fcompact

The fact that b € L® together with (8.30) easily yields
(To—T)f =bf ae.
for all f € L?. This identifies To — T and concludes the proof of (iv). Q

We give a special name to operators of this form.

4 N\
Definition 8.13. Suppose that for a given T € CZO(J, A, B), there is a
sequence ¢; \, 0 as j — oo such that for all f € L*(R"),

TE) f — Tf

weakly in L?. Then, T is called a Calderén-Zygmund singular inte-
gral operator. Thus, Calderén-Zygmund singular integral operators
are special kinds of Calderén-Zygmund operators. The subclass of
CZO(9, A, B), consisting of all Calderén-Zygmund singular integral
operators, is denoted by CZSIO(4, A, B).

§8.1.3 Calderén-Zygmund operators acting on bounded functions

We are now interested in defining the action of a Calderén-Zygmund
operator T on bounded and smooth functions. To achieve this, we first
need to define the space of special test functions %j.

( )
Definition 8.14. We define Zy(IR") to be the space of all smooth func-
tions with compact support and integral zero, i.e.,

Zo(R") = {¢ e 2(R") - /JR ¢(x)dx = 0} .

We equip Zp(R") with the same topology as the space Z(R"). This
means that a linear functional u € 2'(R") is continuous if for any
compact set K C IR" there is a constant Ckx and an integer M such that

[ (@) <Ck Y (10 ]le
laj<M
for all ¢ smooth functions supported in K. The dual space of Zy(R")
under this topology is denoted by Z;(IR"). This is a space of distribu-

tions larger than 2'(RR").
. J
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Example 8.15. BMO(RR") C Z{(R"). Indeed, given b € BMO(IR"), for any
compact set K, there is the smallest cube Q D K and a constant Ck such
that

/ b(x)p(x)dx

/ (b(x) — Avg b)¢(x)dx
Q Q

<IQllIbllsmollglleo < Cxllllos

for any ¢ € Zy(K). Moreover, observe that the preceding integral re-
mains unchanged if the BMO function b is replaced by b + ¢, where c is
a constant, since [ ¢(x)dx = 0.

s a
Definition 8.16. Let T be a continuous linear operator from . (R") to

&' (R") that satisfies (8.7) for some distribution W that coincides with
a standard kernel K € SK(6, A). Given f bounded and smooth, we
define an element Tf of Z;(R") as follows: For a given ¢ € Z(R"),
select € 2 with 0 < 77 < 1 and equal to 1 in a neighborhood of
supp ¢. Since T maps .¥ to ./, the expression T(f7) is a tempered
distribution, and its action on ¢ is well-defined. We define the action
of Tf on ¢ via the identity

@s.) = g+ [ | [ Keetods] )0 -
(8.31)

provided we make sense of the double integral as an absolutely con-

vergent integral.
\ b,

To show Tf € Z;(R"), we pick xo € supp ¢ and split the y-integral in
(8.31) into the sum of integrals over the regions Iy = {y € R" : |x — x¢| >
Ixo—yl}and Io = {y € R" : |x — xo| < |x0 —y|}.

By the choice of 17, we must necessarily have ¢ = dist(supp (1 —
1), supp$) > 0, and hence the part of the double integral in (8.31) is
absolutely convergent in view of (8.1) when y is restricted to Iy, i.e.,

/10 / (W) (1 —n(y))|dxdy
/I(,/n‘x W|¢ DS~ 1)y
<A iy <o,

since Iy is compact due to x, xo € supp ¢.

For y € I., we use the zero mean value property of ¢ to write the
expression inside the square brackets in (8.31) as

[ (K(xy) = Ko, )9
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With the aid of (8.2), we have
/Iw / K(x0,y))¢(x)f(y) (1 —n(y))|dxdy

- //|yxo|>2|”0| K(x,y) — K(xo,9) ()] £ (v)| (1 = 7 () |dyedx

Alx — xo|°
<// dydx
-sofs2texl (= yT + o — yyred P I
<Uflls [, Alx=xol 50— y| Pyl (x)|dx

[y—2x0]>2|x—x0]

<||f||0°/]RnA|x_x0|5wn71 /2|x ) |r—”-5r"—1dr|4>(x)|dx
—A0

<Nfls [ Alx =30 2 2 = xo])~p()]dx

wnl

A5 19l flleo < 0.

Thus, the double integral in (8.31) is absolutely integrable for f €
L® N e®. Hence, this yields Tf € Zj when f € L* N C® and certainly
(8.31) is independent of xy, but leaves two points open. First, we need to
show that this definition is independent of #, and second, that whenever f
is a Schwartz function, the distribution Tf defined in (8.31) coincides with
the original element of .7’ (IR") given in Definition 8.9.

We first show that the definition of T'f is independent of the choice of
the function 7. Indeed, if { is another function satisfying 0 < ¢ < 1 that is
also equal to 1 in a neighborhood of the supp ¢, then f (1 — {) and ¢ have
disjoint supports, and by (8.9), we have the absolutely convergent integral
realization

T =)= [ [ K -0 )dyg(x)dx

It follows

a0+ [, | [ K(x,y>q><x>dx] P - 2)dy
=1+ [, | Ko ) - )y

Next, if f is a Schwartz function, then both #f and (1 —#)f are
Schwartz functions. By the linearity of T, we have

(Tf,9) = (T f),¢) +(T((1=n)f), ¢),

and by (8.9), the second expression in (8.31) can be written as the double
absolutely convergent integral, since ¢ and (1 — #) f have disjoint supports.
Thus, the distribution Tf defined in (8.31) coincides with the original ele-
ment of .#/(IR") given in Definition 8.9.
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Remark 8.17. When T has a bounded extension that maps L2 to itself,
we may define Tf for all f € L*(IR"), which is not necessarily smooth.
Simply observe that under this assumption, the expression T(f7) is a
well-defined L? function and thus

(T(F).9) = [ T((x)g(x)dx

is given by an absolutely convergent integral for all ¢ € %.

Finally, observe that although (Tf,¢) is defined for f € L* and
¢ € Y, this definition is valid for all square integrable functions ¢ with
compact support and integral zero; indeed, the smoothness of ¢ was never
an issue in the definition of (Tf,¢). In summary, if T is a Calderdén-
Zygmund operator and f € L®(R"), then Tf has a well-defined action
(Tf,¢) on square integrable functions ¢ with compact support and inte-
gral zero. This action satisfies

[(TF, ) | < IT(f)ll2l|@ll2 + CusAlllla]l flleo < oo (8.32)

In the next section, we show that in this case, Tf is in fact an element of
BMO.

§8.2 Consequences of L? boundedness

Calderén-Zygmund singular integral operators admit L2-bounded ex-
tensions. As in the case of convolution operators, L2 boundedness has
several consequences. In this section, we are concerned with the conse-
quences of the L? boundedness of Calderén-Zygmund singular integral
operators. Throughout the entire discussion, we assume that K(x,y) is a
kernel defined away from the diagonal in R*" that satisfies the standard
size and regularity conditions (8.1), (8.2) and (8.3). These conditions may
be relaxed.

§8.2.1 Weak type (1,1) and L” boundedness of singular integrals

We now prove that operators in CZO(J, A, B) have bounded exten-
sions from L! to LV,

e 2
Theorem 8.18. Assume that K(x,y) is in SK(6, A) and let T be an ele-

ment of CZO(6, A, B) associated with the kernel K. Then T has a bounded
extension that maps L' (R") to LV (R") with norm

1Tl 110 < Ca(A+ B),
and also maps LP (R") to itself for 1 < p < oo with norm
ITllr—s1r < Comax(p, (p—1)""?)(A +B),
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L where C,, is a dimensional constant. J

Proof. Fix « > 0 and let f € L'(IR"). Since T may not be defined on
general integrable functions, we work with the class .%#; of finite linear
combination of characteristic functions of dyadic cubes. The class .% is
dense in L' and also contained in L2, on which the operator is already
defined. Once we obtain a weak type (1,1) estimate for .%;, by density,
this extends to the entire L'.

We apply the Calderén-Zygmund decomposition to f € .%j at height
Y&, where v is a positive constant to be chosen later. Write f = ¢+,
where b =} b; and conditions (i)-(iii) of Theorem 2.17 are satisfied with

J
the constant « replaced by ya. Due to f € %), the sum b = } b; extends

]
over a finite set of indices. Moreover, each bad function b; is bounded by
the boundedness of f and is also compactly supported by construction.
Thus, Tb; is an L? function, and for almost all x ¢ supp b; we have the
integral representation
Thi(x) = [ KGxy)byly)dy
]

in view of Proposition 8.10.

We denote by £(Q) the side length of a cube Q. Let Q7 be the unique
cube with sides parallel to the axes having the same center as Q; and
having side length

0Q)) = 2vm(Q)).
We have

(Tf)s(a) <(Tg)«(a/2) + (Tb)s(a/2)
= {xer":|Tg(x)| > }| + |[{x e R s To(x)] > T}

{x,eUQ;f | Th(x)| > g}
i

22 L2
<D@Bz\!g|\%+ZIQJ-!+“/(UQ ITb(x)ldx

7 ]

2 x
<(2) IrgB+1UQ 1+
j

SRl e+ vy I £y TR

(2"'By)* 2V Iflh
<< 7y v ) 2/U,Q* Tl

It suffices to show that the last sum is bounded by some constant multiple
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of ||fl1. Let y; be the center of the cube Q;. For x € (Q;)", we have

1 *
¥ =yl = 50Q)) = Vnl(Q)).
However, if y € Qj, we have |y —y;| < /nl(Q;)/2; thus, |y —y;j| <
%]x — yj| since the diameter of a cube is equal to /7 times its side length.
We now estimate the last sum as follows.

Z/U] ITh;(x |dx—2/
_Z/U] Qj

< b; / K(x,y) — K(x,vy;)|dxd
; lef(y)l (UjQ;)CI (x,y) = K(x, y;)|dxdy

<T [ 1ol [ IK(x,y) = K(x, ) dxdy
70 lx=y;1=2ly—y;l

Aly —yl°
S / bj / ! dxd
; Q]-' i)l w2yl (= g+ =y
<Y [ Aoy =yl [© oty
i 79 2ly

—yjl
i Qj

<CiA Y 2" ya|Q)
]
<CuA2" | fll1-

Combining these facts and choosing v = B~!, we deduce the claimed
inequality for f € .%;. By density, we obtain that T has a bounded ex-
tension from L! to L with bound at most C,,(A + B). The L? result for
1 < p < 2 follows from interpolation, while the fact that the constant
blows up like (p —1)"/? as p — 1 can be deduced from the result of
Exercise 1.9. The result for 2 < p < oo follows from duality; one uses here
that the dual operator T* has a kernel K!(x,y) = K(y, x) that satisfies the
same estimates as K, and by the result just proved, it is also bounded on
L? for 1 < p < 2 with norm at most C, (A + B). Thus T must be bounded
on L for 2 < p < oo with norm at most a constant multiple of A+ B. Q1

dx

(y)K(x,y)dy

bj(y)(K(x,y) — K(x,y;))dy| dx

Consequently, for operators T € CZO(J,A,B) and f € LV, 1 < p < oo,
the expression Tf makes sense as L? (or L'® when p = 1) functions. The
following result addresses whether these functions can be expressed as
integrals.
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( )
Proposition 8.19. Let T € CZO(d, A, B) be an operator associated with a
kernel K € SK(6,A). Then for g € LF(R"), 1 < p < oo, the following
absolutely convergent integral representation is valid

Tg(x) = [ K(xy)g)dy (5:39)

for almost all x € R" \ supp g, provided that supp g C R".

\, v

Proof. Set gx(x) = g(x)X|g(x)|<kX|x|<k- These are L? functions with com-
pact support contained in the support of g. Additionally, the gx converge
to gin L? as k — oco. In view of Proposition 8.10, for every k we have

Tge() = [ K(xy)giv)dy

for almost all x € R"\ suppg. Since T maps L? to L (or to weak L!
when p = 1), it follows that Tg; converges to Tg in L”* and hence in
measure by Proposition 1.20. From Riesz’s theorem, a subsequence of T gy
a.e. converges to Tg. On the other hand, for x € R" \ supp g we have

/Rn K(x, y)g(y)dy — /R K(x,y)8(y)dy

when k — oo, since the absolute value of the difference is bounded by
B'||gx — &l|p, which tends to zero. The constant B’ is the L” norm of the
function |x — y|~" on the support of g, and one has [x —y| > ¢ > 0 for
all y € supp g because R" \ supp g is open, and thus B’ < co. Therefore,
Tgk(x) converges a.e. to both sides of the identity (8.33) for x ¢ suppg.
This concludes the proof of this identity. Q

§8.2.2 Boundedness of maximal singular integrals

We pose the question whether there is a result concerning the maximal
singular integral operator T*) analogous to Theorem 8.18. We note that
given f € LP(R") for some 1 < p < oo, the expression T™*) f(x) is well-
defined for all x € IR". This is a simple consequence of condition (8.1) and
the Holder inequality.

( )
Theorem 8.20. Let K be in SK(8, A) and T € CZO(6, A, B) be associated
with K. Let v € (0,1). Then, there is a constant C(n,r) such that Cotlar’s

inequality
[T f(x)] < C(n,7) [(M(ITflr)(X))m +(A+ B)Mf(X)] (8.34)

is valid for all functions in  |J LP(R"). Additionally, there exist dimen-
1<p<eo
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sional constants C,, C,, such that
1T fll e <Cr(A+B)|Ifll (8.35)
IT®fl, <Cu(A + B)max(p, (p — 1)"VP)||fll,, (8.36)
foralll < p < ooandall f € LP(R").
\_ J

Proof. We fix r € (0,1) and f € LP(IR") for some p € [1,00). To prove
(8.34), we also fix ¢ > 0 and set fi™ = fxp(xe) and fo&' = fXp(xe)- Since
x ¢ supp f&', using Proposition 8.19, we can write

Tfg (x) = /]Rn K(x,y) f&* (y)dy = /|x—y|>gK(x13/)f(y)dy = TOf ().

In view of (8.2), for z € B(x,&/2), we have |z — x| < |x — y|/2 whenever
|x — y| > ¢ and thus

TR =T =| [ (KG) =Ky )y

Alf(v)]
<lx—z d
=2 ) =Ty =2

€\? Alf(y)]
s <§) /Ix —ylze (Ix—y|+€/2)”+‘5dy
gcn,éAMf( )r

where the last estimate is a consequence of Theorem 2.10 (with ¢ =
(‘xﬂ:%) We conclude that for all z € B(x,&/2), we have

T (x)] =[Tf*(x)]
<ITfS (%) = TS (2) | + TS (2)]
<CsAMS(x) +Tf5"(2)| +Tf(2)l. (8.37)
For r € (0,1), it follows from (8.37) that for z € B(x,¢/2), we have
T f(2)]" < C AT (MF(x)) + TS ()" + | T (2)]". (8.38)

Integrating over z € B(x,¢/2), dividing by |B(x,¢/2)|, and raising to the
power 1/r, we obtain

1/r
TOf] <3 [CusAMI) + (a3 fon TN
+ (M(TAN )]

For the middle term, by Theorems 1.17 and 8.18, we have
T "dz
L AC

:/0 ra’ | {z € B(x,e/2) : |Tfy*(z)| > a} |da
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g/ re’~ min (|B(x, e/2)|, C||f* |1 /) da
0

Clfg ™ I
[B(x,e/2

:/0 ! ra’ Y B(x,e/2)|da + Wy mr_lCHfg'le/ad“
[B(x,e/2)|

B I\ ey CIE )
=IB(x,e/2)] <|B<x,e/z>\> Tl (|B<x,e/z>|>

=(CIf ) [B(x,e/2)[" " + 1 L —(ClfT )" 1B(x e/ 2)
1

ZE(CHfé"‘Hl)r\B(x,e/Z)\1*’,

where C = C,(A + B), and thus

1 £,X r 1/r
(Brem o TN E)
1 1/r
S (1 - r(CHfS’xHMB(x,e/z)yr>

1
=Cor (A B) 5 7 ey W)Y
<Cl, (A + B)MF(x).

This proves (8.34).

We now use (8.34) to show that T(*) is L? bounded and of weak
type (1,1). To obtain the weak type (1,1) estimate for T(*), we need to
use that the Hardy-Littlewood maximal operator maps L”* to LP* for
all p € (1,00) (see Exercise 2.2). We also use the trivial fact that for all
0 < p, g < oo, we have

A1 = [1£ 1 pgee-
Take any r < 1 in (8.34). Then, we have
I(MATFINY e =[IMATF) 4o
SCurllITFI e = CopITF 1

<C1,’1,1’<14 + B)Hf”lf

where we used the weak type (1,1) bound for T in the last estimate.

To obtain the L? boundedness of T™*) for p € (1,00), we use the same
argument as before. We fix r = 1/2. Recall that the maximal function
is bounded on L% with norm at most 2(3"/(2p — 1))'/?? < C, by Theo-
rem 2.6. We have

IMUTA2) 1, =IMATFY2)3, < Culll TFIM?13, < CallT£,
<Cpmax(1/(p = 1)"?, p)(A+ B)|If .
where we use the LP boundedness of T in the last estimate. a

From the above proof, we have the following corollary by noticing
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B = HTHLZALZ'

Corollary 8.21. Let K be in SK(6, A) and T € CZO(4, A, B) be associated
with K. Then there exists a dimensional constant C,, such that

sug 1T 22 < Cu (A+ || T2 2) -
£>

§8.23 H!' — L! and L* — BMO boundedness of singular integrals

We discuss some endpoint results concerning operators in CZO(J, A, B).

Theorem 8.22. Let T € CZO(d, A, B). Then, T has an extension that maps
HY(R") to L1(IR™). Precisely, there is a constant C,, 5 such that

ITllg500 < Cro(A+ 1Tl 2 r2)- (8.39)

Proof. Recall B = ||T||;2_,;2. We start by examining the action of T on L?
atoms for H!. Let f = a be such an atom supported in a cube Q. Let cq
be the center of Q and let Q* = 2\/nQ. We write

/Rn |Ta(x)|dx:/Q* |Ta(x)|dx+/(Q*)C ITa(x) | dx (8.40)

and we estimate each term separately. By the Cauchy-Schwarz inequality,
T: L? — L2, and property (ii) of atoms in Definition 7.1, we have

1/2
o)l <IQ7 2 (| rae
Q* Q*
1/2
<BIQ 2 ([ lat)Px)
.

<B|Q"|'2|Q|7'
=C,B.
Now, observe that if x ¢ Q* and y € Q, then

1
ly —cql < EIX—CQ!:

hence, x — y stays away from zero due to [x —y| > 3(£(Q*) — £(Q)) =
2(2y/n —1)£(Q), and Ta(x) can be expressed as a convergent integral by
Proposition 8.19

Ta(x) = [ K(xp)a(y)dy.

We have, due to suppa C Q, an(y)dy = 0, Fubini’s theorem, (8.3),
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Remark 7.2, that

/(Q*)C [ Ta(x)|dx :/(Q*)E [ KCxaty)dy
- /(Q*)c ./]R (K(x,y) = K(x,cq))aly)dy

< fg. IKCow) = K(xcq) dxlaty) ldy

Aly — Cgl°
<// dx|a d
o Jiory Tr =yl + T — ey x1atv)ldy

Aly — Cgol°
g// ——=dx|a d
o, —rrdxla(y)ldy

—cql>2ly—cql |x —¢

=qméwww
<C 5A.

n,

dx

dx

Thus, we obtain for L? atoms of H1
| Tally < Cus(A+ B). (841)

To pass to general functions in H!, we use Definition 7.3 to write an
feHas

f=) Aaj,
j=1
where the series converges in KL, aj are L2 atoms for K!, and
fllae = inf ) [A]- (8.42)
j=1

Since T maps L! to L', by Theorem 8.18, Tf is already a well-defined
LY* function. We plan to prove that

Tf = Z/\]Tuj a.e., (8.43)
j=1
where the series converges in L! and defines an a.e. integrable function.
Once (8.43) is established, the required conclusion (8.39) follows easily by
taking L! norms in (8.43) and using (8.41) and (8.42).

To prove (8.43), we use that T is of weak type (1,1). For a given
u > 0, we have, by Proposition 7.5 and (8.41),

[o£omi -1
(g

Tf — Z /\]‘Ta]‘

j=1

N
Tf — Z /\]Ta]
j=1

Y. ATa
j=N+1

< +

=



§8.2. Consequences of L% boundedness 217

2 N 20 &
<ETpspe |[f = YAl += || Y AT
H =1 . Hlli=Nt .
2 N 2 c©
<ENTpspe |[f = Y Ajai||  +=Cus(A+B) Y Al
Z =1 ga M j=N+1

N
Since Y. Ajaj converges to f in H' and
j=1 j
converge to zero as N — co. We conclude that

oo
|Aj| < oo, both terms in the sum
-1

HTf—ZA]Ta] >}1}‘IO

j=1
for all u > 0, which implies (8.43). a
( )

Theorem 8.23. Let T € CZO(d, A, B). Then for any bounded function f,
the distribution T f can be identified with a BMO function that satisfies

ITfllBMO < Cus(A + B)|lf o, (8.44)

where C,, 5 is a constant.
\ J

Proof. Let L%,C be the space of all square integrable functions with compact
support and integral zero on R". This space is contained in J!(IR") (cf.
Exercise 7.2) and contains the set of finite sums of L2 atoms for K!, which
is dense in H'; thus, L is dense in H'. Recall that for f € L*, Tf has a
well-defined action (Tf, ¢) on functions ¢ € L%/C and (8.32) holds, i.e., for
nea

(Tf, o) < ITUmllall@llz + CosAll@llllflleo < o, (8.45)
Suppose we have proved the identity
(Tf9) = [ T'otx)f (), (546)

for all bounded functions f and all ¢ € L%/C. Since such a ¢ is in 3!,
Theorem 8.22 yields that T'¢ € L!. Consequently, the integral in (8.46)
converges absolutely. Assuming (8.46) and using Theorem 8.22 we obtain
that

(T, ) < IT'lhllflleo < Cug(A+ B)lI@llct I flleo-

We conclude that L(¢) = (T, ¢) is a bounded linear functional on Lj . C
H! with norm at most C,, 5(A + B)|| f||c- By Theorem 7.27, there exists a
BMO function by that satisfies

L(9)]

(TS, 9)]
Pllgllsa

=C noJ v
P 050

I1b¢llBvo <CrllLll3¢1 ¢ = Cysu

<C.Cis(A+B)|lflleo
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such that the linear functional L has the form L, ;- In other words, the
distribution T'f can be identified with a BMO function that satisfies (8.44)
with the constant C,C, 4, i.e.,

ITfllemo = lIbyllBpo < CuCs (A + B)|f -

We return to the proof of identity (8.46). Pick a smooth function
with compact support # that satisfies # € [0,1] and is equal to 1 in a
neighborhood of the support of ¢. We write the r.h.s. of (8.46) as

| T @mfdx+ [ T (@)1= n)fdx = o)+ [ (o)1 —n)fx
In view of Definition 8.16, to prove (8.46) it will suffice to show that
LT @@ =mfdx=[ [ (Key)—Koy)e()dx1—n)fv)dy,

where x¢ € supp ¢. In the outer integral above, we have y ¢ supp ¢ and
the inner integral above is absolutely convergent and equal to

[ (KGxy) =Ko m)e(dx = [ K (y,x)p(x)dx = T'p(y),
by Proposition 8.10, since y ¢ supp ¢. Thus, (8.46) is valid. Q

§8.3 The T(1) theorem

We now turn to one of the main results of this chapter, the so-called
T(1) theorem. This theorem gives necessary and sufficient conditions for
linear operators T with standard kernels to be bounded on L?(IR"). In this
section we obtain several such equivalent conditions. The name of theorem
T(1) is due to the fact that one of the equivalent ways to characterize
boundedness is expressed in terms of properties of the distribution T(1),
which was introduced in Definition 8.16.

§8.3.1 Preliminaries and statement of the theorem

We begin with some preliminary facts and definitions.

4 A
Definition 8.24. A normalized bump is a smooth function ¢ supported

in the ball B(0, 10) that satisfies
|(9%g) (x) <1

for all multi-indices |a| < 2 [4] + 2, where [x]| denotes the integer part

of x.
L J

Observe that every smooth function supported inside the ball B(0, 10)
is a constant multiple of a normalized bump. Additionally, note that if a
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normalized bump is supported in a compact subset of B(0, 10), then small
translations of it are also normalized bumps.

Given a function f on R”, R > 0, and xp € R", we use the notation
fr to denote the function fr(x) = R™"f(R~'x) and t™f to denote the
function T f(x) = f(x — xp). Thus,

T fr(y) = fr(y — x0) = RT"f(R™'(y — x0)).
Set N = [4] + 1. Using that all derivatives up to order 2N of normalized

bumps are bounded by 1, we easily deduce that for all xg € R", all R > 0,
and all normalized bumps ¢ we have the estimate

R' [ [0x(@)]dz
=R [ ) —”‘°C¢R<c>\dc
= [ 1@)x(@)de
:/Rn [9(5)]dg

[ ot ac

R”
ac
= o1 — AN dyl ——=
[ =8 y\ T
<Gy, (8.47)

since |(9%¢)(x)| < 1 for all multi-indices a with || < 2N, and C, is inde-
pendent of the bump ¢. Here I — A denotes the operator
0%¢

5
Bx].

M-

Il
—_

(I-A)gp=¢—
]

r 3
Definition 8.25. We say that a continuous linear operator

T: (R") - . (R")

satisfies the weak boundedness property (WBP) if there is a constant C
such that for all normalized bumps f and g and for all xp € R" and
R > 0 we have

(T(T*fr), T%gr)| < CR™". (8.48)

The smallest constant C in (8.48) is denoted by || T'|| -
\ J

Note that

1/2
7 il = il = ([, IR"F(e/RPRMe/R) ) = 171k

and thus if T has a bounded extension from L*(IR") to itself, then T satisfies
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the weak boundedness property with bound
ITllws =sup R*[(T(z% fr), Tgr)|
STl 2 sup R frll2 ][ 78R 12

=Tl 22 sup (| fl121lg1l2

<HTHL2—>L2/ dx
B(0,10)

=10"Vu [T L2 2/
where the supremum is taken over all normalized bumps f and g.

We now state one of the main theorems in this chapter.

4 )
Theorem 8.26. Let T be a continuous linear operator from .#(R") to

! (R") whose Schwartz kernel coincides with a standard kernel K €
SK(6,A) for some 0 < A < ooand 0 < 6 < 1. Let K® and T® pe
the usual truncated kernel and operator for € > 0. Assume that there exists a
sequence €; \, 0 such that for all ¢, € ./ (IR"), we have

(T g, ) — (To, y). (8.49)
Consider the assertions:
(i) The following statement is valid:

IT®xsll2 , (T xs]2
|B|1/2 |B|1/2

By = sup sup
B >0

< 00,

where the first supremum is taken over all balls B in R".
(ii) We have that

B su 1 /
D= e
S,N,IX)O N?’l B(XOrN)

1 2 1/2
—f——/ dx < 09,
N™ JB(x,N) ]

where the supremum is taken over all 0 < ¢, N < oo with ¢ < N, and
all xo € R".
(iii) The following statement is valid:

2
dx

K® y)d
/xy<N (x,y)dy

/ K® (y, x)dy
|x—y|<N

By = sup sup sup R"2 [||T(%¢g) |2 + | T'(t°¢r)ll2] < oo,
¢ xp€R™ R>0

where the first supremum is taken over all normalized bumps ¢.
(iv) The operator T satisfies the weak boundedness property and the distri-
butions T(1) and T'(1) coincide with BMO functions, that is,

By = | T(1)[lemo + I T*(1) lsmo + | Tllws < oo.
(v) For every & € R" the distributions T(e!()¢) and T!(e!() %) coincide




§8.3. The T(1) theorem 221

with BMO functions such that
Bs = sup || T(¢!)€) [lsmo + sup [ T*(e!)9)[amo < oo.
ZERn ZER"

(vi) The following statement is valid:

Bs = sup sup sup R" [| T(t™¢g)llsmo + [ T' (T ¢r)|lsmo] < oo,

¢ x9€R™ R>0

where the first supremum is taken over all normalized bumps ¢.
Then assertions (i)-(vi) are all equivalent to each other and to the L? bound-
edness of T, and we have the following equivalence of the previous quantities:

Cn,,s(A + B]) < ||T||LzﬁLz < Cn,(s(A -+ B]),

forall j € {1,2,3,4,5,6}, for some constants c, 5, Cy, 5 that depend only on

the dimension n and on the parameter 6 > 0.
\, v,

Remark 8.27. Condition (8.49) says that the operator T is the weak limit
of a sequence of its truncations. We already know from Proposition 8.12
that if T is bounded on L?, then it must be equal to an operator that sat-
isfies (8.49) plus a bounded function times the identity operator. There-
fore, it is not a serious restriction to assume condition (8.49).

One should always keep in mind the following pathological situ-
ation: consider the distribution Wy € %/(R" x R") defined for F in
7 (R?") by

(Wo, F) = /IR (4, (1),

where () = |t2. In this case, for all ¢ > 0, F() () = F(t,t)X|t—t)>e =0
then T(®) = 0; hence, T is uniformly bounded on L2, but (Tf, @) =
Jrn @) f(£)h(t)dt; thus, Tf can be identified with fh for all f € .7,
which is certainly an unbounded operator on L?(IR"). Note that (8.49)
fails in this case; indeed,

ITFle  lfhls
T = su = su
Tz = sup Ty ® = sup Sz

= 1]l = oo.

Before we begin the lengthy proof of this theorem, we state a lemma
that we need.

r 2
Lemma 8.28. Let K € SK(9, A); then, there is a constant C,, such that for

all normalized bumps ¢, we have
? CnA?

su K(x,y)T* dy| dx < . (8.50)

\, /

Proof. Note that the interior integral in (8.50) is absolutely convergent
since T ¢pg is supported in the ball B(xp,10R) and x lies in the com-
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plement of the double of this ball. To prove (8.50), simply observe that
since |K(x,y)| < Alx —y|™", we have that

/IR" K(X,y)TXO(PR(y)dy‘ = /IR" K(x,y)q)R(y—xO)dy'

/]Rn K<x’y+x0)¢R(y)dy' = ‘/IR” K(X, Ry+xo)§0<y)d3/'
A 2"A
< —_— d g/ s a J
/3(0,10) ’X—Ry—xo|”’q)<y)| / B(0,10) |x—x0|"’q)(y>‘ Y
PA g A
B(010) °  |x—xo|"

|X—XQ|n
since |[x — Ry — xo| > |x — x| — R|y| > |x — x0| — 10R > |x — x¢|/2 when-
ever |x — x| > 20R. It follows that

sup / / K(x,y)t™¢r(y)dy
xg€ER" ‘X—XM}ZOR n

202nv2A2
/x xo|>20R |X — X[

2
dx

dx

< sup
xo€R”

:202”V,12A2wn,1/ ro2nn =gy
20R
21172 A2
_ 20TV AT Vn: “n—1 (oR)~"
20"V A?
R
Therefore, we complete the proof.

§8.3.2 Proof of the T(1) theorem
This subsection is dedicated to the proof of Theorem 8.26.

Proof. The proof is based on a series of steps as described in the following

picture.
(i) Step 2 *>{ L? boundedness of T ‘
Step 6 Step 7 Step 1
P— Step 10 —| 111 Step 3
Step 9 Step 8 Step 5

‘ TE) . 2 L2 uniformly ‘ Step 4 4@

Step 1. (iii)) = (iv).
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Fixa ¢ € 2 with 0 < ¢ < 1, supported in ball B(0,4) and equal to 1
on ball B(0,2). We consider the function ¢(-/R) that tends to 1 as R — oo,
and we show that T(1) is the weak limit of the functions T(¢(-/R)). This
means that for all § € %, one has

(T(¢(-/R)),8) = (T(1),8) (8.51)

as R — oco. To prove (8.51), we fix an # € & that is equal to 1 on a
neighborhood of the support of g, which implies dist (supp g, supp (1 —
7)) =c>0and g = 0on (supp#). Then we write

(T(¢(-/R)),8) =(T(n¢(-/R)),g) +(T((1 —n)$(-/R)),8)
=(T(n¢(-/R)), ) (8.52)

[ KGoy) — Koz~ n)o(Ldyds,
(8.53)

where xy € supp g. There exists Ry > 0such that suppy C {y: |y| <2Ro},
then for R > Ry, ¢(-/R) is equal to 1 on supp 7. By the similar argument
(to the integration over Iy and I.) behind Definition 8.16, we obtain that
(8.53) converges to

Lo [ (KGxy) = Ko, 1)g(x) (1= () dydx
as R — oo by the dominated convergence theorem. By Definition 8.16, we

obtain the validity of (8.51).
Next, we observe that the function ¢(-/R) is in L? since ||¢(-/R)|2 =
R"2||¢]2. We show that
|T(¢(-/R))|[Bmo < Cus(A + B3) (8.54)

uniformly in R > 0. Once (8.54) is established, then the sequence
{T(p(-/i 4

lies in a multiple of the unit ball of BMO = (3!)*, and by the Banach-
Alaoglu theorem, there is a subsequence of the positive integers R; such
that T(¢(-/R;)) converges weakly to an element b in BMO. This means
that

m=

(T(¢(-/R})), &) — (b,g) (8.55)

as j — oo for all ¢ € Z. Using (8.51), we conclude that T(1) can be
identified with the BMO function b, and as a consequence of (8.54), it
satisfies

IT(1)[lBmo < Cus(A + Bs).

In a similar fashion, we identify T!(1) with a BMO function with norm
satisfying

IT'(1)|[pMo < Cs(A + Bs).
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We return to the proof of (8.54). We fix a ball B = B(xo, r) with radius
r > 0 centered at xo € R”. If for all R > 0, we had a constant cg g such that

ﬁ;AJT@(NOMxy—%Ruxch@4+B@, (8.56)

then property (iii) in Proposition 7.15 (adapted to balls) would yield (8.54).
Obviously, (8.56) is a consequence of the two estimates

w bl () o ()] 0
w0 (52)) e ()] @

[lo(59) o)
We bound the double integral in (8.58) by

1
W /B /lyXo|>2r |K(x’ y) o K(JC(), y) "P(y/R)d]/dX, (859)

since 1 — ¢((y — x0)/r) = 0 when |y — xo| < 2r. Since |x — x| < r <
%|y — Xp|, condition (8.2) gives that (8.58) holds with ¢, = wy,_1.

dx < ¢y Bs, (8.57)

dx < %”A. (8.58)

It remains to be proven (8.57). It is easy to verify that there is a con-
stant Cy = Cy(n, ¢) such that for 0 < € < 1 and for all 2 € R”, the functions

Colp(e(x+a))p(x),  Cy'¢p(x)p(—a+ex) (8.60)

are normalized bumps. The important observation is that with a = xo/r
we have

o (7)o (52) = [(o(RE+0)e0) J0 sen
& (900 (z+70)) 0, ©6

and thus in either case ¥ < R or R < r, one may express the product

¢ (%) ¢ (*=*2) as a multiple of a translation of an L! dilation of a normal-

ized bump.

Case 1: r < R. In view of (8.61), we write

Tlo(52) 0 (z)| 0 =g

r

for some normalized bump ¢. Using this fact and the Cauchy-Schwarz
inequality, we estimate the expression on the left in (8.57) by

1
5l /B ICor" T[T ] (x) |dx

1 1/2
<Cor" gy B2 (| 1Tie0.)(2) P )
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/2 C
<Co By < —

where the second inequality follows by applying hypothesis (iii).

Case 2: R < r. In view of (8.62), we write

T [q> ( j’“’) ¢ (1;)} (x) = CoR" T () (x)

for some other normalized bump ¢. Using this fact and the Cauchy-
Schwarz inequality, we estimate the expression on the left in (8.57) by

57 5 | COR" T () ()

CoR" 172
‘BOP/Z (/ |T (PR 2dx>

CoR"/? CoR™/? Co
~X ’B|1/2 B3 - Vl/zrn/2B3 g V1/2B3 :CTIB3
n n

by applying hypothesis (iii) and recalling that R < r. This proves (8.57).

To finish the proof of (iv), we need to prove that T satisfies the weak
boundedness property. However, this is elementary, since for all normal-
ized bumps ¢ and ¢ and all x € R"” and R > 0, we have

(T(T"¥r), T ¢r)| <[ T(T"YR) |2l T* ¢rll2
<BsR™"*R™"2| g2

<B3R™™(V,10M)'/2 = C,B3R ™.

This gives || T|jwp < C,Bs, which implies the estimate By < C, 5(A + B3)
and concludes the proof of the fact that condition (iii) implies (iv).

Step 2. (iv) = L2 boundedness of T.

We now assume condition (iv), and we present the most important
step of the proof, establishing the fact that T has an extension that maps
L%(IR") to itself. The assumption that the distributions T(1) and T*(1) co-
incide with BMO functions leads to the construction of Carleson measures
that provide the key tool in the boundedness of T.

We pick a radial function ® € 2 supported in the ball B(0,1/2) that
satisfies [, @(x)dx = 1. For t > 0, we define ®;(x) = t~"®(x/t). Since ®
is a radial function, the operator

P(f) = f* Py (8.63)
is self-transpose.

We now fix a Schwartz function f whose Fourier transform is sup-
ported away from a neighborhood of the origin. We discuss an integral
representation for T(f). We begin with the facts that can be found in Ex-
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ercises 8.3 and 8.4:
T(f) =lim P2TP(f) in.”,
s—0
0= lim P2TP2(f) in .,
where .Y (R") = {f € S(R") : [p.¥*f(x)dx = 0,Ya € NI} is a sub-
space of . (IR") with the same topology, and its dual space .7/(R") =

S (R")/ 2 (R"). Thus, by the fundamental theorem of calculus and the
product rule, we can write

T(f) =lim P>TP?(f) — lim P>TP?(f)
s—0 S—»00

e—0Je ds
1 1e d » 2 2 d » ds
=—lim stSPS> TP:(f) + P: <TSdsPS> (f)} 5 (8.64)

e—0 e

where the limit is in the sense of .#’. For g € .#, we have by (8.63)

—2

(5£P2()) () =235 = (@@ )

()35 (@(s2))?)
=(27)"§ () (s8)258 - VO (s¢)

n

(27)"3(8) Y Fi(s&)®x(s¢)

k=1

n

= kf QrsQus(8)(8) = kz Qis Qs (8)(2),
=1 =1

where for 1 < k < n, ¥¢(&) = 28®(¢), Ox(8) = %D(¢), and Qys, Oy, are
operators defined by

Qus(g) = g% (Fi)s,  Qusl(8) = 8% (O%)s;

where (Oy)s = s "k (s !x) and (¥y)s are defined similarly. Observe that
¥y and Oy are smooth odd bumps supported in B(0,1/2) and have an
integral of zero. Since it is easy to see that ® is also radial, we obtain

Fi(—x) = [ 0258

T ot e
and

Fi(x) = =20 P(x), O(x) = —ixjP(x).

Since ¥y and @y are odd, we have (Qys)! = —Qxs and (Qx,)' = — Oy,
that is, they are anti-self-transpose. We now write the expression in (8.64)
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as
n 1/¢

1/e ds ds
—hmz [ Qk,st,sTPsPs(f) + P, P TQkSka(f) 5| (8.65)

£—>O

where the limit is in the sense of .#’. We set
Tis = QisTEs,
and then taking the transpose, i.e.,
(Tis)' = (QusTP:)" = P{T"(Qks)’ = —PsT' Qg
we obtain PsTQys = —((T)xs)".

Recall the notation t™*h(z) = h(z — x). For a given ¢ € ./ (R"), we
have

Tis(9)(x) =QusTP:(9) (x) = TP:(p) * (¥1)s(x)
= [ TR(9) (1) (¥)s(x — )y

=— / TP:(¢)(y)(¥x)s(y — x)dy (since ¥y is odd)

_ _/Tps(cp)(y)r"(‘l’k)s(y)dy

= — (TP:(¢), T (Yr)s)
= —(T(Ps * 9), T (¥1)s)

{1 ( [, st —may) e,
< ( qu>s)(-)dy),r"(‘I’k)s>

== [ (T, T (%)) g (w)dy. (3.66)

The last equality is justified by the convergence of the Riemann sums Ry
of the integral I = [p, ¢(y)(7Y®Ds)(-)dy to itself in the topology of .
(this is contained in the proof of Theorem 3.37); by the continuity of T,
T(Ry) converges to T(I) in ./ and thus (T(Rn), T*(¥)s) converges to
(T(I), 7™ (¥x)s). However, (T(Ry), T%(¥k)s) is also a Riemann sum for the
rapidly convergent integral in (8.66); hence it converges to it as well.

We have deduced that the operator Ty ; = Qj ;TPs has kernel
Kies(x,y) = —(T(T/®s), T°(¥i)s) = — (T (7" (¥h)s), TVPs).  (8:67)
Hence, the operator PsTQs = —((T");s)" has kernel
—((Kks) (x,y) = ((T(T*(¥i)s), T/Ps))" = (T(TY(¥i)s), T ).
For 1 < k < n, we need the following facts regarding these kernels:

(T((Fx)s), T Ps)| <Cos (I Tllws + A)ps(x —y), (8.68)
(T (T*(¥k)s), /@) | <Cus([ITllws + A)ps(x — y), (8.69)
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where
1 1

Pe) = G A ayay
is the L! dilation of the function p(u) = (1 + |u|)™"~°.
To prove (8.69), we consider the following two cases.

Case 1: |x — y| < 5s. The weak boundedness property gives
- CrollT
(T, T (8] = (T (@), 7w < el
since
T®s(2) =@5(z —y) =s "P((z —y)/s) =s"®((z = x)/5 = (y — x)/5)
=s "tV ((z — x) /s) = (TV/5D)(z — x)
=7 (tW9/59),(2),
and both ¥; and T(¥~%)/5® are multiples of normalized bumps. Note here
that supp ¥x C B(0,1/2) C B(0,10), and supp t¥~¥/5® C B(0,10) due
to |z < |z—sHy—x)|+ s (y—x)] <1/2+5 < 10 from supp® C
B(0,1/2) and s~ !|x — y| < 5. This estimate proves (8.69) when |x — y| < 5s
due to s™" < Cps(x — ).
Case 2: |x —y| > 5s. For z; € supp V®; and z; € T°(¥y);, we have

21— 2| =lz1—y+y—x+x—z| 2 |y — x| —[z1 —y| — [x — 2|
>bs—s/2—s/2=4s >0,

i.e., the functions T/®, and (¥ ), have disjoint supports and so we have
the integral representation by Proposition 8.10

(TH(T (Fy)s), TVDs) = / n /R (0~ y)K(u,0)(¥)s(u — x)dudo,

Because Y has a mean value of zero, we can write the previous expression
as

/n / @, (v —vy)(K(u,v) — K(x,0)) (¥r)s(u — x)dudo.

We observe that |u — x| < s and |v —y| < s in the preceding double
integral. Since |x —y| > 5s, [u —v| > |x —y| —2s > 3s, which implies
that |u — x| < |u — v|/2. Using (8.2), we obtain

Alx —ul® Cp5As°
(lu—o[ +|x —o[) = (s + [x —y[)+’
where we used the fact that [x —v| > |[x —y| — |y —v| > 4s and |u —v| =
|x —y|dueto |u—v| < |u—x|+|x—y|+|y—o| < |u—0v|/24+ |x—y|+s <
S5lu—vl/6+|x—y|land |u —v| > |[x —y| —2s > |x —y| —2|x —y|/5 =
3|x — y|/5. Inserting this estimate in the double integral, we obtain (8.69).
Estimate (8.68) is proved similarly.

|K(u,v) — K(x,v)| <

At this point, we drop the dependence of Qi and ,ka,s on the index
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k since we can concentrate on one term of the sum in (8.65). We have
managed to express —T(f) as a finite sum of operators of the form

[[arepn® (8.70)
0 S

and of the form
0 . ds
| pranT, (571

where the preceding integrals converge in .#/(R") and Ty’s have kernels
Ks(x,y), which are pointwise dominated by a constant multiple of (A +
By)ps(x —y).

It suffices to prove L? bounds for an operator of the form (8.70) with
constant at most a multiple of A + By, since by duality the same estimate

also holds for the operators of the form (8.71). We make one more obser-
vation. Using (8.67) (recall that we have dropped the indices k), we obtain

L)) = [ Koy == [ (T, T(¥))dy

R"

= / / T(T/®5)(2)¥s(z — x)dzdy

= /RT</W<I>( y)dy) s(z—x)dz

T(1)‘FS (z—x)dz

—/ Ys(x —z)dz

s * T(l))( ), (8.72)

where all integrals converge absolutely.

\

We can therefore concentrate on the L? boundedness of the operator
in (8.70). We pair this operator with ¢ € .# and we use the convergence of
the integral in .#’(IR") and the property (Q,)! = —Q, to obtain

([TarnnTe) = [T (@nrm.e) ¢
= [T {rrnaw) %

The intuition here is as follows: T is an averaging operator at scale s,
and Ps(f) is essentially constant on that scale. Therefore, the expression
TsPs(f) must look like Ts(1)Ps(f). To be precise, we introduce this term
and try to estimate the error that occurs. We have

TsPs(f) = Ts(l)Ps(f) + [Tsps(f) - Ts(l)Ps(f)]' (8.73)

We estimate the terms that arise from this splitting. Recalling (8.72), we
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write by using the Cauchy-Schwarz inequality

[ {rrarn. @) £

< </0°° IPs(f) (¥ + T(1 ))||2ds>1/2 (/Ow 19 (s )||2ds>
. (8.74)

([ e ranra®) ([ ers) 2

Since T(1) € BMO, ¥ € L! with [, ¥(x)dx = 0 satisfying [¥(x)| <
C(1+|x])™ ¢, and due to ® € 2 C ./, we obtam for some N € N

1/2

[e o)

sup [P0 =sup [ st P

ZeRn /0
—sup/ B(s2) Pa(212)

d(s*|Z]?)
<Csup/ W < 0o,

We obtain from Theorem 7.40 (ii) that |(‘¥s * T(1))(x)|?dx“ is a Carleson
measure on R with norm at most C,;||T(1)||3;0- Then, from Theo-
rem 7.39, it follows

1/2

(7 L IRO@RIE < T0) P ) < T ol 2

For the second factor in (8.74), by the continuous version of the Littlewood-
Paley theorem (Exercise 5.10), we have

® ds\ /2
27
( /0 1Q:(8)] S)
Thus, we obtain

8.74) < Gl T(D)[Bmoll fl12llgll2 < CuBallf12Ig]l2-

This gives the sought estimate for the first term in (8.73). For the second
term in (8.73), we have by the Cauchy-Schwarz inequality, Exercise 5.10,
(8.67) and (8.69)

/000 Rn(js(g)(x)[TsPS(f)_TS(1>P ()] (x)dx @

< </ooo /IRn ‘és(g)(x)‘zdxd;)l/z
: </0°°/ [ TsPs(f) — TS(l)Ps(f)](x)!dedss>l/2

<Culigll2 (
0

< Gullgll2:
2
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<Cu(ITlwe + A)lgll2

(/Oo/n < R pS(x_y)|Ps(f)(y)_Ps(f)(X)|dy>2ddeS>l/2

<cua+Blgl( [ [ / pe(x = )IP(F)(v) = Pu(F) () Py

(/ pe( x—y)dy)daﬁ)

<Cu(A+ By)llgl2
ds\ /2
</0 /n " ps(x_y”PS(f)(y)_Ps(f)( )|2dydx> .

It suffices to estimate the last displayed square root. Changing variables
u = x — y, applying Plancherel’s theorem and the inequality |1 — | < |6],
we express this square root as

</0m/ / ps(u)|Ps(f)(y) — Ps(f)(y + u)lzdudyd:>1/2

00 - ) . 1/2
=(2m)"2 (/0 Lo [ pew)[@(s2)(1 = %) 2 £(2) Pdu da"’s)

o0 1/2
<(2m)"? ( L ps<u>|&3<s§)12225/2\u|5/2|e:|5/2|f<¢>|2dudadj)

:(27.[)1’1/22175/4

] (u) /s 2du | [®(sE)|? Isél‘”zdslf( )[2dg 1/2,
(ol s an) )

and we claim that this last expression is bounded by C,, 5| f||2. Indeed, we
first bound the quantity

6/23. _ |u/s]°/>
/1Rn pola)lu/ s du _/1Rn A Juysprret/s)

1
<[ —dv=C< o,
/w (1 Jofyr 02" *

and then we use the estimate (due to e )

[T B0 Piset 2 = [T @lsen) P < Gy < o0
0

where ¢; = (1,0,---,0), and Plancherel’s theorem to obtain the claim.
Since .#(R") is dense in L?(IR") by Exercise 5.12, we deduce by duality
that

ITfllz="sup  [{Tf, &) < Cus(A+Ba)|fl2
g7, lIgllx1

for all f € .. Thus T admits an extension on L? that satisfies

[Tl L2512 < Cas(A + Ba).
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Step 3. L2 boundedness of T = (V).
If T has an extension that maps L? to itself, then by Theorem 8.23, we

have
Bs < Cis(A + || Tl 122 12)-

Thus, the boundedness of T on L? implies (V).

Step 4. (v) = (vi).

At a formal level the proof of this fact is clear, since we can write a
normalized bump as the inverse Fourier transform of its Fourier transform
and interchange the integration with the action of T to obtain

T(Tx) = [ TOpr(@)T(e" )z, 675)

The conclusion follows by taking BMO norms. To make identity (8.75)
precise, we provide the following argument.

Let us fix a normalized bump ¢ and a function g € %,. We select a
function 7 € Z that is equal to 1 on the unit ball and vanishes outside
the double of that ball. Define #;(¢) = 1(¢/k) and note that 7, tends
pointwise to 1 as k — oco. Observe that 1, T*¢pr converges to T¢g in
< (R") as k — oo, and by the continuity of T we obtain

Im (T (70 gr), g) = (T(TO9r), &)-
We have

Tt gr) =T (/]R %(é‘)ﬁk(')ei@(')d@> (8.76)
= [ TR T ()" ),

where the second equality is justified by the continuity and linearity of T
along with the fact that the Riemann sums of the integral in (8.76) converge
to that integral in . (a proof of this fact is essentially contained in the
proof of Theorem 3.37). Consequently,

(T(t%¢r),8) = lim | Tgr(&)(T(ne®")),g)as.  (8.77)

k—o0 JIR"

We show that (T (1;e(")), ) is uniformly bounded in k for k large. Sup-
pose that g is supported in the ball B(0, M). Let kg = 2M. Then, for k > k
write

(T(pee®1),8) = (T(e51), ) = (T((1 = y)e® 1)), g). (8.78)
The first expression on the r.h.s. of (8.78) is bounded by Bs||g|5¢1, while
the second expression can be written as

/y|>k [/IRH(K<X'3/) — K(0,y))g(x)dx| (1 —ne(y))e’*Vdy,

in view of Definition 8.16. As |x| < max(|x —y|, |y|)/2 when |y| > k >
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ko = 2M and |x| < M, we use (8.2) to bound the absolute value of the
preceding expression by

2 —————dxd
Iglles />2M/|x<M |x — y|n+o e

d
2|l [ Alxl Yy =C <

xl<M eyl>lel [x =y
The dominated convergence theorem allows us to pass the limit inside the
integrals in (8.77) to obtain

(T(tr),g) = [ TogR(E)(T(), g)dz.

We now use assumption (v). The distribution T(e®(")) coincides with a
BMO function whose norm is at most Bs. It follows that

(T(x%gr), )| <(27) "2 grl1 sup | T(¢% ) [yollgl e

ZERn

<CuBs||9(R-) (11118l 5¢
<CuBsR™"(g]l 51, (8.79)

where the constant C, is independent of the normalized bump ¢ in view
of (8.47). It follows from (8.79) that

§ = (T(T"¢r),8)
is a bounded linear functional on BMO with norm at most a multiple of

BsR~". It follows from Theorem 7.27 that T(t*¢r) coincides with a BMO
function that satisfies

RYIT(e%¢r)llsmo < CuBs.
The same argument is valid for T/, which shows that
Bg < Cn,(;(A + B5)

and concludes the proof that (v) implies (vi).

Step 5. (vi) = (iii).

We fix xp € R” and R > 0. Pick zp € R" such that |xy — zg| = 40R.
Then, if |y — x| < 10R and |x — zp| < 20R, we have

10R <|zo — x0| — |x — zo| — |y — x0]
<|x —y
<|x—Z()| + |Zo — XQ| + |XO —y| < 70R.

From this it follows that when |x — zg| < 20R, we have

IT(T¢r)| =

/ K(x,y)T™¢r(y)dy
ly—x0|<10R

d
< K(x,y) 1 5

= /
10R<|x—y|<70R
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<l
RTZ
and thus
C,sA
Avg T(T°¢pr)| < s (8.80)
B(20,20R)

where Avg g denotes the average of ¢ over B. Because of assumption

B
(vi), the BMO norm of the function T(t*¢g) is bounded by a multiple
of BeR™", a fact used in the following sequence of implications. We have
by Corollary 7.26, Exercise 7.5 with |xg — zg| = 40R and (8.80)

| T(t™¢r) HLZ(B(xO,ZOR))

<||T(t0¢r) — Avg T(T¢r)

B(x0,20R)

L2(B(x0,20R))

+VY2(20R)"?| Avg T(t%¢gr) — Avg T(t%¢gR)

B(x0,20R) B(z0,20R)

+V2(20R)"?| Avg T(T%¢R)

B(20,20R)
<Cul| T(T¢r) || Bmo| B(x0,20R) |2
+ V,/2(20R)"/*Cy In(|x9 — zo| / (20R) + 1)|| (T @) |70
CnsA
+ V,}/Z(ZOR)V[/Z 7’an
<Cus (R”/ZHT(TXO(/)R) HBMO + R_n/ZA)

<CusR"2(Bs + A).

Now, we have from Lemma 8.28 that
IT(TPr) | 12(B(xp,20r)) < CpsAR™™2,
Since the same computations can apply to T, it follows that
RY2 (IT(gr) 12 + | T (T°¢r)|12) < Cus(A + Be), (8.81)

which proves that B; < C,5(A + Bg) and hence (iii). This concludes the
proof of the fact that (vi) implies (iii).

We have now completed the proof of the following equivalence of
statements:

L? boundedness of T <= (iii) <= (iv) <= (v) < (vi) (8.82)
and we have established that
Tl 22~ A+ B3~ A+ By~ A+ Bs ~ A+ Bs.

Step 6. (i) = (ii).
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We show that the quantity B, is bounded by a multiple of A + By; if
so, then so would do the quantity A 4 B,. We set

I N (%) :/ K(x,y)dy and I;N(x) :/ Kt(x,y)dy.
<|x—y|<N ’ e<|x—y|<N

It suffices to show that there is a constant C,, such that for any x; € R”,
we have

1 1/2
sup { / en () yzdx] <Ci(A+B).  (883)
e,N |[x—x1|<N/2

If (8.83) holds, then we can cover the ball B(x(, N) by finitely many balls
B(x1,N/2) and thus deduce

1 1/2
sup sup { / | E,N(x)lzdx} < CL(A+ By) (8.84)
x0€R" &N N* |x—xo| <N
with a larger constant C}, in place of C,.
We estimate the expression on the left in (8.83) by I + I, where

1 . 1/2
= / I — T (xp(y 24 } ,
p | 575 [ 00 = T Gt )3 Pt

: T 2, 12
= / : x| .
o [N = x1|<N’ (XB(x,N) (%) x]

By hypothesis, we have that II is bounded by B;. Additionally, for |x —
x1| < N/2 we have by (8.1)

(%) = T () ()| =

K(x,y)d —/ K(x,y)d
/£<|xy|<N (x,y)dy e<|x—y| (x,y) 3/‘

[xp—yI<N

S /{€<|Xy<N}U{x y[=N } x y)|d]/

[x1—y[>N x1—y|<N

A
< -
N/2<|x-yl<aN/2 X =y
=Aw;,;_1In3.
Thus, I is bounded by w,_1(In3)A2~"/2. Combining the estimates for

I and II yields the proof of (8.83) and hence of (8.84). Similarly, we can
prove that

1 / t 2 :|1/2 !
sup sup | — I (x)|“dx < C, (A+ By),
xoe]llg” e,l\l;) [Nn |x—xo|<N‘ S'N( ) a )

which together with (8.84) implies that B, < 2C,,(A + By).

We now consider the following condition analogous to (iii):

(i) B5 = sup sup sup R"2 [T () | + [|(T))" (x pr) 2] < o0

xp€R" >0
¢ 0 R>0
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where the first supremum is taken over all normalized bumps ¢. We con-
tinue the proof by showing that this condition is a consequence of (ii).

Step 7. (i) = (iii)".
More precisely, we prove that B} < C,5(A + By). To prove (iii)’, fix a

normalized bump ¢, a point xp € R", and R > 0. Additionally, fix x € R"
with |x — xo| < 20R. Then, we have

T (t%gg)(x) = / K(x, y) T ¢r(y)dy = Ui (x) + Ua(x),

e<|x—y|<30R
where

=] KEYEer) - o)y,

U (x) =T gr(x) | K(x,y)dy.

e<|x—y|<30R
However, we have that

=R™"[p((y —x0)/R) — ¢((x — x0)/R)]
<R VgllR ™ x — y|
<C,R" Hx —y).

T ¢r(y) — TO@r(x)

Thus, we obtain
1

‘ 1( )| n g<‘x—y‘§3OR |x_y|ni1

dy < CLAR™"

on B(xp,20R); hence,
UL || 12(3(xp20r)) < CnAR™™2.
Condition (ii) gives that
Uzl 12(B(x0208)) < R 1e30R ]| 12(B(xp 30r)) < B2(30R)"2R™".
Combining these two, we obtain
1T (T gg) [22(B(xo,20r)) < Cn(A + By)R™"/? (8.85)
and likewise for (T(®))!. It follows from Lemma 8.28 that
HT(g)(Txoq)R)HLZ(B(xo,ZOR)C) < CusARTZ,

which combined with (8.85) gives condition (iii)’ with constant B} < C,, 5(A +
B,). This concludes the proof that condition (ii) implies (iii)’.

Step 8. (iii) = T : L2 — L2 uniformly in ¢ > 0.

For ¢ > 0, we introduce the smooth truncation Tég) of T by setting

Tés’f(x) = /IR K(x,y)¢ <xgy> f(y)dy,

where {(x) € [0,1] is a smooth function that is equal to 1 for |x| > 1 and
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vanishes for |x| < 1/2. We observe that
€ X —
1) = 1) = [ Ko (€ (552 = o) Sy

</ KCey)lf )1y
e/2<|x—y|<e

1
<A/ I BERPT
e/2<|x—y|<e |x_y|n‘f(y)‘ y

1
<Az | )y

81’[
<C,AMf(x), (8.86)

thus, the uniform boundedness of T(*) on L? is equivalent to the uniform

(€)

boundedness of Tg . In view of Exercise 8.1, the kernels of the operators

Tés) lie in SK(J, cA) uniformly in ¢ > 0 (for some constant c), since J < 1.

Moreover, because of (8.86), we see that the operators Tg(g)

constant C, A + Bj.

satisfy (iii)” with

A careful examination of the proof of the implications
(iii) = (iv) = L? boundedness of T

reveals that all the estimates obtained depend only on the constants Bs,

By and A but not on the specific operator T. Therefore, these estimates

(¢)

are valid for the operators Tg that satisfy condition (iii)’. This gives the

uniform boundedness of Tég) on L2(R") with bounds at most a constant

multiple of A + Bj. The same conclusion also holds for the operators T(®).

Step 9. T .12 512 uniformly in ¢ > 0 = (i).
This implication holds trivially.

We have now established the equivalence of the following statements:
(i) <= (ii) < (i) < T® :L? - L[ uniformly ine >0, (8.87)
so that
A+Bi~A+By~ A+By~sup T2,

e>0
Finally, it remains to link the sets of equivalent conditions (8.82) and
(8.87). We do this by proving the equivalence of (iii) and (iii)".
Step 10. (iii) <= (iii)".
We will prove this by the following steps:
(iii) = (i) = T:L?> — L?

— T : 2 - L2 uniformly in e > 0 = (iii)".
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We first observe that (iii)’ implies (iii). Indeed, using duality and
(8.49), we obtain

IT(gR)ll2 = sup \ T(e gr) (x)h(x)dx
i

T (T0gr) (x)h(x)dx

= sup lim -

he.s ]_)oo
[nl2<1

< sup limsup || TE) (t0¢R) |2]|k])2
he s j—
Ihllp<1
gBéan/Z,
which gives B3 < Bj.

We have shown that (iii) implies the L? boundedness of T. However,
in view of Corollary 8.21, the boundedness of T on L? implies the bound-
edness of T(®) on L2 uniformly in & > 0, which implies (iii)’. Moreover, B
is bounded by a constant multiple of A + Bs.

This completes the proof of the equivalence of the six statements (i)-
(vi) in such a way that

IT||t212 = A+ B;
forallj € {1,2,3,4,5,6}. The proof of the theorem is now complete. a

Remark 8.29. Suppose that condition (8.49) is removed from the hypoth-
esis of Theorem 8.26. Then the given proof of Theorem 8.26 actually
shows that (i) and (ii) are equivalent to each other and to the statement
that the T(9)’s have bounded extensions on L2(IR") that satisfy

sup | 7| 2,2 < oo,

e>0

Additionally, without hypothesis (8.49), the proof of Theorem 8.26

also shows that conditions (iii), (iv), (v) and (vi) are equivalent to each
other and to the statement that T has an extension that maps L?(R") to
itself.

Exercises

Exercise 8.1. [Gral4b, Exercise 4.1.3] Let ¢(x) be a smooth radial function
that is equal to 1 when |x| > 1 and vanishes when |x| < 1/2. Let0 < 6 < 1.
Show that there is a constant ¢ > 0 that depends only on 1, ¢, and § such
that if K € SK(4, A), then all the smooth truncations K((; ) = K(x,y)9(2)
lie in SK(9, cA) uniformly in € > 0.

Exercise 8.2. [Graldb, Exercise 42.1] Let T : /(R") — .#/(IR") be a con-
tinuous linear operator whose Schwartz kernel coincides with a function
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K(x,y) on (R" x R")\ {(x,x) : x € R"}. Suppose that the function K(x,y)
satisfies

sup [K(x,y)|dy = A < co.

R>0 /R<xy<2R

(i) Show that the previous condition is equivalent to
1

o R Jps—yi<r

by proving that A’/2 < A <2A.

(ii) For ¢ > 0, let T®) be the truncated linear operators with kernels
K@ (x,y) = K(x,¥)X|x—y|>e- Show that the integral defining T f
converges absolutely for f € .77

(ii) Consider the annuli €2/ < |x| < e2/*! for j > 0.

|x —y||K(x,y)|dy = A" < o0

Exercise 8.3. [Gral4b, Exercise 4.3.1] Let T be a continuous linear operator
from . (R") to ./ (R") and f € .(R"). Let P, be as in (8.63).
(i) Show that P;(f) converges to f in .(R") ad t — 0.
(i) Conclude that TP(f) — T(f) in .'(R") as t — 0.
(iii) Conclude that P,TP(f) — T(f) in .#’(R") as t — 0.
(iv) Observe that (i)-(iii) are also valid if P; is replaced by P?2.
(i) Use that gy — ¢ in . iff g — Jin 7.

Exercise 8.4. [Graldb, Exercise 4.3.2] Let T and P; be as in Exercise 8.3
and let f be a Schwartz function whose Fourier transform vanishes in a
neighborhood of the origin.

(i) Show that P;(f) converges to 0 in . (R") ad t — oo.

(ii) Conclude that TP(f) — 0in.#'(R") as t — oo.
(iii) Conclude that P, TP;(f) — 0in .#'(R") as t — oo.

(iv) Observe that (i)-(iii) are also valid if P; is replaced by P?2.
(i) Use the hint in Exercise 8.3 and the observation that | (& )?(@' )| <
C(1+ teo)~YF()] if f is support outside the ball B(0, ¢o). (iii) Pair with a
function ¢ € .(R") and use (i) and the fact that all Schwartz seminorms
of Pi(g) are bounded uniformly in t > 0 (iff all Schwartz seminorms of

Pi(g) are bounded uniformly in ¢ > 0).






Besov and Triebel-Lizorkin Spaces

§9.1 The smooth dyadic decomposition

In this section, we will introduce smooth Littlewood-Paley dyadic de-
composition, which is also a very basic way to carve up the phase space.

The dyadic decomposition with rectangles is very intuitionistic for
the statement, but it is not convenient to perform some operations such
as differentiation and multiplier. Therefore, we use a smooth form of this
decomposition.

Throughout, we shall call a ball any set {¢ € R" : |{| < R} withR >0
and an annulus any set {¢ € R" : Ry < || < Ry} with 0 < R; < Ry.

Now, we give the fundamental Bernstein inequalities.

s 2
Proposition 9.1 (Bernstein inequalities). Let k € Ny, 1 < p < g < oo,

A be an annulus and B be a ball. Then, we have
Vf e LP(R") with supp}‘\ C AB = sup [|0*f]|; < Ck“)\k”(%’%)nf”p,
la|=k
Vf € LP(R") with supp f C AA =
CTAMIfl, < sup [[0%fllp < CHAX| £ -

|a|=k
\, y,

Proof. Since ? € .’ has a compact support, we have ? € &' in view of
the arguments below Definition 3.38. Then, it follows from Theorem 3.45

that? € C* which implies that f coincides with a C* function by Fourier
inversion in .7’
Let ¢ be a function of Z(R") with value 1 near B and denote ¢, () =

A

$(C/A). As ?((;') = ¢, (&) f (&) pointwise, we have
Ff=0"grxf with gr= ().
Thus, g (x) = A"¢(Ax) = A"g(Ax), where we denote g := g1.
Applying Young's inequality with 1 := 1 — % + %, we obtain
19%fllq =l10"ga * fllg < 19%gall-ILf 1l
=2 @) A [ fllp = A 9% L 1l
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=G a%g I -
The first assertion follows from

10%gllr <[|0%glleo + [10"gl1

1
<0 gl + [ 10811+ )" g
10°8llee + [ 10"81(1 + |xI%) A+

1
gaa o 1 Znazx oo/ S |
88l + 11+ 108l [ ey

<Cull (1 + [x[?)"0%glleo = Call 7 7 (1 + [x[*)"0"g) | oo
<Gl Z (1 + [x2)"0*g) I = Cull (1 = 8)"((i)*¢(€)) Ilx

n

} I AT n
=G | L GDNE9E)| <G L GINE9E)
j=0 : =
<Gy sup Haﬁ(ca)agd)nl
0<|B|<]al], 0<|o|<2n—|B]
<G, sup ||§ﬁaa¢”1

0<|BI<]al, 0<||<2n—p]

<C,C* sup [|07¢||1 (since ¢ is compactly supported)

0<|o|<2n
k+1
<C, .

To prove the second assertion, we consider a function ¢§ € Z(R" \
{0}) with value 1 on a neighborhood of A. From the algebraic identity

& = Z Pl =Y (i) (—ig)",

11, jk<n |a|=k

for some integer constants a, and the fact that ? = (]3? for A =1, we
deduce that there exists a family of integers (4, )xeny such that

f= Y haxdf, hoi=(2m) a7 ((—i0) e *G(@)) € 7 C L

la|=k

For A > 0, from supp? C AA we have

70 = T ol g o @rfe)
1+ ¢ R b @)

=AY (2m)" 20 (/A9 F ()

|a|=k

A F Y 20)" 20 A R (A (©)FF (),

|a|=k
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which implies that
F=ATY Aha(A-) « 0 f.
la|=k
Then, by Young’s inequality, we obtain
fllp <A™ 30 Ihallelo®fllp < CHATE 3 [lo £l
o] o]
a|=k «|=k

by a similar argument for ||}, ||; as in ||0*g||;, and the result follows from
the first inequality. Q

Remark 9.2. When the frequency is localized, one can upgrade low
Lebesgue integrability to high Lebesgue integrability at the cost of some
powers of A; when the frequency A is very slow, this cost is in fact a gain,
and it becomes quite suitable to use Bernstein’s inequality whenever the
opportunity arises.

The following lemma describes the action of Fourier multipliers which
behave like homogeneous functions of degree m.

e p

Lemma 9.3. Let A be an annulus, m € R, and k > n/2 be an integer.
Let o be a k-times differentiable function on R" \ {0} satisfying that for any
a € IN§ with |a| < k, there exists a constant C such that

19%0(&)] < Colg™ 1, vEe R

Then, there exists a constant C, depending only on the constants C,, such
that for any p € [1,c0] and any A > 0, we have, for any function f € LP
with supp f C AA,

lo(D)flly < CA™Ifllp, ~ with o(D)f = (oF) "
Proof. 1t is clear that

lo(§)xan(@)ll2 =CaA™ "2,
19* (e (&) xan (&) [l2 =CuA™ ¥"/2, and |a| = k.

Thus, we have by the Bernstein multiplier theorem for p € [1, o]

1-n/2k n/2k
||UXAA||MP <G, (Am-‘rn/Z) (Am—k-i-n/Z) — Cn)\m,

which implies the desired result. Q
Let & € (1,/2) and ¢ : R" — [0,1] be a real radial smooth bump

function, e.g.,

1, ¢l <a”l,
P(¢) = { smooth, a~! < [¢| < a, 9.1
0, | > a
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Let ¢(¢) be the function

¢(8) = ¥(5/2) = 9(0)- ©-2)
Thus, ¢ is a bump function supported on the annulus
A = {g ral < e < sz}. 9.3)

By construction, we have

Y 270 =1

keZ

for all & # 0. Thus, we can partition unity into the functions ¢(27%¢) for
integers k, each of which is supported on an annulus of the form |&| ~ 2.

For convenience, we define the following functions:

{ () =9(27%¢), kez, 04
Pr(8) = 9(275¢) = Y1 (8) — (8), ke Z. '

Since supp ¢ C A, we have
supp g 2 = {g: 2% < g <2a}, ke Z,

(9.5)
supp ¢ C {g: 1¢] < Zka}, keZ.

We now define the k-th homogeneous dyadic blocks A, and the ho-
mogeneous low-frequency cut-off operators Sy by

Mf=F'oFf, Sif=F 'Y Ff= .<;1A]‘f, keZ. 9.6)
j<k—

Informally, A; is a frequency projection! to the annulus
{szklx—l A <2k+1(x}’
while Sy is a frequency projection to the ball {¢ : [¢] < 2kzx}. The nonho-
mogeneous dyadic blocks Ay are defined by
Af=0ifk< -2, A_1f=Sof, and Arf = Arfifk > 0.
The nonhomogeneous low-frequency cut-off operator Sy is defined by

Sef = ) Aif.
j<k—1
Obviously, Syf =0if k < —1,and S f = Sf if k > 0.
Observe that S;.q = Sy + Ay from (9.4). Additionally, if f is an 12
function, then Syf — 0in L? as k — —oo, and Syf — f in L? as k —
+oo (this is an easy consequence of Parseval’s theorem). By telescoping

IStrictly speaking, these are not quite projections, even though they are self-adjoint.
They do not quite square to themselves because we choose 1 to be a smooth cut-off rather
than a rough cut-off. However, the operator ArAy is of the same form as Ay, and similarly
for Sy, and so it is still quite reasonable to think of these operators as (smoothed out)
projection operators.
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the series, we can thus write the following (formal) Littlewood-Paley (or
dyadic) decomposition?

Id=) A¢ and Id=)_ A 9.7)

kez kez

The homogeneous decomposition takes a single function and writes it as
a superposition of a countably infinite family of functions Ayf, each one
of which has a frequency of magnitude of approximately 2. Lower values
of k represent low-frequency components of f; higher values represent
high-frequency components.

Both decompositions have advantages and drawbacks. The nonhomo-
geneous one is more suitable for characterizing the usual functional spaces
whereas the properties of invariance by dilation of the homogeneous de-
composition may be more adapted for studying certain PDEs or stating
optimal functional inequalities having some scaling invariance.

In the nonhomogeneous cases, the above decomposition makes sense
in ./ (R").

[Proposition 94. Let f € /' (R"), then f = klirf Sif in ' (R"). J
—+00

Proof. Note that (f — S¢f,g) = (f,g— Sxg) forall f € ¥’ (R") and g €
< (R"), so it suffices to prove that g = klim Skg in 7 (R"). Because the
— 400

Fourier transform is an automorphism of .¥(R"), we can alternatively
prove that ¥»(27%.)2 tends to § in .(R"). This can easily be verified, so
we left it to the interested reader. Q

We now state another result of convergence.

( )
Proposition 9.5. Let {u;};en be a sequence of bounded functions such that

supp i C 2/, where A is a given annulus. Assume that for some N € N
PP U; 8
Jujflo < C2N, Vj€eN, (9.8)

then the series ) u; converges in ..

\ /

Proof. Taking ¢(¢) € 2(R" \ {0}) with value 1 near A, we have near A

2 Actually, this decomposition works for just about any locally integrable function that
has some decay at infinity, and one usually has all the convergence properties of the sum-
mation that one needs. In many applications, one can make the a priori assumption that
f is Schwartz, in which case the convergence is uniform. However, if f does not decay,
then this formula fails. For instance, if f = 1, then all the projections Ay f vanish because

Al = [ e™oqi(E)(27)"200(2)dE = 91 (0) = 9(0) = 0.
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and any k € IN,

= PO = T o (,‘5,5,2 P(E) i) T (©),
o|=k

namely,

o= Y gurduo, g = (27)" (<|‘€j§£“¢<é>) .

Similarly, on each 2/A, it holds
=) a2 ( |§/21|212 ¢(&/2)(i¢)" u;(S),
|a| =k
that is,
wj=27% Y 2 (2) % 0%u;. (9.9)
|a|=k
For an € ., we obtain from Definition 3.32 and Definition 3.27
y

](u],fﬂ :27]7( Z <uj/2jngoc(_2j') % (_a)af>
w|=k
LY Nujlleoll2gu(—2) % 0" £
la|=k
<C2C 37 2N|[at flh.
|a| =k

It is clear that
dx
0% fll1 \/ A et S SUP(1+\x|)”“|9"‘f( )l
<C Sup(1+IX\)”“|8"‘f( )E

xeR”

Taking k = N + 1, we have

Z uj, f)

jeN

<C ) sup(L+[x)"H ot f(x)],

|a|=N+1x€R"

which implies that the series converges in .’ by the equivalent conditions
of .#" in Theorem 3.23. Thus, the convergent series

—11m2 u],

/< ]
defines a tempered distribution. Q

We have some identities as follows:

(Proposition 9.6. Let « € (1,V/2), k, | € Z, and Ay, Sy be defined as in}
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(9.6). Forany f,g € ./ (R"), we have the following properties:

Sk f =0,if1 > 1, (9.10)
MAf=0,if k=1 >2, (9.11)
A (Si_1fAg) =0,ifk—1< — log22 s 5, ork—1> —1+log,5a°.
(9.12)
In particular, taking « = %, (9.12) becomes
Ap(S1_1fAg) =0, ifk—1< -3, ork—1>2. (9.13)
G D,

Remark 9.7. In these properties, we need the condition a®> < 2, which
is the reason that we require # < /2 at the beginning of the section.
From now on, we always take o = % and use (9.13) instead of (9.12) for
simplicity since there are at most four nonzero terms for this choice.

When dealing with the Littlewood-Paley decomposition, it is conve-
nient to introduce the functions

P(&) =9(5/2), ¢(&) = ¢-1(Z) + @o(E) + 91(5) = p(Z/4) — (22).
and the operators
S =7 P(270)F =S, La=TF 19270 F
It is clear that Sy = 5;Sy, and Ay = ApAx from Proposition 9.6.

By Young’s inequality, we can easily prove the following crucial prop-
erties of the operators Ay and Sy:

Proposition 9.8 (Boundedness). Forany 1 < p < coand k € Z, it holds

1Acfllp < Cllfllp 1Skl < ClLEp
for some constant C independent of p.

We now study how the Littlewood-Paley pieces Arf (or Sif) of a func-
tion are related to the function itself. Specifically, we are interested in how
the L? behavior of the A, f relates to the L? behavior of f. One can already
see this when p = 2, in which case we have

1/2
1 £1l2 ~ (Z HAka%> : (9.14)

kez
In fact, we square both sides and take Plancherel to obtain

| F@Paz~ © [ 10u@PIF(@)Pde.
R” kez
Observe that for each ¢ # 0 there are only three values of ¢(¢) that do
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not vanish. That is, for || € [82¢,52],

Y 1ok(@)1F =97 1(8) + 97(Z) + 97,1(2)

keZ
=(pr-1(8) + @e(&) + 9r11(2))?

—2(@r-1(8)9e(8) + @r-1(8) @r+1(8) + @0 (&) Pr41(S))
=1 —2(¢r-1(8) + 9r:1(8)) e (&)
=1-2(1—9(¢))e(%)
=1—2¢4(8) +297(¢)

1e2(3-0®)

1

which yields
<Y (@ <1, Vg #0.

keZ

N |

The claim follows.

Another way to rewrite (9.14) is

(ZHAHF)UQ

keZ

, (9.15)

2
which is different from (5.38). More generally, another version of the
Littlewood-Paley square function theorem (Theorem 5.25) is valid:

1 £ll2 ~

( )
Theorem 9.9 (Littlewood-Paley square function theorem, another ver-
sion). For any 1 < p < oo, we have

(Z \Akf|2>1/2

keZ

~[I£1lp

p

with the implicit constant depending on p.
\, J/

We omit the proof. One can read the proof in [Ste93, Page 267], or
[Gral4a, Pages 339-343].

§9.2 Definitions and embeddings

The Littlewood-Paley decomposition is very useful. For example, we
can define (independently of the choice of the initial function ) the fol-
lowing notations.
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r 2
Definition 9.10. Lets € R, 1 < p, r < co. For f € //(R"), we write

1

11z, = (k_z (sznAkfup)r) , ©.16

1
r

> (zskI\Akap)r) - 9.17)

k=0

1£W1s;, =lISof1lp + (

For r = oo, it corresponds to the usual /*° norm.
\ J

Observe that (9.16) does not satisfy the condition of the norms, since
we have AyP(x) = 0in ./ for any P € Z. In fact,

AyP(x) = 0in ' < (AP, g) =0, Vg € 7.
It follows from 0 ¢ supp @i for any k € Z that for any a € INj

/IR11 x*Arg(x)dx = /Rn x“ (K;:g)v (x)dx = /Rn e 0 ] (ang\g)v (x)dx
=(2m)"/2ill [0t sg] (0)

=(2m)"2(=1)" |3 (9®)] (0) = 0.
Thus, by the property of ¢, we obtain

/W(Akx"‘)g(x)dx =0.

Now, we can use .¥(R") to give the following definition.

r N
Definition 9.11. Let s € R, 1 < p, r < co. The homogeneous Besov
space B}, , is defined by

= {f e S ®R"):|Ifllg;, < o},
and the nonhomogeneous Besov space B, , is defined by

B, = {f e S (R") :||flls;, < °°}'

\ J

For the sake of completeness, we also define the Triebel-Lizorkin spaces.

e 2
Definition 9.12. Lets € R, 1 < < r < oo. We write

p <
( 2Sk\Akf’ )
k=—oc0

8

1=

I£llgs, = . Vfe SR,
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1
[eo] r r
£l =lISofll + (2 (2%18ef1) ) , Vi e SR,
k=0 )
The homogeneous Triebel-Lizorkin space F;/r is defined by
B, ={fe 7' ®":|flls, <o},

and the nonhomogeneous Triebel-Lizorkin space F; , is defined by

By ={f e ®":|fllg, < oo}

\\ J

Remark 9.13. It is easy to see that the above quantities define a quasinorm
and a norm in general, with the usual convention that r = oo in both
cases corresponds to the usual /* norm. On the other hand, we have
not included the case p = oo in the definition of Triebel-Lizorkin space
because the L* norm has to be replaced here by a more complicated
Carleson measure.

Besov spaces and Triebel-Lizorkin spaces were constructed between
the 1960s and 1980s. Recently, they have been widely applied to study
PDEs. Roughly speaking, these spaces are products of the function spaces
¢'(LP) or LP(¢") by combining the Littlewood-Paley decomposition of phase
space. The index s in the definition, describes the regularity of the space.

From Theorem 9.9, we immediately have the following relations in-
volving Sobolev spaces and Triebel-Lizorkin spaces:

Theorem 9.14. Let s € Rand 1 < p < oo. Then
H; = lez, H; = F;,Z’ (9.18)

with equivalent norms.

For simplicity, we use X to denote B or F in the spaces, that is, X},
(X5, resp.) denotes B;,, (B;,, resp.) or F;, (F;,, resp.). However, it will
denote only one of them in the same formula. We always assume that
1< p < oo for B, (B;,,,, resp.) and 1 < p < oo for F;, (F;,r, resp.) if no
other statement is declared. We have the following embedding relations:

( )

Theorem 9.15. Let X denote B or F. Then, we have the following embedding:
Xon = X5 X5, =X, ifri<r,

pr1 pir2’ | 2281 p.r2’
Xyt = Xy, ife>0,
s s ] :
Bp,min(p,r) = Pp,i’ = Bp,max(p,r)’ Zfl Sp <o
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L B;rxnn(pr)c_)[:‘S c_>B;Jmax(]or) Zfl p < oo J

Proof. Tt is clear that the first one is valid because of ¢" — (" for any
a > 0. For the second one, we notice that

1 1
) 2] 0 2
(2 oskra ‘ak|72> < sup 2(s+£)k|ak| (E 2—ek72> ,S sup 2(s+e)k‘ak‘.

k=0 k=0 k>0

=20
Taking ar = ||Arf||, or ax = |Axf|, we can obtain

S-‘rS S
Xpeo = Xy o

which yields the second result in view of the first one.

For the third and last one, we separate into two cases and denote
by = 2°¥| Ay f| and j = 0 for the third or j = —co for the last one.

Case I: r < p. In this case, we have ¢ — (P and

é_l\bkuz - i/m ()P = [ i ()| dx

= [ 1@ 1hdx < [ 1) I

which yields the second parts of embedding relations. Moreover, by
Minkowski’s inequality,”, we obtain

17
()] -
k=

which yields the first parts of embedding relations.
Case II: p < r. By Minkowski’s inequality, we have

1.7
)]
k=j

P
which yields the second parts of embedding relations. In this case, we
have /¥ — (" and

1) ller 15 ST CBe) Hlevllp =

[ee]

Zl\kap = ZkuHr/

2 k=j
?

Yool = Z”kag <
i

)
Y b =
k=j g

o0
= 5 Il
1 k=i

which yields the first parts of embeddmg relatlons. We complete the
proof. Q

”Mmkowslq s 1nequaht1es read
il Z Silly < Z 1fjllp, for any p & [1,00];

ii) 'Zo I£illy < H '):ofij, forany p € (0,1) and f; > 0.
= J=

From Theorems 9.14 and 9.15, we can obtain the following corollary.
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4 )
Corollary 9.16. Let s € R. Then we have
(i) For1 < p < oo, Bpmm(p 2 Hy < B;max(pz) and B;,mm(p, 2
Hs — B; max(p2)° In particular, H = B3, =F,and H® = 33,2 =
F22 . . .
(ii) For1 < p < oo, Bs = I = and B;,l — Hj = Bj »
\, W

Proof. It obviously follows from Theorems 9.14 and 9.15 except the end-
point cases p = 1 or o< in (ii). For the proof of the endpoint cases, one can
see [BL76a, Chapter 6]. a

4 )

Theorem 9.17. Let X denote B or F. Then,

(i) X5, and X5, are complete;

(i) S (R") = X5, = "(R"), (R") = X;, — S (R");
(iii)) ~(R") is dense in X5,,if1 < p,r <oo; L (R") is dense in X5, if

pr pr
1< p,r<oco.
\\ V.

Proof. We only show the nonhomogeneous cases and leave the homoge-
neous cases to the interested reader (cf. [Jaw77; Saw18]). Clearly, X;,, is
a normed linear space with the norm | - ||x;, since either ¢"(L?) or L (¢")
is a normed linear space. Moreover, it is complete and therefore Banach
space which will be proven in the future. Let us first prove the second
result. We divide the proofs into four steps.

Step 1: To prove . —» B;/oo. In fact, for some integer ¢ > max(s,0)
and sufficiently large® L € INp, we have for any f € .7, from Propositions
9.1 and 9.8, that

£ 1185, =lISofllp + sup 2% Acf
=

<CIfllp + sup 272727 Aef]],

k=0

<Z\f\aﬁ+SUP2Sk2 7 sup [[07f]l,
k> ly|=c

<Z|f\aﬁ + Sup 11+ [x*) 07 flleo < Z!fla/s,
Y=o
where |f|, g is one of the seminorm sequences of .7 Thus, we obtain the
result.

Step 2: To prove . — Xj .. From Step 1, we know %/ — B;fgf, for
any ¢ > 0. From Theorem 9.15, we obtain BS+€ — B“; min(pr) B,,NE,,.
Therefore, . — X;,r.

Step 3: To prove B} ,, — .. For simplicity, we temporarily denote
A_1=0. Forany f € B;,Oo and g € ., we have, from Schwarz’s inequal-
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ity, Proposition 9.8 and the result in Step 1, that

[(f,. &)= ‘<(50+kiAk)fr (50+I§;Al)g>‘
=0 =0
<[ (Sof, Sog) | +1(Sof, Bog) | + [ {Dof, Sog) |

) 1
+kZ Yo (DS, Arag) |

=01=-1

o 1

SIFIplEHy + 32 o IAkfllpll kgl
k=01=-1

o 1
SIFlpNely + 32 30 2% akf 1,2 Akig
k=01=-1

o]

SIFIplgly +sup 2% aefllp Y- 27 %20 Akl
k=0 k=0

SAEM PSS
SIfllss . Y 18lap-
wp

Thus, we have proven the result.

Step 4: To prove X, < .#’. From Theorem 9.15, we have Xj , <
B;/max(p,r) — BZ,oo — 7.

Finally, let us prove the completeness of B} ,. The completeness of
F;, can be proved at a similar way. Let { fi};" be a Cauchy sequence in
B}, So does it in .7 in view of ii). Because .7’ is a complete local convex
topological linear space, there exists a f € .’ such that f; — f according
to the strong topology of .#”. On the other hand, that {f;}{ is a Cauchy
sequence implies that {Acf;})-; is a Cauchy sequence in LP. From the
completeness of L7, there is a gy € L” such that

HAkfl — ngP — 0, | — 0. (919)
Since [P — .’ and Arf; — Ayf as | — oo in ./, we obtain g, = Af.
Hence, (9.19) implies

|ACfi = )llp =0, 1 — o0

which yields sup 269k Ap(f; — f)|, — 0 as I — o for any € > 0.
k=0
Similarly, we have

1So(fi = f)llp =0, [ — oo
Therefore,

1fr = fllBy, S N fi = fllggze = 0, 1= oo,

Similarly, we can obtain the density statement in (iii). We omit the
details. Q
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It is enough to assume that L > %. In fact,

) 1/}’7 00 1/P
(1 +]x*)~L), =C (/ 11 +r2)-PLdr) <c2t (/ M1 +r)_27”Ldr>
0 0
00 1/p
<2t (/ 1+ r)’ZPH"’ldr) < C2b(2pL—n)~ 1P,
0

where we assume that 2pL > n.

4 N\
Theorem 9.18 (The embedding theorem). Let 1 < p, p1, r, r1 < o0 and

s, s1 € R. Assume that s — X = s — %. The following conclusions hold

p
B,, =B} ,, By, =B}, Vp<piandr<ry;
S S A =S
Fp,r — Fp;,rl, Pp,r — Fpi,rv Vp < p1 < 0.
& W,

Proof. We only give the proof of the nonhomogeneous cases, and the ho-
mogeneous cases can be treated in a similar way.

Let us prove the first conclusion. From the Bernstein inequality in
Proposition 9.1, we immediately have

kn(l—-L
18 f o S 27075 1Al 1S0f 1l S 11Sof s (9.20)

since 1 < p < p1 < 0. Thus, with the help of the embedding B;,,r — B;/rl
for r < rq in Theorem 9.15, we obtain

1
- Slk n 1
1Al =l8of I+ | X (27 18ef )
171 k=0
o0 " Iz
SlIsofll, + (2 (2* ety ) = 1£ll5;,, S IIf s,
k=0

This gives the first conclusion.

Next, we prove the second conclusion. In view of Theorem 9.15, we
need only prove F, ., — P;i/l. Without loss of generality, we assume
|fllE;,, =1 and consider the norm

[fllgr = [ISofllp +
Pl

oo

Y 2| Af|

k=0 1
We use the following equivalent norm (i.e., Theorem 1.17) on L? for

1<p <oo:

A0 =p [ 87 s ) > o e

Apl
— P
pf

Thus, we have
p1

(o]

Y 25K A £

k=0

dt

{x: i251k|Akf(x)| > t}

” k=0
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dt

o [ £ =)

=141,
where A > 1 is a constant that can be chosen as below. Note that p < p;

and s — 3 = 51 — - imply s > 51, we have

Y 25K A f| < 286G sup 2| A f|, VK € No. (9.21)
k=K k>0

By taking K = 0 and noticing p < p; (which implies that tP1~1 <
AP1=PtP=1 for t < A), we obtain

A
I 5/ 11wz sup 25| A f(x)| > ct p| dt
0 k=0
cA P
5/ P71 x s sup 25| A f(x)| > T p | dT < ||sup 25| A f|
0 k=0 k=0 p

where the implicit constant depends on A, but it is a fixed constant.
Now we estimate II. By the Bernstein inequality in Proposition 9.1,
we have

18k f oo S 2 PI|AKfIlp S 2P [Isup 2| A |

k=0

Hence, for K € IN, we obtain

Z 251k|Akf| < Z 2k s1—s+n/p) SupZSk’Akﬂ

k=0

P (9.22)

San/p] S 2Kﬂ/P1‘

sup 2Sk|Akf]
k=0

p

Taking K to be the largest natural number satisfying C2K"/P1 < t/2, we
have 2K ~ tP1/7 Tt is easy to see that such a K exists if t > A > 1. Thus,

fort > A and E 25K (A f)(x)| > t, we have, from (9.21) and (9.22), that

C2KE179) sup 2K | A f| > Z 25K ALf| > £/2. (9.23)
k=0 k=K

Hence, from (9.22) and (9.23), we obtain

I =p1 /Aoo =1 {x: ZZSlk]Akf(x)] > t}

N/ 11 { 251’<\Akf( )| >t/2Hdt

dt
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+/ tn { 251"1Akf >r>t/z}

5/: i1 Hx L C2Kn/pr t/ZH dt

+/°° 11
A

{x s sup 25| A f(x)| > ctpl/”}

k>0

k>0

{x - C2K6179) sup 2% | AL f ()| > t/Z} dt

dt

[ee]
</ -1
~Ja

<SP xosup 2K |ALf(x)| > T gl dT
A k=0
Slsup 2 Aif( ) < 1.
k=0
That is,
Yo 2 Al St
k=0 ”

However, from (9.20), we have ||Sof||,, < 1. Therefore, we have obtained
[fllg1 < 1 under the assumption ||f|[r;,, = 1. This completes the proof.
Pyl !

d

Theorem 9.19. Let 1 < p < oo,s > n/pand 1 < r < oo. Let Xj, . denote
B}, or F; .. Then it holds

S 0 (=]
Xpr = Byqg = L.

Proof. By Bernstein’s inequality and Theorem 9.15, we have

[e0] [e0]
k
e < 30 18kflle S 3 2Pl 8kf

k=-1 k=-1
< ( Y, 2rs ) 1Fllgs,. S If I, Q
k=—1

Now, we give some fractional Gagliardo-Nirenberg inequalities in ho-
mogeneous Besov spaces.

4 N\
Theorem 9.20. Let 1 < p, po, p1,7,70,11 < 0, 5,50,51 € R, 0 <0 < 1.

Suppose that the following conditions hold:

R A SOV S
p Po p1
s < (1—6)s0+ sy, (9.25)
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1 1-
- < 6 + 2 (9.26)
r ) 1

Then the fractional GN inequality of the following type

< 1-6 9
ol S ol el 927)

holds for all u € B ., N By}, ...
- J

Proof. Let s* = (1 —0)so+0s1, 1/p* = (1 —0)/po+6/p1 and 1/r* =
(1—-6)/ro+0/r1. By (9.25), we have s < s* and r* < r. Applying the
convexity Holder inequality, we have

o < fle” IF 1% - 9.28
I, < AT 171 (9.29
Using the embedding Bp P Bp »» we obtain the conclusion. Q

Now, we give the duality theorem:

Theorem 9.21 (The duality theorem). Let s € R. Then we have
i) (By,) = ru f1<p r<eco.
i) (F,,)" = F, 5, f1 <p,r < oo

Proof. Please read [BL76a; Tri83] for details. a

§9.3 Differential-difference norm on Besov spaces

The next theorem points to an alternative definition of the Besov
spaces B, (s > 0) in terms of derivatives and moduli of continuity. The
modulus of continuity is defined by

wy'(t, ) = sup || oy fllp,

lyl<t

where Al is the m-th order difference operator:

ZCk kf (x + ky).

e 2
Theorem 9.22. Assume that s > 0, and let m and N be integers, such that
m+ N >sand 0 < N <s. Then, for 1 < p, r < oo,

r 1/r
n 00 aN d
1 £1lBs, ~ Ifllp +]§ (/O (fN : (t axf>> %) :
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Proof. Note that w;’f is an increasing function of t. Therefore, it is sufficient
to prove that

N N 1/7
HfHB?” ~ Hpr + Z ([Z <2€(SN)(U;” <2(, gx.l\fl‘>> ) .
=—00 )

First, we assume that f € B;,. Itis clear that

e ONf oNf ok k0 S
wy (27, 57) = sup ||AY = sup |} Cp(-1)" > (x+ky)
S o S P 800 = ox )
aN m ‘ .
= sup ||log | 2 Cu(=1)f(x +ky)
yl<2=¢ | 9% \k=0 p
oN [ PN
Y r——
lyl<2=¢ j k=0 p
N (& k iky-& !
= sup |log | 2 Cu(=1)"e™ S
yl<2 | 9% \k=0 »
N PN
= sup |=— ((1—e¥€)"f
wi<z || 9% ( )

Denote p, (&) = (1 — €)™, By the Littlewood-Paley decomposition and
the Bernstein inequalities, we have

. aNf
0 oN A~V
= sup (50 +) Ak) W (Py(@)f)
lyl<2* k=0 X »
< sup || (py) *SofH + sup Z2kN H( )" *Aka .
lyl<2~¢ ly|<27¢ k=0 P
If we can prove that for all integers k
I (oy)" * Soflly < min(1, ly|™)|Sof . (9.29)
and
1 (oy) " * Bfllp < min(L, ly|"2") [ Acf . (9.30)

Then, we can obtain

r 1/7‘
n 00 N
j=1 \t=—c0 0x;

[ee]

S( X (267 sup min(1,[yI")[1Sof Iy
(=—o0 lyl<2~
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0 N\ 1/7
+ sup Zz(f—k)(S—N)zks min(l, |y|m2mk)||Akf||p> )
ly|<27¢ k=0

[e0]

g( Y (25(5‘1‘]) min(1,27")(|Sof]|,

{=—0c0

o r\1/7
£ 0 2000 min 1,27y, ) )

SN min(1,275)) * ()|
SN min(1,27) | | ) e < 1f 155,
where the sequence () with ap = 2| A f||, if k = 0, a1 = [|Sof ||,

and ap = 0 if k < —1, and we have used the Young inequality for a
convolution of two sequences. In addition, we have

11y SHSofllp + 3 1Akl
k=0

oo 1/7 o 1/r
SHSoflly + (Z 25”) (Z(ZSkHAkap)r> S 1 f1ss,,
k=0

k=0
which implies the desired conclusion.
Now, we turn to prove (9.29) and (9.30). We only need to show p, €
leyllae, < C o lloy (), ) " llae, <€ Yy #0. (9.31)

From the definition of p,, we obtain

\% m k k
Lo Ch(—1 k
fes £l fes 171y

m
<Y ¢ =2m
k=0
By Theorem 3.53, we have

oy (&), &) " g, (rry =N (1 = €2y, 8) ™" |, (e
=[1(( = e™) /1) lag,
<[ =€) /1l

since M, is a Banach algebra and the integer m > 1 in view of the condi-
t10nsm+N>sand0<N<s

In view of the Bernstein multiplier theorem (i.e., Theorem 3.55), we
only need to show (1 — ") /5 € L*(R) and 9,((1 —¢")/n) € L*(R). We
split the L? integral into two parts |7| < 1 and |5| > 1. For || < 1, we
can use |1 — ¢| < || to obtain |(1 — ) /5| < 1; while for its first order

o0
. . . k
derivative, we can use Taylor’s expansion ¢ = Z whenever |z| < o
il
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(z € C) to obtain
9y (1 =eM)/y) = —n 2 (ine +1 =)

k=0
_ v k!
B k; (k+1)!
= (i)t 1
B k; k—1)k+1’
which implies |9, ((1—¢e)/57)| < lel’l. Then itis easy to obtain the bound

=

of the L2 integral. Thus, ||((1— ¢
completes the proof of (9.31).
Similarly, we can prove

Iy /1yl )" $(lla, < €, and [[{y/|yl, )" ()llw, < C,
which implies by Theorem 3.53
1Ky, )" P O)llae, < Clyl™, Ky, )" $ (27 llaw, < Cly[™2"™.
Thus, we obtain
1 (en)” *Sof llp < 1SSl
| (Py)v *Sofllp
~ %
=(2m) 2| oy (@), &)™)+ (1, ©"F(@)) *Soflly
SyI™[Sof [l
which yields (9.29). Similarly, we have
I (o0) " * Bifllp < 1AKF
| (Py)v * Arflp
v
=) | (@) (8™ = (9, Aflly
Iy 2" A,
which yields (9.30).
The converse inequality will follow if we can prove the estimate
VR
(P]k) * ax]N

)/1) I, (r) < C by Theorem 3.55, which

n

HAkf”p 5 ziNk Z
j=1

, (9.32)

14
where pj = P (2-ke)) with ¢; being the unit vector in the direction of the
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gj-axis and p, defined as the previous. In fact, if (9.32) is valid, we have

N N 1/r
v 0
(03" + 2 4 ))
14
aNf N 1/7
<||f||p+2<k2%) (2“ N) ;"<2—k,axN>>> ,
= ]

j
which implies the desired inequality.
To prove (9.32), we need the following lemma.

I£1ls;, <Iflls + (i (2"“ My

k=0 j=1

( )

Lemma 9.23. Assume that n > 2 and take ¢ as in (9.2). Then there exist
some functions x; € . (R") (1 < j < n), such that

n

Y xj=1 on suppe,

j=1

suppy; C {& € R":[gj| > Bvm) ™'}, 1<j<n
. J
Proof. Choose x € (R) with suppx = {¢ € R : || = (B8y/n)"'}
and with positive values in the interior of suppx. Moreover, choose
o € Z(R"!) with suppo = {¢ € R"!:|¢| <3} and positive in the
interior. Writing

6] = (éll T /éj—l/ é’j-i-ll T /‘:n)

and

X&) = x(E)0(@)/ Yk (E)o@), 1<j<n,

j=1
n _.
where Y- x(gj)o(¢/) > 0 on supp ¢, only routine verification remains to
complete the proof of the lemma. Q

We now complete the proof of the theorem, i.e., we prove (9.32). By
the previous lemma, we obtain the formula

n V N
1Af1lp S (p;}x]-(z—k-)é‘;%(z—k-)) (p]kaxf ) H
=1 P
n v =7\ Y
2 Y (o) o)+ (i)
j=1 p
oNf

SzikNi p]() X]C (PH

Vv
(PJk) * 9N
7 Wp
B n oN
@y <pfk>V*ax£
= ]

p
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since, by Theorem 3.53 and 3.55, we have
(1— )y, ()& V() € M,
forl1<j<nand 1< p < oo Q

Now, we give a corollary that is very convenient for nonlinear esti-
mates in PDEs.

( )

Corollary 9.24. Assume that s > 0and s ¢ IN. Let 1 < p, r < oo, then

n o 1/r
HfHB,a,,NHfIIer];(/O (Sl supHAhaEf,fM ) :

|h|<t

where [s] denotes the integer part of the real number s and A denotes the

first order difference operator.
\, J

Similarly, we can obtain an equivalent norm for the homogeneous
Besov space.

4 )
Theorem 9.25. Assume that s > 0, and let m and N be integers, such that
m+N >sand 0 < N <s. Then, with1 < p, r < o,

r 1/r
1 e ; oNf dt
i, ~ & ( I (tN ( g )) t) |

In particular, if s > 0 and s ¢ IN, then

n o r 1/r
HfuB;,,,fv]_:Zl(/o ( ;TSHAhaE;]fM ) :

Exercises

Exercise 9.1. [Gral4b, Exercise 2.2.3] Leta € R, p > 0 and p € [1,0). Let

I"=ocand p' =p/(p—1) for p # 1.

(a) Suppose that the Fourier transform of function g is C* and is equal
to |{|7* for |¢| > 10. Show that ¢ € B; (R") iff 1 < r < oo and
s<a—n/porr=coands<a—n/p.

(b) If the Fourier transform of function g is C* and is equal to |¢|~*(In |¢])~#
for |¢| > 10, then show that g € B%,"/¥ (R") iff r > 1/B.

Exercise 9.2. [Graldb, Exercise 2.2.5] Let s € R, p,r € [1,00), and N =
[ﬂ + W] + 1. Assume that m is a CN function on R" \ {0} that satisfies

2
0" m(&)] < Culg] ™
for all |a| < N. Show that there exists a constant C such that for all f € .7
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we have

|62

< Cllfls, -

B3,






Paraproducts - An Introduction

§10.1 The realization of homogeneous Besov spaces for PDEs

When we consider partial differential equations, it is not conformable
to work on the quotient space. One of the reasons is that the quotient space
does not give us any information on the value of functions. Therefore, at
least we want to return to the subspace of ./. Although the evaluation
does not make sense in .7/, we feel that the situation becomes better in .7’
than in ./ = ./ / 2. Such a situation is available when s is small enough.

4 2
Theorem 10.1. Let 1 < p,r < co. Assume
s < E, or s = n and r = 1. (10.1)
p p
. 0 . e .
Then, for all f € B}, Y Axf is convergent in L and Y _ Ayf is conver-
k=—o0 k=1
gent in '
\ J

Proof. From Bernstein’s inequality, we have [|Acflle < 2P| Arf,. It
follows that
0 0

S Y IAflle S Y5 252 Al

S k=—o0 k=—o0

Ifllgy. S Ul ifs<n/p,

<
Nl g ifs=n/pandr=1.
pl

The fact that )~ Aif is convergent in . is a general fact. Q
k=1
There is a way to modify the definition of homogeneous Besov spaces
regarding the regularity index. For convenience, we first define a subspace
of .#/(R") that will play an important role in studying PDEs.

[Deﬁnition 10.2. We denote by . (R") the space of tempered distri—}
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butions f such that
Alim 16(AD)f|l =0, V6 € 2(R"), (10.2)
—00

A\ V
where the operator 6(D) is defined by (D) f := (9 f ) for a measur-

able function f on R" with at most polynomial growth at infinity.
L J

Remark 10.3. We have the following facts about .7}/ (R").
1) It holds

SR = {f e ' (R"): hm Skf— 0in L*(R") } (10.3)

and

71 (R™) {er’IR” f = ZAkfmy’IR”} (10.4)

kez
In fact, since ¥y € 2 given in (9.1), we have Sif =
$(27*¥D)f — 01in L™ as k — —oo if f satisfies (10.2).
Conversely, for a given 6 € 2, we may assume suppf C {¢ :
€| < C}. It follows that ¢ (&) = 0if 25! > C/A, ie, k > log, <. It
holds for any g € .7,

[{O(AD)f, g)| =I(F (&), 0(AE)Z)]
= <Z€0k &)f,0(A%) >'

keZ

=< [2 ¢k<é>?,9<A5>§>
k

<|log, %]
=(2m) "2

<S[log”]+1f9( *g>‘—>0as)\%oo

by (10.3) due to 6( ) xg € . and the fact that HO( )xglh <

163 1 llgh = 1Bl llglh by Young’s inequality, ie., [8(1-) * gl is
uniformly bounded w.r.t. A. Taking supremum over all g € . with
llgllh < 1, we obtain ||6(AD)f|| — 0 as A — oo since the Lebesgue
measure on R" is obviously semifinite.

For (10.4), noticing Ay = Si,1 — S and by Proposition 9.4 and
(10.3), we have for any g € .

< Y A, g> - < Y (Sesaf - skf),g>

keZ keZ
=( lim S — lim S;f,
<kﬁlrfoo k+1f kﬁuzloo kf g>
=(f,8)-
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On the other hand, from Proposition 9.4 and (10.4), from the above
equality, we obtain <klim Skf, g> = 0 for any ¢ € .7, and it follows
——00

(10.3).

2) It is clear that whether a tempered distribution f belongs to .7} de-
pends only on low frequencies. If a tempered distribution f is such
that its Fourier transform ? is locally integrable near 0, then f € .7}
In particular, the space & of compactly supported distributions is
included in ,5”}: . In fact, for any ¢ € ., we obtain

[(Sef, )| = (w2 *e)F (&), 3(2))]
<[, @Iz
|G]<2ka

A

<C | (&)]|dg — 0, as k — —oo,

Ig]<2a

since ]A” is locally integrable near 0. Thus, f € .7}.
3) f e Z//(R") & 30 € Z(R"), sit. )}im |6(AD)f|lec = 0 and 6(0) # 0.
— 0
Indeed, the necessity is clear from the definition. For the sufficiency,
by assumption, there is an ¢ € Z small enough such that supp ¢, C
supp 6, then

. “k
($uf,)| =| (070, Fam 8@

<) 21002 D) fle Hﬁf (éﬂfe—z?ﬂ

(3

<C[I8(2 D) f|loo — 0, as k — —oo,

gl
1

=(27)"""2(|6(2" D)

Il (10.5)
1

since % €9 Cs.
4) Obviously, f € .#/(R") < V0 € 2(R") with value 1 near the origin,
we have

lim [[0(AD)f]|e = 0.
A—00

5) If f € &' satisfies (D) f € L? for some p € [1,00) and some function
6 € Z(R") with (0) # 0, then f € .. In fact, similar to (10.5), we
can also obtain for any k < /¢

5,01 =| (@7 (@), Yo k@)

—k
<m0l |7 (L) | sl
P
—2m) "D 207 (s ) @) st
,
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> ()],

6(2
as k — —oo, with the help of 6(2F-) — 0(0) # 0 as k — —oco and the
uniform continuity of the Fourier transform for L! functions.
6) A nonzero polynomial P does not belong to .7} because for any 6 €
2(R") with value 1 near 0 and any A > 0, we may write 6(AD)P = P.
In fact, Va € Njj, Vg € .7,

(O(AD)x%, g(x)) = (B(AD)F(E), Z(E)) = (x*,6(AE)Z(E))
=(1,x*0(A8)Z(2))
=(1, (—i0g)* (6(AD)Z(2)))

:<(2n)"/250(§), )3 Cff(—iA)ﬁ(agf))(Aé)(—iag)”§(§)>

a=p+7y
=(2m)"? Y, CR(=ir)P(356)(0) (x7g)" (0)
a=p+7y
=(2m)""2 (x"g)" (0) = ((2m)"%60, (x"g)")
=(1,x%) = (x%,g(x)),
since (9£0)(0) = 0 for any B # 0.
7) A nonzero constant function f does not belong to ., because Sif =
f,VkeZ,ie, klirn Skf # 0. Indeed, we have for any g € .
——00

=(2m)~"2 ¥ |6(D)fl,

($¢f,8) = (@il 8) = @)™ (pif0, §) = 271)"2(0) ££(0)
=(2m)"2£5(0) = (270)"2 (f60,8) = (£.8)

We note that this example implies that .} is not a closed subspace of
" for the topology of weak-* convergence, a fact that must be kept
in mind in the applications. For example, taking f € .(R") with
f(0) =1 and constructing the sequence
x
fitx) = £ (%) € #R") € AR,
we can prove

fr(x) CALSN S(R"), as k — oo.

Now, we redefine homogeneous Besov spaces that can be used in the
context of PDEs.

Definition 10.4 (Realization of homogeneous Besov spaces). Lets € R,
1 < p, r < 0. The homogeneous Besov space B;/, is defined by

B, = {f € AR |flls,, = |If

o 0 ;.
B, <
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( Proposition 10.5. The space B;J endowed with || - ||3;7 _is a normed space. J

Proof. Ttis clear that || - ||B;, _is a seminorm. Assume that for some f € .7},

we have || f H’E% = 0. This implies that supp? C {0}, and thus, for any
k € Z, we have Sy f = f. As f € ./, we conclude that f = 0. Q

Remark 10.6. The definition of the realized Besov space TB;N is indepen-
dent of the function ¢ used for defining the blocks Ay and changing
¢ yields an equivalent norm. Indeed, if ¢ is another dyadic partition
of unity, then an integer Ny exists such that |k — k’| > Np implies that
supp ¢(27%-) N supp ¢(27¥) = @. Thus,

2 D)fllp =2 Y @@ FD)Apf

k=K |<Np

p
2NN X o g (K = KD25 B 1,
k/

which implies the result by Young’s inequality. We also note that the
previous embedding relations for B“;,,, are valid for B;/r.

The (realized) homogeneous Besov spaces have nice scaling proper-
ties. Indeed, if f is a tempered distribution, then consider the tempered
distribution fy defined by fy := f(2N:). We have the following proposi-
tion.

Proposition 10.7 (Scaling properties). Let N € Ny and f € .7/ (R").
Then, ||f”B§,, is finite iff ”fN”i%;,, is finite. Moreover, we have

fillag, =2V fll, .

Proof. By the definition of Ay, we obtain
M) = (9@ DfF@D(@) ()
= (p2 2 ™F2 D) ()
= (p2 MOF@) (2%0) = Ay f(2V).
It turns out that || Acfn ||, = 27"N/P||Ax_nf||p. We deduce from this that
2| Axfullp = 2V P20 Ay f
and the proposition follows immediately by summation. Q

In contrast with the standard function spaces (e.g., general Sobolev
space H® or L? spaces with p < 0), (realized) homogeneous Besov spaces
contain nontrivial homogeneous distributions. This is illustrated by the
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following proposition.

Proposition 10.8. Let o € (0,n). Then for any p € [1, 0], it holds

1 U
— € B} (R"). 10.6
Proof. By Theorem 9.18, it is sufficient to prove that py := |- |7 € B} 7 —

. =0
Bp”,oo . To do so, we introduce x € Z with value 1 near the unit ball and
write

Po = po + p1, with po(x) := x(x)[x[7 and p1(x) := (1= x(x))[x["",

It is obvious that pg € L! and that p; € L7 whenever ¢ > n/c¢. This
implies that p, € .7;. The homogeneity of p, gives

bepo =(27) "2 (9(278)) 5 po = (271) /22 5(25) % po
=(27) 2K 528 ) 1 po (2F) = 2 (Bapo) (2.

Therefore, ||Ayos||1 = 25" ||Agps||1, which reduces the problem to prov-
ing that Aopg € L'. Due to Qo € L', we have Aopo el by the continuity
of Ag on Lebesgue spaces. By Bernstein’s inequality, we obtain

1Aop1llr < Ci sup [|0%Agpr|l1 < Ci sup [|0*pa v

la| =k la| =k
From Leibniz’s formula, 9*p; — (1 — x)9“ps € 2. Then, we complete the
proof by choosing k > n — ¢ for which |0*|x|~7| < |x|~7F is integrable
outside the unit ball. Q
The following lemma provides a useful criterion for determining whether

the sum of a series belongs to a homogeneous Besov space.

4 \
Lemma 10.9. Lets € R, 1 < p,r < coand A be an annulus in R". Assume

that { fi }rez is a sequence of functlons satisfying

supp fy C2°A, and ||{2°Ifllp ), ,,

If the series kz fi converges in /' to some f € 7, then f € BZ,r and
€Z

< 00,

o 2ks
£, < s [ 25183, -

. v

Proof. Itis clear that there exists some positive integer Ny such that A;f; =
0 for |j — k| > Ny. Hence,

1Aifll, =1 Y Afill S X Ifllp

|j*k|<N0 p |j*k‘<N0
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Therefore, we obtain that

PNaifllp < Y 202 fll = € Y 20 g eng ()2 filp-
|j—k|<No kez

Thus, by Young’s inequality, we obtain

No-1
1A ll5;, S ( ) 215) (2% fillp 3 So (2 fillphef o -
b —Sn H r(z) (z)
As f € /] by assumption, this proves the lemma. Q

Remark 10.10. The above convergence assumption concerns { fi bx<o. We
note that if (s, p,r) satisfies the condition (10.1), i.e.,

S<E, or s:Eandrzl, (10.1)
P P

then, from the proof of Theorem 10.1, we have

lim ) fi =0in L%

Aoy

Hence, } fi converges to some f € .#/, and Sif tends to 0 when k goes
kez
to —oo. In particular, we have f € ..

Lemma 10.9 will enable us to establish the following important topo-
logical properties of homogeneous Besov spaces.

e 2
Theorem 10.11. Let 51,50 € Rand 1 < py,pa2, 11,72 < 0. Assume that

(s1,p1,11) satisfies the condition (10.1). Then the space By, N By ,, en-
dowed with the norm || - || g1+ - || g is complete and satisfies the Fatou
P11 P22

property: If { fitken, is a bounded sequence of By, N B}, then there
exists a subsequence { fi }jew, and an element f € B} », N B ., such that
lim fi = fin.’, and |||l < Climinf||fi ||z forl=1,2.
j—oo” PLT j—o0 7 By
\ b,

Proof. We first prove the Fatou property. According to Bernstein’s in-
equality, for any m € Z, the C® sequence {Afi}tren, is bounded
(uniformly in k) in L7 for any min(p;, p2) < p < oo, especially in
Lmin(pip2) 4 [ since

A fllp < 2mnA/p=1/plp=msipmsi|| A, £l , for p > p, [ =1 or 2.

Cantor’s diagonal process supplies a subsequence {fy,}jen, and a se-

quence { fi }mez C C® with Fourier transform supported in 2" A (where
A has been defined in (9.3)) such that, foranym € Z, ¢ € ., and | = 1,2,

tim (Aufiy, ¢) = @), and [ Fuly < limin Ao fy

Now, the sequence ({2’”51 [y ||pz}m> is bounded in ¢"/(Z). Hence,
0

jEN



272 10. Paraproducts - An Introduction

there exists an element {¢&}, },,cz of £ such that (up to an omitted extrac-
tion) we have, for any test sequence {d, }mez € coo” of nonnegative real
numbers different from 0 for only a finite number of indices m,

Hm Y 2" Apfi | pyd = Y Sy, and [[{8, ol en < liminf [|fi [ 55
]% meZ med j—oo P

Passing to the limit in the sum and using the Holder inequality gives that

{2 fullp, ym € €1(Z).

From the definition of f,,, we easily deduce that .Z f,, is supported in the
annulus 2" A. As (s1, p1,71) satisfies (10.1), Lemma 10.9 thus guarantees

that the series Y f, converges to some f € .#]. By Proposition 9.6, we
meZ

have, for all M < N and ¢ € .7,

Z Anf,9) = Z > Dufuw. ).

m=M |m'—m|<1

Hence, by the definition of f,, and Proposition 9.6 again we have

Z Amf—hrn Z Z AnA,, fk —hm ZAmfk, in.7".

J7% m=M |m' —m|<1
Since the condition (10.1) is satisfied by (s1,p1,71), and {f}jen, is
bounded in By, ,,, Lemma 10.9 ensures that Sy f; tends uniformly to 0
when M goes to —oo. Similarly, (1 — Sy) fi; tends uniformly to 0 in B 1,
as N — co. Hence, f is indeed the limit of {f }jen, in -#”, which com-
pletes the proof of the Fatou property.

We will now check that Bj} ., N B2 ,, is complete. Consider a Cauchy
sequence { f}ren,. This sequence is of course bounded, so there exists
some f in Byl , N B} ,, and a subsequence { fr, }jen, such that { fkj}jG]N[]
converges to f in .. For any positive ¢, there exists an integer j. such
that

j 2 j/ 2 jE = ka/-/ _fkf’|B;1],r1 + ka]-/ _fijBZZZ/VZ <€
the Fatou property for {fi, — fi }jen, ensures that
V' > e Wiy~ fllgy ey~ Fllge < Ce

Hence, {fi }jen, tends to f in B! ,, N B} ,,. This completes the proof. O

Tcqp is the space of all infinite sequences with only a finite number of nonzero terms
(sequence with finite support), which is dense in ¢" for any r € [1, o).

In the case of negative indices of regularity, homogeneous Besov spaces
may be characterized in terms of operator Sy, as follows.
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r Y

Theorem 10.12. Let s < 0and 1 < p,r < oo. Assume that f € .7/ (R");
then, f € B, .(R") iff

{21811}, € ¢

Moreover, we have

2 f g, <[ @S], < gl

\\ W,

Proof. We write

2% Akfllp < 2°USkaa fllp + 186 lp) < 2725 Sa £l + 2118k .
Then, the left inequality is proved. To obtain the right inequality, we write

2°Sefllp <2 Y NAiflly = Yo 2027 YA 1],

j<k-1 j<k-1
=Y o0k X{k 128 1Al
JEZ

where x(x_j>1y = 1if k —j > 1 and is zero otherwise. As s is negative, the
result follows by Young’s inequality for ¢" spaces. Precisely, the coefficient
is

28 1 1

Y 28 = < ,
= 1-25 26 —1 S s[In2
; s — (|s|1n2) Is|
since 2 Z implies 21/ —1 > |s|In2. Q

kf

Theorem 10.13. Let s € R, p,r € [1,0]. Then, B;/V(]R”) is a Banach space

when s < %. In addition, B;l(IR”) is also a Banach space.

Proof. By Proposition 10.5, both B3 (R") and 35,1(1[{”) are normed
spaces.

Step 1. To prove the embedding: B;/r(IR") — &' fors < %, and
B0 (R") — 7.

We know that B, (R") C .’ for s < 5 and Bfll(]R”) C .7 by the
definition of Besov spaces due to ./} C ./, but the embedding relation

in the topological sense needs to be proven. From Bernstein’s inequality,
it follows that

. [
[Akitlleo S 277 || A . (10.7)
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n
For u € B;er we have

. Koo«
lullo < Y NAk1llo S ) 277 1 Avut]p = Cllull 5
keZ keZ pl

which yields B/ | < L* < 7",
For s < %, we first consider the part of low frequencies k < 0. For
any f € ., we obtain

. . ko
(A, ) <[ Arelleo| flln S 277 [ Al ] £ 111

k(n—
2l sup 1+ 1) MWp 0L (108)
xeR"

(Zs)

For high frequencies k > 0, we can use, as in (9.9),

Thus,

S [l s, Su]Rp(l + 2" f ()]
xeR"

Agu =271 Z o (25, (2%.) x Agur), (10.9)
la|=I
1\ v
g = (21) " %a, (( | gf’;? go(g)> . (10.10)

Then, it holds for | € Ng and any f € .7,

(Byu, f) =27 )7 (0% (2 gu (2) % Ayur), f)
la|=1

la|=1
SlAgulw2 ™ sup (1 + [x])" 0" £ (x))]

xeR"
| =1

§2k<%—s—l)2ks”Akqu sup(l + |x\)”+1|a"‘f(x)|.
xeR"
|a|=I

Thus, for large [ > % — s, it follows that

[
k>0

Therefore, we obtain for any f € .%/

[, A1 < Y KAk, )] < llullsg, sup(1+[x))" o f(x)],  (10.11)
kez xERM

S llulls;, sup(1+ [x)" 0% f ().

la|=1

la|<I
which implies B3, , < ..
Step 2. To prove the completeness. Let {u;},cn be a Cauchy se-
quence in B;Ir, where s < % ors = % and r = 1. Replacing u by u, — u; in
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(10.11), there exists a u € ./ such that

7
uy s ue€., asl — .

Step 2.1. To show u € ./]. Fors < 2 p Dy the assumption, it is clear
that u, € .}/ for any ¢ € IN. Similar to (10 8), we have for any / € IN and
JEZ

[(Sjue, I < Y Kdwue, I < Y [Bkuelloll fl1

k<] 1 k<j—1

sszf(ﬁ‘s) sup sl [1£]1.
. ,
From u, Lue s , it follows that
(S 01 5267 sup luly I, ¥F € 5.

Hence, we obtain

lim Su—O ie., u € 5”;{

]—> oS}
For the case s = ¥ and r = 1, since {u,} is Cauchy in fB” — BY, |, we
have Ve > 0, 3lp € N, s.t. Vj € Z and ¢ > ¢
Yo Akl < 30 NA(ue —ugy) oo+ 3 1Akt1g, oo
k<j—1 k<j—1 k<j—1
Sllue—ugllso + 3 (Al
k<j—1
E
S A
k<j—1
We can choose jj so small that
- € .
L Al <5, Vi< jo.
k<j—1
Thus, it follows that for u, € .%/, we have, Vj < jo, V£ > £y
ISjuclleo < 32 llAurllos < e. (10.12)
k<j—1

Since 331 s 1’330,1 — L®, {uy}sen is also a Cauchy sequence in L%, i.e.,
uy — u € L* as £ — oo. Taking ¢ — oo in (10.12) yields
1Sjulle <& Vi< jo,
which indicates u € .7}.
Step 2.2. To show u € Bj, .. From the definition of Besov spaces, it
follows that for any fixed k, {Avug}oen is a Cauchy sequence in L7. By
the completeness of L7, there exists iy € L” such that

lim ||Aguy — itg]|, = 0.
Jim [ Mgy — gl
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. Z - e
Since u; < u as { — oo, we have Ay == Agu as { — co. Then,
iy = Agu. Thus,

lim 25| Al = 25| Ay, VK € Z.
—00

For ¢ € N, {2%||Aguy||,} is bounded in ¢'(Z), then so is {2||Agu,}. It
follows that u € B;/r from Lemma 10.9.
Step 2.3. To show the convergence in B;/r. For any given K > 0, due
to Agtty, — A in LP as m — oo, we obtain
1 1
. AN . r\’
Y <2kSHAk(W —u)llp ) = lim ( Yo (2501 (g — ) [l ) :
(Z /) - (E )
Noticing that {uy}scn is Cauchy in B;/,, thus, for any € > 0, there exists
a /o € N independent of K such that for all ¢ > ¢y, we have

1

(lkgK (2 lAe(e = )]l ) <e

Taking K — oo, it yields that u, — u in B;/r as ¢ — oo. Thus, we complete
the proof. Q

Remark 10.14. The realization B;’T coincides with the general definition
B,, whens < n/p, ors = n/p and r = 1. However, if s > n/p (or
s =n/pand r > 1), then B} , is no longer a Banach space. This is due to
a breakdown of convergence for low frequencies, the so-called infrared

divergence.

Example 10.15. Let x(¢) € 2(R) with value 1 when || < 8/9 and
supp x = {¢ : || < 9/10}. Define

Xx(C) “k
7@ = lempgr 6122

0, otherwise.
It is clear that for k > ¢ > 0
0, [
o~ > 1 —k —¢
— = , 270 <8 <27,
0, |E| <27k,

Thus, we have

1fe = fell gz = Sug 272 Ai(fe — fo)ll2
~

— sup2//2 / 9i(¢)
jez 27k<fg] <2

¢In|g]

2 1/2
dg>
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721 o270 [
<o (70 )

__ 1 ( o(2)
(In2 \ Jr| ¢

namely, { f;} is Cauchy in 3%@ However, it holds

1/2

1/2
d§> — 0, ask,{ — oo,

x()
lim fe(2) = Finjg e

which is not integrable near {0}, therefore klim fe ¢ 7 and then
— 00
hm fk ¢ Bl/ 2

Finally, we give the dual of realized homogeneous Besov spaces. Ob-
serve that in Littlewood-Paley theory, the duality on .7} reads for ¢ € .7,

ey =Y (A, Ajp)y =) /nAk“ (x)dx.

k—jl<1 k—jI<1

For the L? space, we can estimate the norm in B;’]/r by duality.

(" ™)
Proposition 10.16. Forall s € Rand p,r € [1,00],

BS X Bpsr, — R

(u,(P — Z <Aku,A]¢>

=S

defines a continuous bilinear functional on B L X B p ;. Let

Q5 = {qb e NB: pllg s < 1} .
P
If u € .7, then we have for p,r € (1, 0],
lulls, < C sup (uw,9)

9eQ 7,
\, /

Proof. For |k —j| <1, by Holder’s inequality, we have
(B, Ajp) | < 2125 | Ayl |, 27| Ayl -
Again using Holder’s inequality, we deduce that
[, )| s Null g, 19115 -
To prove the second part, for N € IN, let
QY = {(zxk) e '(Z) : ||(a)]| o <1, with ag = 0 for [k| > N}.

By the definition of the Besov norm and the dual properties of ¢", we
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obtain

. = k)25]| A H
Iz, = sup [ (a2 1Al ) |,

=sup sup ) |]Aku|\p2kszxk (by duality of ¢")
NEN () eQy k<N
=sup sup ) 280, sup (Agw,$), (by duality of LF).
NEN () ey, [KI<N g€
1] <1
By definition of supremum, for |k| < N and any ¢ > 0, there is a ¢4 € .7
with ||¢x[|,; < 1 such that

. - . ngks
sup (Agu, @) < (Agu, ¢r) + :
i A P A ) (A + kD)
I <1
Let
(DN = Ssup Z uckaSAkqak.
() €Qy [kI<N
Note that
K & K
(Z ak) < Kmax(O,zx—l) Z a?
k=1 k=1
for a > 0 and a; > 0 (cf. [Dan10, p.391]). Then, for 7’ € [1, ), we obtain
/ 1/7
1Onllss, = | 277 || sup Y w2A;Avp
- j€z () €Qy [KISN P
! 1/7
=) 27 || sup Y Xij—1j+1) (k)2 A Ay
jez () €Qy [KISN P

AN

1/7
3”’12 sup ) \txk\r/?([jq,jﬂ](k)2(k*]‘)5r’ gbk;,)

JEZ (a)eQy KISN

1/
S13TY sup (Z mv/) sup Xyl,j+1}(k)2(kj)5’/)

JEZ (ay)eQy \|KI<N [k|<N
1 /

<lsl (3.3?’—1) &

<32|S|/

which is independent of N.
Thus, for any N,

| (en (02 1 Aul])

or
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g2 ks
(1 + Jag| ) (1 + [K[2)

<(u,®N)+ sup Y 28|y
(o) €QR; KI<N

< <u, (DN> + €.

Therefore, we complete the proof. Q

§10.2 More results on nonhomogeneous Besov spaces

For the nonhomogeneous Besov space, we have the following lemma,
the proof of which is analogous to that of Lemma 10.9.

r N
Lemma 10.17. Let s € R, 1 < p,r < oo and A be an annulus in R".

Assume that { fi } ke, is a sequence of smooth functions satisfying

supp fi, C 2°A, and ||[{2%fill }e,
Then, we have

= ). fe€ B, and||flls, <s

0291 fiell p e
keN, ¢r(No)

\. A

Remark 10.18. If 1 < r < oo, then for any f € B; ,,
lim [|Sxf — fllB;, =0,
k—o0

< o0,
(INo)

we have

since

lim Y27 |Af =0, vre[1l,), f €B;,
]>k

e 2
Theorem 10.19. Let s < 0and 1 < p,r < oo. Assume that f € /' (R");

then, f € B;, . (R") iff
{251kl }, o, € £

kelNg
Moreover, for some constant C depending only on n, we have

27F1 fllgg, < || {2 lSifl e, |s|1n2”f||B’”

\. W,

Proof. The proof is very close to that of Theorem 10.12 and is thus omitted.
a

Similar to Theorem 10.11, we have the following.

Theorem 10.20. Let s € Rand 1 < p,r < oo. Then BS is a Banach space
and satisfies the Fatou property, namely, if { frtken, is a bounded sequernce
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of By, then there exists an f € B}, . and a subsequence { fi }jeN, such that

lim fkj = f n y/, and HfHB?;y S llgglf kajHsz,r'

j—roo

We will now examine the way Fourier multipliers act on nonhomo-
geneous Besov spaces. Before stating our result, we need to define the
multipliers we are going to consider.

( )
Definition 10.21. Let m € R. A smooth function f : R" — R is said to

be an S"-multiplier if, for each multi-index «, there exists a constant
C, such that
0°£(D)] S X+ 1E)™ T, vE R

L J

( )

Theorem 10.22. Let m € R and f be an S™-multiplier. Then for all s € R
and 1 < p,r < oo, operator f(D) is continuous from By, , to By, ™.
\\ v

Proof. According to Lemma 10.17, it suffices to prove that
KM A F(D)ul|p < C2F) Al V> 1. (10.13)

Obviously, we can find the smooth function oy := @ f satisfying the as-
sumptions of Lemma 9.3, i.e., on supp @

[0%0(2)| =[o%(§(27%2) (£))]
S L R7PePe)(27F¢)a £ (2]

a=p+y

< X R A+ (e
a=p+y

< Y 1P @) (27Fg) 2k

p<a
52k(m*\a\),
and such that
Arf(D)u = Arf(D)Agu = 01(D)Ayu,  Vk > 0.

Hence, Lemma 9.3 guarantees that (10.13) is satisfied for k > 0.
Next, introducing 8 € Z(R") such that § = 1 on supp ¢, we see that

A1 f(D)u = (6f)(D)A .
As (6f)" € L', Young’s inequality yields (10.13) for k = —1. Q
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§10.3 Paraproduct and Bony decomposition

In this section, we study the way that the product acts on Besov spaces.
Let f and g be tempered distributions in ./ (R"). We have

f= ZAkf and g = ZAjg,
k j
hence, at least formally,
fe=Y MfAjg.
k,j

Paradifferential calculus is a mathematical tool for splitting the above sum
into three parts:

1. The first part concerns the indices (k, j) for which the size of supp Z;}

is small compared to the size of suppAjg (i.e., k < j — Ny for some
suitable positive integer Np).

2. The second part contains the indices corresponding to those frequen-
cies of f that are large compared with the frequencies of g (ie.,
k > j+ Np). L

3. In the last part, we keep the indices (k,j) for which supp Axf and
supp Zk\g have comparable sizes (i.e., |k — j| < Np).

The suitable choice for Ny depends on the assumptions made on the sup-
port of the function ¢ used in the definition of the Littlewood-Paley de-
composition, i.e., (9.2).

In what follows, we shall always assume that ¢ has been chosen ac-
cording to (9.2) so that taking Ny = 1 is appropriate in view of Proposi-
tion 9.6. This leads to the following definition.

e 3
Definition 10.23. The homogeneous paraproduct of g by f is defined

as follows:
J
The homogeneous remainder of f and g is defined by

R(fg)= ¥ Aufdgs
k=jl<1
. J

Remark 10.24. It can be checked that Tyg makes sense in .” whenever
f and g are in .%} and that T : (f,g) ~ Tg is a bilinear operator. Of
course, the remainder operator R : (f,g) — R(f,g), when restricted to
sufficiently smooth distributions, is also bilinear.

The main motivation for using operators T and R is that, at least for-
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mally, the following so-called Bony’s paraproduct decomposition holds
true:

f&§="Tig+ Tof + R(f.8)- (10.14)
Therefore, to understand the product operators in Besov spaces, it suffices
to investigate the continuity properties of the operators T and R.

For simplicity, it will be understood that whenever the expressions
Trg or R(f,g) appear in the text, the series with general terms

S']‘,lfA]'g, or Z Ajfvajg
lvl<1
converges to some tempered distribution that belongs to .7}.

Similarly, we can define nonhomogeneous paraproducts as follows.

( )
Definition 10.25. The nonhomogeneous paraproduct of g by f is de-

fined by
Trg =) Si-1fAj8.
j

The nonhomogeneous remainder of f and g is defined by

R(f,8) = Y, AfAjg.
lk—jl<1
\_ J

At least formally, the operators T and R are bilinear, and we have the
following Bony’s paraproduct decomposition

f§ = T8+ Tef + R(f,8)- (10.15)
We shall sometimes also use the following simplified decomposition
fg= ng + Téf, with Té/,f = ZS]+2gA]f (10.16)
j

We can now state our main result concerning continuity of the homo-
geneous paraproduct operator T.

r 2

Theorem 10.26. Let s € R and 1 < p,r < oo. Then, for any (f,g) €

L* x B;,r, we have

1778lls;, < CHFIIF gl -

Moreover, let s1 < 0,50 € Rand 1 < p,r1,r2 < oo, then, we have, for
any (f,8) € B, x '-Biiz,rz/

Cl+|51+ 2
<

. 52| 1 _ 1 1
HngH‘B?jSZ NS THfH.Bilwl ngﬁ?,rz' with ; = min (1,1’1 + 1’2> .

\ W
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Proof. From Proposition 9.6 and Proposition 9.8, we have

Tﬂ%%g%<ﬂm<2ﬁjﬁ&a )
€ jEZ p
<y ( S <s;-1fAfg>np)

kez \—2<k—j<1

<caty Y (20029 f ) Al

keZ —2<k—j<1

. N r
:Cr4r71HfH1;o Z Z zs(kf])r (251 HA]ng)

JEZ —2<k—j<1

<CA2P1 11 Ng s .
pr

which yields

IT58ll5: < 4C - 22| flloollg |55 -
pr P

Similarly, we obtain

’|ng”‘B;1,+52 = (Z (2k(51+52)
’ kez

)

1/r
<C411/r<2 y (2(kf)522k512j52|\3j1fHooHAJ‘8Hp)r>

keZ —2<k—j<1

Ax <Z Sj-1f Ajg)

jez

g <Z <‘2 D (51—1fA18)||p>r>1/r

kezZ <k—j<1

1/r
:C41—1/r<2 y (2(k—j)522ks12152||5'].1f||ooHA]-ng>> :

JeZ —2<k—j<1

For the case 1 = L + % < 1, by Holder’s inequality and Theorem 10.12,

; "
we have

T8l

1/}’1
<41_m<2 y (2(k-]’)(sl+sz)+s12(j—1)51||Sj_1f|\oo)rl>

J€Z —2<k—j<1

(35 @ 1aa1,)7)

C
<|571’4_l—1/r+1/r1+1/r222|51+52| HfHB
C
= Sz
|51

2 ||g’|3;g,2

B, 18] B2,
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C
<m2z‘sl+sz‘\’f|\ggl 181l 55, -

For the case .- —|— - > landsor =1, we haver, < r} w1th —|— Il —1and

so "2 C 0n, Thus, by replacing r, with r] in the first case, we can obtain
the desired result. a

Similarly, the main continuity properties of nonhomogeneous para-
products are described below.

s

~

Theorem 10.27. Let s,81,50 € Rand s; < 0,and 1 <
there exists a constant C > 0 such that

1T¢8ll;, <CPI flleolig s,

Clsits2|+1 1 1
o e, Iglsg, ,wzthf — min (1 1. )

[

p, 11,12 < oo. Then,

T8l gy <

\,

v,

Proof. The proof is analogous to that of Theorem 10.26 and is thus omit-
ted. Q

We now examine the behavior of the remainder operator R. Here, we

have to consider terms of the type Y. AcfA;g, the Fourier transforms
k—jl<1

of which are not supported in the annulus but rather in balls of the type

{¢ € R": [¢] < §-2F}. Thus, to prove that the remainder terms belong to

certain Besov spaces, we need the following lemma.

7

~\

Lemma 10.28. Let s > 0,1 < p,r < co and B be a ball in R". Assume that
{fk}kez is a sequence of smooth functzons satisfying that the series ). fi

kez
converges to f in ) and

supp fi C 2B and  |[{2|full i

Then, we have

(2)

. Cs
s o ks
feBy, and |fls, < ;o [N,

where C is a positive constant independent of s.

\,

A
Proof. Denote Aj = {¢ € R" : §-2/ < [¢] < § -2}, There exists an

integer Nj such that if j > k + Np, then A; N 2B = @ and so @ =0.
Hence, we have, by Young's inequality for series and Proposition 9.8, that

= |42 A .
£33, = 20851,

Z Ajfk

k>] Ny

iler(z)
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< { E z(j—k)szksHA]'kap}

k>j—N1 ] gy(z)
. k 2N152—s L
< ) 272" — 2| £,
jgﬁ {25 fiellp vz 1-2% {25 fiellp @)
2le L
< 28 )
sln2 ’{ ||fk||P}k (2)
since s > 0. 3

Now, we can state a result concerning the continuity of the remainder
operator.

r N
Theorem 10.29. Let 51,5, € Rand 1 < p1, pa, 11, 12 < 00. Assume that
1 1 1
— = —4+ —<1, andlzzl+l<1.
p p1 p2 r rn n

If 51+ sp > 0, then we have, for any (f,8) € B3 », x B2 .,

) Cltlsil+si+s:
HR(ffg)Hg;l,jsz < 51+ 5

Ifr =1and s; + sy > 0, then we have, for any (f,g) € By, ,, x B2 .,

: 1+ [s1|+s1+
IR, )l gipoe < CHA 2 fl] oy gl
\. J

||ng;11,,1 ||g”g;22m2-

Proof. By the definition of the homogeneous remainder operator,

R(f,g) =Y Ry, withRy= Y A, firg.

k lv|<1
Because suppl/{; C {&: |& <2k %7} and supp ¢; C {¢: g,zj < e <
g -2/}, we have

AjRg =0, Vj>k+2.
Thus, we obtain

AR(f,8) = Y. ARy

k>j—2

By Holder’s inequality, we infer that

22 | AR(E, 9l
Soirts) N A FAglly

[vl<1
k>j—2

SV Y B fllp 1 Brgll

lvl<1
k>j—2

S Y 2Rk A £ 282 | Agl),.

vI<1
k>j—2
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Using Holder’s and Young's inequalities for series, we obtain the conclu-
sion in the case where s; + s, is positive.

In the case where r = 1 and s + s > 0, it follows immediately from
the fact that
D AR(S, )
< Y 2ot Yool A £, 252 | Akg s
lv|<1 k

take the supremum over j, and use Holder’s inequality for series. Q

By taking advantage of Bony’s paraproduct decomposition (10.14),
many results on continuities may be deduced from Theorems 10.26 and
10.29. As an initial example, we derive the following so-called tame esti-
mates for the product of two functions in Besov spaces.

( )
Corollary 10.30. Let s > 0and 1 < p,r < oo. If (s, p,r) satisfies con-
dition (10.1), then L= N B;r is an algebra under pointwise multiplication.
Moreover, there exists a constant C, depending only on n, such that

s+1

C
1£llay, < = (Iflelglls, +11f s, lgllo) -

\,

Proof. Using Bony’s paraproduct decomposition, we have
f8 = T8+ Tef +R(f.)-
According to Theorem 10.26, we have
178lls;, < CHIfllolglla,, and [ Teflls, < CFIflls, 1]

Now, using Theorem 10.29, we obtain

Cerl

IRCF )My, < ——IIfle, I8l

Since | f[l50 < [ flleo, we obtain the desired inequality. Q

Our second example addresses the product of two functions in homo-
geneous Sobolev spaces.

a4 )

Corollary 10.31. For any s1,s2 € (—n/2,n/2), if s+ sy > 0, then we
have

178l gr+s2-nr2 < CIIf]
21
where the constant C is bounded by
1 1 1
C51+52 ’ ,
o max <n—251 n—2sy sl—l—sz>
with C,, depending only on the dimension n.

w181l

&
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Proof. We again use Bony’s paraproduct decomposition. First, for k = 1,2,
as H% = BY, C BZE”/Z withsy —n/2=s;—n/2—n/co,and sy —n/2 <
0, Theorem 10.26 implies that
H ng + Tgf”B;lJrsz—n/z
C\s1+szfn/2|+1 C|sl+szfn/2|+1
<— s8N RS —_——— = S P —
sr—nza] w8l + = e M sy el v
gC”fHHSl HgHHSz-
Second, as s1 + 52 > 0, Theorem 10.29 guarantees that

. C51+52+1
HR(fzS)HBi}lﬂz <m’|f“g;}2”8“g;§ < CHfHHS1 Hé’”HSZ-
As the embedding B, C B31 271/2 the corollary is proved. Q

For the continuity properties of the remainder operator R in the non-
homogeneous case, we also need the following nonhomogeneous version
of Lemma 10.28.

e ™
Lemma 10.32. Let s > 0,1 < p,r < oo and B be a ball in R". Assume that
{fi} ke, is a sequence of smooth functions satisfying

suppfi C2B and {25 fill b, . < oo
Z'(]N())
Then, we have
f=Y fieB,, and |fls, <Cs|{2°fly} .
keNg ( 0)
\, v,

Then, we have, via a similar proof to Theorem 10.29:

e N
Theorem 10.33. Let 51,5 € Rand 1 < p1, pa, 11, 12 < 00. Assume that
1 1 1 1 1 1
i =—4+—<1,and - := —+ —<1.
p p1 p2 r rn n

If s1 4 sy > 0, then for any (f,8) € By, », X Bi 1.,
C1+|51|+31+52
R 7 S S <
IRy < e
Ifr =1and s + sy = 0, then we have, for any (f,8) € B} », X B,

IRCE &)y, < C gl

P22
\, W,

£, gl -

From this theorem and Theorem 10.27, we infer the following tame
estimate.



288 10. Paraproducts - An Introduction

Corollary 10.34. If s > 0and 1 < p,r < oo, then L N B*;,, is an algebra.
Moreover, there exists a constant C, depending only on n, such that

s+1
(1 llollg 5, + 11 £1lz3, gl ) -

1£8llB;, <

§10.4 The paralinearization theorems

In this section, we first consider the action of smooth functions on the
space 3 . More precisely, if f is a smooth function vanishing at 0, and u
isa functlon of B5,,, does f(u) belong to B, ,? The answer is given by the

following theorem which is based on three lemmas.

4 N\
Theorem 10.35. Let 51,50 > 0and 1 < p1,pa, 11,12 < oo. Let f bea

smooth function on R satisfying f(0) = 0. Assume that (s1, p1,r1) satisfies
condition (10.1). Then, for any real-valued function u € By, ,, N B2 ., NL*®,
the function f(u) belongs to the same space, and we have, for k = 1,2, we
have

/
170y, < CO o)l gy

\, A

Proof. As u is bounded, we can assume without loss of generality that f is
compactly supported. We introduce the telescopic series

Zf], with f; == f( ]+1u) f(S]u)

JEZ

The convergence of the series is ensured by the following lemma.

( )
Lemma 10.36. Under the hypotheses of Theorem 10.35, the series }. f;
jez
converges to f(u) € 7 in 7', and we have
. . .
fy = mibu, withm; = [ f (S + thu)a. (10.17)
0
. A

Proof. The identity (10.17) readily follows from the mean value theorem,
so we will concentrate on the proof of the convergence of the series. We
observe that

Z f] S1M f(S',Nu).

Asu € 7 and f(0) = 0, we have ||f(S_nu)||c — 0as N — co. Moreover,
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for all2 < M € N, we have

Z fi = f(Smu) — f(S1u).

By virtue of the mean Value theorem, we have

£ (u) = F(Saaw)llpe < 1 f'[loollur = Saae] -
Because s, > 0, the function Sy — u in LPk as M — oo. Indeed, u —

Smu = Y Aju, and then by Holder’s inequality for (-spaces, we have,
=M

foru € Bpk r, With s >0,

2 Al < Y 1 Ajullp = Y 2| Ajul|p 27

=M e M &
( 1/rg 11,
(Z <2jSkHA]'uHPk)rk> (Z 2jskrll<> ’ if 183 7£ 1/
S = =M
9—Msy Z 2]'Sk||Ajquk/ ifr, =1
\ =M
Zstk .f
< (12—skr)1/r|| HB;’M’ ifre #1,
_M . B
2 Sk||uH'B;1;(/rk, ifrp =1

—0, asM — +oo.
Therefore, the series }° f; = f(u) in L*® + LF*,
jez

Next, we prove that f(u) € .]. It suffices to show that ||S;f (1) e —
0 as j — —oco. For that, we use the decomposition

)=5 ). fr+s X fre

j'<—N j'2—N

Let ¢ > 0. As the series }_ f; converges in L™, we can choose an integer
j<0
N; such that
J'<—Ne 0o
As the f’s arein LPx and ). f; is convergent in LP¥, we then have, using
JENo
Bernstein’s inequality,
Si Yo f| <cavrels; Y fll < e,
j’Z—Ne jf’Z—N
Pk

Thus, ||S;f (4)]lcc — O asj — —o0. Q

The terms m;’s will be handled according to the following lemma.
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( )
Lemma 10.37. Let g be a smooth function from R? to R. For j € Z, we
define

mi(g) = g(Sju, Aju).
For any bounded function u, then we have
[0%mj(8)lleo < Calg, llull) 2, Vo € NG, ¥j € Z.

\, v,

Proof. For the case a = 0, it is clear that ||1;(g) || < C(g, [|1t[|c0) since g
is smooth and both Sju and Aju are bounded by ||u/|e. Thus, we need
only to deal with the cases |«| > 1. The proof relies on Faa di Bruno’s
formula,” which provides us with the formula

l g . . . .
a“m](g) = Z Czll@allafg(sju, A]Ll) H(aﬁSju)Vﬁl (aﬁAju)”ﬁz
b, b,y 1<IBI< |
where the coefficients CZL [, are nonnegative integers, and the sum is taken
over those /1, ¢ and v such that 1 < 41 + 0, < |a|,
Z Vg, = lfork=1,2, and Z (1/51 + Vﬂz),B = Q.

1<IBI< ] 1<IBI< ]
Note that, from Proposition 9.8, there exists a constant C such that
max ([|Ajl|eo, [|Sjttll) < Cllttlleo, V] € Z.

Since ¢ and all its derivatives are bounded on B(0, C||u#||«), Bernstein’s
inequality and the above formula thus ensure that

10%1m;() lloo < Cu(g Il o0)2,

dueto Y (vg, +vg,)|B| = |a|. This completes the proof of the lemma.
1<[BI<a|

a

"Faa di Bruno’s formula is an identity in mathematics generalizing the chain rule to
higher derivatives, named after Francesco Faa di Bruno (1855, 1857), although he was not
the first to state or prove the formula. The general case can be stated as follows.

Theorem ([BCD11, Lemma 2.3, p.54]). Let u : R” — R™ and F : R” — R be smooth
functions. For each multi-index a € ]Ng, we have

O (F(u)) = Y. Cund"F TT (3Puy)™,
v

1<[Bl<]al
1<jsm

where the coefficients C;,, are nonnegative integers, and the sum is taken over those u
and v such that 1 < |u| < ||, vg, € N,

vg, =, for1<j<m, and Y Vg B = a.

1<|Bl<
1<[BI<]a] T

In contrast with the situation that was encountered when proving The-
orems 10.26 and 10.29, here, the elements f;’s of the approximating series
Y. f; are not compactly supported in the frequency space. This difficulty is
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overcome by the following lemma.

r 2
Lemma 10.38. Let s > 0and 1 < p,r < co. Assume that {u;}icz is a

sequence of smooth functions where Y- u; converges to some u € .7, and
Nspr({j}iez) = { sup 2j(5“|)|]8"‘uij} < 0,
|a|€{0,[s]+1} illerz)

then there exists a constant Cs such that u € 3%/ and

||”||B;/, < GNspr({ujtjez).
. J

Proof. As the series }_u; converges to u in ./, we have

Aku = ZAkM]‘ + Z Aku]-.

i<k >k
By Proposition 9.8, we obtain
25 Al S 2 ) Nlwlly S X2 2% 12 . (10.18)
>k >k >k

p
By Bernstein’s inequality, we may write that

1Agujlp S 27EHD sup [0t uyl,
al=ls}+1

from which it follows that

Y Aguj
p

j<k

ks < Y20 R gy 2Dy,

j<k la|=[s]+1

This inequality, combined with (10.18), implies that

25| Ayl I
< (Z 2= 4 §° z(kf)([s}HS)) sup  2/—1eD %y |,
>k i<k |a]€{0,[s]+1}

Sy <2(k_j)SX{j—k>O} + 2_(k_j)([5]+1_s)?€{j—k<0})
]
|a|€{0,[s]+1}

which proves the lemma by the Young inequality for series. Q

Given the above three lemmas, it is now easy to prove the theorem.
Note that, according to Lemma 10.38, it suffices to establish that

Nspore ({fi}jez) < oo (10.19)

Now, using Leibniz’s formula, Bernstein’s inequality and Lemma 10.37
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with the function

1
8(xy) = /0 f'(x + ty)at,
then, from (10.17), we have

mj =mj(g) = g(S;ju, Aju) = /Olf’(S]-u + tAju)dt.
Thus, we obtain, by Lemma 10.37,
1% fill e =10 (1mjAjue) |
<Y CRl0Pmyllo |0 PAull,,

p<a

S Y COIPICH(F, )2 I A,

1BI<]al
<Ca(f', Nullow) 2™ || Ajuell
from which it follows that, for k = 1,2,

{ sup 2f<5k—|“|)|\a“fj||pk} (10.20)

{0 f5e)+1) ill
<Gl ) | {218l } |
"k

SCo (f Nlulloo) 1

This completes the proof of the theorem. Q

(10.21)

N
B

In the case where f belongs to the space C;°(IR) of smooth bounded
functions with bounded derivatives of all orders and satisfies f(0) = 0,
a slightly more accurate estimate may be obtained. Indeed, for « = 0,
the bound of m; just follows from the boundedness of f ' in addition, for
|ag| > 1, there exists a B € INjj such that B < ax and |Bx| = 1, then for
any j € Z, we have, from Bernstein’s inequality and Theorem 10.12,

%81l =38P0 o S 200D 3 P00
S|Vl gy S 200 g
Thus, for |ax| > 1 and any j € Z, we have
max([|0™Sjuleo, [19%Ajut]lco) < 21 [t -
Arguing as in the proof of Lemma 10.37, we thus obtain/
19%milco < Cal(f, llulls, )2, Va € Ng. (10.22)

We now state the result we have just proven.

Corollary 10.39. Let f € C°(R) satisfy f(0) = 0. Let 51,52 > 0and 1 <
p1, P2, 11,12 < oo, Assume that (s1, p1,71) satisfies condition (10.1). Then,
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for any real-valued function u € B3, . N BY . NBY, ., we have f(u) €
Ce s
By,n N By, and

s < . .5 = .
1)l < CUllullag il k=12

Finally, by combining Corollary 10.30 and Theorem 10.35 with the
equality

1
f0) = f(0) = (=) [ f(o+7(u—0)dr,

we readily obtain the following corollary.

e )

Corollary 10.40. Let f be a smooth function such that f'(0) = 0. Let s > 0
and 1 < p,r < oo and (s, p,r) satisfy the condition (10.1). For any pair
(u, v) of functions in B3, N L™, the function f(u) — f(v) then belongs to
B, NL*® and

1f(u) = f(0)l & <C(Hu—v!lgs, sup ||t + (1 —7)v||e
" " refo1]

+ [ = ol sup |lvu+(1 =)0l ).
T€[0,1] ’

where C depends on ", ||u||e and ||v]|co.
\\ v,

Next, we investigate the effect of left composition by smooth functions
on Besov spaces B;, .. We state an initial result.

Theorem 10.41. Let s > 0 and 1 < p,r < oo. Let f be a smooth function
on R satisfying f(0) = 0. If u € By, N L™, then so does f(u), and we have

£ )lBs, < C(s, ", llulloo) |ullBs,,-

This theorem can be proved along the same lines as that of Theo-
rem 10.35. We note that it is based on the following lemma, the proof of
which is left to the interested reader.

e 2
Lemma 10.42. Let s > 0 and 1 < p,r < oo. Assume that (uj)je]NO is a

sequence of smooth functions satisfying

Ns,p,r({”j}je]No) = { sup zj(s_M)Haa“ij} < %,
|06|<[S]+1 ]@r(]N(])

then there exists a constant Cs such that u := Y, u; € B}, and ||ul|p;, <

jENO
Cst,p,r({uj}je]No)-
\_ W




294 10. Paraproducts - An Introduction

In the case where the function f € Cj°(R), Theorem 10.41 may be
slightly improved.

( )
Theorem 10.43. Let f € C°(R) satisfy f(0) = 0. Lets > 0and 1 <
p,r < oo. If u € By, and the first derivatives of u belongs to Byl then
f(u) € B}, , and we have

£ )llBs, < C(s, £ 1Vl g, ) el -

\ V.

Remark 10.44. If u € B;l/rp, then Vu € B 1 Thus, the space BZ,/rp

stable under left composition by functions of C,° vanishing at 0. This
result applies in particular to the Sobolev space H n/2 = B”/ 2

Finally, we state the nonhomogeneous counterpart of Corollary 10.40.

4 R
Corollary 10.45. Let f be a smooth function such that f'(0) = 0. Let s > 0
and 1 < p,r < oo. For any couple (u,v) of functions in B;,r N L%, the
function f(u) — f(v) then belongs to By , N L* and

1f () = f(0)l3;, <C<Hu—vl\3;,, sup [|Tu + (1= 1)vflw
T€[0,1]

+ 1 = olle sup T+ (1—7)o]z, ),
t€[0,1]

where C depends on ", ||| and ||0||co-

\, W

When the function u has enough regularity, we can obtain more in-
formation on f(u). In the following theorem, we state that, up to an error
term that proves to be more regular than u, f(u) may be written as a para-
product involving u and f’(u).

4 N\
Theorem 10.46. Let 51,5, > 0and sy € IN, 1 < p,r1, 12 < o withry <1,

and f be a smooth function satisfying f'(0) = 0. Let 1 < r < oo be defined
by 1/r = min(1,1/r1 +1/r3). For any u € By, N Bf,%/rz, we then have
1 () = Tyl gorea < CO Mutlleo) el g, Mutll g, -

L v,

Proof. To prove this theorem, we again write that
u) = Zf], with f; := f(Sjy1u) — f(Sju).
]
According to the second order Taylor formula,” we have

1
fj = f/(S]‘M)A]‘M + Mj(A]‘u)z, with Mj = /() (1- t)f”(Sju + tAju)dt.
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Since T, u = ZS] 1f' (u)Aju, we have
fu) = Tpgyu =Y [(f'(Sju) — Sj-f' () Aju + M;(Aju)?].
]
Let pj := f'(Sju) — Sj_1(f'(u)). Obviously, we have
fi—Sioa(f (w)Aju = pidju + Mi(Aju)2.

Applying Lemma 10.37 with g(x,y) fo £) f" (x + ty)dt gives
10°Mjlloo < Cal(f", lulleo)2/®l, V& € N (10.23)
Using Leibniz’s formula, we can write
O (M;(Aju)*) = Y CupCpy0™ PM;0PTA10T Aju.
7<ﬁ<a

Using Bernstein’s inequality and (10.23), we obtain
0P M;0P =7 Ao Ajuly < Calf", [[ulloo)2™ || Ajtt]eo] | Aju -

Thus, according to the definition of Besov spaces, we have

{2l

< Culf" o) 1l [l

(10.24)

jZ=1||pr

We temporarily assume that

{2}

< 1/ . ) .
|, S G )l 1025

Using (10.24), we have

H{Z"(“SZ"“"\!B“(J’J-—S]-1<f< DAy}

i=>—1

o

= [{zer g -+ ol

jZ=1||pr

<Culf" lulls) gy, g,

Applying Lemma 10.42 then yields the desired result.
To complete the proof of the theorem, we must justify the inequality
(10.25). First, we investigate the case where |a| < s,. We have

wi=u

where uV) = f/(Sju) — f'(u) and p? = f(u) - S;(f(u) =

Y. Acf'(u). Using the fact that S;u converges to u € L* in %" as j — oo,
k=>j-1
we obtain

f'(u) = f(Sju) =Y fr, with fi := f'(Sgpau) — f/(Sgu).  (10.26)

k>j



296 10. Paraproducts - An Introduction

Applying (10.20) yields

{2},

< Calf" llulloo) ]l 2, - (10.27)

=

{2

Then, by Young’s inequality, we have, for |a| < s,

{2 Do (1Y) o |

j=z-1 2

{22 )(s2— | ) pk(s2—|at]) ||a/xfk||oo}

k>j

jZ2=1llgr2

gca(f”/ HMHW)HuHBE,Q.

By Bernstein’s inequality and Theorem 10.41 (need f’(0) = 0), we have
0°f (u) € BZ," and [0 () |y w1 < Culf", o) 1l g3, -

Thus, in view of Young’s inequality, we can write that

’ {2]'(52—\a\) ||auc‘u](2) ||Oo}]'>_1 é
= T

< {2j(52—|04) E ”Akaaf/(u)uoo}
-1

k=j—1

{2
<Calf" ullo) g, 1 25620

k<1
<Calf" ulle) Nl gz,

This completes the proof of (10.25) when |a| < s;.

Since s ¢ IN, we only need to consider the remainder case when
|| > s, which is treated differently. As 0" f'(u) € Bf,?,;!“‘, we have, using
Theorems 10.19 and 10.41,

{2 s

We now estimate 0*f'(S;u). Because Sju converges to 0 in L® as
j — —oo, we can write that

fl(Su)= 3}, fio with fi:=f'(Skpu) — f'(Sxu).

k<j—1

< Calf", o) it

jZ=1|gm

Using (10.27) and Young's inequality, we obtain
{260t f (S f

-1 Yip)

{27(52|t%|) Z Haakaoo}
A 7zl
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<Colf", )l Y 240140

2 k>1
<Culf" ulleo) 1l gz, -
The inequality (10.25) is proved, as is the theorem. Q

f f: R" — R is (k + 1)-times continuously differentiable in the closed ball B, then

k X f(g
fl)=) 2 f,( )(X—a)"‘ + ) Rﬁ(x)(x—a)ﬁ,
[ |Bl=k+1

|I5|/ OB £(a + t(x — a))dt

§10.5 Commutator estimates

This section is devoted to various commutator estimates. The follow-
ing basic lemma will be frequently used in this section.

4 )
Lemma 10.47. Let 6 € C'(IR") satisfy (14 |- )0 € L', and p,q,7 € [1,00].
There exists a constant C such that for any a € Lip with Va € LP and any
b € L1, we have, for any A > 0,

o1 1 1
116G~ D), alellr < CA™[[Vallpllblly, ~ with - = -+ .

\, W,

Proof. To prove this lemma, it suffices to rewrite (A ~'D) as a convolution
operator. Indeed,

([6(A7'D), a]b)(x) = 6(A~'D)(ab)(x) — a(x)0(A~'D)b(x)

—m) 2 (e 1) ) ) () —at) ((60110)) 4 ) ()]

= (27) 2 [AM(B(A-) * (ab)) (x) - ()M(M)wxw]

=(2m) "/ 2\" {/ é(Az)a(x—z)b(x—z dz —a( 9 Az)b x—z)dz]
n ]Rn
=(2m)~"/2\" / 5(Az)[a(x —z) —a(x)]b(x — z)dz.
IRT[
Let ki(z) := (271)"/2|z||6(z)|. From the first-order Taylor formula, we

deduce that
(P(A1D), alb)(x)| <A1 /01 /R ANk (Az)|Va(x — t2)|[b(x — z)|dzdt.

Now, taking the L" norm of the above inequality, using Minkowski’s in-
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equality and Holder’s inequality, we obtain

1
< A—l/o /]R Ay (Az)[|Va(- — t2) | ]|b(- — 2) || jdzdt.

The translation invariance of the Lebesgue measure then ensures that

|0 D), alp|| < A7kl [ Va1l

H 0(A"1D), alb

which yields the desired result since |[[killi = [ga \z||é(z)]dz =
i 12110(2) |0z < oo. Q

Remark 10.48. If we take § = ¢ and A = 2/, then this lemma can be inter-
preted as a gain of one derivative by commutation between the operator
Aj and the multiplication by a function with gradient in L7, i.e.,

118, albllr < 27 Vall|[bllg-

~

4 )
Theorem 10.49. Let f be a smooth function on R". Assume that f is homo-

geneous of degree m away from a neighborhood of 0. Let 0 < p < 1,5 € R
and 1 < p, p1, p2, v < oo satisfy 1/p =1/p1 + 1/ p2. Then, we have

I[Te, £ (D)l gsmeo < CUIVall ot [l 55, (10.28)

P27

In the limit case p = 1, we have
| Ta, F(D)utllg s < UVl sl (10.29)

The above constants C > 0 depend only on s, p and n.
. v

Proof. We first treat the case 0 < p < 1. For convenience, we redefine

A] = Z Ag, fg\ﬁ] = Z (pg.

—2<l—j<1 —2<l—j<1

We have from Proposition 9.6

[To, f(D)Ju =) [Sj-1af (D)Aju — f(D)(Sj-1alju)]

j>1

= 21 [Sj,laf(D)AjA]-u — f(D)A](S],mA]u)]
j=z

= Zl[S]_la,f(D)A]]A]u
jz

Note that the general term of the above series is spectrally supported in
dyadic annuli. Hence, according to Lemma 10.17, it suffices to prove that

|26 810, £ (D)4 Ajul,

o
Owing to the homogeneity of f away from 0, there exists an Ny € IN such
that

< ClIVal ot lullsy,,. (1030

fD)A; =77 f(0)§;(8)F =2"F 7 f(278)p(2778) 7



§10.5. Commutator estimates 299

=2"(f§)(27/D), Vj= N
Taking advantage of Lemma 10.47 with 6 = f @, we thus infer that for any
j P NO/

I[Sj-1a, f(D)Aj]Ajull, < C2DVS;_yalp, || Ajulp,.
Of course, if 1 < j < Np, we can still write, according to Lemma 10.47
with 6 = f(2/ )q),
I[Sj-1a, f(D)Aj]Ajull, <C277([ VS qallp, || Ajullp,
<C2Nolm V7S, all,, || Ajullp,-
Because [|VS;_qall,, < C2/! HVaHBp 1 if p < 1 in view of Theo-

rem 10.19, we can now conclude that (10 30) is satisfied, and complete
the proof.

For the case p = 1, we only need to modify (10.30), where we replace
the term HvaHBZ[io by [|Val|p,. Then, by the same lines after (10.30), we

can obtain the desired results. Q

Finally, we give an important estimate for the commutators.

s 2!
Theorem 10.50. Letc € R, 1 <r < ooand1 < p < p1 < oo. Let vbea

vector field over R". Assume that

o> —nmin(1/p1,1/p") (oroc>—1—nmin(1/py,1/p") if dive = 0).
(10.31)

Define R; := [v -V, Ajlf (or R; := div ([0, Aj|f) if divo = 0). Then, there
exists a constant C > 0, depending continuously on p, p1, o and n, such that

’ < ClIVollyn oy lfllsg,, Fo <14n/pr (1032)

{2IIRjl,}.
Jle

Furthermore, if o > 0 (or o > —1if divo =0)and 1/p, =1/p —1/p1,

then
2/7||R; <C
{ ” ]Hp}j ,

(192l Fll35, + IVl V0lgg2 ) - (10.33)

In the limit case o = —nmin(1/p,1/p") (or ¢ = -1 -—
nmin(1/py,1/p") if divo = 0), we have
sup 27|IRll, < C|| V| g/ lf .. (10.34)
j=—
\ J

Proof. To show that only the gradient part of v is involved in the estimates,
we split v into low and high frequencies: v = Syv + @. Obviously,

1S0Vollg S 1IVollg,  [IVally S [IVollg, Vg € [1,00]. (10.35)

Furthermore, as @ is spectrally supported away from the origin, Bern-
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stein’s inequality ensures that
18V, ~ 2/|Ajollg, Vg € [L00], Vj=-—1. (10.36)
We now have (with the summation convention over repeated indices):
R] =0 - VA]f — A](U . Vf) = UkA]'akf — A]'(Ukakf) = [Uk, A]]akf
:[(Sovk + 5k), A]]akf = [S(ﬂ)k, A]]akf + [5k, A]]akf
Writing Bony’s paraproduct decomposition for [7*, A;]oxf, we end up with
8 .
R = El R}, where
R]l [ ok ]akf RJZ = TakA]'f o,
R} = —Aj(To, 50"), Rt = 0kR(7", A]-f)
R? = —R(divd,Ajf), Rf = —34; R(%, f),

R7 AiR(divd, f), R} = [Sov*, Aj] 9k f.

Bounds for R}. By Proposition 9.6, we have

le == Z [S]‘/,lﬁk, A]]akA]/f
—-2<j—j’<1

Hence, according to Lemma 10.47 and (10.35), we have

2|R} Il } H
{27IRiln} |

< {21"’ Y 298y 10 wllOid f||p}
—25j-j'<1 jller

SIVollel fsg,- (10.37)
Bounds for RJZ. By Proposition 9.6, we have
2 _ ~k
R] = Z S]-/_lékAij]m .
j'=j+1

Hence, by Bernstein’s inequality, Young’s inequality and using (10.35) and
(10.36), we have

AN

27| R2 }H
{21} |

{zj‘T Y. HSj'1akAijpHAj'5kHoo}
/ j

1>j+1 il gr

A

{2]” Y 2lISp8fly HA/vHoo}
j

j'=j+1

S { Y. 272 A2 I\Ajfﬁlloo}
j'zj+1 ill o
SIVolle|lfllsg,- (10.38)
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Bounds for R;-’. We proceed as follows:

R=— ¥ (S0 (10.39)
—2<j-j<

—— YA (Aj//aka]-/ﬁk>. (10.40)
~2<j-7'<1
1< 2

Therefore, writing 1/p> = 1/p —1/p1 (then p < p2) and using Bernstein’s
inequality, Young’s inequality, (10.35) and (10.36), we have, for ¢ < 1+

7’1/]91/
{2umn |
S { Yo 2D Nl BT |y
—2<j— ]/<1
//<] -2 ] gr
< { Z joni" (14n(1/p=1/p2)) ||A"f||p2 ]HA VUle
72</ ]/<1
<ji-2 ] o
< Z 2(=1)op(j'=j") (e =1=n/p1)5j U||A]'~f|!p2j”/p1\|A]-/Vz7||pl
,2<'7'/<1
]',,S]j,J*Z ] gi’
SHVUIIBZ/m £ 3g,- (10.41)
1,00
Note that, starting from (10.39), we can alternatively obtain
2/7|| R } H
g |
S { Y. 2°UVSiaflpn2 IIA]'/VﬁHm}
—2<j—j'<1 .
Jler
SIVAl Vol g - (10.42)

Bounds for R}l and R]5. We have
Y (AyTFAAf).
li=j'l<2
Hence, by (10.36) and (10.35), we obtain

SIS X 2727 Ak |l Aifl
o i<

{21t}

Iler
SIVollell £, - (10.43)
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A similar bound holds for R]5.
Bounds for R]@ and R]7. We have

RS = —opj Y- Ay Apf.
fain
We first consider the case where 1/p+1/p1 < 1. Let1/p3 =1/p+1/p1.
Then, under the condition ¢ > —1 — n/p;, and by embedding B]i',;,r ! ae -

By, (since R]‘? is of the form A;¢) and Young's inequality, we have

{ZJ'UHR]@HP}j . < H{zf(wn/m)HR?Hm}

Jer

AN

Y 200 PO Ay | A £

/' =j"1<1

iI>id .
=1 illgr

S|\ L 20Ut Ay s, 27 | Ap
i’ =j"1<1
j'>j—4

Jer
SIVoll g [ £llsg, (10.44)

Now, if 1/p+1/p1 > 1, then the above argument has to be applied
with p’ instead of p3, and by the embedding Bi’/jn/p C By, and Bern-

stein’s inequality (due to p; < p’), we still obtain, for o > —1—n/p/,

feur} | | {2 i)

. , B
Y, 20 8| | A £

I/ =j"<1

j'>j—-4

Jler

AN

Jller

< Z (=i )02(1‘*]')(0+1+n/10)zjn/mHA]./vﬁuplzj N Amfllp

Ij' 7" |<1
/>i-4 jller

SIVoll g [ £l Bg,- (10.45)
P10

Note that in the limit case ¢ = —1 — nmin(1/p;,1/p’), a similar

argument yields
sup 27| R?|, < HVUIIBn/ql 1113, (10.46)
j P1

Similar arguments lead to

H{zf"annp}].

| SI0lyy g if > —mmin(1/py 1/5),(1047)
4 K



10.6. Time-space Besov spaces 303
§ p p

{20R20,} | SIV0lgnllf gy, if o = —nmin(1/p1, 1/p'),r = oo.
T e BPL] P
(10.48)

Finally, we stress that if ¢ > —1, then taking p; = oo in (10.44),
combined with the embedding L® C BY, ,, yields

(21880} | 5 190l g, (1049)
Of course, the same inequality holds true for R]7 if o0 > 0.
Bounds for R}. As R} = — U_%Q[Aj,A_lv] - VA f, Lemma 10.47
yields

<SI8 Y 27)VA yo)lL2702 A f],

{2121},

o i=7'I<1 j
o
SIVolleol £ 1155, (10.50)
Combining the above inequalities yields the desired results. Q

Remark 10.51. There are a number of variations on the statement of The-
orem 10.50. For instance, inequalities (10.32), (10.33) and (10.34) are also
valid in the homogeneous framework (i.e., with A]- instead of Ajand with
homogeneous Besov norms instead of nonhomogeneous ones), provided
that (o, p,r) satisfies condition (10.1). The proof follows along the lines
of the proof of Theorem 10.50. It is simply a matter of replacing the
nonhomogeneous blocks by homogeneous ones.

Remark 10.52. The inequalities (10.32), (10.33) and (10.34) are still true for
the commutator
Sj+Nov : VA]f - A](U : Vf),
where Nj is any fixed integer. Indeed, for all j > —1, we have
(8800 =) - VA, S211S1480 = 0o 1A
< Y 27| VAlllAfl,
JZj+No
<IVllag, 1Aif

§10.6 Time-space Besov spaces

One of the fundamental ideas, in view of Littlewood-Paley theory, is
that nonlinear evolution PDEs may be treated very efficiently after local-
ization by means of Littlewood-Paley decomposition. Indeed, it is often
easier to bound each dyadic block in L ([0, T]; L?) than to directly estimate
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the solution of the whole PDE in L#([0, T]; 35, ,).

As a final step, we must combine the estimates for each block and
then perform a (weighted) ¢" summation. In doing so, however, we do
not obtain an estimate in a space of type Lf([0, T] ;3;]) since the time
integration has been performed before the summation.

This naturally leads to the following definition.

( )
Definition 10.53. For T > 0,s € R, and 1 < p, p, r < 0o, we set

(z)

lullzg s,y = | (25 1dlp o),
We can then define the space

L(B3,) ::{u e 7' ((0,T) xR") : kgrpoo Sxu = 0in LP([0, T]; L (R"))

and [|ullzg s, ) < oo}.

The space I:‘}(TIB;,J) may be linked with the more classical spaces
L7 (By,) = LO([0, T]; By,,)
via the Minkowski inequality:
lllze s ) < llless ) ifo<r lullpg@s ) = lullg@s ) ifo=>r

The general principle is that all the properties of continuity for the
product, composition, remainder, and paraproduct remain true in these
spaces. The exponent p must behave according to Holder’s inequality for
the time variable. For instance, we have the time estimate

ol s ) 5 Nl oy NN+ ol s oyl s
whenever s > 0,1 < p,r < oo, 1< p,p1,02, 03,014 < 0, and
1 1 1 1 1
=t —=— 4
PP P2 P33 P4
This approach also works in the nonhomogeneous Besov spaces Bj, . which
leads to function spaces denoted by Lf.( B} ).

Exercises

Exercise 10.1. Let g, p,7 € [1,0] and s € R. Prove that L7N B;’,,, is a Banach
space.

Exercise 10.2. Prove Theorem 10.20.
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