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Preface

These lecture notes are intended primarily as text for a graduate-level
analysis course (Harmonic Analysis I, II) taught at the University of Chi-
nese Academy of Sciences (UCAS) with 80 class periods (50 minutes) a
semester from 2020 to 2022.

In these notes, our aim is to give some fundamental theory in har-
monic analysis, including some basic theories of real analysis, singular
integrals of convolution-type, singular integrals of non-convolution types,
some function spaces and paraproducts.

Most of the materials in these notes are borrowed from books [Ste70;
SW71; Gra14a; Gra14b; BL76a; Fol99; Wan+11; BCD11; MWZ12] and some
online lecture notes [AB12; Bro15; Mur19; Tao06] with some necessary
modifications and more details.

The prerequisites are some basic knowledge of real analysis (a sum-
mary of some relevant facts is provided in chapter 0) and functional anal-
ysis and some complex analysis.

There are some exercises at the end of each chapter, some of which
have been used in some proofs in the text.

The main dependencies among the chapters are indicated in the fol-
lowing diagram.
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0
Overview of Real Analysis and Functional

Analysis

In this chapter, the purpose is to establish the notation and terminol-
ogy that will be used throughout the book and to concisely present a few
results from analysis that will be needed later. All results can be found in
typical real analysis books, e.g., [Fol99; Fol09; SS05].

§ 0.1 Measure theory

The notation for the fundamental number systems is as follows:

N = the set of positive integers (not including zero),

N0 = the set of nonnegative integers (including zero),

Z = the set of integers,

Q = the set of rational numbers,

R = the set of real numbers,

C = the set of complex numbers.

The words “family” and “collection” will be used synonymously with
“set”, usually to avoid phrases such as “set of sets” in set theory. The
empty set is denoted by ∅, and the family of all subsets of a set X is de-
noted by P(X) = {E : E ⊂ X}. Here and elsewhere, the inclusion sign “⊂”
is interpreted in the weak sense; that is, the assertion “E ⊂ X” includes
the possibility that E = X.

Let X be a nonempty set. An algebra of sets on X is a nonempty col-
lection of subsets of X that is closed under finite unions and complements.
A σ-algebra is an algebra that is closed under countable unions. Moreover,
if A is an algebra, then ∅ ∈ A and X ∈ A, for if E ∈ A we have ∅ = E ∩ Ec

and X = E ∪ Ec where the complement Ec of a set E (in X) is defined by
Ec = X \ E = {x ∈ X : x /∈ E}. If X is a topological space, the σ-algebra
generated by the family of open sets in X is called the Borel σ-algebra on
X; is denoted by BX, and its elements are called Borel sets.

Let X be a set equipped with a σ-algebra M. A measure on M (or on
(X,M)) is a function µ : M → [0, ∞] such that
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i) µ(∅) = 0,
ii) (Countable additivity) if

{
Ej
}∞

j=1 is a sequence of disjoint sets in M,
then

µ

 ∞⋃
j=1

Ej

 =
∞

∑
j=1

µ(Ej).

Here are some more basic properties of measures:

(i) Finite additivity: If
{

Ej
}n

1 is a finite collection of disjoint sets in M,
then

µ

 n⋃
j=1

Ej

 =
n

∑
j=1

µ(Ej).

(ii) Monotonicity: If E, F ∈ M and E ⊂ F, then µ(E) ⩽ µ(F).

(iii) Subadditivity: If
{

Ej
}∞

1 ⊂ M, then µ
(⋃∞

j=1 Ej

)
=

∞
∑

j=1
µ(Ej).

(iv) Continuity from below: If
{

Ej
}∞

1 ⊂ M and Ej ⊂ Ej+1 for all j, then

µ

 ∞⋃
j=1

Ej

 = lim
j→∞

µ(Ej).

(v) Continuity from above: If
{

Ej
}∞

1 ⊂ M and Ej+1 ⊂ Ej for all j, and

µ(E1) < ∞, then µ
(⋂∞

j=1 Ej

)
= lim

j→∞
µ(Ej).

If X is a set and M ⊂ P(X) is a σ-algebra, (X,M) is called a measur-
able space and the sets in M are called measurable sets. If µ is a measure
on (X,M), then (X,M, µ) is called a measure space, where a set E ∈ M

such that µ(E) = 0 is called a null set. A measure whose domain includes
all subsets of null sets is called complete. Completeness can sometimes
obviate annoying technical points, and it can always be achieved by en-
larging the domain of µ; indeed, there is a unique extension of µ to a
complete measure on the completion of M with respect to µ.

There is a unique measure on (R,BR) such that the measure of each
interval is its length, and for n > 1, there is a unique measure on (Rn,BRn)

such that the measure of the Cartesian product of n intervals is the prod-
uct of their lengths. The completions of these measures are called the
Lebesgue measure on R and Rn, respectively. Its domain is called the class
of Lebesgue measurable sets, and we denote it by L.

A measure space (X,M, µ) is called finite if µ(X) < ∞, and is called
σ-finite if X =

⋃∞
j=1 Ej where Ej ∈ M and µ(Ej) < ∞ for all j. If for each

E ∈ M with µ(E) = ∞ there exists F ∈ M with F ⊂ E and 0 < µ(F) < ∞, µ

is called semifinite. Every σ-finite measure is semifinite, but not conversely.

If (X,M) and (Y,N) are measurable spaces, a mapping f : X → Y is
called (M,N)-measurable, or just measurable when M and N are under-
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stood, if f−1(E) ∈ M for all E ∈ N.

If (X,M) is a measurable space, a real- or complex-valued function f
on X is called M-measurable, or just measurable, if it is (M,BR) or (M,BC)

measurable. BR or BC is always understood as the σ-algebra on the range
space. In particular, f : R → C is Lebesgue (resp. Borel) measurable if it is
(L,BC) (resp. (BR,BC)) measurable; likewise for f : R → R.

We now recall the basic building blocks of the theory of integration,
that is, the so-called “simple functions”. Here are the definitions. Suppose
that (X,M) is a measurable space. If E ⊂ X, the characteristic function
χE : X → {0, 1} of E is defined by

χE(x) =

{
1, if x ∈ E,

0, if x /∈ E.

It is easy to check that χE is measurable iff (the abbreviation of “if and
only if”) E ∈ M. A simple function on X is a finite linear combination,
with complex coefficients, of characteristic functions of sets in M. (We
do not allow simple functions to assume the values ±∞.) Equivalently,
f : X → C is simple iff f is measurable and the range of f is a finite subset
of C. Indeed, we have

f =
N

∑
j=1

ajχEj , where Ej = f−1({aj}) and rangle( f ) = {a1, · · · , aN}.

We call this the standard representation of f . It exhibits f as a linear com-
bination, with distinct coefficients, of characteristic functions of disjoint
sets whose union is X. Now, we recall that arbitrary measurable functions
can be approximated in a nice way by simple functions.

Theorem 0.1 ([Fol99, Theorem 2.10]). Let (X,M) be a measurable space.
(i) If f : X → [0, ∞] is measurable, there is a sequence {ϕn} of simple

functions such that 0 ⩽ ϕ1 ⩽ ϕ2 ⩽ · · · ⩽ f , ϕn → f pointwise, and
ϕn → f uniformly on any set on which f is bounded.

(ii) If f : X → C is measurable, there is a sequence {ϕn} of simple func-
tions such that 0 ⩽ |ϕ1| ⩽ |ϕ2| ⩽ · · · ⩽ | f |, ϕn → f pointwise, and
ϕn → f uniformly on any set on which f is bounded.

Next, we recall the notion of convergence in measure.

Definition 0.2. Let f , fn, n = 1, 2, · · · , be measurable functions on
the measure space (X,M, µ). The sequence { fn} is said to converge
in measure to f , denoted by fn

µ−→ f , if for all ε > 0, there exists an
n0 ∈ Z+ such that

n > n0 =⇒ µ({x ∈ X : | fn(x)− f (x)| > ε}) < ε. (0.1)



4 0. Overview of Real Analysis and Functional Analysis

Remark 0.3. The above definition is equivalent to the following statement:

lim
n→∞

µ({x ∈ X : | fn(x)− f (x)| > ε}) = 0, ∀ε > 0. (0.2)

Clearly, (0.2) implies (0.1). To see the converse, given ε > 0, pick
0 < δ < ε and apply (0.1) for this δ. There exists an n0 ∈ Z+ such that

µ({x ∈ X : | fn(x)− f (x)| > δ}) < δ

holds for n > n0. Since

µ({x ∈ X : | fn(x)− f (x)| > ε}) ⩽ µ({x ∈ X : | fn(x)− f (x)| > δ}),

we conclude that

µ({x ∈ X : | fn(x)− f (x)| > ε}) < δ

for all n > n0. Let n → ∞, and we deduce that

lim sup
n→∞

µ({x ∈ X : | fn(x)− f (x)| > ε}) ⩽ δ. (0.3)

Since (0.3) holds for all δ ∈ (0, ε), (0.2) follows by letting δ → 0.

Theorem 0.4 (Riesz Theorem, cf. [Fol99, Theorem 2.30]). Let { fn} ad
f be complex-valued measurable functions on a measure space (X,M, µ) and
suppose that fn converges to f in measure. Then, some subsequence of { fn}
converges to f µ-a.e.

Proof. Since fn converges to f in measure, we have by definition that for
any k ∈ N, there exists nk such that

µ(Ak) < 2−k (0.4)

and such that n1 < n2 < · · · < nk < · · · , where

Ak =
{

x ∈ X : | fnk(x)− f (x)| > 2−k
}

.

It follows from (0.4) that

µ

(
∞⋃

k=m

Ak

)
⩽

∞

∑
k=m

µ(Ak) ⩽
∞

∑
k=m

2−k = 21−m, ∀m ∈ N, (0.5)

which implies that

µ

(
∞⋃

k=1

Ak

)
⩽ 1 < ∞. (0.6)

Using (0.5) and (0.6), we conclude that the sequence of the measures of

the sets
{

∞⋃
k=m

Ak

}∞

m=1
converges as m → ∞ to

µ

(
∞⋂

m=1

∞⋃
k=m

Ak

)
= 0. (0.7)

It is clear that the null set in (0.7) contains the set of all x ∈ X for which
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fnk(x) does not converge to f (x). q

Theorem 0.5 (Inner regularity of Lebesgue measure). If A is Lebesgue
measurable, then µ(A) = sup{µ(K) : K ⊂ A, K compact}.

§ 0.2 Integration

In this section, we develop the theory of integration of real- or complex-
valued functions on a measure space.

If (X,M) is a measurable space, a simple function on X is a finite lin-
ear combination of characteristic functions of measurable sets with com-
plex coefficients. Every simple function can be written uniquely as the

canonical form
N
∑

j=1
ajχEj where N < ∞, the aj’s are distinct complex num-

bers (one of which may be 0), and the Ej’s are disjoint measurable sets
whose union is X.

Now suppose (X,M, µ) is a measurable space. If ϕ =
N
∑

j=1
ajχEj is

a nonnegative simple function, its integral with respect to µ,
∫

ϕdµ, is
defined in the obvious way:∫

ϕdµ = ∑ ajµ(Ej),

with the understanding that if aj = 0 and µ(Ej) = ∞, then ajµ(Ej) = 0.
Note that

∫
ϕdµ may be +∞ if some of the sets Ej have infinite measures.

To extend this notion of an integral to more general functions, one can ap-
proximate such functions by simple functions, cf. [SS05]. Given a measure
space (X,M, µ), we set

L+(X) = { f : X → [0, ∞] : f is measurable} ,

and for f ∈ L+(X) we define the integral of f with respect to µ by∫
f dµ = sup

{∫
ϕdµ : ϕ is simple and 0 ⩽ ϕ ⩽ f

}
.

Thus,
∫

f dµ is an element of [0, ∞]. We say that a measurable f : X → C

is integrable if
∫
| f |dµ < ∞, and we denote the set of integrable functions

by L1(X, µ):

L1(X, µ) =

{
f : X → C : f is measurable and

∫
| f |dµ < ∞

}
.

We now recall three basic convergence theorems that address the ques-
tion of when “the integral of the limit is the limit of the integrals”.
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Theorem 0.6 (Monotone convergence theorem, cf. [Fol99, Theorem
2.14]). Let { fn} be a sequence in L+ such that fn(x) ⩽ fn+1(x) for all n
and x and let

f (x) = lim
n→∞

fn(x) = sup
n

fn(x)

(which always exists since we allow the value ∞). Then,∫
f = lim

n→∞

∫
fn.

Lemma 0.7 (Fatou’s lemma, cf. [Fol99, Theorem 2.18]). Let { fn} be a
sequence in L+, then ∫

lim inf
n→∞

fn ⩽ lim inf
n→∞

∫
fn.

In particular, if fn → f a.e., then∫
f ⩽ lim inf

n→∞

∫
fn.

If we impose a bound on the functions fn that forbids the areas under
their graphs from escaping to infinity, we obtain another positive result.

Theorem 0.8 (Dominated convergence theorem, cf. [Fol99, Theorem
2.24]). Let { fn} be a sequence in L1 such that fn → f a.e., and there exists
a nonnegative g ∈ L1 such that | fn| ⩽ g a.e. for all n, then f ∈ L1 and∫

f = lim
n→∞

∫
fn.

The next theorem gives a criterion, less restrictive than those found in
most advanced calculus books, for the validity of interchanging a limit or
a derivative with an integral.

Theorem 0.9 ([Fol99, Theorem 2.27]). Suppose that f : X × [a, b] → C

(−∞ < a < b < ∞) and that f (·, t) : X → C is integrable for each
t ∈ [a, b]. Let F(t) =

∫
X f (x, t)dµ(x).

(i) Suppose that there exists g ∈ L1(µ) such that | f (x, t)| ⩽ g(x) for all
x, t. If lim

t→t0
f (x, t) = f (x, t0) for every x, then lim

t→t0
F(t) = F(t0); in

particular, if f (x, ·) is continuous for each x, then F is continuous.
(ii) Suppose that ∂ f /∂t exists and there is a g ∈ L1(µ) such that

|(∂ f /∂t)(x, t)| ⩽ g(x) for all x, t. Then, F is differentiable, and
F′(t) =

∫
(∂ f /∂t)(x, t)dµ(x).

The Fubini-Tonelli theorem is an essential tool in analysis. It is most
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commonly used to justify interchanging the order of integration in an iter-
ated integral. Let us first recall some notations.

Suppose that (Xj,Mj, µj) is a σ-finite measure space for j = 1, · · · , n,
and let X = ∏n

1 Xj and M =
⊗n

1 Mj, there is a unique measure π on (X,M)

such that

π(E1 × E2 × · · · × En) = µ1(E1)µ2(E2) · · · µn(En) for all Ej ∈ Mj,

with the understanding that any numerical product containing 0 as a factor
has the value 0, even if one or more of the other factors is ∞. This mea-
sure is called the product of µ1, · · · , µn and is denoted by µ1 × · · · × µn.
In what follows we restrict the discussion to the case of two factors to
keep the notation more manageable, but the generalization to n factors is
straightforward.

Suppose that (X,M, µ) and (Y,N, ν) are σ-finite measure spaces. If f
is a function on X × Y, we can consider not only the integral of f with
respect to the product measure but also the iterated integrals of f with
respect to µ and ν or with respect to ν and µ. It will be convenient to
employ the following notation for the functions on X and Y obtained from
f by fixing one of its arguments:

f y(x) = f (x, y) = fx(y).

Here is the main result. Parts ii) and iii) are due to Tonelli and Fubini,
respectively, in the case where X = Y = R and µ = ν = Lebesgue measure.
Fubini came first, and the whole theorem is often simply called Fubini’s
theorem.

Theorem 0.10 (Fubini-Tonelli theorem, [Fol99, Theorem 2.37]). Let
(X,M, µ) and (Y,N, ν) be σ-finite measure spaces.

(i) If f is an M ⊗ N-measurable function on X × Y, then f y is M-
measurable for all y ∈ Y and fx is N-measurable for all x ∈ X.

(ii) (Tonelli) If f ∈ L+(X × Y), the functions g(x) =
∫

fxdν and h(y) =∫
f ydµ are in L+(X) and L+(Y), respectively, and∫

X×Y
f d(µ × ν) =

∫
X

[∫
Y

f (x, y)dν(y)
]

dµ(x)

=
∫

Y

[∫
X

f (x, y)dµ(x)
]

dν(y).
(0.8)

(iii) (Fubini) If f ∈ L1(X × Y), then fx ∈ L1(ν) for a.e. x ∈ X and
f y ∈ L1(µ) for a.e. y ∈ Y; the a.e.-defined functions g(x) =

∫
fxdν

and h(y) =
∫

f ydµ are in L1(µ) and L1(ν), respectively, and (0.8)
holds.
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§ 0.3 Lp spaces

Lp spaces are a class of Banach spaces (for p ∈ [1, ∞]) of functions
whose norms are defined in terms of integrals and that generalize the L1

spaces and play a central role in modern analysis.

Let (X,M, µ) be a measure space. If f is a measurable function on X
and 0 < p < ∞, we define

‖ f ‖p =

(∫
X
| f (x)|pdµ

)1/p

(allowing the possibility that ‖ f ‖p = ∞), and

Lp(X,M, µ) =
{

f : X → C : f is measurable and ‖ f ‖p < ∞
}

.

We abbreviate Lp(X,M, µ) by Lp(µ), Lp(X), or simply Lp when this will
cause no confusion. We consider two functions to define the same element
of Lp when they are equal almost everywhere.

For p = ∞, L∞ consists of all µ-measurable and bounded functions.
Then, we write

‖ f ‖∞ = ess sup
X

| f (x)| = inf{a > 0 : µ({x : | f (x)| > a}) = 0},

with the convention that inf∅ = ∞.

For p ∈ [1, ∞], let p′ = p/(p − 1) be the conjugate exponent of p, i.e.,
1/p + 1/p′ = 1 (with the notations 1′ = ∞ and ∞′ = 1). Then with this
notation, we summarize some results about Lp.

Theorem 0.11. (i) (Hölder’s inequality, [Fol99, Theorem 6.2]) Suppose
p ∈ [1, ∞]. If f and g are measurable functions on X, then

‖ f g‖1 ⩽ ‖ f ‖p‖ f ‖p′ . (0.9)

For p = p′ = 2, this is the Cauchy-Schwartz inequality. In particular,
if f ∈ Lp and g ∈ Lp′ , then f g ∈ L1, and in this case equality holds
in (0.9) iff α| f |p = β|g|p′ a.e. for p > 1 and some constants α, β with
(α, β) 6= (0, 0), or |g(x)| = ‖g‖∞ a.e. for p = 1 on the set where
f (x) 6= 0.

(ii) (Minkowski’s inequality, [Fol99, Theorem 6.5]) Suppose p ∈ [1, ∞] and
f , g ∈ Lp, then

‖ f + g‖p ⩽ ‖ f ‖p + ‖g‖p.

(iii) (Completeness: Riesz-Fisher theorem, [Fol99, Theorems 6.6, 6.8]) For
p ∈ [1, ∞], Lp is a Banach space.

(iv) (Riesz representation theorem, [DiB16, Theorem 11.1]) Suppose 1 <

p < ∞ and E ∈ M. For every bounded linear functional F in Lp(E),
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there exists a unique function g ∈ Lp′(E) such that F is represented by

F( f ) =
∫

E
f gdµ for all f ∈ Lp(E).

Moreover, ‖F‖ = ‖g‖p′ , hence Lp′ is isometrically isomorphic to (Lp)′

which denotes the dual space of Lp. The same conclusion holds for p = 1
provided (X,M, µ) is σ-finite.

(v) ([Fol99, Proposition 6.13]) Suppose p ∈ [1, ∞). If f ∈ Lp, then

‖ f ‖p = sup
{∣∣∣∣∫ f g

∣∣∣∣ : ‖g‖p′ = 1
}

.

If µ is semifinite, this result holds also for p = ∞.
(vi) (Density, [Fol99, Proposition 6.7, Theorem 6.8]) For p ∈ [1, ∞), the set

of (finitely) simple functions f =
N
∑
1

ajχEj , where µ(Ej) < ∞ for all j,

is dense in Lp. In addition, the simple functions (not necessarily with
finite measure support) are dense in L∞.

Proposition 0.12 (cf. [Fol99, Exercise 6.9]). Suppose that (X,M, µ) is a
measure space and p ∈ [1, ∞). If a sequence { fk} ⊂ Lp converges in Lp to
f , then there is a subsequence

{
fk j

}
that converges to f µ-a.e.

Theorem 0.13 (Vitali convergence theorem, cf. [Fol99, Exercise 6.15]).
Suppose 1 ⩽ p < ∞ and { fn}∞

1 ⊂ Lp. { fn} is Cauchy in the Lp norm iff
the following three conditions hold:

(i) { fn} is Cauchy in measure;
(ii) the sequence {| fn|p} is uniformly integrable;

(iii) for every ε > 0 there exists E ⊂ X such that µ(E) < ∞ and
∫

Ec | fn|p <

ε for all n.

The next result is a rather general theorem about the boundedness of
integral operators on Lp spaces.

Theorem 0.14 (cf. [Fol99, Theorem 6.18]). Let (X,M, µ) and (Y,N, ν)

be σ-finite measure spaces, and let K be an (M⊗N)-measurable function on
X × Y. Suppose that there exists C > 0 such that

∫
|K(x, y)|dµ(x) ⩽ C for

a.e. y ∈ Y and
∫
|K(x, y)|dν(y) ⩽ C for a.e. x ∈ X and that 1 ⩽ p ⩽ ∞. If

f ∈ Lp(Y), then the integral

T f (x) =
∫

K(x, y) f (y)dν(y)

converges absolutely for a.e. x ∈ X, the function T f thus defined is in Lp(X),
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and ‖T f ‖p ⩽ C‖ f ‖p.

Proof. Suppose that 1 < p < ∞. Let p′ be the conjugate exponent to p. By
applying Hölder’s inequality to the product

|K(x, y) f (y)| = |K(x, y)|1/p′(|K(x, y)|1/p| f (y)|),

we have∫
|K(x, y) f (y)|dν(y) ⩽

[∫
|K(x, y)|dν(y)

]1/p′ [∫
|K(x, y)|| f (y)|pdν(y)

]1/p

⩽C1/p′
[∫

|K(x, y)|| f (y)|pdν(y)
]1/p

for a.e. x ∈ X. Hence, by Tonelli’s theorem,∫ [∫
|K(x, y) f (y)|dν(y)

]p

dµ(x) ⩽Cp/p′
∫∫

|K(x, y)|| f (y)|pdν(y)dµ(x)

⩽C1+p/p′
∫

| f (y)|pdν(y).

Since the last integral is finite, Fubini’s theorem implies that K(x, ·) f ∈
L1(Y) for a.e. x, so that T f is well defined a.e., and∫

|T f (x)|pdµ(x) ⩽ CC1+p/p′‖ f ‖p
p.

Taking pth roots, we are done.
For p = 1 the proof is similar but easier and requires only the hy-

pothesis ∫
|K(x, y)|dµ(x) ⩽ C;

for p = ∞ the proof is trivial and requires only the hypothesis∫
|K(x, y)|dν(y) ⩽ C.

Details are left to the reader (Exercise 0.1). q

Minkowski’s inequality states that the Lp norm of a sum is at most
the sum of the Lp norms. There is a generalization of this result in which
sums are replaced by integrals:

Theorem 0.15 (Minkowski’s integral inequality, [Fol99, Exercise 6.19]).
Suppose that (X,M, µ) and (Y,N, ν) are σ-finite measure spaces, and let f
be an (M⊗N)-measurable function on X × Y.

(i) If f ⩾ 0 and p ∈ [1, ∞), then[∫ (∫
f (x, y)dν(y)

)p

dµ(x)
]1/p

⩽
∫ [∫

f p(x, y)dµ(x)
]1/p

dν(y).

(ii) If p ∈ [1, ∞], f (·, y) ∈ Lp(µ) for a.e. y, and the function y 7→
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‖ f (·, y)‖p is in L1(ν), then f (x, ·) ∈ L1(ν) for a.e. x, the function
x 7→

∫
f (x, y)dν(y) is in Lp(µ), and∥∥∥∥∫ f (·, y)dν(y)

∥∥∥∥
p
⩽
∫

‖ f (·, y)‖pdν(y).

Proof. If p = 1, (i) is merely Tonelli’s theorem. If 1 < p < ∞, let p′ be
the conjugate exponent to p and suppose g ∈ Lp′(X). Then by Tonelli’s
theorem and Hölder’s inequality,∫ [∫

f (x, y)dν(y)
]
|g(x)|dµ(x) =

∫∫
f (x, y)|g(x)|dµ(x)dν(y)

⩽‖g‖p′

∫ [∫
f p(x, y)dµ(x)

]
dν(y).

Therefore, (i) follows from (v) in Theorem 0.11. For p < ∞, (ii) follows
from (i) (with f replaced by | f |) and Fubini’s theorem; for p = ∞, it is a
simple consequence of the monotonicity of the integral. q

As an application, the next result is a theorem concerning integral
operators on (0, ∞) with the Lebesgue measure.

Theorem 0.16 ([Fol99, Theorem 6.20]). Let K be a Lebesgue measurable
function on (0, ∞)× (0, ∞) such that K(λx, λy) = λ−1K(x, y) for all λ > 0
and

∫ ∞
0 |K(x, 1)|x−1/pdx = C < ∞ for some p ∈ [1, ∞], and let p′ be the

conjugate exponent to p. For f ∈ Lp and g ∈ Lp′ , let

T f (y) =
∫ ∞

0
K(x, y) f (x)dx, Sg(x) =

∫ ∞

0
K(x, y)g(y)dy.

Then T f and Sg are defined a.e., and ‖T f ‖p ⩽ C‖ f ‖p and ‖Sg‖p′ ⩽
C‖g‖p′ .

Proof. Setting z = x/y, we have∫ ∞

0
|K(x, y) f (x)|dx =

∫ ∞

0
|K(yz, y) f (yz)|ydz =

∫ ∞

0
|K(z, 1) fz(y)|dz

where fz(y) = f (yz); moreover,

‖ fz‖p =

[∫ ∞

0
| f (yz)|pdy

]1/p

=

[∫ ∞

0
| f (x)|pz−1dx

]1/p

= z−1/p‖ f ‖p.

Therefore, by Minkowski’s inequality for integrals, T f exists a.e. and

‖T f ‖p ⩽
∫ ∞

0
|K(z, 1)|‖ fz‖pdz = ‖ f ‖p

∫ ∞

0
|K(z, 1)|z−1/pdz = C‖ f ‖p.

Finally, setting u = y−1, we have∫ ∞

0
|K(1, y)|y−1/p′dy =

∫ ∞

0
|K(y−1, 1)|y−1−1/p′dy
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=
∫ ∞

0
|K(u, 1)|u−1/pdu = C,

so the same reasoning shows that Sg is defined a.e. and that ‖Sg‖p′ ⩽
C‖g‖p′ . q

Corollary 0.17 ([Fol99, Corollary 6.21]). Let

T f (y) = y−1
∫ y

0
f (x)dx, Sg(x) =

∫ ∞

x
y−1g(y)dy.

Then for 1 < p ⩽ ∞ and 1 ⩽ q < ∞,

‖T f ‖p ⩽ p
p − 1

‖ f ‖p, ‖Sg‖q ⩽ q‖g‖q.

Proof. Let K(x, y) = y−1χE(x, y) where E = {(x, y) : x < y}. Then∫ ∞

0
|K(x, 1)|x−1/pdx =

∫ 1

0
x−1/pdx = p/(p − 1),

and ∫ ∞

0
|K(x, 1)|x−1/q′dx =

∫ 1

0
x−1/q′dx = q′/(q′ − 1) = q,

where q′ is the conjugate exponent to q, so Theorem 0.16 yields the result.
q

Corollary 0.17 is a special case of Hardy’s inequalities; the general
result is in Exercise 0.4.

Definition 0.18. We define Lp1(X) + Lp2(X) to be the space of all func-
tions f , such that f = f1 + f2, with f1 ∈ Lp1(X) and f2 ∈ Lp2(X).

Suppose now p1 < p2. Then, we observe that

Lp ↪→ Lp1 + Lp2 , ∀p ∈ [p1, p2].

In fact, let f ∈ Lp and let γ be a fixed positive constant. Set

f1(x) =
{

f (x), | f (x)| > γ,
0, | f (x)| ⩽ γ,

and f2(x) = f (x)− f1(x). Then∫
| f1(x)|p1 dµ(x) =

∫
| f1(x)|p| f1(x)|p1−pdµ(x) ⩽ γp1−p

∫
| f (x)|pdµ(x),

since p1 − p ⩽ 0. Similarly, due to p2 ⩾ p,∫
| f2(x)|p2 dµ(x) =

∫
| f2(x)|p| f2(x)|p2−pdµ(x) ⩽ γp2−p

∫
| f (x)|pdµ(x),

so f1 ∈ Lp1 and f2 ∈ Lp2 , with f = f1 + f2.
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Proposition 0.19 (Interpolation of Lp spaces). If 0 < p < q < r ⩽ ∞,
then Lp ∩ Lr ⊂ Lq ⊂ Lp + Lr and ‖ f ‖q ⩽ ‖ f ‖1−θ

p ‖ f ‖θ
r , where θ ∈ (0, 1) is

defined by

1
q
=

1 − θ

p
+

θ

r
.

The three most obviously important Lp spaces are L1, L2 and L∞. With
L1 we are very familiar, L2 is special because it is a Hilbert space, and the
topology on L∞ is closely related to the topology of uniform convergence.
Unfortunately, L1 and L∞ are pathological in many respects, and it is more
fruitful to deal with the intermediate Lp spaces, e.g., the duality theory.
Many operators of interest in Fourier analysis and differential equations
are bounded on Lp for 1 < p < ∞ but not on L1 or L∞.

§ 0.4 Weak* topology

Let X be a Banach space. The weak topology on X is the weakest
topology such that every bounded linear functional on X is continuous.
The dual space of X is the space X′ of all bounded linear functionals on X.
The norm of x∗ ∈ X′ is defined by

‖x∗‖ = sup
{
|x∗(x)| : ‖x‖ ⩽ 1

}
.

The weak* topology on X′ is the weakest topology such that for all x ∈ X
the functional x∗ 7→ x∗(x) is continuous. The weak* closure of a set Z ⊆ X′

is denoted cl∗ Z. Note that about any point x∗0 ∈ X′ there is a weak*
neighborhood basis consisting of all sets of the form{

x∗ ∈ X′ : |x∗(x1)− x∗0(x1)| < 1, . . . , |x∗(xn)− x∗0(xn)| < 1
}

for some finite set x1, . . . , xn ∈ X.

A key theorem (cf. [DS88, p.424]) concerning the weak* topology is:

Theorem 0.20 (Banach-Alaoglu theorem). Let X′ be the dual to some
Banach space X. Then, for any r > 0, the closed ball

Br(X′) =
{

x∗ ∈ X′ : ‖x∗‖ ⩽ r
}

is weak* closed and weak* compact. Furthermore, if X is separable then
Br(X′) is weak* metrizable.
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Exercises

Exercise 0.1. [Fol99, Exercise 6.26] Complete the proof of Theorem 0.14 for
the cases p = 1 and p = ∞.

Exercise 0.2 (Young’s conjugate functions [Pey18, Exercise 2.7]). Let φ be a
continuous increasing function from [0, ∞) onto [0, ∞). One sets

Φ(x) =
∫ x

0
φ(t)dt and Ψ(y) =

∫ y

0
φ−1(t)dt.

(i) Prove that, for all a ⩾ 0 and b ⩾ 0, ab ⩽ Φ(a) + Ψ(b) and that the
equality holds iff b = φ(a).

(ii) Prove the inequality, valid for nonnegative a and b,

ab ⩽ (a + 1) ln(a + 1) + eb.

Hint (i) Draw a picture. (ii) Use the function φ(t) = ln(1 + t).

Exercise 0.3. [Pey18, Exercise 2.8] Let Φ and Ψ be as in Exercise 0.2, and
let f and g be two measurable functions.

(i) Prove the inequality∫
| f (x)g(x)|dx ⩽

∫
Φ(| f (x)|)dx +

∫
Ψ(|g(x)|)dx.

(ii) Define

‖ f ‖Φ = inf
{

t > 0 :
∫

Φ(| f (x)|/t)dx ⩽ 1
}

.

Then ∫
| f (x)g(x)|dx ⩽ ‖ f ‖Φ

(
1 +

∫
Ψ(|g(x)|)dx

)
and ∫

| f (x)g(x)|dx ⩽ 2‖ f ‖Φ‖g‖Ψ.

(iii) Prove that the set of f such that ‖ f ‖Φ < ∞ is a normed vector space.
Such a space is called an Orlicz space.

(iv) Let f j be a sequence of functions. Then lim
j→∞

∫
Φ(t| f j(x)|)dx = 0 for

all t > 0, iff lim
j→∞

‖ f j‖Φ = 0.

Exercise 0.4 (Hardy’s inequalities [Fol99, Exercise 6.29]). Suppose that 1 ⩽
p < ∞, r > 0, and h is a nonnegative measurable function on (0, ∞). Prove:

(i)
∫ ∞

0

[∫ t

0
h(y)dy

]p

t−r−1dt ⩽
( p

r

)p ∫ ∞

0
(yh(y))py−r−1dy,

(ii)
∫ ∞

0

[∫ ∞

t
h(y)dy

]p

tr−1dt ⩽
( p

r

)p ∫ ∞

0
(yh(y))pyr−1dy.

Hint (i) Apply Theorem 0.16 with K(t, y) = tβ−1y−βχ(0,∞)(y − t) and
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f (t) = tγh(t) for suitable β, γ; or use Jensen’s inequality.

(ii) Let h(x) = f (1/x)/x2 and use (i).





1
Interpolation of Operators

In this chapter, we introduce several interpolation theorems. There
are generally two ways to derive them: “complex interpolation”, such as
the Riesz-Thorin interpolation theorem, and “real interpolation”, such as
the Marcinkiewicz interpolation theorem. The former gives sharper re-
sults and is more elegant because it is based on analytic-function theory
in the complex plane. However, this also carries some disadvantages: The
Lp-spaces need to be defined over C, and the method only works for lin-
ear operators. The “real interpolation” method is less elegant in terms
of results and proofs, but it works in larger generality and includes even
nonlinear operators such as maximal functions (given in §2.1).

These two interpolation theorems, Riesz-Thorin and Marcinkiewicz,
have been developed into full theories of interpolation of operators be-
tween function spaces in advanced functional analysis, with the goal of
studying which families of function spaces and operators between them
can be interpolated.

An important observation of E. Stein is that the proof of the Riesz-
Thorin interpolation theorem can be generalized to the case where the op-
erator T itself varies analytically, so we will introduce the Stein interpola-
tion theorem. We also introduce the notion of weak-Lp spaces that are nat-
ural objects for interpolation theory and used to prove the Marcinkiewicz
interpolation theorem and weak-type estimates (cf. Definition 1.25).

§ 1.1 Riesz-Thorin interpolation theorem

In this section, scalars are supposed to be complex numbers.

Let T be a linear mapping from Lp = Lp(X, dµ) to Lq = Lq(Y, dν).
This means that T(α f + βg) = αT( f ) + βT(g). We shall write

T : Lp → Lq

if in addition T is bounded, i.e.,

A = sup
{ f :‖ f ‖p 6=0}

‖T f ‖q

‖ f ‖p
= sup

‖ f ‖p=1
‖T f ‖q < ∞.

The number A is called the norm of mapping T.
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It will also be necessary to treat operators T defined on several Lp

spaces simultaneously.

If 1 ⩽ p < q < r ⩽ ∞, then (Lp ∩ Lr) ⊂ Lq ⊂ (Lp + Lr), and it
is natural to ask whether a linear operator T on Lp + Lr that is bounded
on both Lp and Lr is also bounded on Lq. The answer is affirmative, and
this result can be generalized in various ways. A fundamental theorem
on this question is the Riesz-Thorin interpolation theorem of “complex
interpolation” as follows:

Theorem 1.1 (Riesz-Thorin interpolation theorem). Let (X,M, µ) and
(Y,N, ν) be a pair of measure spaces and p0, p1, q0, q1 ∈ [1, ∞]. If q0 = q1 =

∞, suppose also that the measure ν on Y is semifinite. For 0 < θ < 1, define
p and q by

1
p
=

1 − θ

p0
+

θ

p1
,

1
q
=

1 − θ

q0
+

θ

q1
. (1.1)

If T is a linear operator from (Lp0 + Lp1)(X, dµ) into (Lq0 + Lq1)(Y, dν)

such that ‖T f ‖q0 ⩽ A0‖ f ‖p0 , for f ∈ Lp0(X, dµ) and ‖T f ‖q1 ⩽ A1‖ f ‖p1 ,
for f ∈ Lp1(X, dµ), then

‖T f ‖q ⩽ Aθ‖ f ‖p, for f ∈ Lp(X, dµ), 0 < θ < 1,

with

Aθ ⩽ A1−θ
0 Aθ

1. (1.2)

Remark 1.2. 1) (1.2) means that Aθ is logarithmically convex, i.e., ln Aθ is
convex. Because of this, the above theorem is sometimes known as the
Riesz(-Thorin) convexity theorem.

2) The geometrical meaning of (1.1) is that the points (1/p, 1/q) are
the points on the line segment between (1/p0, 1/q0) and (1/p1, 1/q1);
see the figure.

3) One can only assume the boundedness of T for all finitely sim-
ple functions f on X and obtain the boundedness for all finitely simple
functions. When p < ∞, by density, T has a unique bounded extension
from Lp(X, µ) to Lq(Y, ν) when p and q are as in (1.1).

(1, 1)

( 1
p0
, 1
q0
)

( 1
p1
, 1
q1
)

(1p ,
1
q )

1
p

1
q

O

The Riesz-Thorin interpolation theorem
is due to M. Riesz, who, in 1926, in the pro-
cess of proving the convergence of Fourier
series in the Lp norm, developed an interpo-
lation method in the framework of bilinear
forms in Lp with a long and difficult calcu-
lation subject to conditions p0 ⩽ q0, p1 ⩽ q1

and Lp spaces over R. Later, one of his stu-
dents, O. Thorin, removed the restriction on
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the indices by introducing complex analysis methods in 1939. This is
what is now called the Riesz-Thorin interpolation theorem, whose cur-
rent widely presented proof is actually due to a further simplification by
A. Zygmund. The proof of Theorem 1.1 is conceptually fairly simple but
wonderful in a number of specific aspects. The key idea is a result of
complex analysis proved by J. Hadamard in 1896.

Lemma 1.3 (Hadamard three lines lemma). Let S = {z ∈ C : 0 ⩽
Re z ⩽ 1} and f : S → C be bounded and continuous on S and analytic on
the interior S̊ of S. Let Aθ = sup

t∈R

| f (θ + it)|. Then we have Aθ ⩽ A1−θ
0 Aθ

1

for all θ ∈ [0, 1].

Proof. Without loss of generality, we can assume that A0 = A1 = 1.
Otherwise, we replace f by the function g : S → C defined by g(z) =

f (z)/(A1−z
0 Az

1). By the assumption on f , it follows that g is contin-
uous and bounded on S (because |g(z)| ⩽ | f (z)|/(A1−Re z

0 A Re z
1 ) ⩽

| f (z)|/(min(1, A0, A1)) and A0, A1 cannot be zero) and analytic on S̊, with
sup

Re z=0
|g(z)| = sup

Re z=1
|g(z)| = 1. Hence, we can assume that

sup
Re z=0,1

| f (z)| = 1

and, under this assumption, we need to show that

sup
z∈S

| f (z)| ⩽ 1.

To this end, we define the sequence fn(z) = f (z)e(z
2−1)/n and we observe

that | fn(z)| ⩽ | f (z)| for all z ∈ S, in particular, sup
Re z=0,1

| fn(z)| ⩽ 1. More-

over, fn(z) is analytic in S̊ for all n ⩾ 1, and | fn(x + iy)| → 0, as |y| → ∞,
for every fixed n, uniformly in x. Hence, we obtain for every n ⩾ 1,

sup
z∈S

| fn(z)| ⩽ 1,

because analytic functions attain their maximum and minimum on the
boundary of any compact set (cf. [SS03, p.92], consider the compact do-
main K = {z : | Im z| ⩽ κ, 0 ⩽ Re z ⩽ 1}, where κ is so large that
| fn(x + iy)| ⩽ 1 for all |y| ⩾ κ, and x ∈ [0, 1]). Since | fn(z)| → | f (z)| as
n → ∞, it follows that | f (z)| ⩽ 1 for all z ∈ S. q

The proof of the Riesz-Thorin interpolation theorem then follows by
building a function, using duality, that depends holomorphically on z cor-
responding to a complex parameter such that Re (z) = 1/p and then using
the Hadamard three lines lemma to obtain the intermediate bounds. Du-
ality again yields the final estimates.
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Proof of Theorem 1.1. We observe that the case p0 = p1 follows from Propo-
sition 0.19: If p = p0 = p1, then

‖T f ‖q ⩽ ‖T f ‖1−θ
q0

‖T f ‖θ
q1
⩽ A1−θ

0 Aθ
1‖ f ‖p.

Thus, we may assume that p0 6= p1 and, in particular, that p < ∞ for
0 < θ < 1.

Denote

〈h, g〉 =
∫

Y
h(y)g(y)dν(y)

and 1/q′ = 1 − 1/q. Then, we have, by the dual (i.e., (v) in Theorem 0.11,
where we need that ν is semifinite if q = ∞, i.e., q0 = q1 = ∞),

‖h‖q = sup
‖g‖q′=1

|〈h, g〉|, and Aθ = sup
‖ f ‖p=‖g‖q′=1

|〈T f , g〉|.

Noticing that Cc(X) is dense in Lp(X, µ) for 1 ⩽ p < ∞, we can as-
sume that f and g are bounded with compact supports since p, q′ < ∞.
(Otherwise, it will be p0 = p1 = ∞ if p = ∞, or θ = 1−1/q0

1/q1−1/q0
⩾ 1

if q′ = ∞.) Thus, we have | f (x)| ⩽ M < ∞ for all x ∈ X and
supp f = {x ∈ X : f (x) 6= 0} is compact, i.e., µ( supp f ) < ∞, which im-
plies

∫
X | f (x)|`dµ(x) =

∫
supp f | f (x)|`dµ(x) ⩽ M`µ( supp f ) < ∞ for any

` > 0. So does g.
For 0 ⩽ Re z ⩽ 1, we set

1
p(z)

=
1 − z

p0
+

z
p1

,
1

q′(z)
=

1 − z
q′0

+
z
q′1

,

and

η(z) = η(x, z) =

| f (x)|
p

p(z) f (x)
| f (x)| , x ∈ {x ∈ X : f (x) 6= 0};

0, otherwise,

ζ(z) = ζ(y, z) =

|g(y)|
q′

q′(z) g(y)
|g(y)| , y ∈ {y ∈ Y : g(y) 6= 0};

ζ(z) = 0, otherwise.

Now, we prove η(z), η′(z) ∈ Lpj for j = 0, 1. Indeed, we have

|η(z)| =
∣∣∣| f (x)|

p
p(z)

∣∣∣ = ∣∣∣| f (x)|p(
1−z
p0

+ z
p1
)
∣∣∣ = ∣∣∣| f (x)|p(

1−Re z
p0

+ Re z
p1

)+ip( Im z
p1

− Im z
p0

)
∣∣∣

=| f (x)|p(
1−Re z

p0
+ Re z

p1
)
= | f (x)|

p
p(Re z) .

Thus,

‖η(z)‖pj
pj =

∫
X
|η(x, z)|pj dµ(x) =

∫
X
| f (x)|

ppj
p(Re z) dµ(x) < ∞.

We have

η′(z) =| f (x)|
p

p(z)

[
p

p(z)

]′ f (x)
| f (x)| ln | f (x)|
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=p
(

1
p1

− 1
p0

)
| f (x)|

p
p(z)

f (x)
| f (x)| ln | f (x)|.

On one hand, we have lim
| f (x)|→0+

| f (x)|α ln | f (x)| = 0 for any α > 0, i.e.,

∀ε > 0, ∃δ > 0 s.t. || f (x)|α ln | f (x)|| < ε if | f (x)| < δ. On the other hand,
if | f (x)| ⩾ δ, then we have

|| f (x)|α ln | f (x)|| ⩽ Mα |ln | f (x)|| ⩽ Mα max(| ln M|, | ln δ|) < ∞.

Thus, || f (x)|α ln | f (x)|| ⩽ C. Hence,

|η′(z)| =p
∣∣∣∣ 1

p1
− 1

p0

∣∣∣∣ ∣∣∣| f (x)|
p

p(z)−α
∣∣∣ | f (x)|α |ln | f (x)||

⩽C
∣∣∣| f (x)|

p
p(z)−α

∣∣∣ = C| f (x)|
p

p(Re z)−α,

which yields

‖η′(z)‖pj
pj ⩽ C

∫
X
| f (x)|(

p
p(Re z)−α)pj dµ(x) < ∞.

Therefore, η(z), η′(z) ∈ Lpj for j = 0, 1. So do ζ(z), ζ ′(z) ∈ Lq′j for j = 0, 1
in the same way. By the linearity of T, (Tη)′(z) = Tη′(z). It follows that
Tη(z) ∈ Lqj , and (Tη)′(z) ∈ Lqj with 0 < Re z < 1, for j = 0, 1. This
implies the existence of

F(z) = 〈Tη(z), ζ(z)〉, 0 ⩽ Re z ⩽ 1.

Since
dF(z)

dz
=

d
dz

〈Tη(z), ζ(z)〉 = d
dz

∫
Y
(Tη)(y, z)ζ(y, z)dν(y)

=
∫

Y
(Tη)z(y, z)ζ(y, z)dν(y) +

∫
Y
(Tη)(y, z)ζz(y, z)dν(y)

=〈(Tη)′(z), ζ(z)〉+ 〈Tη(z), ζ ′(z)〉,

F(z) is analytic on the open strip 0 < Re z < 1. Moreover, it is easy to see
that F(z) is bounded and continuous on the closed strip 0 ⩽ Re z ⩽ 1.

Next, we note that for j = 0, 1

‖η(j + it)‖pj = ‖ f ‖
p
pj
p = 1.

Similarly, we also have ‖ζ(j + it)‖q′j
= 1 for j = 0, 1. Thus, for j = 0, 1

|F(j + it)| =|〈Tη(j + it), ζ(j + it)〉| ⩽ ‖Tη(j + it)‖qj‖ζ(j + it)‖q′j

⩽Aj‖η(j + it)‖pj‖ζ(j + it)‖q′j
= Aj.

Using Hadamard’s three lines lemma, reproduced as Lemma 1.3, we ob-
tain the conclusion

|F(θ + it)| ⩽ A1−θ
0 Aθ

1, ∀t ∈ R.

Taking t = 0, we have |F(θ)| ⩽ A1−θ
0 Aθ

1. We also note that η(θ) = f and
ζ(θ) = g, thus F(θ) = 〈T f , g〉. That is, |〈T f , g〉| ⩽ A1−θ

0 Aθ
1. Therefore,
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Aθ ⩽ A1−θ
0 Aθ

1. q

Now, we shall give a rather simple application of the Riesz-Thorin
interpolation theorem.

Theorem 1.4 (Young’s inequality for convolutions). If f ∈ Lp(Rn) and
g ∈ Lq(Rn), 1 ⩽ p, q, r ⩽ ∞ and 1

r = 1
p +

1
q − 1, then

‖ f ∗ g‖r ⩽ ‖ f ‖p‖g‖q.

Proof. Fix f ∈ Lp, p ∈ [1, ∞], then we will apply the Riesz-Thorin inter-
polation theorem to the mapping g 7→ f ∗ g. Our endpoints are Hölder’s
inequality, which gives

| f ∗ g(x)| ⩽ ‖ f ‖p‖g‖p′

and thus g 7→ f ∗ g maps Lp′(Rn) to L∞(Rn) and the simpler version
of Young’s inequality (proved by Minkowski’s inequality), which tells us
that if g ∈ L1, then

‖ f ∗ g‖p ⩽ ‖ f ‖p‖g‖1.

Thus, g 7→ f ∗ g also maps L1 to Lp. Thus, this map also takes Lq to Lr,
where

1
q
=

1 − θ

1
+

θ

p′
, and

1
r
=

1 − θ

p
+

θ

∞
.

Eliminating θ, we have 1
r = 1

p +
1
q − 1. Thus, we obtain the stated inequal-

ity for precisely the exponents p, q and r in the hypothesis. q

Remark 1.5. 1) The sharp form of Young’s inequality for convolutions can
be found in [Bec75b, Theorem 3] or [Bec75a; BL76b], and we state it as
follows. Under the assumption of Theorem 1.4, we have

‖ f ∗ g‖r ⩽ (Ap Aq Ar′)
n‖ f ‖p‖g‖q,

where Am = (m1/m/m′1/m′
)1/2 for m ∈ (1, ∞), A1 = A∞ = 1 and primes

always denote Hölder conjugate numbers, i.e., 1/m + 1/m′ = 1.
2) The Riesz-Thorin interpolation theorem is valid for a sublinear

operator. One can see [CZ56] for details.

§ 1.2 Stein interpolation theorem

An important observation of E. Stein is that the above proof of the
Riesz-Thorin interpolation theorem can be generalized to the case where
the operator T itself varies analytically. For the motivation and importance,
one can read Terence Tao’s blog (https://wp.me/p3qzP-1g5). In particu-
lar, if a family of operators depends analytically on a parameter z, then the
proof of this theorem can be adapted to work in this setting.

https://terrytao.wordpress.com/2011/05/03/steins-interpolation-theorem/
https://wp.me/p3qzP-1g5
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We now describe the setup for this theorem. Suppose that for every
z in the closed strip S, there is an associated linear operator Tz defined
on the space of simple functions on X and taking values in the space of
measurable functions on Y such that∫

Y
|Tz(χA)χB|dν < ∞ (1.3)

whenever A and B are subsets of finite measure of X and Y, respectively.
The family {Tz}z is said to be analytic if the function

z →
∫

Y
Tz( f )gdν (1.4)

is analytic in the open strip S̊ and continuous on its closure S. Finally, the
analytic family is of admissible growth if there is a constant 0 < a < π

and a constant C f ,g such that

e−a| Im z| ln
∣∣∣∣∫Y

Tz( f )gdν

∣∣∣∣ ⩽ C f ,g < ∞ (1.5)

for all z ∈ S.

Note that if there is a ∈ (0, π) such that for all measurable subsets A
of X and B of Y of finite measure there is a constant c(A, B) such that

e−a| Im z| ln
∣∣∣∣∫B

Tz(χA)dν

∣∣∣∣ ⩽ c(A, B), (1.6)

then (1.5) holds for f =
M
∑

k=1
akχAk and g =

N
∑

j=1
bjχBj with

C f ,g = ln(MN) +
M

∑
k=1

N

∑
j=1

(
c(Ak, Bj) +

∣∣ln |akbj|
∣∣) .

In fact, by the linearity of Tz, the increase in ln and (1.6), we obtain

ln
∣∣∣∣∫Y

Tz( f )gdν

∣∣∣∣ = ln

∣∣∣∣∣
∫

Y
Tz

(
M

∑
k=1

akχAk

)
N

∑
j=1

bjχBj dν

∣∣∣∣∣
= ln

∣∣∣∣∣ M

∑
k=1

N

∑
j=1

akbj

∫
Bj

Tz (χAk) dν

∣∣∣∣∣
⩽ ln

M

∑
k=1

N

∑
j=1

|akbj|
∣∣∣∣∫Bj

Tz (χAk) dν

∣∣∣∣
⩽ ln

[
MN max

k,j

(
|akbj| exp

(
c(Ak, Bj)ea| Im z|

))]
⩽ ln(MN) + max

k,j

∣∣∣ln [(|akbj| exp
(

c(Ak, Bj)ea| Im z|
))]∣∣∣

⩽ ln(MN) + max
k,j

[∣∣ln |akbj|
∣∣+ c(Ak, Bj)ea| Im z|

]
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⩽ ln(MN) +
M

∑
k=1

N

∑
j=1

[∣∣ln |akbj|
∣∣+ c(Ak, Bj)ea| Im z|

]
⩽
[

ln(MN) +
M

∑
k=1

N

∑
j=1

(∣∣ln |akbj|
∣∣+ c(Ak, Bj)

)]
ea| Im z|.

Then, we have an extension of the three lines theorem due to I. Hirschman
[Hir53].

Lemma 1.6 (Hirschman lemma). Let F be analytic on the open strip S̊ =

{z ∈ C : 0 < Re z < 1} and continuous on its closure S such that for some
A < ∞ and 0 ⩽ a < π, we have

ln |F(z)| ⩽ Aea| Im z| (1.7)

for all z ∈ S. Then

|F(x + iy)|

⩽ exp
{

sin πx
2

∫ ∞

−∞

[
ln |F(it + iy)|

cosh πt − cos πx
+

ln |F(1 + it + iy)|
cosh πt + cos πx

]
dt
}

,

whenever 0 < x < 1, and y is real.

Before we give the proof of Lemma 1.6, we first recall the Poisson-
Jensen formula1 from [Rub96, p.21].

Theorem 1.7 (Poisson-Jensen formula). Suppose that f is meromorphica

in the disk DR = {z ∈ C : |z| < R}, r < R. Then for any z = reiθ in DR,
we have

ln | f (reiθ)| = 1
2π

∫ π

−π
ln | f (Reiφ)| R2 − r2

|Reiφ − reiθ |2
dφ + ∑

|zν|<R
ln |BR(z : zν)|

− ∑
|wν|<R

ln |BR(z : wν)| − k ln
R
r

,

where B is the Blaschke factor defined by

BR(z : a) =
R(z − a)
R2 − āz

and the zν are the zeros of f , the wν are the poles of f , and k is the order of
the zero or the pole at the origin.

aIn complex analysis, a meromorphic function on an open subset D of the com-
plex plane is a function that is holomorphic on all D except a set of isolated points,
which are poles for the function.

1This is a generalization of Jensen’s Theorem (i.e., the case of r = 0, [SS03, p.135]) by
using the Gauss mean value theorem.
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Now, we consider the modulus of the Blaschke factor since

BR(z : a) =
R(z − a)
R2 − āz

=
(z/R − a/R)

1 − āz/R2 ,

it suffices to consider B1(z : a) with |z| < 1 and |a| < 1, thus, we consider
for z = reiθ ∣∣∣∣ z − a

1 − āz

∣∣∣∣ = ∣∣∣∣ reiθ − a
1 − āreiθ

∣∣∣∣ = ∣∣∣∣ r − ae−iθ

1 − ae−iθr

∣∣∣∣ .

Letting a∗ = ae−iθ , this becomes ∣∣∣∣ r − a∗

1 − a∗r

∣∣∣∣ .

Therefore, it is sufficient to consider the case in which z = r is a real num-
ber. Note further that replacing a∗ by a∗ is equivalent to taking the complex
conjugate of the entire fraction. Therefore, it is sufficient to consider(

r − a
1 − ār

)(
r − ā

1 − ar

)
=

r2 − 2r Re a + |a|2
1 − 2r Re a + r2|a|2 ⩽ 1,

since r2 + |a|2 − (1 + r2|a|2) = (r2 − 1)(1 − |a|2) < 0 for r < 1 and |a| < 1.
Thus, we obtain |B1(z : a)| < 1, and then

ln |BR(z : a)| < 0. (1.8)

Proof of Lemma 1.6. It is not difficult to verify that

h(ζ) =
1

πi
ln
(

i
1 + ζ

1 − ζ

)
is a conformal map from D = {z : |z| < 1} onto the strip S̊ = (0, 1)× R.
Indeed, i(1 + ζ)/(1 − ζ) lies in the upper half-plane, and the preceding
complex logarithm is a well-defined holomorphic function that takes the
upper half-plane onto the strip R × (0, π). Since F ◦ h is a holomorphic
function in D, which implies that there are no poles in D, by the Poisson-
Jensen formula with (1.8), we have

ln |F(h(z))| ⩽ 1
2π

∫ π

−π
ln |F(h(Reiφ))| R2 − ρ2

|Reiφ − ρeiθ |2
dφ (1.9)

when z = ρeiθ and |z| = ρ < R. Let ζ = eiφ, h(Rζ) = 1
πi ln

(
i 1+Rζ

1−Rζ

)
, we

observe that for R < |ζ| = 1 the hypothesis on F implies that

ln |F(h(Reiφ))| ⩽Aea| Im 1
πi ln(i 1+Rζ

1−Rζ )| (by (1.7))

(If z = |z|eiβ, then ln z = ln |z|+ iβ, thus Im i ln z = ln |z|.)

=Ae
a
π |ln| 1+Rζ

1−Rζ ||

=Ae
a
π

∣∣∣ln |1+Rζ|
|1−Rζ|

∣∣∣ (due to |z1/z2| = |z1|/|z2|)



26 1. Interpolation of Operators

=Ae
a
π

∣∣∣∣ln√ (1+R cos φ)2+(R sin φ)2

(1−R cos φ)2+(R sin φ)2

∣∣∣∣
(the square root is ⩾ 1 if cos φ ⩾ 0 and < 1 otherwise)

=A
(

1 + R2 + 2R| cos φ|
1 + R2 − 2R| cos φ|

) a
2π

.

Since

1 + R2 − 2R| cos φ| =(R − | cos φ|)2 + sin2 φ ⩾ sin2 φ,

1 + R2 + 2R| cos φ| ⩽(1 + R)2 ⩽ 4,

we obtain

ln |F(h(Reiφ))| ⩽ A
(

4
sin2 φ

) a
2π

⩽ A2
a
π | sin φ|− a

π .

Now, ∫ π

−π
| sin φ|− a

π dφ =4
∫ π

2

0
sin− a

π φdφ

=4
∫ π

2

0
sin2( 1

2−
a

2π )−1 φ cos2· 1
2−1 φdφ

=2B
(

1
2

,
1
2
− a

2π

)
< ∞,

since a < π and the fact that the Beta function

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx = 2

∫ π
2

0
sin2β−1 φ cos2α−1 φdφ

converges for Re α, Re β > 0. Moreover, for 1 > R > 1
2 (ρ + 1), it holds that

R2 − ρ2

|Reiφ − ρeiθ |2
=

R2 − ρ2

R2 − 2Rρ cos(θ − φ) + ρ2 ⩽ R2 − ρ2

R2 − 2Rρ + ρ2

=
(R − ρ)(R + ρ)

(R − ρ)2 =
R + ρ

R − ρ
⩽ 2

1
2 (ρ + 1)− ρ

⩽ 4
1 − ρ

.

Thus, (1.9) is uniformly bounded w.r.t. R ∈ ( 1
2 (ρ + 1), 1).

We will now use the following consequence of Fatou’s lemma: sup-
pose that FR ⩽ G, where G ⩾ 0 is integrable, then

lim sup
R

∫
FRdφ ⩽

∫
lim sup

R
FRdφ.

Letting R ↗ 1 in (1.9) and using this convergence result, we obtain

ln |F(h(ρeiθ))| ⩽ 1
2π

∫ π

−π
ln |F(h(eiφ))| 1 − ρ2

1 − 2ρ cos(θ − φ) + ρ2 dφ. (1.10)

Setting x = h(ρeiθ), we obtain that

ρeiθ =h−1(x) =
eπix − i
eπix + i

=
cos πx + i sin πx − i
cos πx + i sin πx + i
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=
(cos πx + i(sin πx − 1))(cos πx − i(sin πx + 1))

| cos πx + i(sin πx + 1)|2

=− i
cos πx

1 + sin πx
=

(
cos πx

1 + sin πx

)
e−

π
2 i,

from which it follows that ρ = (cos πx)/(1 + sin πx) and θ = −π/2 when
x ∈ (0, 1

2 ], while ρ = −(cos πx)/(1+ sin πx) and θ = π/2 when x ∈ [ 1
2 , 1).

In either case, we have ρ = ( sgn ( 1
2 − x))(cos πx)/(1 + sin πx) and θ =

−( sgn ( 1
2 − x))π/2 for x ∈ (0, 1). We easily deduce that

1 − ρ2

1 − 2ρ cos(θ − φ) + ρ2

=
1 − cos2 πx

(1+sin πx)2

1 − 2( sgn ( 1
2 − x)) cos πx

1+sin πx cos(( sgn ( 1
2 − x))π

2 + φ) + cos2 πx
(1+sin πx)2

=
(1 + sin πx)2 − cos2 πx

(1 + sin πx)2 + 2(1 + sin πx) cos πx sin φ + cos2 πx

=
2 sin πx + 2 sin2 πx

2(1 + sin πx)(1 + cos πx sin φ)

=
sin πx

1 + cos πx sin φ
,

since

cos(( sgn (
1
2
− x))

π

2
+ φ) = cos(

π

2
+ ( sgn (

1
2
− x))φ)

=− sin(( sgn (
1
2
− x))φ) = − sgn (

1
2
− x) sin φ.

Using this we write (1.10) as

ln |F(x)| ⩽ 1
2π

∫ π

−π

sin πx
1 + cos πx sin φ

ln |F(h(eiφ))|dφ. (1.11)

We now change the variables. On the interval [−π, 0), we use the change
of variables it = h(eiφ) or, equivalently,

eiφ =h−1(it) =
e−πt − i
e−πt + i

=
(e−πt − i)2

e−2πt + 1
=

e−2πt − 1 − 2ie−πt

e−2πt + 1

=
e−πt − eπt − 2i

e−πt + eπt = − tanh πt − i sech πt.

Observe that as φ ranges from −π to 0, t ranges from +∞ to −∞. Further-
more, dφ = −π sech πt dt. We have

1
2π

∫ 0

−π

sin πx
1 + cos πx sin φ

ln |F(h(eiφ))|dφ

=
1
2

∫ ∞

−∞

sin πx
cosh πt − cos πx

ln |F(it)|dt. (1.12)

On the interval (0, π], we use the change of variables 1 + it = h(eiφ) or,
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equivalently,

eiφ =h−1(1 + it) =
eπi(1+it) − i
eπi(1+it) + i

=
eπie−πt − i
eπie−πt + i

=
(eπie−πt − i)(e−πie−πt − i)

e−2πt + 1

=
e−2πt − 1 − ie−πt(e−πi + eπi)

1 + e−2πt =
e−πt − eπt + 2i

eπt + e−πt

=− tanh πt + i sech πt.

Observe that as φ ranges from 0 to π, t ranges from −∞ to +∞. Further-
more, dφ = π sech πt dt. Similarly, we obtain

1
2π

∫ π

0

sin πx
1 + cos πx sin φ

ln |F(h(eiφ))|dφ

=
1
2

∫ ∞

−∞

sin πx
cosh πt + cos πx

ln |F(1 + it)|dt. (1.13)

Adding (1.12) and (1.13) and using (1.11), we conclude the proof when
y = 0.

We now consider the case when y 6= 0. Fix y 6= 0 and define the
function G(z) = F(z + iy). Then, G is analytic on the open strip S̊ = {z ∈
C : 0 < Re z < 1} and continuous on its closure S. Moreover, for some
A < ∞ and a ∈ [0, π), we have

ln |G(z)| = ln |F(z + iy)| ⩽ Aea| Im z+y| ⩽ Aea|y|ea| Im z|

for all z ∈ S. Then, the case y = 0 for G (with A replaced by Aea|y|) yields

|G(x)| ⩽ exp
{

sin πx
2

∫ ∞

−∞

[
ln |G(it)|

cosh πt − cos πx
+

ln |G(1 + it)|
cosh πt + cos πx

]
dt
}

,

which yields the required conclusion for any real y, since G(x) = F(x+ iy),
G(it) = F(it + iy), and G(1 + it) = F(1 + it + iy). q

The extension of the Riesz-Thorin interpolation theorem is now stated.

Theorem 1.8 (Stein interpolation theorem). Let (X, µ) and (Y, ν) be a
pair of σ-finite measure spaces. Let Tz be an analytic family of linear operators
of admissible growth. Let 1 ⩽ p0, p1, q0, q1 ⩽ ∞ and suppose that M0 and
M1 are real-valued functions such that

sup
t∈R

e−b|t| ln Mj(t) < ∞

for j = 0, 1 and some 0 < b < π. Let 0 < θ < 1 satisfy

1
p
=

1 − θ

p0
+

θ

p1
, and

1
q
=

1 − θ

q0
+

θ

q1
. (1.14)
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Suppose that

‖Tit( f )‖q0 ⩽ M0(t)‖ f ‖p0 , ‖T1+it( f )‖q1 ⩽ M1(t)‖ f ‖p1 (1.15)

for all finitely simple functions f on X. Then,

‖Tθ( f )‖q ⩽ M(θ)‖ f ‖p, when 0 < θ < 1 (1.16)

for all simple finitely functions f on X, where

M(θ) = exp
{

sin πθ

2

∫ ∞

−∞

[
ln M0(t)

cosh πt − cos πθ
+

ln M1(t)
cosh πt + cos πθ

]
dt
}

.

By density, Tθ has a unique extension as a bounded operator from Lp(X, µ)

into Lq(Y, ν) for all p and q as in (1.14).

The proof of the Stein interpolation theorem can be obtained from that
of the Riesz-Thorin theorem simply “by adding a single letter of the alpha-
bet”. Indeed, the way the Riesz-Thorin theorem is proven is to study an ex-
pression of the form F(z) = 〈Tη(z), ζ(z)〉, and the Stein interpolation the-
orem proceeds by instead studying the expression F(z) = 〈Tzη(z), ζ(z)〉.
One can then repeat the proof of the Riesz-Thorin theorem more or less
verbatim to obtain the Stein interpolation theorem. We leave it as an exer-
cise.

§ 1.3 Distribution functions and weak Lp

We shall be interested in giving a concise expression for the relative
size of a function. Thus, we give the following concept.

Definition 1.9. Let f be a measurable function on (X,M, µ); we define
its distribution function f∗ : [0, ∞) 7→ [0, ∞] by

f∗(α) = µ({x ∈ X : | f (x)| > α}).

The distribution function f∗ provides information about the size of f
but not about the behavior of f itself near any given point. For instance,
a function on Rn and each of its translations have the same distribution
function.

In particular, the decrease of f∗(α) as α grows describes the relative
largeness of the function; this is the main concern locally. The increase in
f∗(α) as α tends to zero describes the relative smallness of the function “at
infinity”; this is its importance globally and is of no interest if, for example,
the function is supported on a bounded set.
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Example 1.10 (Distribution function of a simple function). Let f be a sim-
ple function of the following form

f (x) =
k

∑
j=1

ajχAj(x)

where a1 > a2 > · · · > ak > 0, Aj = {x ∈ R : f (x) = aj} and χA is the
characteristic function of set A (see Figure (a)). Then,

A1 A2A3 A4 A5

a1

a2
a3

a4

a5

b1

b2
b3

b4
b5

a1a2a3a4a5x

f(x) f∗(α)

α b1 b2 b3 b4b5

a1

a2
a3

a4

a5

t

f∗(t)

(a) (b) (c)

f∗(α) = |{x : | f (x)| > α}| =
∣∣∣∣∣
{

x :
k

∑
j=1

ajχAj(x) > α

}∣∣∣∣∣ = k

∑
j=1

bjχBj(α),

where bj =
j

∑
i=1

|Ai|, Bj = [aj+1, aj) for j = 1, 2, · · · , k and ak+1 = 0, which

shows that the distribution function of a simple function is a simple
function (see Figure (b)).

Example 1.11. Let f : [0, ∞) 7→ [0, ∞) be

f (x) =
{

1 − (x − 1)2, 0 ⩽ x ⩽ 2,
0, x > 2.

It is clear that f∗(α) = 0 for α > 1 since | f (x)| ⩽ 1. For α ∈ [0, 1], we
have

f∗(α) =|{x ∈ [0, ∞) : 1 − (x − 1)2 > α}|
=|{x ∈ [0, ∞) : 1 −

√
1 − α < x < 1 +

√
1 − α}| = 2

√
1 − α.

That is,

f∗(α) =
{

2
√

1 − α, 0 ⩽ α ⩽ 1,
0, α > 1.

Observe that the integrals of f and f∗ are the same, i.e.,∫ ∞

0
f (x)dx =

∫ 2

0
[1 − (x − 1)2]dx =

∫ 1

0
2
√

1 − αdα = 4/3.
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1 2

1

2

1 2

1

2

1 2

1

2

x

f f∗

α

f∗

t

(a) (b) (c)

Example 1.12. We define an extended function f : [0, ∞) 7→ [0, ∞] as

f (x) =



0, x = 0,
ln 1

1−x , 0 < x < 1,
∞, 1 ⩽ x ⩽ 2,
ln 1

x−2 , 2 < x < 3,
0, x ⩾ 3.

Even if f is infinite over some interval, the distribution function is still
well-defined and can be calculated for any α ⩾ 0

f∗(α) =
∣∣∣∣{x ∈ [1, 2] : ∞ > α}

⋃{
x ∈ (0, 1) : ln(

1
1 − x

) > α

}
⋃{

x ∈ (2, 3) : ln(
1

x − 2
) > α

}∣∣∣∣
=1 + |(1 − e−α, 1)|+ |(2, e−α + 2)|
=1 + 2e−α,

1 2 3

1

2

3

4

5

1 2 3

1

2

3

4

5

1 2 3

1

2

3

4

5
f

x

f∗

α

f∗

t

(a) (b) (c)

Example 1.13. Consider the function f (x) = x for all x ∈ [0, ∞). Then,
f∗(α) = |{x ∈ [0, ∞) : x > α}| = ∞ for all α ⩾ 0.

Example 1.14. Consider f (x) = x
1+x for x ⩾ 0. It is clear that f∗(α) = 0

for α ⩾ 1 since | f (x)| < 1. For α ∈ [0, 1), we have

f∗(α) =
∣∣∣∣{x ∈ [0, ∞) :

x
1 + x

> α

}∣∣∣∣
=

∣∣∣∣{x ∈ [0, ∞) : x >
α

1 − α

}∣∣∣∣ = ∞.

That is,

f∗(α) =
{

∞, 0 ⩽ α < 1,
0, α ⩾ 1.
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1 2

f

Now, we give some basic properties of distribution functions.

Proposition 1.15. Let f and g be measurable functions on (X,M, µ). Then
for all α, β > 0, we have

(i) f∗(α) is decreasing and right continuous.
(ii) If | f (x)| ⩽ |g(x)|, then f∗(α) ⩽ g∗(α).

(iii) (c f )∗(α) = f∗(α/|c|), for all c ∈ C \ {0}.
(iv) If | f (x)| ⩽ |g(x)|+ |h(x)|, then f∗(α + β) ⩽ g∗(α) + h∗(β).
(v) ( f g)∗(αβ) ⩽ f∗(α) + g∗(β).

(vi) (Chebyshev’s inequality) For any p ∈ (0, ∞) and α > 0, it holds

f∗(α) ⩽
(‖ f ‖p

α

)p

.

(vii) If f ∈ Lp, p ∈ (0, ∞), then

lim
α→+∞

αp f∗(α) = 0 = lim
α→0

αp f∗(α).

(viii) If
∫ ∞

0 αp−1 f∗(α)dα < ∞, p ∈ (0, ∞), then

lim
α→+∞

αp f∗(α) = 0 = lim
α→0

αp f∗(α).

(ix) If | f (x)| ⩽ lim inf
k→∞

| fk(x)| for a.e. x, then

f∗(α) ⩽ lim inf
k→∞

( fk)∗(α).

(x) If | fk| increases to | f |, then ( fk)∗ increases to f∗.

Proof. (i) For simplicity, denote E f (α) = {x ∈ X : | f (x)| > α} for α > 0.
Let {αk} be a decreasing positive sequence that tends to α; then, we have
E f (α) =

⋃∞
k=1 E f (αk). Since {E f (αk)} is a increasing sequence of sets, it

follows that lim
k→∞

f∗(αk) = f∗(α). This implies the continuity of f∗(α) on

the right.
(v) Noticing that

{x ∈ X : | f (x)g(x)| > αβ} ⊂ {x ∈ X : | f (x)| > α} ∪ {x ∈ X : |g(x)| > β},

we have the desired result.
(vi) We have

f∗(α) =µ({x : | f (x)| > α})

=
∫
{x∈X:| f (x)|>α}

dµ(x)

⩽
∫
{x∈X:| f (x)|>α}

(
| f (x)|

α

)p

dµ(x)
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⩽
(‖ f ‖p

α

)p

.

(vii) From (vi), it follows that

αp f∗(α) ⩽
∫
{x∈X:| f (x)|>α}

| f (x)|pdµ(x) ⩽
∫

| f (x)|pdµ(x).

Thus, µ({x ∈ X : | f (x)| > α}) → 0 as α → +∞ and

lim
α→+∞

∫
{x∈X:| f (x)|>α}

| f (x)|pdµ(x) = 0.

Hence, αp f∗(α) → 0 as α → +∞ since αp f∗(α) ⩾ 0.
For any 0 < α < β, we have

lim
α→0

αp f∗(α) = lim
α→0

αp( f∗(α)− f∗(β))

= lim
α→0

αpµ({x ∈ X : α < | f (x)| ⩽ β})

⩽
∫
{x∈X:| f (x)|⩽β}

| f (x)|pdµ(x).

By the arbitrariness of β, it follows that αp f∗(α) → 0 as α → 0.
(viii) Since

∫ α
α/2(t

p)′dt = αp − (α/2)p and f∗(α) ⩽ f∗(t) for t ⩽ α, we
have

f∗(α)αp(1 − 2−p) ⩽ p
∫ α

α/2
tp−1 f∗(t)dt

which implies the desired result.
(ix) Let E = {x ∈ X : | f (x)| > α} and Ek = {x ∈ X : | fk(x)| > α},

k ∈ N. By the assumption and the definition of the inferior limit, i.e.,

| f (x)| ⩽ lim inf
k→∞

| fk(x)| = sup
`∈N

inf
k>`

| fk(x)|,

for x ∈ E, there exists an integer M such that for all k > M, | fk(x)| > α.
Thus, E ⊂ ⋃∞

M=1
⋂∞

k=M Ek, and for any ` ⩾ 1,

µ

(
∞⋂

k=`

Ek

)
⩽ inf

k⩾`
µ(Ek) ⩽ sup

`

inf
k⩾`

µ(Ek) = lim inf
k→∞

µ(Ek).

Since {⋂∞
k=M Ek}∞

M=1 is an increasing sequence of sets, we obtain

f∗(α) = µ(E) ⩽ µ

(
∞⋃

M=1

∞⋂
k=M

Ek

)
= lim

M→∞
µ

(
∞⋂

k=M

Ek

)
⩽ lim inf

k→∞
( fk)∗(α).

(x) If | fk| increases to | f |, then E f (α) is the increasing union of
{E fk(α)}, so ( fk)∗ increases to f∗.

For others, they are easy to verify. q

In view of (i) in Proposition 1.15, f∗ defines a negative Borel measure
ν on (0, ∞) such that ν((a, b]) = f∗(b) − f∗(a) whenever 0 < a < b. We
can therefore consider the Lebesgue-Stieltjes integrals

∫
φd f∗ =

∫
φdν of

functions φ on (0, ∞). The following result shows that the integrals of the
functions of | f | on X can be reduced to Lebesgue-Stieltjes integrals.
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Theorem 1.16. If f∗(α) < ∞ for all α > 0 and φ is a nonnegative Borel
measurable function on [0, ∞) such that φ(0) = 0, then∫

X
φ(| f |)dµ = −

∫ ∞

0
φ(α)d f∗(α). (1.17)

Proof. If ν is the negative measure determined by f∗, we have

ν((a, b]) = f∗(b)− f∗(a) = −µ({x : a < | f (x)| ⩽ b}) = −µ(| f |−1((a, b]).

It follows that ν(E) = −µ(| f |−1(E)) for all Borel sets E ⊂ (0, ∞), by the
uniqueness of extensions (cf. [Fol99, Theorem 1.14]). However, this means
(1.17) when φ is the characteristic function of a Borel set and hence when
φ is simple. The general case then follows by virtue of Theorem 0.1 and
the monotone convergence theorem. q

The case of this result in which we are most interested is φ(α) = αp,
which gives ∫

| f |pdµ = −
∫ ∞

0
αpd f∗(α). (1.18)

A more useful form of this equation is obtained by integrating the right
side by parts as follows.

Theorem 1.17 (The equivalent norm of Lp). If 0 < p < ∞, then∫
| f |pdµ = p

∫ ∞

0
αp−1 f∗(α)dα.

Proof. If f∗(α) = ∞ for some α > 0, then the values of both sides are
infinite, and this is clearly true. If not, and f is simple, then for either
f ∈ Lp(X) or

∫ ∞
0 αp−1 f∗(α)dα < ∞, we always have αp f∗(α) → 0 as α →

+∞ and α → 0 by the property (vii) and (viii) in Proposition 1.15, so the
integration by parts described above works in r.h.s. of (1.18). Therefore,
we have

−
∫ ∞

0
αpd f∗(α) =p

∫ ∞

0
αp−1 f∗(α)dα − αp f∗(α)|+∞

0 = p
∫ ∞

0
αp−1 f∗(α)dα.

For the general case, let {gn} be a sequence of simple functions that in-
creases to | f |; then, the desired result is true for gn, and it follows for f
by (x) in Proposition 1.15 and the monotone convergence theorem. q

A variant of the Lp spaces that turns up rather often is the following.
Using the distribution function f∗, we now introduce the weak Lp-spaces
denoted by Lp,∞.

Definition 1.18 (Weak Lp-space). For 0 < p < ∞, the space Lp,∞(X, µ)
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consists of all µ-measurable functions f such that

‖ f ‖Lp,∞ = sup
α>0

α f 1/p
∗ (α) < ∞.

In the limiting case p = ∞, we put L∞,∞ = L∞.

Two functions in Lp,∞(X, µ) are considered equal if they are equal µ-
a.e. We can show that Lp,∞ is a quasinormed linear space.

1◦ If ‖ f ‖Lp,∞ = 0, then for any α > 0, it holds that µ({x ∈ X : | f (x)| >
α}) = 0; thus, f = 0, µ-a.e.

2◦ From (iii) in Proposition 1.15, we can show that for any k ∈ C \ {0}

‖k f ‖Lp,∞ = sup
α>0

α(k f )1/p
∗ (α) = sup

α>0
α f 1/p

∗ (α/|k|)

=|k| sup
α>0

α f 1/p
∗ (α) = |k|‖ f ‖Lp,∞ ,

and it is clear that ‖k f ‖Lp,∞ = |k|‖ f ‖Lp,∞ also holds for k = 0.

3◦ By part (iv) in Proposition 1.15, we have

‖ f + g‖Lp,∞ = sup
α>0

α( f + g)
1
p
∗ (α)

⩽ sup
α>0

α
(

f∗
(α

2

)
+ g∗

(α

2

)) 1
p

⩽max(2
1
p , 2) sup

α>0

α

2

(
f

1
p
∗
(α

2

)
+ g

1
p
∗
(α

2

))
⩽max(2

1
p , 2)

(
sup
α>0

α f
1
p
∗ (α) + sup

α>0
αg

1
p
∗ (α)

)
⩽max(2

1
p , 2)(‖ f ‖Lp,∞ + ‖g‖Lp,∞).

Thus, Lp,∞ is a quasinormed linear space.

The weak Lp spaces are larger than the usual Lp spaces. We have the
following:

Theorem 1.19. For any 0 < p ⩽ ∞ and any f ∈ Lp(X, µ), we have

‖ f ‖Lp,∞ ⩽ ‖ f ‖p.

Hence, Lp(X, µ) ↪→ Lp,∞(X, µ).

Proof. It is clear for p = ∞. For p ∈ (0, ∞), from the part (vi) in Proposi-
tion 1.15, we have

α f 1/p
∗ (α) ⩽

(∫
{x∈X:| f (x)|>α}

| f (x)|pdµ(x)
)1/p

⩽ ‖ f ‖p,

which yields the desired result. q
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The inclusion Lp ↪→ Lp,∞ is strict for 0 < p < ∞. For example, on Rn

with the usual Lebesgue measure, let h(x) = |x|−n/p. Obviously, h is not
in Lp(Rn) due to ∫

|x|−ndx = ωn−1

∫ ∞

0
r−nrn−1dr = ∞,

where ωn−1 = 2πn/2/Γ(n/2) is the surface area of the unit sphere Sn−1 in
Rn, but h is in Lp,∞(Rn) and we may check easily that

‖h‖Lp,∞ = sup
α

αh1/p
∗ (α) = sup

α
α(|{x : |x|−n/p > α}|)1/p

= sup
α

α(|{x : |x| < α−p/n}|)1/p = sup
α

α(α−pVn)
1/p

=V1/p
n ,

where Vn = πn/2/Γ(1 + n/2) is the volume of the unit ball in Rn and
Γ-function Γ(z) =

∫ ∞
0 tz−1e−tdt for Re z > 0.

Convergence in measure is a weaker notion than convergence in either
Lp or Lp,∞, 0 < p ⩽ ∞, as the following proposition indicates:

Proposition 1.20. Let p ∈ (0, ∞] and fn, f ∈ Lp,∞(X, µ).
(i) If fn, f ∈ Lp and fn → f in Lp, then fn → f in Lp,∞.

(ii) If fn → f in Lp,∞, then fn
µ−→ f .

Proof. For p ∈ (0, ∞), Theorem 1.19 gives that

‖ fn − f ‖Lp,∞ ⩽ ‖ fn − f ‖p,

which implies (i) for the case p ∈ [1, ∞). The case p = ∞ is trivial due to
L∞,∞ = L∞.

For (ii), given ε > 0, there exists an n0 such that for n > n0,

‖ fn − f ‖Lp,∞ = sup
α>0

αµ({x ∈ X : | fn(x)− f (x)| > α})
1
p < ε

1+ 1
p .

Taking α = ε, we obtain the desired result. q

Remark 1.21. Note that there is no general converse of statement (ii) in the
above proposition. Fix p ∈ [1, ∞) and on [0, 1], we define the functions

fk,j = k1/pχ
( j−1

k , j
k )

, 1 ⩽ j ⩽ k.

Consider the sequence { f1,1, f2,1, f2,2, f3,1 f3,2, f3,3, · · · }. Observe that

|{x : fk,j(x) > 0}| = 1/k → 0, as k, j → ∞.

Therefore, fk,j
µ−→ 0. Similarly, we have

‖ fk,j‖Lp,∞ = sup
α>0

α|{x : fk,j(x) > α}|1/p

= sup
α>0

α|{x : k1/pχ
( j−1

k , j
k )
(x) > α}|1/p
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= sup
α>0

α

∣∣∣∣{x ∈
(

j − 1
k

,
j
k

)
: k1/p > α

}∣∣∣∣1/p

= sup
0<α<k1/p

α(1/k)1/p

⩾ sup
k⩾1

(
1 − 1

k2

)1/p

(taking α = (k − 1/k)1/p)

=1,

which implies that fk,j does not converge to 0 in Lp,∞.

It turns out that every sequence convergent in Lp(X, µ) or in Lp,∞(X, µ)

has a subsequence that converges a.e. to a limit in view of Theorem 0.4.

A sequence { fk}∞
k=1 ⊂ Lp,∞ is Cauchy if ‖ fk − fm‖Lp,∞ → 0 as k, m →

∞. We now have

Theorem 1.22. For each p ∈ (0, ∞], the space Lp,∞ is complete.

Proof. Since L∞,∞ = L∞, we will focus on p ∈ (0, ∞). Let { fk}∞
k=1 be a

Cauchy sequence in Lp,∞; then, { fk} is Cauchy in measure by Proposi-
tion 1.20. Thus, it has a subsequence { fk j} that converges a.e. to some
f by Theorem 0.4. Fixed j0 and apply (ix) in Proposition 1.15. Since
| f − fk j0

| = lim
j→∞

| fk j − fk j0
|, it follows that

( f − fk j0
)∗(α) ⩽ lim inf

j→∞
( fk j − fk j0

)∗(α).

Thus,

‖ f − fk j0
‖Lp,∞ ⩽ lim inf

j→∞
‖ fk j − fk j0

‖Lp,∞ .

Let j0 → ∞ and use the fact that { fk} is Cauchy to conclude that fk j

converges to f in Lp,∞. It follows that fk converges to f in Lp,∞ by the
triangle inequality for the quasinorm. q

It is a useful fact that a function f ∈ Lp(X, µ) ∩ Lq(X, µ) with p < q
implies f ∈ Lr(X, µ) for all r ∈ (p, q). The usefulness of the spaces Lp,∞

can be seen from the following sharpening of this statement:

Proposition 1.23 (Interpolation of Lp,∞ spaces). Let 1 ⩽ p < q ⩽ ∞ and
f ∈ Lp,∞(X, µ) ∩ Lq,∞(X, µ), where X is a σ-finite measure space. Then,
f ∈ Lr(X, µ) for all r ∈ (p, q) (i.e., θ ∈ (0, 1)) and

‖ f ‖r ⩽
(

r
r − p

+
r

q − r

)1/r

‖ f ‖1−θ
Lp,∞‖ f ‖θ

Lq,∞ , (1.19)



38 1. Interpolation of Operators

with the interpretation that 1/∞ = 0, where

1
r
=

1 − θ

p
+

θ

q
.

Proof. We first consider the case q < ∞. From Theorem 1.17 and the
definition of the distribution function, it follows that

‖ f ‖r
r =r

∫ ∞

0
αr−1 f∗(α)dα (1.20)

⩽r
∫ ∞

0
αr−1 min

(
‖ f ‖p

Lp,∞

αp ,
‖ f ‖q

Lq,∞

αq

)
dα.

We take a suitable α such that
‖ f ‖p

Lp,∞

αp ⩽ ‖ f ‖q
Lq,∞

αq , i.e., α ⩽
(

‖ f ‖q
Lq,∞

‖ f ‖p
Lp,∞

) 1
q−p

=: B.

Then, we obtain

‖ f ‖r
r ⩽r

∫ B

0
αr−1−p‖ f ‖p

Lp,∞ dα + r
∫ ∞

B
αr−1−q‖ f ‖q

Lq,∞ dα

=
r

r − p
‖ f ‖p

Lp,∞ Br−p +
r

q − r
‖ f ‖q

Lq,∞ Br−q (due to p < r < q)

=

(
r

r − p
+

r
q − r

)
‖ f ‖r(1−θ)

Lp,∞ ‖ f ‖rθ
Lq,∞ .

For the case q = ∞, because f∗(α) = 0 for α > ‖ f ‖∞, we only use the
inequality f∗(α) ⩽ α−p‖ f ‖p

Lp,∞ for α ⩽ ‖ f ‖∞ for the integral in (1.20) to
obtain

‖ f ‖r
r ⩽r

∫ ‖ f ‖∞

0
αr−1−p‖ f ‖p

Lp,∞ dα

=
r

r − p
‖ f ‖p

Lp,∞‖ f ‖r−p
∞ ,

which implies the result since p = r(1 − θ) and L∞,∞ = L∞. q

Frequently, it is convenient to express a function as the sum of a
“small” part and a “big” part. The following is a way of doing this that
gives a simple formula for the distribution functions.

Proposition 1.24. If f is a measurable function and N > 0, let E(N) =

{x : | f (x)| > N}, and set

hN = f χX\E(N) + N( sgn f )χE(N),

gN = f − hN = ( sgn f )(| f | − N)χE(N).

Then,

(gN)∗(α) = f∗(α + N), (hN)∗(α) =

{
f∗(α) if α < N,

0, if α ⩾ N.
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We leave the proof as an exercise.

§ 1.4 Marcinkiewicz interpolation theorem

We now turn to the Marcinkiewicz interpolation theorem, for which
we need some more terminology. Let T be an operator from some vector
space D of measurable functions on (X,M, µ) to the space of all measur-
able functions on (Y,N, ν).

Definition 1.25. (i) T is called quasilinear if |T( f + g)| ⩽ K(|T f |+
|Tg|) and |T(λ f )| = |λ||T f | for all f , g ∈ D, where K ⩾ 1 is a
positive constant independent of f and g. If K = 1, then T is
called sublinear.

(ii) A quasilinear operator T is of strong type (p, q) (1 ⩽ p, q ⩽ ∞) if
Lp(X, dµ) ⊂ D, T maps Lp(X, dµ) into Lq(Y, dν), and there exists
C > 0 such that ‖T f ‖q ⩽ C‖ f ‖p for all f ∈ Lp(X, dµ).

(iii) A quasilinear operator T is of weak type (p, q) (1 ⩽ p ⩽ ∞,
1 ⩽ q < ∞) if Lp(X, dµ) ⊂ D, T maps Lp(X, dµ) into Lq,∞(Y, dν),
and there exists C > 0 such that ‖T f ‖Lq,∞ ⩽ C‖ f ‖p for all f ∈
Lp(X, dµ). Additionally, we shall say that T is of weak type (p, ∞)

iff T is strong type (p, ∞).

Now, we give the Marcinkiewicz interpolation theorem.2

Theorem 1.26 (Marcinkiewicz interpolation theorem). Suppose that
(X,M, µ) and (Y,N, ν) are measure spaces. Assume that 1 ⩽ pj ⩽ qj ⩽ ∞
for j = 0, 1, q0 6= q1 and

1
p
=

1 − θ

p0
+

θ

p1
, and

1
q
=

1 − θ

q0
+

θ

q1
, where 0 < θ < 1.

If T is a quasi-linear map from Lp0(X) + Lp1(X) to the space of measurable
functions on Y that is of weak types (p0, q0) and (p1, q1), then T is of strong
type (p, q). More precisely, if ‖T f ‖Lqj ,∞(Y) ⩽ Aj‖ f ‖pj for j = 0, 1, then
‖T f ‖q ⩽ Ap‖ f ‖p where Ap depends only on Aj, pj, qj, θ, and for j = 0, 1,
Ap|p− pj| (resp. Ap) remains bounded as p → pj if pj < ∞ (resp. pj = ∞).

2J. Marcinkiewicz (1910–1940) was a Polish mathematician and a student of A. Zyg-
mund. The theorem was first announced by Marcinkiewicz (1939), who showed this result
to A. Zygmund shortly before he died in World War II. The theorem was almost forgotten
by Zygmund, and was absent from his original works on the theory of singular integral
operators. Later, Zygmund (1956) realized that Marcinkiewicz’s result could greatly sim-
plify his work, at which time he published his former student’s theorem together with a
generalization of his own.
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Proof. The case p0 = p1 is easy and is left to the reader (Exercise 1.6).
Without loss of generality, we may therefore assume that p0 < p1, and
for the time being, we also assume that q0 < ∞ and q1 < ∞ (where also
p0 < p1 < ∞). Given f ∈ Lp(X) and N > 0, let gN and hN be as in
Proposition 1.24. Then, by Theorem 1.17 and Proposition 1.24,∫

|gN |p0 dµ =p0

∫ ∞

0
βp0−1(gN)∗(β)dβ = p0

∫ ∞

0
βp0−1 f∗(β + N)dβ

=p0

∫ ∞

N
(β − N)p0−1 f∗(β)dβ ⩽ p0

∫ ∞

N
βp0−1 f∗(β)dβ, (1.21)∫

|hN |p1 dµ =p1

∫ ∞

0
βp1−1(hN)∗(β)dβ = p1

∫ N

0
βp1−1 f∗(β)dβ, (1.22)

and∫
|T f |qdν = q

∫ ∞

0
αq−1(T f )∗(α)dα = (2K)qq

∫ ∞

0
αq−1(T f )∗(2Kα)dα.

(1.23)

Since T is quasilinear, by (iv) and (iii) in Proposition 1.15, we have

(T f )∗(2Kα) ⩽ (KTgN)∗(Kα) + (KThN)∗(Kα) = (TgN)∗(α) + (ThN)∗(α).
(1.24)

Then, by (1.21)-(1.24), and the weak type estimates of T, we obtain

‖T f ‖q
q ⩽(2K)qq

∫ ∞

0
αq−1 [(A0‖gN‖p0 /α)q0 + (A1‖hN‖p1 /α)q1

]
dα

⩽(2K)qqAq0
0 pq0/p0

0

∫ ∞

0
αq−q0−1

[∫ ∞

N
βp0−1 f∗(β)dβ

]q0/p0

dα

+ (2K)qqAq1
1 pq1/p1

1

∫ ∞

0
αq−q1−1

[∫ N

0
βp1−1 f∗(β)dβ

]q1/p1

dα

=
1

∑
j=0

(2K)qqA
qj
j p

qj/pj
j

∫ ∞

0

[∫ ∞

0
ϕj(N, β)dβ

]qj/pj

dα, (1.25)

where χ0 and χ1 denote the characteristic functions of {(N, β) : β > N}
and {(N, β) : β < N},

ϕj(N, β) = χj(N, β)α(q−qj−1)pj/qj βpj−1 f∗(β).

Since qj/pj ⩾ 1, we may apply Minkowski’s inequality for integrals to
obtain∫ ∞

0

[∫ ∞

0
ϕj(N, β)dβ

]qj/pj

dα ⩽
[∫ ∞

0

[∫ ∞

0
ϕj(N, β)qj/pj dα

]pj/qj

dβ

]qj/pj

.

(1.26)

Since (1.24) is true for all α > 0 and N > 0, we may take N to depend on
α, say N = γ(α) or α = γ−1(N) for some bijective map γ. In addition, we
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have ∫ ∞

0

[∫ ∞

0
ϕ0(N, β)q0/p0 dα

]p0/q0

dβ

=
∫ ∞

0

[∫ ∞

0
χ0(N, β)α(q−q0−1)dα

]p0/q0

βp0−1 f∗(β)dβ. (1.27)

If q1 > q0, then q − q0 is positive. Therefore, we need to assume that
γ(α) is increasing with respect to α in order to make the inner integral
of the above converge. Then, the inequality β > γ(α) is equivalent to
α < γ−1(β). Thus, we obtain

(1.27) =
∫ ∞

0

[∫ γ−1(β)

0
α(q−q0−1)dα

]p0/q0

βp0−1 f∗(β)dβ

=(q − q0)
−p0/q0

∫ ∞

0
(γ−1(β))(q−q0)p0/q0 βp0−1 f∗(β)dβ. (1.28)

Since we expect to control it by ‖ f ‖p, in view of Theorem 1.17, we may
take the inverse map γ−1 such that

(γ−1(β))(q−q0)p0/q0 βp0−1 = βp−1,

i.e.,

γ−1(β) = β
q0(p−p0)
p0(q−q0) .

It follows from the equations defining p and q that

σ =
p0(q − q0)

q0(p − p0)
=

p−1(q−1 − q−1
0 )

q−1(p−1 − p−1
0 )

=
p−1(q−1 − q−1

1 )

q−1(p−1 − p−1
1 )

=
p1(q1 − q)
q1(p1 − p)

,

(1.29)

where σ is positive for the case q1 > q0, and let τ = 1/σ, then γ−1(β) =

βτ, namely, we may choose N = ασ. Thus, it follows

(1.28) =(q − q0)
−p0/q0

∫ ∞

0
βp−1 f∗(β)dβ = |q − q0|−p0/q0 p−1‖ f ‖p

p.

On the other hand, if q1 < q0, then q − q0 and σ are negative, and the
inequality β > ασ is equivalent to α > βτ, so as above, we obtain

(1.27) =
∫ ∞

0

[∫ ∞

βτ
αq−q0−1dα

]p0/q0

βp0−1 f∗(β)dβ

=(q − q0)
−p0/q0

∫ ∞

0
βp−1 f∗(β)dβ

=|q − q0|−p0/q0 p−1‖ f ‖p
p.

A similar calculation shows that∫ ∞

0

[∫ ∞

0
ϕ1(N, β)q1/p1 dα

]p1/q1

dβ = |q − q1|−p1/q1 p−1‖ f ‖p
p.
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Combining these results with (1.25) and (1.26), we see that

sup{‖T f ‖q : ‖ f ‖p = 1} ⩽ Ap = 2Kq1/q

[
1

∑
j=0

A
qj
j (pj/p)qj/pj |q − qj|−1

]1/q

.

However, since |T(λ f )| = |λ||T f |, this implies that ‖T f ‖q ⩽ Ap‖ f ‖p for
all f ∈ Lp(X), and we are done.

It remains to be shown how to modify this argument to address the
exceptional cases q0 = ∞ or q1 = ∞. We distinguish three cases by notic-
ing the condition pj ⩽ qj.

Case I: p1 = q1 = ∞ (so p0 ⩽ q0 < ∞). Instead of taking N = ασ in the
decomposition of f , we take N = α/A1. Then, ‖ThN‖∞ ⩽ A1‖hN‖∞ ⩽ α,
so (ThN)∗(α) = 0, and we obtain (1.25) with ϕ1 = 0. The same argument
as above then gives

‖T f ‖q ⩽ 2K
[
qAq0

0 Aq−q0
1 (p0/p)q0/p0 |q − q0|−1

]1/q
‖ f ‖p.

Case II: p0 < p1 < ∞, q0 < q1 = ∞. Again, the idea is to choose
N so that (ThN)∗(α) = 0, and the proper choice is N = (α/d)σ where
d = A1[p1‖ f ‖p

p/p]1/p1 and σ = p1/(p1 − p) (the limiting value of the σ

defined by (1.29) as q1 → ∞). Indeed, since p1 > p, we have

‖ThN‖p1
∞ ⩽Ap1

1 ‖hN‖p1
p1 = Ap1

1 p1

∫ N

0
αp1−1 f∗(α)dα

⩽Ap1
1 p1Np1−p

∫ N

0
αp−1 f∗(α)dα = Ap1

1
p1

p

[α

d

]p1
‖ f ‖p

p = αp1 .

As in Case I, then, we find that ϕ1 = 0 in (1.25) and the integral involving
ϕ0 is majorized by a constant Ap when ‖ f ‖p = 1, which yields the desired
result.

Case III: p0 < p1 < ∞, q1 < q0 = ∞. The argument is essentially the
same as in Case II, except that we take N = (α/d)σ with d chosen so that
(TgN)∗(α) = 0. q

A less superficial generalization of the theorem can be given in terms
of the notation of Lorentz spaces, which unifies and generalizes the usual
Lp spaces and the weak-type spaces. For a discussion of this more general
form of the Marcinkiewicz interpolation theorem see [SW71, Chapter V]
and [BL76a, Chapter 5].

Exercises

Exercise 1.1. Prove Theorem 1.8.

Exercise 1.2 (Hölder’s inequality for weak spaces[Gra14a, Exercise 1.1.15]).
Let f j be in Lpj,∞ of a measure space X where pj ∈ [1, ∞) and 1 ⩽ j ⩽ k.
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Let
1
p
=

1
p1

+ · · ·+ 1
pk

.

Prove that

‖ f1 · · · fk‖Lp,∞ ⩽ p−1/p

(
k

∏
j=1

p
1/pj
j

)(
k

∏
j=1

‖ f j‖Lpj ,∞

)
.

Hint Take ‖ f j‖Lpj ,∞ = 1 for all j. Control ( f1 · · · fk)∗(α) by

µ({| f1| > α/s1}) + · · ·+ µ({| fk−1| > sk−2/sk−1}) + µ({| fk| > sk−1})
⩽(s1/α)p1 + (s2/s1)

p2 + · · ·+ (sk−1/sk−2)
pk−1 + (1/sk−1)

pk .

Set x1 = s1/α, x2 = s2/s1, · · · , xk = 1/sk−1. Minimize xp1
1 + · · · + xpk

k
subject to the constraint x1 · · · xk = 1/α.

Exercise 1.3 (Normability of Lp,∞ for p > 1[Gra14a, Exercises 1.1.11(a), 1.1.12]).
Let (X, µ) be a σ-finite measure space and let 1 ⩽ p < ∞. Pick 0 < r < p
and define

||| f |||Lp,∞ = sup
0<µ(E)<∞

µ(E)−
1
r +

1
p

(∫
E
| f |rdµ

) 1
r

,

where the supremum is takes over all measurable subsets E of X of finite
measure.

(i) Show that for E ⊂ X with µ(E) < ∞,∫
E
| f (x)|rdµ(x) ⩽ p

p − r
µ(E)1− r

p ‖ f ‖r
Lp,∞ ,

and then

||| f |||Lp,∞ ⩽
(

p
p − r

) 1
r

‖ f ‖Lp,∞

for all f in Lp,∞(X, µ). (It is not needed that X is σ-finite here.)
(ii) Prove that for every measurable function f on (X, µ),

‖ f ‖Lp,∞ ⩽ ||| f |||Lp,∞ .

(iii) Show that Lp,∞(X, µ) is normable when p > 1, i.e., there is a norm on
the space equivalent to ‖ · ‖Lp,∞ .

(iv) Use the characterization of the Lp,∞ quasinorm obtained in parts (i)
and (ii) to prove Fatou’s lemma for this space: For all measurable
functions gn on X, we have∥∥∥lim inf

n→∞
|gn|

∥∥∥
Lp,∞

⩽ Cp lim inf
n→∞

‖gn‖Lp,∞

for some constant Cp that depends only on p ∈ [1, ∞).

Hint Part (i): Use µ(E ∩ {| f | > α}) ⩽ min(µ(E), α−p‖ f ‖p
Lp,∞). Part (ii):

Write X =
⋃∞

k=1 Xk with µ(Xk) < ∞ and take E = {| f | > α} ∩ Xk.

Exercise 1.4. Prove Proposition 1.24.
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Exercise 1.5. Let p ∈ (0, ∞]. If f ∈ Lp,∞ and µ( f 6= 0) < ∞, then f ∈ Lq for
all q ∈ (0, p). In particular, for measure space (X, M , µ),

µ(X) < ∞ =⇒ ∀q < p, Lp,∞ ⊂ Lq.

On the other hand, if f ∈ Lp,∞ ∩ L∞, then f ∈ Lq for all q > p.

Exercise 1.6. [Fol99, Exercise 6.42] Prove the Marcinkiewicz interpolation
theorem in the case p0 = p1.
Hint Setting p = p0 = p1, we have (T f )∗(α) ⩽ (A0‖ f ‖p/α)q0 and
(T f )∗(α) ⩽ (A1‖ f ‖p/α)q1 . Use whichever estimate is better, depending
on α, to majorize

q
∫ ∞

0
αq−1(T f )∗(α)dα.

Exercise 1.7. Write out the proof of the Marcinkiewicz interpolation theo-
rem for two special cases: (i) p0 = q0 = 1, p1 = q1 = 2, and (ii) p0 = q0 = 1,
p1 = q1 = ∞.

Exercise 1.8. [Zho99, Example 3, on p.89] Let (X, µ) and (Y, ν) be two σ-
finite measure spaces and q ∈ (1, ∞). Assume that K(x, y) is a measurable
function on X × Y satisfying

‖K(x, ·)‖Lq,∞ ⩽ C, a.e. x ∈ X,

‖K(·, y)‖Lq,∞ ⩽ C, a.e. y ∈ Y.

To show that if f ∈ Lp(Y) for p ∈ [1, ∞), then the integral

T f (x) =
∫

Y
K(x, y) f (y)dν(y)

converges for a.e. x ∈ X, and for 1 < p < r < ∞ and 1/p + 1/q = 1/r + 1,
and T is of weak type (1, q) and of type (p, r).

Exercise 1.9. [Gra14a, Exercise 1.3.2] Let (X, µ) and (Y, ν) be two σ-finite
measure spaces. Let 1 < p < r ⩽ ∞ and suppose that T is a linear operator
defined on the space L1(X) + L∞(X) and taking values in the space of
measurable functions on Y. Assume that T maps L1(X) to L1,∞(Y) with
norm A0 and Lr(X) to Lr(Y) with norm A1. Prove that T maps Lp(X) to
Lp(Y) with norm at most

C(p − 1)−
1
p A

1
p − 1

r
1− 1

r
0 A

1− 1
p

1− 1
r

1 .

Hint First interpolate between L1 and Lr using the Marcinkiewicz in-
terpolation theorem and then interpolate between L

p+1
2 and Lr using the

Riesz-Thorin interpolation theorem.



2
Maximal Functions and Calderón-Zygmund

Decomposition

Maximal functions appear in many forms in harmonic analysis, such
as the Hardy-Littlewood maximal function, dyadic maximal function, and
nontangential maximal function [CM85; CM86]. One of the most impor-
tant of these is the Hardy-Littlewood maximal function. It plays an im-
portant role in understanding, for example, the differentiability properties
of functions, singular integrals and partial differential equations. It often
provides a deeper and more simplified approach to understanding prob-
lems in these areas than other methods. We also introduce the Calderón-
Zygmund decomposition as an application of maximal functions.

§ 2.1 Hardy-Littlewood maximal function

First, we consider the differentiation of the integral for one-dimensional
functions. If f is given on [a, b] and integrable on that interval, we let

F(x) =
∫ x

a
f (y)dy, x ∈ [a, b].

To address F′(x), we recall the definition of the derivative as the limit of
the quotient F(x+h)−F(x)

h when h tends to 0, i.e.,

F′(x) = lim
h→0

F(x + h)− F(x)
h

.

We note that this quotient takes the form (e.g., in the case h > 0)

1
h

∫ x+h

x
f (y)dy =

1
|I|

∫
I

f (y)dy,

where we use the notation I = (x, x + h) and |I| for the length of this
interval.

At this point, we pause to observe that the above expression in the
“average” value of f over I and that in the limit as |I| → 0, we might expect
that these averages tend to f (x). Reformulating the question slightly, we
may ask whether

lim
|I|→0
x∈I

1
|I|

∫
I

f (y)dy = f (x)
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holds for suitable points x. In higher dimensions, we can pose a similar
question, where the averages of f are taken over appropriate sets that
generalize the intervals in one dimension.

In particular, we can take the sets involved as the open ball B(x, r) of
radius r, centered at x, and denote its measure by |B(x, r)|. It follows

lim
r→0

1
|B(x, r)|

∫
B(x,r)

f (y)dy = f (x), for a.e. x? (2.1)

Let us first consider a simple case: when f is continuous at x, the
limit does converge to f (x). Indeed, given ε > 0, there exists a δ > 0 such
that | f (x)− f (y)| < ε whenever |x − y| < δ. Since

f (x)− 1
|B(x, r)|

∫
B(x,r)

f (y)dy =
1

|B(x, r)|

∫
B(x,r)

( f (x)− f (y))dy,

we find that whenever B(x, r) is a ball of radius r < δ, then∣∣∣∣ f (x)− 1
|B(x, r)|

∫
B(x,r)

f (y)dy
∣∣∣∣ ⩽ 1

|B(x, r)|

∫
B(x,r)

| f (x)− f (y)|dy < ε,

as desired.

In general, for this “averaging problem” (2.1), we shall have an affir-
mative answer. To study the limit (2.1), we consider its quantitative analog,
where “lim

r→0
” is replaced by “sup

r>0
”, which is the (centered) maximal func-

tion. Since the properties of this maximal function are expressed in terms
of relative size and do not involve any cancellation of positive and negative
values, we replace f by | f |.

A measurable function f on Rn is called to be locally integrable, if
for every ball B the function f (x)χB(x) is integrable. We shall denote by
L1

loc(R
n) the space of all locally integrable functions. Loosely speaking, the

behavior at infinity does not affect the local integrability of a function. For
example, the functions e|x| and |x|−1/2 are both locally integrable but not
integrable on Rn.

Definition 2.1. If f is locally integrable on Rn, we define its maximal
function M f : Rn → [0, ∞] by

M f (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

| f (y)|dy, x ∈ Rn, (2.2)

where the supremum takes over all open balls B(x, r) centered at x.
Moreover, M is also called the centered Hardy-Littlewood maximal
operator.

It is immediate from the definition that
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Theorem 2.2. If f ∈ L∞(Rn), then M f ∈ L∞(Rn) and

‖M f ‖∞ ⩽ ‖ f ‖∞.

Sometimes, we will define the maximal function with cubes in place
of balls. If Q(x, r) is the cube [xi − r, xi + r]n, define

M′ f (x) = sup
r>0

1
(2r)n

∫
Q(x,r)

| f (y)|dy, x ∈ Rn. (2.3)

When n = 1, M and M′ coincide. If n > 1, then

Vn2−n M f (x) ⩽ M′ f (x) ⩽ Vn2−nnn/2M f (x). (2.4)

Thus, the two operators M and M′ are essentially interchangeable, and we
will use whichever is more appropriate, depending on the circumstances.

In addition, we can define a more general maximal function

M′′ f (x) = sup
Q3x

1
|Q|

∫
Q
| f (y)|dy, (2.5)

where the supremum is taken over all cubes containing x. Again, M′′ is
pointwise equivalent to M; indeed, Vn2−n M f (x) ⩽ M′′ f (x) ⩽ Vnnn/2M f (x).
One sometimes distinguishes between M′ and M′′ by referring to the for-
mer as the centered operator and the latter as the noncentered maximal
operator.

Alternatively, we could define the noncentered maximal function with
balls instead of cubes:

M

∼

f (x) = sup
B3x

1
|B|

∫
B
| f (y)|dy

at each x ∈ Rn. Here, the supremum is taken over all open balls B in Rn

that contain the point x.

Clearly, M f ⩽ M

∼

f ⩽ 2n M f and the boundedness properties of M

∼

are
identical to those of M.

Remark 2.3. (i) M f is defined at every point x ∈ Rn and if f = g a.e.,
then M f (x) = Mg(x) at every x ∈ Rn.

(ii) It may be well that M f = ∞ for every x ∈ Rn. For example, let
n = 1 and f (x) = x2.

(iii) There are several definitions in the literature that are often
equivalent.

Next, we state some immediate properties of the maximal function.
The proofs are left to interested readers.

Proposition 2.4. Let f , g ∈ L1
loc(R

n). Then
(i) Positivity: M f (x) ⩾ 0 for all x ∈ Rn.
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(ii) Sublinearity: M( f + g)(x) ⩽ M f (x) + Mg(x).
(iii) Homogeneity: M(α f )(x) = |α|M f (x), α ∈ R.
(iv) Translation invariance: M(τy f ) = (τy M f )(x) = M f (x − y).

We are now ready to obtain some basic properties of maximal func-
tions. We need the following simple covering lemma.

Lemma 2.5 (Wiener’s Vitali-type covering lemma). Suppose B =

{B1, · · · , BN} is a finite collection of open balls in Rn. Then, there exists
a disjoint subcollection Bj1 , · · · , Bjk of B such that∣∣∣∣∣ N⋃

`=1

B`

∣∣∣∣∣ ⩽ 3n
k

∑
i=1

|Bji |.

Proof. The argument we give is constructive and relies on the following
simple observation:

B̃

B

B′

Figure 1: The balls B and B̃
Figure 2.1: The balls B
and B̃

Suppose B and B′ are a pair of balls
that intersect, with the radius of B′ being not
greater than that of B. Then B′ is contained
in the ball B̃ that is concentric with B but
with 3 times its radius. (See Fig 2.1.)

As a first step, we pick a ball Bj1 in B

with maximal (i.e., largest) radius and then
delete from B the ball Bj1 as well as any balls
that intersect Bj1 . Thus, all the balls that are
deleted are contained in the ball B̃j1 concentric with Bj1 but with 3 times
its radius.

The remaining balls yield a new collection B′, for which we repeat the
procedure. We pick Bj2 and any ball that intersects Bj2 . Continuing this
way, we find, after at most N steps, a collection of disjoint balls Bj1 , Bj2 ,
· · · , Bjk .

Finally, to prove that this disjoint collection of balls satisfies the in-
equality in the lemma, we use the observation made at the beginning of
the proof. Let B̃ji denote the ball concentric with Bji but with 3 times its
radius. Since any ball B in B must intersect a ball Bji and have a radius
equal to or smaller than Bji , we must have

⋃
B∩Bji 6=∅ B ⊂ B̃ji , thus,∣∣∣∣∣ N⋃

`=1

B`

∣∣∣∣∣ ⩽
∣∣∣∣∣ k⋃
i=1

B̃ji

∣∣∣∣∣ ⩽ k

∑
i=1

|B̃ji | = 3n
k

∑
i=1

|Bji |.

In the last step, we have used the fact that in Rn a dilation of a set by δ > 0
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results in the multiplication by δn of the Lebesgue measure of this set. q

With Wiener’s Vitali-type covering lemma, we can state and prove the
main results for the maximal function.

Theorem 2.6 (The maximal function theorem). Let f be a given function
defined on Rn.

(i) If f ∈ Lp(Rn), p ∈ [1, ∞], then the function M f is finite a.e.
(ii) If f ∈ L1(Rn), then for every α > 0, M is of weak type (1, 1), i.e.,

|{x : M f (x) > α}| ⩽ 3n

α
‖ f ‖1.

(iii) If f ∈ Lp(Rn), p ∈ (1, ∞], then M f ∈ Lp(Rn) and

‖M f ‖p ⩽ Ap‖ f ‖p,

where Ap = 2(3n/(p − 1))1/p for p ∈ (1, ∞) and A∞ = 1.

Proof. We first prove the second one, i.e., (ii). Since M f ⩽ M

∼

f ⩽ 2n M f ,
we only need to prove it for M

∼

. Denote for α > 0

Eα =
{

x : M

∼

f (x) > α
}

,

we claim that the set Eα is open. Indeed, from the definitions of M

∼

f and
the supremum, for each x ∈ Eα and 0 < ε < M

∼
f (x)− α, there exists an

open ball Bx 3 x such that

1
|Bx|

∫
Bx

| f (y)|dy > M

∼

f (x)− ε > α.

Then for any z ∈ Bx, we have M

∼

f (z) > α, and thus, Bx ⊂ Eα. This implies
that Eα is open.

Therefore, for any x ∈ Eα and the above open balls, we have

|Bx| <
1
α

∫
Bx

| f (y)|dy. (2.6)

Fix a compact subset K of Eα. Since K is covered by ∪x∈Eα Bx, by the Heine-
Borel theorem, we may select a finite subcover of K, say K ⊂ ⋃N

`=1 B`.
Lemma 2.5 guarantees the existence of a subcollection Bj1 , · · · , Bjk of dis-
joint balls with ∣∣∣∣∣ N⋃

`=1

B`

∣∣∣∣∣ ⩽ 3n
k

∑
i=1

|Bji |. (2.7)

Since the balls Bj1 , · · · , Bjk are disjoint and satisfy (2.6) as well as (2.7), we
find that

|K| ⩽
∣∣∣∣∣ N⋃
`=1

B`

∣∣∣∣∣ ⩽ 3n
k

∑
i=1

|Bji | ⩽
3n

α

k

∑
i=1

∫
Bji

| f (y)|dy
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=
3n

α

∫
⋃k

i=1 Bji

| f (y)|dy ⩽ 3n

α

∫
Eα

| f (y)|dy.

Since this inequality is true for all compact subsets K of Eα, taking the
supremum over all compact K ⊂ Eα and using the inner regularity of the
Lebesgue measure (i.e., Theorem 0.5), we deduce the weak type inequality
(ii) for the maximal operator M

∼

. It follows from M f ⩽ M

∼

f that

|{x : M f (x) > α}| ⩽ |{x : M

∼

f (x) > α}| ⩽ 3n

α

∫
Eα

| f (y)|dy.

The above proof also gives the proof of (i) for the case when p = 1.
For the case p = ∞, by Theorem 2.2, (i) and (iii) are true with A∞ = 1.

Now, by using the Marcinkiewicz interpolation theorem (according
to the case p1 = q1 = ∞ and p0 = q0 = 1 in its proof) between L1 → L1,∞

and L∞ → L∞, we can simultaneously obtain (i) and (iii) for the case
p ∈ (1, ∞). q

Now, we make some clarifying comments.

Remark 2.7. (1) It is useful for certain applications to observe that

Ap = O

((
1

p − 1

)1/p
)

, as p → 1.

(2) It is easier to use M
∼

in proving (ii) than M, and one can see the
proof that Eα is open.

§ 2.2 Differentiation theorems

We introduce some notation that will be used frequently hereafter: If
φ is any function on Rn and ε > 0, we set

φε(x) = ε−n φ(x/ε). (2.8)

We observe that if φ ∈ L1(Rn), then
∫

φε is independent of ε by a change
in variables, ∫

Rn
φε(y)dy =

∫
Rn

ε−n φ(y/ε)dy =
∫

Rn
φ(y)dy.

Moreover, the “mass” of φε becomes concentrated at the origin as ε → 0.

Theorem 2.8. Suppose φ ∈ L1(Rn) with
∫

Rn φ(x)dx = a. Let f ∈ Cc(Rn).
Then,

lim
ε→0+

φε ∗ f (x) = a f (x).

Proof. Since φε ∗ f (x)− a f (x) =
∫

Rn( f (x − y)− f (x))φε(y)dy. Since f is



§2.2. Differentiation theorems 51

continuous at x, for any σ > 0, there exists a δ > 0 such that

| f (x − y)− f (x)| < σ

‖φ‖1
,

whenever |y| < δ. Noticing that |
∫

Rn φ(x)dx| ⩽ ‖φ‖1, we have

|φε ∗ f (x)− a f (x)| ⩽ σ

‖φ‖1

∫
|x|<δ

|φε(x)|dx + 2‖ f ‖∞

∫
|x|⩾δ

|φε(x)|dx

⩽ σ

‖φ‖1
‖φ‖1 + 2‖ f ‖∞

∫
|y|⩾δ/ε

|φ(y)|dy

=σ + 2‖ f ‖∞ Iε.

However, Iε → 0 as ε → 0. This proves the result. q

By the density (cf. [Fol99, Propositions 7.9 and 4.35]) of Cc in Lp (1 ⩽
p < ∞) and C0 (with L∞ norm), we immediately have the following result.

Theorem 2.9. Suppose φ ∈ L1(Rn) and
∫

Rn φ(x)dx = a. If f ∈ Lp(Rn),
1 ⩽ p < ∞, or f ∈ C0(Rn) ⊂ L∞(Rn), then for 1 ⩽ p ⩽ ∞

‖ f ∗ φε − a f ‖p → 0, as ε → 0.

In most applications of the preceding theorem, one has a = 1, al-
though the case a = 0 is also useful. If a = 1, {φε}ε>0 is called an approxi-
mate identity, as it furnishes an approximation to the identity operator on
Lp by convolution operators.

The Hardy-Littlewood maximal function is an important tool that can
be used to study the identity operator. At first, what could be easier to
understand than the identity? We will illustrate that the identity opera-
tor can be interesting by using the Hardy-Littlewood maximal function to
prove the Lebesgue differentiation theorem, i.e., the identity operator is a
pointwise limit of averages on balls.

The Hardy-Littlewood maximal function M f is obtained as the supre-
mum of the averages of a function f with respect to the dilates of the kernel
k = V−1

n χB(0,1) in Rn. Indeed, we have

M f (x) = sup
ε>0

1
Vnεn

∫
Rn

| f (x − y)|χB(0,1)(y/ε)dy

= sup
ε>0

(| f | ∗ kε)(x).

Note that the function k = V−1
n χB(0,1) has integral 1, and the convolution

with kε is an averaging operation where we have used the notation in (2.8).
However, it is not hard to see that many radially symmetric averaging
processes can be estimated by using M. Before stating the results, given a
function φ on Rn, we define the least decreasing radial majorant of φ by

φ∗(x) = sup
|y|⩾|x|

|φ(y)|. (2.9)
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It is obvious that φ ∈ L1 if φ∗ ∈ L1.

Theorem 2.10. If φ has the least decreasing radial majorant φ∗ ∈ L1. then
for f ∈ L1

loc(R
n),

sup
ε>0

|( f ∗ φε)(x)| ⩽ ‖φ∗‖1M f (x).

Proof. With a slight abuse of notation, let us write φ∗(r) = φ∗(x), if
|x| = r; it should cause no confusion since φ∗(x) is anyway radial.
Now, observe that φ∗(r) is decreasing and then

∫
r/2⩽|x|⩽r φ∗(x)dx ⩾

φ∗(r)
∫

r/2⩽|x|⩽r dx = cφ∗(r)rn. Therefore, the assumption φ∗ ∈ L1 proves
that rn φ∗(r) → 0 as r → 0 or r → ∞. We need to show that

( f ∗ φ∗
ε )(x) ⩽ AM f (x), (2.10)

where f ⩾ 0, ε > 0 and A =
∫

Rn φ∗(x)dx.
Since (2.10) is clearly translation invariant w.r.t f and also dilation

invariant w.r.t. φ∗ and the maximal function, it suffices to show that

( f ∗ φ∗)(0) ⩽ AM f (0). (2.11)

In proving (2.11), we may clearly assume that M f (0) < ∞. Let us
write λ(r) =

∫
Sn−1 f (rx′)dσ(x′), and Λ(r) =

∫
|x|⩽r f (x)dx, so

Λ(r) =
∫ r

0

∫
Sn−1

f (tx′)dσ(x′)tn−1dt =
∫ r

0
λ(t)tn−1dt, i.e., Λ′(r) = λ(r)rn−1.

We have

( f ∗ φ∗)(0) =
∫

Rn
f (x)φ∗(x)dx =

∫ ∞

0
rn−1

∫
Sn−1

f (rx′)φ∗(r)dσ(x′)dr

=
∫ ∞

0
rn−1λ(r)φ∗(r)dr = lim

ε→0
N→∞

∫ N

ε
λ(r)φ∗(r)rn−1dr

= lim
ε→0

N→∞

∫ N

ε
Λ′(r)φ∗(r)dr

= lim
ε→0

N→∞

{
[Λ(r)φ∗(r)]Nε −

∫ N

ε
Λ(r)dφ∗(r)

}
.

Since Λ(r) ⩽ Vnrn M f (0), and the fact rn φ∗(r) → 0 as r → 0 or r → ∞, we
have

0 ⩽ lim
N→∞

Λ(N)φ∗(N) ⩽ Vn M f (0) lim
N→∞

Nn φ∗(N) = 0,

which implies lim
N→∞

Λ(N)φ∗(N) = 0 and similarly lim
ε→0

Λ(ε)φ∗(ε) = 0.

Thus, by integration by parts, we have

( f ∗ φ∗)(0) =
∫ ∞

0
Λ(r)d(−φ∗(r)) ⩽ Vn M f (0)

∫ ∞

0
rnd(−φ∗(r))

=nVn M f (0)
∫ ∞

0
φ∗(r)rn−1dr = M f (0)

∫
Rn

φ∗(x)dx,
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where two of the integrals are of the Lebesgue-Stieltjes type since φ∗(r)
is decreasing, which implies ∂r φ∗(r) ⩽ 0, and nVn = ωn−1. This proves
(2.11) and then (2.10). q

Theorem 2.11. If φ has the least decreasing radial majorant φ∗ ∈ L1, and
f ∈ Lp for some p ∈ [1, ∞], then for a.e. x ∈ Rn,

lim
ε→0+

φε ∗ f (x) = f (x)
∫

Rn
φdx.

Proof. The proofs for p = 1, 1 < p < ∞ and p = ∞ are slightly different
from each other.

Let a =
∫

φdx and

θ( f )(x) = lim sup
ε→0+

|φε ∗ f (x)− a f (x)|.

Our goal is to show that θ( f ) = 0 a.e. Observe that by Theorem 2.8, we
have for g ∈ Cc

θ( f ) = θ( f − g).

Additionally, according to Theorem 2.10, there is a constant C such that

θ( f − g)(x) ⩽ |a|| f (x)− g(x)|+ CM( f − g)(x).

Thus, if f ∈ L1 and α > 0, we have by Chebyshev’s inequality and Theo-
rem 2.6 (ii) that for any g ∈ Cc

| {x : θ( f )(x) > α} | ⩽| {x : |a( f − g)(x)| > α/2} |
+ | {x : CM( f − g)(x) > α/2} |

⩽C
α
‖ f − g‖1.

Since Cc is dense in L1, we can approximate f in the L1 norm by functions
g ∈ Cc and conclude that | {x : θ( f )(x) > α} | = 0. Since it holds for each
α > 0, then we obtain | {x : θ( f )(x) > 0} | = 0.

If f ∈ Lp, 1 < p < ∞, we can argue as above and use the strong type
(p, p) estimates of the maximal operator, i.e., Theorem 2.6 (iii) to conclude
that for any g ∈ Cc,

| {x : θ( f )(x) > α} | ⩽ C
αp ‖ f − g‖p.

Again, Cc is dense in Lp if p < ∞; thus, we can obtain θ( f ) = 0 a.e.
Finally, if p = ∞, we claim that for each N ∈ N, the set

{x : θ( f )(x) > 0 and |x| < N} has measure zero. This implies the theo-
rem. To establish the claim, we write f = χB(0,2N) f + (1 − χB(0,2N)) f =:
f1 + f2. Since f1 ∈ Lp for p < ∞, we have θ( f1) = 0 a.e. It is easy to see
that θ( f2)(x) = 0 if |x| < 2N. Since θ( f )(x) ⩽ θ( f1)(x) + θ( f2)(x), the
claim follows. q

The standard Lebesgue differentiation theorem is a special case of the
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result proved above.

Theorem 2.12 (Lebesgue differentiation theorem). If f ∈ L1
loc(R

n), then

lim
r→0+

1
|B(x, r)|

∫
B(x,r)

f (y)dy = f (x), for a.e. x.

§ 2.3 Calderón-Zygmund decomposition

Applying the Lebesgue differentiation theorem, we give a decompo-
sition of Rn, called the Calderón-Zygmund decomposition, which is ex-
tremely useful in harmonic analysis.

Theorem 2.13 (Calderón-Zygmund decomposition of Rn). Let f ∈
L1(Rn) and α > 0. Then, there exists a decomposition of Rn such that

(i) Rn = F ∪ Ω, F ∩ Ω = ∅.
(ii) | f (x)| ⩽ α for a.e. x ∈ F.

(iii) Ω is the union of cubes, Ω =
⋃

k Qk, whose interiors are disjoint and
edges parallel to the coordinate axes, such that for each Qk

α <
1

|Qk|

∫
Qk

| f (x)|dx ⩽ 2nα. (2.12)

Proof. We decompose Rn into a mesh of equal cubes Q(0)
k (k = 1, 2, · · · ),

whose interiors are disjoint and edges parallel to the coordinate axes and
whose common diameter is so large that

1

|Q(0)
k |

∫
Q(0)

k

| f (x)|dx ⩽ α, (2.13)

since f ∈ L1.
Split each Q(0)

k into 2n congruent cubes which we denote by Q(1)
k ,

k = 1, 2, · · · . There are two possibilities:

either
1

|Q(1)
k |

∫
Q(1)

k

| f (x)|dx ⩽ α, or
1

|Q(1)
k |

∫
Q(1)

k

| f (x)|dx > α.

In the first case, we split Q(1)
k again into 2n congruent cubes to obtain Q(2)

k
(k = 1, 2, · · · ). In the second case, we have

α <
1

|Q(1)
k |

∫
Q(1)

k

| f (x)|dx ⩽ 1

2−n|Q(0)
k̃
|

∫
Q(0)

k̃

| f (x)|dx ⩽ 2nα

in view of (2.13), where Q(1)
k is split from Q(0)

k̃
, and then we take Q(1)

k as
one of the cubes Qk.

A repetition of this argument shows that if x /∈ Ω :=
⋃∞

k=1 Qk then
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x ∈ Q(j)
k j

(j = 0, 1, 2, · · · ) for which

|Q(j)
k j
| → 0 as j → ∞, and

1

|Q(j)
k j
|

∫
Q(j)

kj

| f (y)|dy ⩽ α (j = 0, 1, · · · ).

Thus, | f (x)| ⩽ α a.e. x ∈ F = Ωc by a variation of the Lebesgue differen-
tiation theorem. Thus, we complete the proof. q

We now state an immediate corollary.

Corollary 2.14. Suppose f , α, F, Ω and Qk have the same meaning as in
Theorem 2.13. Then, there exist two constants A and B (depending only on
the dimension n), such that (i) and (ii) of Theorem 2.13 hold and

(a) |Ω| ⩽ A
α
‖ f ‖1,

(b)
1

|Qk|

∫
Qk

| f |dx ⩽ Bα.

Proof. From (2.12), it follows that

|Ω| = ∑
k
|Qk| <

1
α

∫
Ω
| f (x)|dx ⩽ 1

α
‖ f ‖1.

This proves the corollary with A = 1 and B = 2n. q

It is possible, however, to give another proof of this corollary without
using Theorem 2.13 from which it was deduced, but by using the maximal
function theorem (Theorem 2.6) and the theorem about the decomposition
of an arbitrary open set as a union of disjoint cubes as follows. This more
indirect method of proof has the advantage of clarifying the roles of the
sets F and Ω into which Rn was divided.

The decomposition of a given set into a disjoint union of cubes (or
balls) is a fundamental tool in the theory described in this chapter. By
cubes, we mean closed cubes; by disjoint we mean that their interiors are
disjoint. We have in mind the idea first introduced by Whitney and for-
mulated as follows.

Lemma 2.15 (Whitney decomposition). Let F be a nonempty closed set
in Rn and Ω be its complement. Then, there exists a countable collection of
cubes F = {Qk}∞

k=1 whose sides are parallel to the axes, such that
(i)

⋃∞
k=1 Qk = Ω = Fc;

(ii) Q̊j ∩ Q̊k = ∅ if j 6= k, where Q̊ denotes the interior of Q;
(iii) there exist two constants c1, c2 > 0 independent of F (in fact, we may

take c1 = 1 and c2 = 4.) such that

c1 diam (Qk) ⩽ dist (Qk, F) ⩽ c2 diam (Qk).
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Proof.
62 Chapter 4 Calderón-Zygmund Decomposition

O 1 2 3

M0
M1

M−1

F

Ωk+1

Ωk

Mk
Mk

Q

Fig. 4.1 Meshes and layers: M0 with dashed (green) lines; M1 with dotted lines; M−1 with solid (blue) lines

diam (Q) 6 dist (Q, F) 6 4 diam (Q), Q ∈ F0. (4.1)

Let us prove (4.1) first. Suppose Q ∈ Mk; then diam (Q) =
√

n2−k. Since Q ∈ F0, there exists an
x ∈ Q ∩ Ωk. Thus dist (Q, F) 6 dist (x, F) 6 c2−k+1, and dist (Q, F) > dist (x, F) − diam (Q) >
c2−k − √n2−k. If we choose c = 2

√
n we get (4.1).

Then by (4.1) the cubes Q ∈ F0 are disjoint from F and clearly cover Ω. Therefore, (i) is also
proved.

Notice that the collection F0 has all our required properties, except that the cubes in it are not
necessarily disjoint. To finish the proof of the theorem, we need to refine our choice leading to F0,
eliminating those cubes which were really unnecessary.

We require the following simple observation. Suppose Q1 and Q2 are two cubes (taken respectively
from the mesh Mk1 and Mk2 ). Then if Q1 and Q2 are not disjoint, one of the two must be contained
in the other. (In particular, Q1 ⊂ Q2, if k1 > k2.)

Start now with any cube Q ∈ F0, and consider the maximal cube in F0 which contains it. In
view of the inequality (4.1), for any cube Q′ ∈ F0 which contains Q ∈ F0, we have diam (Q′) 6
dist (Q′, F) 6 dist(Q, F) 6 4 diam (Q). Moreover, any two cubes Q′ and Q′′ which contain Q have
obviously a non-trivial intersection. Thus by the observation made above each cube Q ∈ F0 has
a unique maximal cube in F0 which contains it. By the same taken these maximal cubes are also
disjoint. We let F denote the collection of maximal cubes of F0. Then obviously

(i)
⋃

Q∈F Q = Ω,
(ii) The cubes of F are disjoint,
(iii) diam (Q) 6 dist (Q, F) 6 4 diam (Q), Q ∈ F .
Therefore, we complete the proof. ut

4.2 Calderón-Zygmund Fundamental Lemma

Now, we give an important theorem in harmonic analysis.

Figure 2.2: Meshes and layers: M0 with dashed
lines; M1 with dotted lines; M−1 with solid
lines

Consider the lattice
of points in Rn whose
coordinates are inte-
gers. This lattice de-
termines a mesh M0,
which is a collection
of cubes, namely, all
cubes of unit length,
whose vertices are
points of the above
lattice. The mesh M0

leads to a two-way in-
finite chain of such meshes {Mk}∞

−∞, with Mk = 2−kM0.

Thus, each cube in mesh Mk gives rise to 2n cubes in mesh Mk+1 by
bisecting the sides. The cubes in mesh Mk each have sides of length 2−k

and are thus of diameter
√

n2−k.

In addition to the meshes Mk, we consider the layers Ωk, defined by

Ωk =
{

x : c2−k < dist (x, F) ⩽ c2−k+1
}

,

where c is a positive constant that we shall fix momentarily. Obviously,
Ω =

⋃∞
k=−∞ Ωk.

Now, we make an initial choice of cubes and denote the resulting
collection by F0. Our choice is made as follows. We consider the cubes
of the mesh Mk (each cube is of size approximately 2−k) and include a
cube of this mesh in F0 if it intersects Ωk (the points of the latter are all
approximately at a distance of 2−k from F). Namely,

F0 =
⋃
k

{Q ∈ Mk : Q ∩ Ωk 6= ∅} .

For an appropriate choice of c, we claim that

diam (Q) ⩽ dist (Q, F) ⩽ 4 diam (Q), Q ∈ F0. (2.14)

Let us prove (2.14) first. Suppose Q ∈ Mk; then diam (Q) =
√

n2−k. Since
Q ∈ F0, there exists an x ∈ Q ∩ Ωk. Thus, dist (Q, F) ⩽ dist (x, F) ⩽
c2−k+1, and dist (Q, F) ⩾ dist (x, F) − diam (Q) > c2−k −

√
n2−k. If we

choose c = 2
√

n, we obtain (2.14). Then, by (2.14), the cubes Q ∈ F0 are
disjoint from F and clearly cover Ω. Therefore, (i) is also proven.

Note that the collection F0 has all our required properties, except that
the cubes in it are not necessarily disjoint. To finish the proof of the the-
orem, we need to refine our choice leading to F0, eliminating those cubes
that were truly unnecessary.
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We require the following simple observation. Suppose that Q1 and Q2

are two cubes (taken from meshes Mk1 and Mk2 , respectively). Then, if
Q1 ∩ Q2 = ∅, one of the two must be contained in the other. (In particular,
Q1 ⊂ Q2, if k1 ⩾ k2.)

Start now with any cube Q ∈ F0, and consider the maximal cube in
F0 that contains it. In view of the inequality (2.14), for any cube Q′ ∈ F0

that contains Q ∈ F0, we have diam (Q′) ⩽ dist (Q′, F) ⩽ dist (Q, F) ⩽
4 diam (Q). Moreover, any two cubes Q′ and Q′′ that contain Q have obvi-
ously a nontrivial intersection. Thus, by the observation made above each
cube, Q ∈ F0 has a unique maximal cube in F0 that contains it. By the
same taken, these maximal cubes are also disjoint. We let F denote the
collection of maximal cubes of F0. Then, obviously,

(i)
⋃

Q∈F Q = Ω,
(ii) The cubes of F are almost disjoint,

(iii) diam (Q) ⩽ dist (Q, F) ⩽ 4 diam (Q), Q ∈ F.

Therefore, we complete the proof. q

Another proof of Corollary 2.14. We know that in F, | f (x)| ⩽ α, but this fact
does not determine F. The set F is, in effect, determined by the fact that
the (uncentered) maximal function satisfies M

∼

f (x) ⩽ α on it. Therefore,
we choose F =

{
x : M

∼
f (x) ⩽ α

}
and Ω = Eα =

{
x : M

∼
f (x) > α

}
. Then,

by Theorem 2.6 (ii), we know that |Ω| ⩽ 3n

α ‖ f ‖1. Thus, we can take A = 3n.

From the proof of Theorem 2.6, we know that Ω is open, and then F =

Ωc is closed. Then, we can choose cubes Qk according to Lemma 2.15, such
that Ω =

⋃
k Qk, and whose diameters are approximately proportional to

their distances from F. Let Qk then be one of these cubes, and pk ∈ F such
that

dist (F, Qk) = dist (pk, Qk).

Let Bk be the smallest ball whose center is pk and which contains the
interior of Qk. Let us set

γk =
|Bk|
|Qk|

.

We have, because pk ∈
{

x : M

∼

f (x) ⩽ α
}

, that

α ⩾ M

∼

f (pk) ⩾
1

|Bk|

∫
Bk

| f (x)|dx ⩾ 1
γk|Qk|

∫
Qk

| f (x)|dx.

Thus, we can take an upper bound of γk as the value of B.

The elementary geometry and inequality (iii) of Lemma 2.15 then
show that

radius(Bk) ⩽dist (pk, Qk) + diam (Qk) = dist (F, Qk) + diam (Qk)
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⩽(c2 + 1)diam (Qk),

and so

|Bk| =Vn(radius(Bk))
n ⩽ Vn(c2 + 1)n(diam (Qk))

n

=Vn(c2 + 1)nnn/2|Qk|,

since |Qk| = (diam (Qk)/
√

n)n. Thus, γk ⩽ Vn(c2 + 1)nnn/2 for all k. Thus,
we complete the proof with A = 3n and B = Vn(c2 + 1)nnn/2. q

Remark 2.16. Theorem 2.13 may be used to give another proof of the fun-
damental inequality for the maximal function in part (ii) of Theorem 2.6.
(See [Ste70, §5.1, p.22–23] for more details.)

The Calderón-Zygmund decomposition is a key step in the real anal-
ysis of singular integrals. The idea behind this decomposition is that it is
often useful to split an arbitrary integrable function into its “small” and
“large” parts, and then use different techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an alti-
tude α, we write f = g + b, where g is called the good function of the
decomposition since it is both integrable and bounded; hence the letter g.
Function b is called the bad function since it contains the singular part of f
(hence the letter b), but it is carefully chosen to have a mean value of zero.
To obtain the decomposition f = g + b, one might be tempted to “cut” f
at the height α; however, this is not what works. Instead, one bases the
decomposition on the set where the maximal function of f has height α.

Indeed, the Calderón-Zygmund decomposition on Rn may be used to
deduce the Calderón-Zygmund decomposition for functions. The latter is
a very important tool in harmonic analysis.

Theorem 2.17 (Calderón-Zygmund decomposition for functions). Let
f ∈ L1(Rn) and α > 0. Then there exist functions g and b on Rn such that
f = g + b and

(i) ‖g‖1 ⩽ ‖ f ‖1 and ‖g‖∞ ⩽ 2nα.
(ii) b = ∑

j
bj, where each bj is supported in a dyadic cube Qj satisfying∫

Qj
bj(x)dx = 0 and ‖bj‖1 ⩽ 2n+1α|Qj|. Furthermore, cubes Qj and

Qk have disjoint interiors when j 6= k.
(iii) ∑

j
|Qj| ⩽ α−1‖ f ‖1.

Proof. Applying Corollary 2.14 (with A = 1 and B = 2n), we have
1) Rn = F ∪ Ω, F ∩ Ω = ∅;
2) | f (x)| ⩽ α, a.e. x ∈ F;
3) Ω =

⋃∞
j=1 Qj, with the interiors of Qj mutually disjoint;
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4) |Ω| ⩽ α−1
∫

Rn | f (x)|dx, and α < 1
|Qj|
∫

Qj
| f (x)|dx ⩽ 2nα.

From 3) and 4), it is easy to obtain (iii).
Now define

bj =

(
f − 1

|Qj|

∫
Qj

f dx
)

χQj ,

b = ∑
j

bj and g = f − b. It is clear that
∫

Qj
bj(x)dx = 0. Consequently,

∫
Qj

|bj|dx ⩽
∫

Qj

| f (x)|dx + |Qj|
∣∣∣∣ 1
|Qj|

∫
Qj

f (x)dx
∣∣∣∣

⩽2
∫

Qj

| f (x)|dx ⩽ 2n+1α|Qj|,

which proves that ‖bj‖1 ⩽ 2n+1α|Qj|. Thus, (ii) is proved with the help of
3).

Next, we need to obtain the estimates on g. Write Rn =
⋃

j Qj ∪ F,
where F is the set obtained by Corollary 2.14. Since b = 0 on F and
f − bj =

1
|Qj|
∫

Qj
f (x)dx on Qj, we have

g =


f , on F,

1
|Qj|

∫
Qj

f (x)dx, on Qj.
(2.15)

On the cube Qj, g is equal to the constant 1
|Qj|
∫

Qj
f (x)dx, and this is

bounded by 2nα by 4). Then, by 2), we can obtain ‖g‖∞ ⩽ 2nα. Finally, it
follows from (2.15) that ‖g‖1 ⩽ ‖ f ‖1. This completes the proof of (i) and
then of the theorem. q

As an application of the Marcinkiewicz interpolation theorem and the
Calderón-Zygmund decomposition, we now prove the weighted estimates
for the Hardy-Littlewood maximal function (cf. [FS71, p.111, Lemma 1]).

Theorem 2.18 (Weighted inequality for Hardy-Littlewood maximal
function). For p ∈ (1, ∞), there exists a constant C = Cn,p such that,
for any nonnegative real-valued locally integrable function φ(x) on Rn, we
have, for f ∈ L1

loc(R
n), the inequality∫

Rn
(M f (x))p φ(x)dx ⩽ C

∫
Rn

| f (x)|p Mφ(x)dx. (2.16)

We first prove the following lemma.

Lemma 2.19. Let f ∈ L1(Rn) and α > 0. If the sequence {Qk} of cubes is
chosen from the Calderón-Zygmund decomposition of Rn (i.e., Theorem 2.13)
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for f and α > 0, then

{x ∈ Rn : M′ f (x) > 7nα} ⊂
⋃
k

Q∗
k ,

where Q∗
k = 2Qk. It follows

|{x ∈ Rn : M′ f (x) > 7nα}| ⩽ 2n ∑
k
|Qk|.

Proof. Suppose that x /∈ ⋃
k Q∗

k . Then, there are two cases for any cube Q
with the center x. If Q ⊂ F := Rn \⋃k Qk, then

1
|Q|

∫
Q
| f (x)|dx ⩽ α.

If Q ∩ Qk 6= ∅ for some k, then it is easy to check that Qk ⊂ 3Q, and⋃
k

{Qk : Qk ∩ Q 6= ∅} ⊂ 3Q.

Hence, we have∫
Q
| f (x)|dx ⩽

∫
Q∩F

| f (x)|dx + ∑
Qk∩Q 6=∅

∫
Qk

| f (x)|dx

⩽α|Q|+ ∑
Qk∩Q 6=∅

2nα|Qk|

⩽α|Q|+ 2nα|3Q|
⩽7nα|Q|.

Thus, we know that M′ f (x) ⩽ 7nα for any x /∈ ⋃k Q∗
k , which yields that

|{x ∈ Rn : M′ f (x) > 7nα}| ⩽
∣∣∣∣∣⋃

k

Q∗
k

∣∣∣∣∣ ⩽ 2n ∑
k
|Qk|.

We complete the proof of the lemma. q

Proof of Theorem 2.18. Except when Mφ(x) = ∞ a.e., in which case (2.16)
holds trivially, Mφ is the density of a positive measure σ. Thus, we may
assume that Mφ(x) < ∞ a.e. x ∈ Rn and Mφ(x) > 0. If we denote

dσ(x) = Mφ(x)dx and dν(x) = φ(x)dx.

Then, by the Marcinkiewicz interpolation theorem, to obtain (2.16), it suf-
fices to prove that M is both of weak type (L∞(σ), L∞(ν)) and of weak
type (L1(σ), L1(ν)).

Let us first show that M is of weak type (L∞(σ), L∞(ν)). If ‖ f ‖L∞(σ) =

α, then ∫
{x∈Rn :| f (x)|>α}

Mφ(x)dx = σ({x ∈ Rn : | f (x)| > α}) = 0.

Since Mφ(x) > 0 for any x ∈ Rn, we have |{x ∈ Rn : | f (x)| > α}| = 0,
equivalently, | f (x)| ⩽ α a.e. x ∈ Rn. Thus, M f (x) ⩽ α a.e. x ∈ Rn



§2.3. Calderón-Zygmund decomposition 61

and then |{x : M f (x) > α}| = 0 which implies that ν({M f (x) > α}) =∫
{x:M f (x)>α} φ(x)dx = 0 and thus ‖M f ‖L∞(ν) ⩽ α. Therefore, ‖M f ‖L∞(ν) ⩽
‖ f ‖L∞(σ).

Let us turn to the proof of the weak type (L1(σ), L1(ν)). We need to
prove that there exists a constant C such that for any α > 0 and f ∈ L1(σ)∫

{x∈Rn :M f (x)>α}
φ(x)dx =ν({x ∈ Rn : M f (x) > α})

⩽C
α

∫
Rn

| f (x)|Mφ(x)dx.
(2.17)

We may assume that f ∈ L1(Rn). In fact, if we take f` = | f |χB(0,`), then
f` ∈ L1(Rn), 0 ⩽ f`(x) ⩽ f`+1(x) for x ∈ Rn and ` = 1, 2, · · · . By
lim
`→∞

f`(x) = | f (x)| and Exercise 2.9, we have

{x ∈ Rn : M f (x) > α} =
⋃
`

{x ∈ Rn : M f`(x) > α}.

Due to M f (x) ⩽ cn M′ f (x) with cn = 2n/Vn for all x ∈ Rn. Applying
the Calderón-Zygmund decomposition on Rn for f and α′ = α/(cn7n),
we obtain a sequence {Qk} of cubes satisfying

α′ <
1

|Qk|

∫
Qk

| f (x)|dx ⩽ 2nα′.

By Lemma 2.19 and M′′φ ⩽ Vnnn/2Mφ, we have∫
{x∈Rn :M f (x)>α}

φ(x)dx

⩽
∫
{x∈Rn :M′ f (x)>7nα′}

φ(x)dx

⩽
∫
⋃

k Q∗
k

φ(x)dx ⩽ ∑
k

∫
Q∗

k

φ(x)dx

⩽∑
k

(
1

|Qk|

∫
Q∗

k

φ(x)dx
)(

1
α′

∫
Qk

| f (y)|dy
)

=
cn7n

α ∑
k

∫
Qk

| f (y)|
(

2n

|Q∗
k |

∫
Q∗

k

φ(x)dx
)

dy

⩽ cn14n

α ∑
k

∫
Qk

| f (y)|M′′φ(y)dy

⩽28nnn/2

α

∫
Rn

| f (y)|Mφ(y)dy.

Thus, M is of weak type (L1(σ), L1(ν)), and the inequality can be obtained
by applying the Marcinkiewicz interpolation theorem. q
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Exercises

Exercise 2.1. Let f : R → R, f (x) = χ(0,1)(x). To calculate M f , M′ f , M′′ f
and M

∼

f .

Exercise 2.2. [Gra14b, Exercise 2.1.13] Observe that the proof of Theorem 2.6
yields the estimate

α|{M

∼

f > α}|1/p ⩽ 3n|{M

∼

f > α}|−1+1/p
∫
{M

∼

f>α}
| f (y)|dy

for α > 0 and f locally integrable. Use the result of Exercise 1.3 (i) to prove
that the Hardy-Littlewood maximal operator M maps the space Lp,∞(Rn)

to itself for 1 < p < ∞.

Exercise 2.3. [Zho99, Exercise 10, on p.75] Assume that f (x) ⩾ 0 is a lo-
cally integrable function. To show that for any x > 0, we have

x
∫ ∞

x

f (t)
t2 dt ⩽ CM f (ξ), ξ ∈ (0, x].

Exercise 2.4. [Gra14a, Exercise 2.1.8] Prove that for any fixed 1 < p < ∞,
the operator norm of M

∼

on Lp(Rn) tends to infinity as n → ∞.
Hint Let f0 be the characteristic function of the unit ball in Rn. Consider
the averages |Bx|−1

∫
Bx

f0dy, where Bx = B( 1
2 (|x| − |x|−1) x

|x| ,
1
2 (|x|+ |x|−1))

for |x| > 1.

Exercise 2.5. [Pey18, Exercise 1.3] Let f = χB(0,1) be the characteristic func-
tion of the unit ball in Rn. Show that, for |x| > 1, M f (x) ⩽ C/(|x| − 1)n,
where C > 0 is a constant. Conclude that, for p > 1, M f ∈ Lp(Rn).

Exercise 2.6. [Pey18, Exercise 1.4] If f ∈ L1(Rn) and f 6= 0, then M f /∈
L1(Rn).
Hint Prove that M f (x) ⩾ C/|x|n for |x| large enough, where C > 0 is a
constant.

Exercise 2.7. [Pey18, Exercise 1.12] Let E be a bounded subset of Rn. If
f ln+ | f | ∈ L1(Rn) and supp f ⊂ E, then∫

E
M f (x)dx ⩽ 2|E|+ C

∫
E
| f (x)| ln+ | f (x)|dx,

where ln+ t = max(ln t, 0).

Exercise 2.8 ((Gagliardo-Nirenberg-) Sobolev inequality). Let p ∈ (1, n)
and its Sobolev conjugate p∗ = np/(n − p). Use the maximal function
theorem to prove that for f ∈ D(Rn), we have

‖ f ‖p∗ ⩽ C‖∇ f ‖p,

where C depends only on n and p.
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Exercise 2.9. [Pey18, Exercise 1.6] Let f1, f2, · · · , fm, · · · be a nondecreasing
sequence of nonnegative functions in L1(Rn). Let f be the pointwise limit
of fm. Show that, for all x ∈ Rn,

M f (x) = lim
m→∞

M fm(x).





3
Fourier Transform and Tempered Distributions

In this chapter, we introduce the Fourier transform and its elemen-
tary properties, approximate identities, the Schwartz space and its dual
space. We also give some characterizations of operators commuting with
translations and Fourier multipliers as a special class.

§ 3.1 Fourier transform

Now, we consider the Fourier transform of L1 functions.

Definition 3.1. If f ∈ L1(Rn), then its Fourier transform is F f or
f

∨

: Rn → C defined by

F f (ξ) = f
∨

(ξ) =
∫

Rn
e−ix·ξ f (x)d̄x (3.1)

for all ξ ∈ Rn, where we denote d̄x = (2π)−n/2dx for x ∈ Rn.

We now continue with some properties of the Fourier transform. Be-
fore doing this, we shall introduce some notations. We recall that the space
C0(Rn) consists of all continuous functions vanishing at infinity. For a mea-
surable function f on Rn, x ∈ Rn and a 6= 0, we define the translation,
dilation and reflection of f by

τy f (x) = f (x − y),

δa f (x) = f (ax),

f

∼

(x) = f (−x).

Proposition 3.2. Given f , g ∈ L1(Rn), x, y, ξ ∈ Rn, α multi-index, a, b ∈
C, ε ∈ R and ε 6= 0, we have

(i) (Linearity) (a f + bg)

∨

= a f

∨

+ bg∨.
(ii) (Translation) τy f

∨

(ξ) = e−iy·ξ f

∨

(ξ).

(iii) (Modulation) (eix·y f (x))

∨

(ξ) = τy f

∨

(ξ).

(iv) (Conjugation) f

∨

= f

∨
∼

.
(v) (Transformation) If T is an invertible linear transformation of Rn and
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S = (T∗)−1 is its inverse transpose, then f ◦ T

∨

= |det T|−1 f

∨

◦ S. In
particular, if T is a rotation, then f ◦ T

∨

= f

∨

◦ T.
(vi) (Scaling) δε f

∨

(ξ) = |ε|−nδε−1
f

∨

(ξ).
(vii) (Convolution) (2π)−n/2 f ∗ g

∨

= f

∨

g∨.
(viii) If xα f ∈ L1 for |α| ⩽ k, then f

∨

∈ Ck, and ∂α f

∨

= ((−ix)α f (x))

∨

.
(ix) If f ∈ Ck, ∂α f ∈ L1 for |α| ⩽ k, and ∂α f ∈ C0 for |α| ⩽ k − 1, then

∂α f

∨

(ξ) = (iξ)α f

∨

(ξ).
(x) (Uniform continuity) If f ∈ L1(Rn), then f

∨

is uniformly continuous.
(xi) (Riemann-Lebesgue lemma) F (L1(Rn)) ⊂ C0(Rn).

Proof. (v)

( f ◦ T)

∨

(ξ) =
∫

Rn
e−ix·ξ f (Tx)d̄x

=|det T|−1
∫

Rn
e−iT−1y·ξ f (y)d̄y

=|det T|−1
∫

Rn
e−iy·Sξ f (y)d̄y

=|det T|−1 f

∨

(Sξ).

(x) By

f
∨

(ξ + h)− f
∨

(ξ) =
∫

Rn
e−ix·ξ [e−ix·h − 1] f (x)d̄x,

we have

| f

∨

(ξ + h)− f

∨

(ξ)|

⩽
∫

Rn
|e−ix·h − 1|| f (x)|d̄x

⩽
∫
|x|⩽r

|e−ix·h − 1|| f (x)|d̄x + 2
∫
|x|>r

| f (x)|d̄x

⩽
∫
|x|⩽r

r|h|| f (x)|d̄x + 2
∫
|x|>r

| f (x)|d̄x

=:I1 + I2,

since |eiθ − 1| ⩽ |θ| for any θ ⩾ 0. Given any ε > 0, due to f ∈ L1(Rn),
we can take r so large that I2 < ε/2. Then, we fix this r and take |h| small
enough such that I1 < ε/2. In other words, for a given ε > 0, there exists
a sufficiently small δ > 0 such that | f

∨

(ξ + h)− f

∨

(ξ)| < ε when |h| ⩽ δ,
where ε is independent of ξ.

(xi) By (ix), if f ∈ C1 ∩ Cc, then |ξ| f

∨

(ξ) is bounded and hence f

∨

∈ C0.
However, the set of all such f ’s is dense in L1, and fn

∨

→ f

∨

uniformly
whenever fn → f in L1 by (x). Since C0 is closed in the uniform norm, the
result follows.

The other results are easy to verify. q
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The Riemann-Lebesgue lemma gives a necessary condition for a func-
tion to be a Fourier transform. However, that belonging to C0 is not a
sufficient condition for being the Fourier transform of an integrable func-
tion. See Exercise 3.5.

We shall need to compute an important specific Fourier transform.

Theorem 3.3. For all a > 0, we have

e−a|x|2

∨

(ξ) = (2a)−n/2e−
|ξ|2
4a . (3.2)

In particular,

e−
|x|2

2

∨

(ξ) =e−
|ξ|2

2 .

Proof. The integral in question is∫
Rn

e−ix·ξe−a|x|2 d̄x.

Note that these factors are a product of one variable integrals. Thus, it is
sufficient to prove the case n = 1. It is clear that∫ ∞

−∞
e−ixξe−ax2

dx =e−
ξ2
4a

∫ ∞

−∞
e−a(x+iξ/(2a))2

dx.

We observe that the function

F(ξ) =
∫ ∞

−∞
e−a(x+iξ/(2a))2

dx, ξ ∈ R,

defined on the line is constant (and thus equal to
∫ ∞
−∞ e−ax2

dx), since its
derivative is

d
dξ

F(ξ) =− i
∫ ∞

−∞
(x + iξ/(2a))e−a(x+iξ/(2a))2

dx

=
i

2a

∫ ∞

−∞

d
dx

e−a(x+iξ/(2a))2
dx = 0.

It follows that F(ξ) = F(0) and∫ ∞

−∞
e−ixξe−ax2

dx =e−
ξ2
4a

∫ ∞

−∞
e−ax2

dx

=e−
ξ2
4a
√

π/a
∫ ∞

−∞
e−πy2

dy

=
(π

a

)1/2
e−

ξ2
4a ,

where we used the formula for the integral of a Gaussian, i.e., the Euler-
Poisson integral:

∫
R

e−πx2
dx = 1 at the next to last one. q

We are ready to invert the Fourier transform. If f ∈ L1, then we define

f ∨(x) = f

∨

(−x) =
∫

Rn
eix·ξ f (ξ)d̄ξ,
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and we claim that if f ∈ L1 and f

∨

∈ L1 then ( f

∨

)∨ = f . A simple appeal to
Fubini’s theorem fails because the integrand in(

f

∨)∨
(x) =

∫∫
eix·ξe−iy·ξ f (y)d̄yd̄ξ

need not be in L1(Rn × Rn). The trick is to introduce a convergence fac-
tor and then pass it to the limit using Fubini’s theorem via the following
theorem.

Theorem 3.4 (The multiplication formula). If f , g ∈ L1(Rn), then∫
Rn

f

∨

(ξ)g(ξ)dξ =
∫

Rn
f (x)g∨(x)dx.

Proof. Using Fubini’s theorem to interchange the order of the integration
on R2n, we obtain the identity. q

Theorem 3.5 (Fourier inversion theorem). If f ∈ L1 and f

∨

∈ L1, then f

agrees a.e. with a continuous function f0, and
(

f

∨)∨
= f ∨

∨

= f0.

Proof. Given ε > 0 and x ∈ Rn, let

φ(ξ) = (2π)−n/2 exp(ix · ξ − ε2

4π
|ξ|2).

By (iii) in Proposition 3.2 and Theorem 3.3,

φ

∨

(y) = (2π)−n/2τxe−
1

4π ε2|ξ|2

∨

(y) = ε−n exp(−π|x − y|2/ε2) = gε(x − y),

where g(x) = e−π|x|2 and the subscript ε has the meaning in (2.8). By
Theorem 3.4,∫

e−
ε2
4π |ξ|2 eix·ξ f

∨

(ξ)d̄ξ =
∫

f

∨

φdξ =
∫

f φ

∨dξ = f ∗ gε(x).

Since
∫

e−π|x|2 dx = 1, by Theorem 2.11, we obtain f ∗ gε → f a.e. as ε → 0.
However, since f

∨

∈ L1, and the dominated convergence theorem yields

lim
ε→0

∫
e−

ε2
4π |ξ|2 eix·ξ f

∨

(ξ)d̄ξ =
∫

eix·ξ f

∨

(ξ)d̄ξ =
(

f

∨)∨
(x).

It follows that f =
(

f

∨)∨
a.e., and similarly f ∨

∨

= f a.e. Since
(

f

∨)∨
and

f ∨

∨

are continuous, being Fourier transforms of L1 functions, the proof is
complete. q

Corollary 3.6 (Uniqueness). If f ∈ L1 and f

∨

= 0, then f = 0 a.e.
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§ 3.2 Schwartz space

We recall the space D(Rn) ≡ C∞
c (R

n) of all smooth functions with
compact support, and C∞(Rn) of all smooth functions on Rn. However, it
is not immediately clear that D is nonempty.

Example 3.7. To find a function in D , consider the function

f (t) =
{

e−1/t, t > 0,
0, t ⩽ 0.

Then, f ∈ C∞ is bounded, and so are all its derivatives. Let φ(t) =

f (1 + t) f (1 − t); then, φ(t) = e−2/(1−t2) if |t| < 1, and zero otherwise.
It clearly belongs to D(R). We can easily obtain n-dimensional variants
from φ. For example,

(i) For x ∈ Rn, define ψ(x) = φ(x1)φ(x2) · · · φ(xn); then, ψ ∈ D(Rn);
(ii) For x ∈ Rn, define ψ(x) = e−2/(1−|x|2) for |x| < 1 and 0 otherwise;

then, ψ ∈ D(Rn);
(iii) If η ∈ C∞ and ψ is the function in (ii), then ψ(εx)η(x) defines a

function in D(Rn); moreover, e2ψ(εx)η(x) → η(x) as ε → 0.

The other space of C∞ functions we shall need is the Schwartz space
as follows.

Definition 3.8. The Schwartz space S (Rn) is defined as

S (Rn) =
{

φ ∈ C∞(Rn) : |φ|α,β := sup
x∈Rn

|xα∂β φ(x)| < ∞, ∀α, β ∈ Nn
0

}
.

(3.3)

If φ ∈ S , then |φ(x)| ⩽ Cm(1 + |x|)−m for any m ∈ N0. However, the
example φ(x) = e−ε|x| fails to be differential at the origin and, therefore,
does not belong to S . Thus, the converse is not true.

Obviously, D ⊂ S . The inclusion is strict since φ(x) = e−ε|x|2 ∈
S (Rn) \D(Rn) for ε > 0.

Remark 3.9. We observe that the order of multiplication by powers of
x1, · · · , xn and differentiation, in (3.3), could have been reversed. That is,
for φ ∈ C∞,

φ ∈ S (Rn) ⇐⇒ sup
x∈Rn

|∂β(xα φ(x))| < ∞, ∀α, β ∈ Nn
0 .

This shows that if P is a polynomial in n variables and φ ∈ S then
P(x)φ(x) and P(∂)φ(x) are again in S , where P(∂) is the associated
differential operator (i.e., we replace xα by ∂α in P(x)).

The following alternative characterization of Schwartz functions is
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very useful.

Proposition 3.10. If φ ∈ C∞(Rn), then φ ∈ S (Rn) iff

sup
x∈Rn

[(1 + |x|)N |∂α φ(x)|] < ∞, ∀N ∈ N0, ∀α ∈ Nn
0 .

Proof. It is clear that |xγ| ⩽ (1 + |x|)N for |γ| ⩽ N. However,
n
∑

j=1
|xj|N is

strictly positive on the unit sphere |x| = 1, so it has a positive minimum

δ there. It follows that
n
∑

j=1
|xj|N ⩾ δ|x|N for all x since both sides are

homogeneous of degree N, and hence,

(1 + |x|)N ⩽2N(1 + |x|N) ⩽ 2N

[
1 + δ−1

n

∑
j=1

|xN
j |
]

⩽2Nδ−1 ∑
|γ|⩽N

|xβ|. q

It is an important observation that if f ∈ S , then ∂α f ∈ Lp for all
α and all p ∈ [1, ∞]. Indeed, |∂α f (x)| ⩽ CN(1 + |x|)−N for all N, and
(1 + |x|)−N ∈ Lp for N > n/p. Moreover, we also have the following
statement:

Proposition 3.11. Let C∞
poly(R

n) be the set of all smooth polynomially
bounded functions, i.e., the set of all smooth f : Rn → C such that for
all α ∈ Nn

0 there exist mα ∈ N0 and Cα > 0 with

|∂α
x f (x)| ⩽ Cα(1 + |x|)mα for all x ∈ Rn.

Then for every f ∈ C∞
poly(R

n) and g ∈ S (Rn), we have f g ∈ S (Rn).

Proof. This easily follows from the product rule, the Leibniz formula. q

The space S (Rn) is not a normed space because |φ|α,β is only a semi-
norm for multi-indices α and β, i.e., the condition

|φ|α,β = 0 iff φ = 0

fails to hold, for example, for constant function φ.

Proposition 3.12. S is a Fréchet space with the topology defined by the
seminorms | · |α,β.

We leave the proof as an exercise.

Moreover, some easily established properties of S (Rn) and its topol-
ogy are as follows:
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Proposition 3.13. (i) The mapping φ(x) 7→ xα∂β φ(x) is continuous.
(ii) If φ ∈ S (Rn), then lim

h→0
τh φ = φ.

(iii) Suppose φ ∈ S (Rn) and h = (0, · · · , hi, · · · , 0) lies on the i-th co-
ordinate axis of Rn, then the difference quotient [φ − τh φ]/hi tends to
∂φ/∂xi as |h| → 0.

From part (viii) in Proposition 3.2, we immediately have

Theorem 3.14. F maps the Schwartz class S continuously into itself.

Corollary 3.15. F is an isomorphism of S onto itself.

Proof. By Theorem 3.14, F maps S continuously into itself, and hence,
so does f 7→ f ∨ since f ∨(x) = f

∨

(−x). By the Fourier inversion theorem,
these maps are inverse to each other. q

The integral defining the Fourier transform is not defined in the Lebesgue
sense for the general function in L2(Rn); nevertheless, the Fourier trans-
form has a natural definition on this space and a particularly elegant the-
ory.

If, in addition to being integrable, we assume f to be square-integrable,
then f

∨

will also be square-integrable. In fact, we have the following basic
result:

Theorem 3.16 (Plancherel theorem). If f ∈ L1 ∩ L2, then f

∨

∈ L2 and
‖ f̂ ‖2 = ‖ f ‖2; and F |(L1∩L2) extends uniquely to a unitary isomorphism on
L2.

Proof. Let X = { f ∈ L1 : f

∨

∈ L1}. For any f ∈ X, by Theorem 3.5,

we have ‖ f ‖∞ = ‖
(

f

∨)∨
‖∞ ⩽ (2π)−n/2‖ f

∨

‖1; thus, f ∈ L1 ∩ L∞ ⊂ L2 by

Proposition 0.19. Hence, X ⊂ L2, and X is dense in L2 because S ⊂ X
and S is dense in L2. Given f , g ∈ X, let h = g∨. By the inversion theorem,

h

∨

(ξ) =
∫

e−ix·ξ g∨(x)d̄x =
∫

eix·ξ g∨(x)d̄x = g(ξ).

Hence, by Theorem 3.4,∫
f g =

∫
f h

∨

=
∫

f

∨

h =
∫

f

∨

g∨.

Thus, F |X preserves the L2 inner product; in particular, by taking g = f ,
we obtain ‖ f

∨

‖2 = ‖ f ‖2. Since F (X) = X by the inversion theorem, and
F |X extends by continuity to a unitary isomorphism on L2.
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It remains only to show that this extension agrees with F on all of
L1 ∩ L2. However, if f ∈ L1 ∩ L2 and g(x) = e−π|x|2 as in the proof of
the inversion theorem, we have f ∗ gε ∈ L1 by Young’s inequality and

f ∗ gε

∨

∈ L1 because f ∗ gε

∨

(ξ) = e−
ε2
4π |ξ|2 f

∨

(ξ) and f

∨

is bounded. Hence,
f ∗ gε ∈ X. Moreover, by Theorem 2.9, f ∗ gε → f in both the L1 and L2

norms. Therefore, f ∗ gε

∨

→ f

∨

both uniformly and in the L2 norm, and we
are done. q

We have thus extended the domain of the Fourier transform from L1

to L1 + L2. The Riesz-Thorin interpolation theorem yields the following
result for the intermediate Lp spaces:

Theorem 3.17 (Hausdorff-Young inequality). Let 1 ⩽ p ⩽ 2 and 1/p +

1/p′ = 1. If f ∈ Lp(Rn), then f

∨

∈ Lp′(Rn) and

‖ f

∨

‖p′ ⩽ (2π)n(1/p−1/2)‖ f ‖p. (3.4)

Proof. It follows from using the Riesz-Thorin interpolation theorem be-
tween the L1 → L∞ result ‖F f ‖∞ ⩽ (2π)−n/2‖ f ‖1 (cf. part (x) in Proposi-
tion 3.2) and the L2 → L2 result, i.e., Plancherel’s theorem ‖F f ‖2 = ‖ f ‖2

(cf. Theorem 3.16). q

Remark 3.18. (i) Unless p = 1 or 2, the constant in the Hausdorff-Young
inequality is not the best possible; indeed the best constant is found by
testing Gaussian functions. This is much deeper and is due to Babenko
[Bab61] when p′ is an even integer and to Beckner [Bec75b; Bec75a] in
general.

(ii) p′ cannot be replaced by some q in (3.4). Namely, if it holds

‖ f

∨

‖q ⩽ C‖ f ‖p, ∀ f ∈ Lp(Rn), (3.5)

then we must have q = p′. In fact, we can use the dilation to show it. For
λ > 0, let fλ(x) = λ−n f (x/λ); then,

‖ fλ‖p =λ−n
(∫

Rn
| f (x/λ)|pdx

)1/p

=λ−n
(∫

Rn
λn| f (y)|pdy

)1/p

= λ
− n

p′ ‖ f ‖p.

By the property of the Fourier transform, we have fλ

∨

= λ−nδλ−1
f

∨

= δλ f

∨

and

‖ fλ

∨

‖q =

(∫
Rn

| f

∨

(λξ)|qdξ

)1/q

= λ
− n

q ‖ f

∨

‖q.

Thus, (3.5) implies λ
− n

q ‖ f

∨

‖q ⩽ Cλ
− n

p′ ‖ f ‖p, i.e., ‖ f

∨

‖q ⩽ Cλ
n
q −

n
p′ ‖ f ‖p, then

q = p′ by taking λ tending to 0 or ∞.
(iii) Except in the case p = 2, inequality (3.4) is not reversible, in
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the sense that there is no constant C such that ‖ f

∨

‖p′ ⩾ C‖ f ‖p for 1 <

p < 2 when f ∈ D ≡ C∞
c . Equivalently, the result cannot be extended

to the case p > 2 in view of the dual argument and the multiplication
formula (Theorem 3.4). To show this, we take fλ(x) = ϕ(x)e−π(1+iλ)|x|2 ,
where ϕ ∈ D is fixed and λ is a large positive number. Then, ‖ fλ‖p is
independent of λ for any p. By the Plancherel theorem, ‖ fλ

∨

‖2 is also
independent of λ. On the other hand, fλ

∨

is the convolution of ϕ

∨

, which
is in L1, with (2π)−n(1 + iλ)−n/2e−[4π(1+iλ)]−1|x|2 (cf. [Gra14a, Ex.2.3.13,
p.133] or [BCD11, Proposition 1.28]),a which has L∞ norm (2π)−n(1 +

λ2)−n/4. Accordingly, if p ∈ [1, 2), then

‖ fλ

∨

‖p′ ⩽ ‖ fλ

∨

‖
2
p′
2 ‖ fλ

∨

‖
1− 2

p′
∞ ⩽ C(1 + λ2)

− n
2 (

1
2−

1
p′ ) → 0, as λ → ∞.

Since ‖ fλ‖p is independent of λ, this show that when p ∈ [1, 2), there is
no constant C such that C‖ f

∨

‖p′ ⩾ ‖ f ‖p for all f ∈ D .

aFor 0 6= z ∈ C and Re z ⩾ 0, one has F (e−z|x|2 )(ξ) = (2z)−n/2e−|ξ|2/(4z), where
z−n/2 := |z|−n/2e−inθ/2 if z = |z|eiθ , θ ∈ [−π/2, π/2].

Theorem 3.19. D (and hence also S ) is dense in Lp (1 ⩽ p < ∞) and in
C0.

Proof. Given f ∈ Lp and σ > 0, there exists g ∈ Cc with ‖ f − g‖p < σ/2
by the density of Cc in Lp (cf. [Fol99, Proposition 7.9]). Let φ ∈ D and∫

φ = 1. Then it is easy to verify g ∗ φε ∈ D and ‖g ∗ φε − g‖p < σ/2
for sufficiently small ε by Theorem 2.9. The same argument applies if Lp

is replaced by C0, ‖ · ‖p by ‖ · ‖∞, and the density of Cc in C0 (cf. [Fol99,
Proposition 4.35]). q

Remark 3.20. The density is not valid for p = ∞. Indeed, for a nonzero
constant function f ≡ c0 6= 0 and for any function φ ∈ D(Rn), we have

‖ f − φ‖∞ ⩾ |c0| > 0.

Hence we cannot approximate any function from L∞(Rn) by functions
from D(Rn). This example also indicates that S is not dense in L∞ since
lim

|x|→∞
|φ(x)| = 0 for all φ ∈ S .

Theorem 3.21 (C∞ Urysohn lemma). If K ⊂ Rn is compact and U is an
open set containing K, there exists f ∈ D such that 0 ⩽ f ⩽ 1, f = 1 on K,
and supp f ⊂ U.

Proof. Let δ = dist (K, Uc) (the distance from K to Uc, which is positive
since K is compact due to [SS05, Lemma 3.1, p.18]), and let V = {x :
dist (x, K) < δ/3}. Choose a nonnegative φ ∈ D such that

∫
φ = 1 and
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φ(x) = 0 for dist (x, K) ⩾ δ/3, and set f = χV ∗ φ. Then, f ∈ D , and
it is easily checked that 0 ⩽ f ⩽ 1, f = 1 on K, and supp f ⊂ {x :
dist (x, K) ⩽ 2δ/3} ⊂ U. q

§ 3.3 Tempered distributions

The collection S ′ of all continuous linear functionals on S is called
the space of tempered distributions. That is,

Definition 3.22. The functional T : S → C is a tempered distribution
if

(i) T is linear, i.e., 〈T, αφ + βψ〉 = α〈T, φ〉+ β〈T, ψ〉 for all α, β ∈ C

and φ, ψ ∈ S .
(ii) T is continuous on S , i.e., there exist n0 ∈ N0 and a constant

c0 > 0 such that

|〈T, φ〉| ⩽ c0 ∑
|α|,|β|⩽n0

|φ|α,β

for any φ ∈ S .

In addition, for Tk, T ∈ S ′, the convergence Tk → T in S ′ means that
〈Tk, φ〉 → 〈T, φ〉 in C for all φ ∈ S .

Before we discuss some examples, we give alternative characteriza-
tions of distributions, which are very useful from the practical point of
view. The action of a distribution u on a test function f is represented in
either one of the following two ways:

〈u, f 〉 = u( f ).

Denote

ρα,N( f ) = sup
|x|⩽N

|(∂α f )(x)|. (3.6)

There exists a simple and important characterization of distributions:

Theorem 3.23. (i) A linear functional u on D(Rn) is a distribution iff
for every compact K ⊂ Rn, there exist C > 0 and an integer m such
that

|〈u, f 〉| ⩽ C ∑
|α|⩽m

‖∂α f ‖∞, ∀ f ∈ C∞(Rn) with support in K. (3.7)

(ii) A linear functional u on S (Rn) is a tempered distribution iff there
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exist constant C > 0 and integers ` and m such that

|〈u, φ〉| ⩽ C ∑
|α|⩽`,|β|⩽m

|φ|α,β, ∀φ ∈ S (Rn). (3.8)

(iii) A linear functional u on C∞(Rn) is a distribution with compact support
iff there exist C > 0 and integers N, m such that

|〈u, f 〉| ⩽ C ∑
|α|⩽m

ρα,N( f ), ∀ f ∈ C∞(Rn). (3.9)

The seminorms | · |α,β and ρα,N are defined in (3.3) and (3.6), respec-
tively.

Proof. We prove only (ii), since the proofs of (i) and (iii) are similar. It is
clear that the existence of C, `, m implies the continuity of u.

Suppose u is continuous. It follows from the definition of the metric
that a basis for the neighborhoods of the origin in S is the collection of
sets Nε,`,m = {φ : ∑

|α|⩽`,|β|⩽m
|φ|α,β < ε}, where ε > 0 and ` and m are

integers, because φk → φ as k → ∞ iff |φk − φ|α,β → 0 for all (α, β) in the
topology induced by this system of neighborhoods and their translates.
Thus, there exists such a set Nε,`,m satisfying |〈u, φ〉| ⩽ 1 whenever φ ∈
Nε,`,m.

Let ‖φ‖ = ∑
|α|⩽`,|β|⩽m

|φ|α,β for all φ ∈ S . If σ ∈ (0, ε), then ψ =

σφ/‖φ‖ ∈ Nε,`,m if φ 6= 0. From the linearity of u, we obtain
σ

‖φ‖ |〈u, φ〉| = |〈u, ψ〉| ⩽ 1.

However, this is the desired inequality with C = 1/σ. q

Example 3.24. Let f ∈ Lp(Rn), 1 ⩽ p ⩽ ∞, and define T = Tf by letting

〈T, φ〉 = 〈Tf , φ〉 =
∫

Rn
f (x)φ(x)dx

for φ ∈ S . It is clear that Tf is a linear functional on S . To show that
it is continuous, it suffices to show that it is continuous at the origin.
Then, suppose φk → 0 in S as k → ∞. We have for any q ⩾ 1 that ‖φk‖q

is dominated by a finite linear combination of seminorms |φk|α,0. Thus,
‖φk‖q → 0 as k → ∞. Choosing q = p′, i.e., 1/p + 1/q = 1, Hölder’s
inequality shows that |〈T, φk〉| ⩽ ‖ f ‖p‖φk‖p′ → 0 as k → ∞. Thus,
T ∈ S ′.

Example 3.25. We consider the case n = 1. Let f (x) =
m
∑

k=0
akxk be a

polynomial, then f ∈ S ′ since

|〈Tf , φ〉| =
∣∣∣∣∣
∫

R

m

∑
k=0

akxk φ(x)dx

∣∣∣∣∣
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⩽
m

∑
k=0

|ak|
∫

R
(1 + |x|)−1−ε(1 + |x|)1+ε|x|k|φ(x)|dx

⩽C
m

∑
k=0

|ak||φ|k+1+ε,0

∫
R
(1 + |x|)−1−εdx,

so that condition (ii) of the definition is satisfied for ε = 1 and n0 = m+ 2.

Example 3.26. The Dirac mass at the origin δ0. This is defined for φ ∈ S

by

〈δ0, φ〉 = φ(0).

Then, δ0 ∈ S ′. The Dirac mass at a point x0 ∈ Rn is defined similarly by

〈δx0 , φ〉 = φ(x0).

The tempered distributions of Examples 3.24 – 3.26 are called func-
tions or measures. We shall write, in these cases, f and δ0 instead of Tf
and Tδ0 . These functions and measures may be considered embedded in
S ′. If we put on S ′ the weakest topology such that the linear function-
als T → 〈T, φ〉 (φ ∈ S ) are continuous, it is easy to see that the spaces
Lp(Rn), 1 ⩽ p ⩽ ∞, are continuously embedded in S ′. The same is true
for the space of all finite Borel measures on Rn, i.e., B(Rn).

Suppose that f and g are Schwartz functions and α a multi-index.
Integrating by parts |α| times, we obtain∫

Rn
(∂α f )(x)g(x)dx = (−1)|α|

∫
Rn

f (x)(∂αg)(x)dx. (3.10)

If we wanted to define the derivative of a tempered distribution u, we
would have to give a definition that extends the definition of the derivative
of the function and that satisfies (3.10) for g ∈ S ′ and f ∈ S if the
integrals in (3.10) are interpreted as actions of distributions on functions.
We simply use (3.10) to define the derivative of a distribution.

Definition 3.27. Let u ∈ S ′ and α a multi-index. Define

〈∂αu, f 〉 = (−1)|α|〈u, ∂α f 〉. (3.11)

If u is a function, the derivatives of u in the sense of distributions are
called distributional derivatives.

In view of Theorem 3.4, it is natural to give the following:

Definition 3.28. Let u ∈ S ′. We define the Fourier transform u∨and
the inverse Fourier transform u∨ of a tempered distribution u by

〈u∨, f 〉 = 〈u, f

∨

〉 and 〈u∨, f 〉 = 〈u, f ∨〉, (3.12)

for all f in S , respectively.
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Example 3.29. For φ ∈ S , we have

〈δ0

∨

, φ〉 = 〈δ0, φ

∨〉 = φ

∨

(0) =
∫

Rn
e−ix·0φ(x)d̄x =

〈
(2π)−n/2, φ

〉
.

Thus, δ0

∨

= (2π)−n/2 in S ′. More generally, since

〈∂αδ0

∨

, φ〉 =〈∂αδ0, φ

∨〉 = (−1)|α|〈δ0, ∂α φ

∨〉 = 〈δ0, (iξ)α φ

∨

〉

=〈δ0

∨

, (iξ)α φ〉 =
〈
(2π)−n/2(iξ)α, φ

〉
,

we have ∂αδ0

∨

= (2π)−n/2(iξ)α. This calculation indicates that ∂αδ0

∨

can
be identified with the function (2π)−n/2(iξ)α.

Now observe that the following is true whenever f and g are in S :∫
Rn

g(x − t) f (x)dx =
∫

Rn
f (x + t)g(x)dx,∫

Rn
g(ax) f (x)dx =

∫
Rn

g(x)a−n f (a−1x)dx,∫
Rn

g

∼

(x) f (x)dx =
∫

Rn
g(x) f

∼

(x)dx,

(3.13)

for all t ∈ Rn and a > 0, where ·

∼

denotes the reflection. Motivated by
(3.13), we give the following:

Definition 3.30. The translation τtu, the dilation δau, and the reflection
u

∼

of a tempered distribution u are defined as follows:

〈τtu, f 〉 =〈u, τ−t f 〉,
〈δau, f 〉 =〈u, a−nδ1/a f 〉,

〈u

∼

, f 〉 =〈u, f

∼

〉,

for all t ∈ Rn and a > 0. Let A be an invertible matrix, and the compo-
sition of a distribution u with an invertible matrix A is the distribution

〈uA, φ〉 = |det A|−1〈u, φA−1〉,

where φA−1
(x) = φ(A−1x).

It is easy to see that the operations of translation, dilation, reflection,
and differentiation are continuous on tempered distributions.

Example 3.31. The Dirac mass at the origin δ0 is equal to its reflection,
while δaδ0 = a−nδ0 for a > 0. Additionally, τxδ0 = δx for any x ∈ Rn.

Now, observe that for f , g and h in S , we have∫
Rn
(h ∗ g)(x) f (x)dx =

∫
Rn

g(x)(h

∼

∗ f )(x)dx.

Motivated by this identity, we define the convolution of a function with a
tempered distribution as follows:
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Definition 3.32. Let u ∈ S ′ and h ∈ S . Define the convolution h ∗ u
by

〈h ∗ u, f 〉 = 〈u, h

∼

∗ f 〉, f ∈ S .

Example 3.33. Let u = δx0 and f ∈ S . Then, f ∗ δx0 is the function τx0 f ,
since for h ∈ S , we have

〈 f ∗ δx0 , h〉 = 〈δx0 , f

∼

∗ h〉 = ( f

∼

∗ h)(x0) =
∫

Rn
f (x − x0)h(x)dx = 〈τx0 f , h〉.

It follows that convolution with δ0 is the identity operator by taking
x0 = 0.

We now define the product of a function and a distribution.

Definition 3.34. Let u ∈ S ′ and h ∈ C∞
poly. The product hu of h and u

is defined by

〈hu, f 〉 = 〈u, h f 〉, f ∈ S . (3.14)

Note that h f ∈ S , and thus, (3.14) is well-defined. (The product of an
arbitrary C∞ function with a tempered distribution is not defined.)

Example 3.35. Let T ∈ S ′ and φ ∈ D with φ(0) = 1. Then, the product
φ(x/k)T is well-defined in S ′ by

〈φ(x/k)T, ψ〉 := 〈T, φ(x/k)ψ〉,

for all ψ ∈ S . If we consider the sequence Tk := φ(x/k)T, then

〈Tk, ψ〉 ≡ 〈T, φ(x/k)ψ〉 → 〈T, ψ〉

as k → ∞ since φ(x/k)ψ → ψ in S . Thus, Tk → T in S ′ as k → ∞.
Moreover, Tk has compact support as a tempered distribution in view of
the compactness of φk = φ(x/k).

Next, we give a proposition that extends the properties of the Fourier
transform to tempered distributions.

Proposition 3.36. Given u, v ∈ S ′(Rn), f j, f ∈ S , y ∈ Rn, b ∈ C,
α ∈ Nn

0 , and a > 0, we have
(i) u + v

∨

= u∨+ v∨, bu

∨

= bu∨,
(ii) u

∼∨

= u∨
∼

,
(iii) τyu

∨

(ξ) = e−iy·ξu∨(ξ), eix·yu(x)

∨

= τyu∨,
(iv) δau

∨

= (u∨)a = a−nδa−1
u∨,

(v) ∂αu

∨

(ξ) = (iξ)αu∨(ξ), ∂αu∨= (−ix)αu(x)

∨

,
(vi) (u∨)∨ = u = u∨∨,
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(vii) (2π)−n/2 f ∗ u

∨

= f

∨

u∨.

Proof. All the statements can be proved easily using duality and the cor-
responding statements for Schwartz functions. q

Now, we give a property of convolutions. It is easy to show that
this convolution is associative in the sense that (u ∗ f ) ∗ g = u ∗ ( f ∗ g)
whenever u ∈ S ′ and f , g ∈ S . The following result is a characterization
of the convolution we have just described.

Theorem 3.37. If u ∈ S ′ and φ ∈ S , then φ ∗ u is a C∞
poly function and

(φ ∗ u)(x) = 〈u, τx φ

∼

〉, (3.15)

for all x ∈ Rn.

Proof. We first prove (3.15). Let ψ ∈ S (Rn). We have

〈φ ∗ u, ψ〉 =〈u, φ

∼

∗ ψ〉

=u
(∫

Rn
φ

∼

(· − y)ψ(y)dy
)

=u
(∫

Rn
(τy φ

∼
)(·)ψ(y)dy

)
(3.16)

=
∫

Rn
〈u, τy φ

∼

〉ψ(y)dy,

where the last step is justified by the continuity of u and by the fact that
the Riemann sums of the inner integral in (3.16) converge uniformly to
that integral in the topology of S , a fact that will be justified later. This
calculation implies (3.15).

We now show that φ ∗ u is a C∞ function. Let ej = (0, · · · , 1, · · · , 0)
with 1 in the jth entry and zero elsewhere. Then by part (iii) in Proposi-
tion 3.13,

τ−hej τx φ

∼

− τx φ

∼

h
→ ∂jτ

x φ

∼

= τx∂j φ

∼

,

in S as h → 0. Thus, since u is linear and continuous, we have from (3.15)

τhej(φ ∗ u)(x)− (φ ∗ u)(x)
h

= u

(
τ−hej(τx φ

∼

)− τx φ

∼

h

)
→ 〈u, τx(∂j φ

∼

)〉

as h → 0. The same calculation for higher-order derivatives shows that
φ ∗ u ∈ C∞ and that ∂γ(φ ∗ u) = (∂γ φ) ∗ u for all multi-indices γ. It follows
from Theorem 3.23 that for some C, m and k we have

|∂α(φ ∗ u)(x)| ⩽C ∑
|γ|⩽m
|β|⩽k

sup
y∈Rn

|yγτx(∂α+β φ

∼

)(y)|
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=C ∑
|γ|⩽m
|β|⩽k

sup
y∈Rn

|(x + y)γ(∂α+β φ

∼

)(y)| (changing: y − x → y)

⩽Cm ∑
|β|⩽k

sup
y∈Rn

|(1 + |x|m + |y|m)(∂α+β φ

∼

)(y)|

⩽Cm,k,α sup
y∈Rn

1 + |x|m + |y|m
(1 + |y|)N (taking N > m)

⩽Cm,k,α(1 + |x|m),

which clearly implies that ∂α(φ ∗ u) grows at most polynomially at infin-
ity.

Next, we return to the point left open concerning the convergence
of the Riemann sums in (3.16) in the topology of S (Rn). For each N =

1, 2, · · · , consider a partition of [−N, N]n into (2N2)n cubes Qm of side
length 1/N and let ym be the center of each Qm. For multi-indices α and
β, we must show that

DN(x) =
(2N2)n

∑
m=1

xα∂
β
x φ

∼

(x − ym)ψ(ym)|Qm| −
∫

Rn
xα∂

β
x φ

∼

(x − y)ψ(y)dy

converges to zero in L∞(Rn) as N → ∞. We have by the mean value
theorem

xα∂
β
x φ

∼

(x − ym)ψ(ym)|Qm| −
∫

Qm

xα∂
β
x φ

∼

(x − y)ψ(y)dy

=
∫

Qm

xα[∂
β
x φ

∼

(x − ym)ψ(ym)− ∂
β
x φ

∼

(x − y)ψ(y)]dy

=
∫

Qm

xα(ym − y) · (∇(∂
β
x φ

∼

(x − ·)ψ))(ξ)dy

=
∫

Qm

xα(ym − y) · (−∇∂
β
x φ

∼

(x − ·)ψ +∇ψ∂
β
x φ

∼

(x − ·))(ξ)dy

for some ξ = y + θ(ym − y), where θ ∈ [0, 1]. We see that |y − ym| ⩽√
n/2N and the last integrand

|xα(y − ym) · (−∇∂
β
x φ

∼

(x − ξ)ψ(ξ) +∇ψ(ξ)∂
β
x φ

∼

(x − ξ))|

⩽C|x||α|
√

n
2N

1
(2 + |ξ|)M

1
(1 + |x − ξ|)M/2 (for large M)

⩽C|x||α|
√

n
N

1
(2 + |ξ|)M/2

1
(1 + |x|)M/2

⩽C|x||α|
√

n
N

1
(1 + |y|)M/2

1
(1 + |x|)M/2 ,

since (1 + |x − ξ|)(2 + |ξ|) ⩾ 1 + |x − ξ|+ |ξ| ⩾ 1 + |x|, and |y| ⩽ |ξ|+
θ|y − ym| ⩽ |ξ|+

√
n/2N ⩽ |ξ|+ 1 for N ⩾ √

n/2. Inserting the estimates
obtained for the integrand, we obtain

|DN(x)| ⩽ C
N

|x||α|
(1 + |x|)M/2

∫
[−N,N]n

dy
(1 + |y|)M/2



§3.3. Tempered distributions 81

+
∫
([−N,N]n)c

|xα∂
β
x φ

∼

(x − y)ψ(y)|dy.

The first integral in the preceding expression is bounded by

ωn−1

∫ √
nN

0

rn−1dr
(1 + r)M/2 ⩽ ωn−1

∫ √
nN

0

dr

(1 + r)
M
2 −n+1

⩽ 2ωn−1

M − 2n
,

where we pick M > 2n, while the second integral is bounded by∫
([−N,N]n)c

C|x||α|
(1 + |x − y|)M/2

dy
(1 + |y|)M

⩽ C|x||α|
(1 + |x|)M/2

∫
([−N,N]n)c

dy
(1 + |y|)M/2

⩽Cωn−1

∫ ∞

N

rn−1dr
(1 + r)M/2 ⩽ C

2ωn−1

M − 2n
Nn−M/2,

for M > 2 max(n, |α|) since (1 + |x − y|)(1 + |y|) ⩾ 1 + |x − y| + |y| ⩾
1 + |x|. From these estimates, it follows that

sup
x∈Rn

|DN(x)| ⩽ C(
1
N

+
1

N
M
2 −n

) → 0, as N → ∞.

Therefore, lim
N→∞

sup
x∈Rn

|DN(x)| = 0. q

We observe that if a function g is supported in a set K, then for all
f ∈ D(Kc) we have ∫

Rn
f (x)g(x)dx = 0. (3.17)

Moreover, the support of g is the intersection of all closed sets K with the
property (3.17) for all f in D(Kc). Motivated by this observation we give
the following:

Definition 3.38. Let u ∈ D ′(Rn). The support of u ( supp u) is the
intersection of all closed sets K with the property

φ ∈ D(Rn), supp φ ⊂ Kc =⇒ 〈u, φ〉 = 0. (3.18)

Example 3.39. supp δx0 = {x0}.

Along the same lines, we give the following definition:

Definition 3.40. We say that a distribution u ∈ D ′(Rn) coincides with
the function h on an open set Ω if

〈u, f 〉 =
∫

Rn
f (x)h(x)dx, ∀ f ∈ D(Ω). (3.19)

When (3.19) occurs, we often say that u agrees with h away from Ωc.
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This definition implies supp (u − h) ⊂ Ωc.

Example 3.41. The distribution |x|2 + δa1 + δa2 , where a1, a2 ∈ Rn, coin-
cides with the function |x|2 on any open set not containing the points a1

and a2.

We have the following characterization of distributions supported at a
single point.

Proposition 3.42. If u ∈ S ′(Rn) is supported in the singleton {x0}, then
there exists an integer k and complex numbers aα such that

u = ∑
|α|⩽k

aα∂αδx0 .

Proof. Without loss of generality, we may assume that x0 = 0. By (3.8), we
have for some C, m, and k,

|〈u, f 〉| ⩽ C ∑
|α|⩽m
|β|⩽k

sup
x∈Rn

|xα∂β f (x)|, ∀ f ∈ S (Rn).

We now prove that if φ ∈ S satisfies

(∂α φ)(0) = 0, ∀|α| ⩽ k, (3.20)

then 〈u, φ〉 = 0. To see this, fix a φ satisfying (3.20) and let ζ(x) be a
smooth function on Rn that is equal to 1 when |x| ⩾ 2 and equal to zero
for |x| ⩽ 1. Let ζε(x) = ζ(x/ε). Then using (3.20) and the continuity of the
derivatives of φ at the origin, it is not hard to show that |ζε φ − φ|α,β → 0
as ε → 0 for all |α| ⩽ m and |β| ⩽ k. Then,

|〈u, φ〉| ⩽ |〈u, ζε φ〉|+ |〈u, ζε φ − φ〉| ⩽ 0 + C ∑
|α|⩽m
|β|⩽k

|ζε φ − φ|α,β → 0,

as ε → 0. This proves our assertion.
Now, let f ∈ S (Rn). Let η ∈ D(Rn) be equal to 1 in a neighborhood

of the origin. Write

f (x) = η(x)

(
∑
|α|⩽k

(∂α f )(0)
α!

xα + h(x)

)
+ (1 − η(x)) f (x), (3.21)

where h(x) = O(|x|k+1) as |x| → 0. Then, ηh satisfies (3.20) and hence
〈u, ηh〉 = 0 by the claim. Additionally,

〈u, (1 − η) f 〉 = 0

by our hypothesis. Applying u to both sides of (3.21), we obtain

〈u, f 〉 = ∑
|α|⩽k

(∂α f )(0)
α!

〈u, xαη(x)〉 = ∑
|α|⩽k

aα〈∂αδ0, f 〉,

with aα = (−1)|α|〈u, xαη(x)〉/α!. This proves the result. q
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An immediate consequence is the following result.

Corollary 3.43. Let u ∈ S ′(Rn). If u∨is supported in the singleton {ξ0},
then u is a finite linear combination of functions (−iξ)αeiξ·ξ0 , where α ∈ Nn

0 .
In particular, if u∨is supported at the origin, then u is a polynomial.

Proof. Proposition 3.42 gives that u∨is a linear combination of derivatives
of Dirac masses at ξ0, i.e.,

u∨= ∑
|α|⩽k

aα∂αδξ0 .

Then, Proposition 3.36, Example 3.31 and Example 3.29 yield

u = ∑
|α|⩽k

aα

(
∂αδξ0

)∨
= ∑

|α|⩽k
aα∂αδξ0

∨
∼

= ∑
|α|⩽k

aα(iξ)αδξ0

∨
∼

= ∑
|α|⩽k

aα(iξ)ατξ0 δ0

∨
∼

=(2π)−n/2 ∑
|α|⩽k

aα(iξ)αe−iξ·ξ0

∼

=(2π)−n/2 ∑
|α|⩽k

aα(−iξ)αeiξ·ξ0 . q

Proposition 3.44. Distributions with compact support are exactly those
whose support is a compact set, i.e.,

u ∈ E ′(Rn) ⇐⇒ supp u is compact.

Proof. To prove this assertion, we start with a distribution u with compact
support. Then, there exist C, N, m > 0 such that (3.9) holds. For a C∞

function f whose support is contained in B(0, N)c, the expression on the
right in (3.9) vanishes, and we must therefore have 〈u, f 〉 = 0. This shows
that the support of u is contained in B(0, N); hence, it is bounded, and
since it is already closed (as an intersection of closed sets), it must be
compact.

Conversely, if the support of u as defined in Definition 3.38 is a com-
pact set, then there exists an N > 0 such that supp u ⊂ B(0, N). We take
η ∈ D that is equal to 1 on B(0, N) and vanishes off B(0, N + 1). Then,
for h ∈ D , the support of h(1− η) does not meet the support of u, and we
must have

〈u, h〉 = 〈u, hη〉+ 〈u, h(1 − η)〉 = 〈u, hη〉.
The distribution u can be thought of as an element of E ′ by defining for
f ∈ C∞(Rn)

〈u, f 〉 = 〈u, f η〉.
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Taking m to be the integer that corresponds to the compact set K =

B(0, N + 1) in (3.7) and using that the L∞ norm of ∂α( f η) is controlled
by a finite sum of seminorms ρα,N+1( f ) with |α| ⩽ m, we obtain the valid-
ity of (3.9) for f ∈ C∞. q

For distributions with compact support, we have the following impor-
tant result.

Theorem 3.45. If u ∈ E ′(Rn), then u∨is a real analytic function on Rn. In
particular, u∨∈ C∞

poly. Moreover, u∨has a holomorphic extension on Cn.

Proof. Since u ∈ E ′ ⊂ S ′, we have for f ∈ S

〈u∨, f 〉 =〈u, f

∨

〉 = u
(∫

Rn
e−ix·ξ f (x)d̄x

)
=
∫

Rn
u
(

e−ix·(·)
)

f (x)d̄x,

provided that we can justify the passage of u inside the integral. The
reason for this is that the Riemann sums of the integral of e−ix·ξ f (x) over
Rn converge to it in the topology of C∞, and thus the linear functional
u can be interchanged with the integral. To justify this, we argue as in
the proof of Theorem 3.37. For each N ∈ N, we consider a partition
of [−N, N]n into (2N2)n cubes Qm of side length 1/N and let ym be the
center of each Qm. For α ∈ Nn

0 , let

DN(ξ) =
(2N2)n

∑
m=1

e−iym·ξ(−iym)
α f (ym)|Qm| −

∫
Rn

e−ix·ξ(−ix)α f (x)dx.

We must show that for every M > 0, sup
|ξ|⩽M

|DN(ξ)| converges to zero as

N → ∞. Setting g(x) = (−ix)α f (x) ∈ S , we write

DN(ξ) =
(2N2)n

∑
m=1

∫
Qm

[e−iym·ξ g(ym)− e−ix·ξ g(x)]dx −
∫
([−N,N]n)c

e−ix·ξ g(x)dx.

Using the mean value theorem, we bound the absolute value of the ex-
pression inside the square brackets by

(|∇g(zm)|+ |ξ||g(zm)|)
√

n
2N

⩽ CK(1 + |ξ|)
(2 + |zm|)K

√
n

N
,

for some point zm = x + θ(ym − x) in the cube Qm where θ ∈ [0, 1]. Since
2 + |zm| ⩾ 1 + |x| if N >

√
n/2, and then for |ξ| ⩽ M,

(2N2)n

∑
m=1

∫
Qm

CK(1 + |ξ|)
(2 + |zm|)K dx ⩽

(2N2)n

∑
m=1

∫
Qm

CK(1 + |ξ|)
(1 + |x|)K dx

⩽CK(1 + M)
∫ √

nN

0

rn−1dr
(1 + r)K ⩽ CK(1 + M) < ∞
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provided K > n, and for L > n,∫
([−N,N]n)c

dy
(1 + |y|)L ⩽ ωn−1

∫ ∞

N

rn−1dr
(1 + r)L ⩽ ωn−1

L − n
Nn−L,

it follows that sup
|ξ|⩽M

|DN(ξ)| → 0 as N → ∞ by noticing g ∈ S .

Let p(ξ) be a polynomial; then, the action of u ∈ E ′ on the C∞ func-
tion ξ 7→ p(ξ)e−ix·ξ is a well-defined function of x, which we denote by
u(p(·)e−ix·(·)). Here, x ∈ Rn, but the same assertion is valid if x ∈ Rn is
replaced by z ∈ Cn. In this case, we define the dot product of ξ and z via

ξ · z =
n
∑

k=1
ξkzk.

It is straightforward to verify that the function of z

F(z) = (2π)−n/2u(e−iz·(·))

defined on Cn is holomorphic, in fact entire. Indeed, the continuity and
linearity of u and the fact that (e−iξ jh − 1)/h → −iξ j in C∞(R) as h → 0,
h ∈ C, imply that F is holomorphic in every variable and its derivative
with respect to zj is the action of the distribution u on the C∞ function

ξ 7→ (−iξ j)e
−i ∑n

j=1 zjξ j .

By induction, it follows that for all α ∈ Nn
0 , we have

∂α1
z1
· · · ∂αn

zn
F = u

(
(−i(·))αe−i ∑n

j=1 zj(·)j
)

.

Since F is entire, its restriction on Rn, i.e., F(x1, · · · , xn), where xj = Re zj,
is real analytic. Additionally, an easy calculation using (3.9) and Leibniz’s
rule yields that the restriction F on Rn and all of its derivatives have
polynomial growth at infinity.

Therefore, we conclude that the distribution u∨(x) can be identified
with the real analytic function F(x) whose derivatives have polynomial
growth at infinity. q

§ 3.4 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply
them to the study of the basic class of linear operators that occur in Fourier
analysis: the class of operators that commute with translations.

Definition 3.46. A vector space X of measurable functions on Rn is
called closed under translations if for f ∈ X we have τy f ∈ X for all
y ∈ Rn. Let X and Y be vector spaces of measurable functions on Rn

that are closed under translations. Let T be an operator from X to Y.
We say that T commutes with translations or is translation invariant
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if

T(τy f ) = τy(T f )

for all f ∈ X and all y ∈ Rn.

It is automatic to see that convolution operators commute with trans-
lations. One of the main goals of this section is to prove the converse, i.e.,
every bounded linear operator that commutes with translations is of the
convolution type. We have the following:

Theorem 3.47. Let 1 ⩽ p, q ⩽ ∞. Suppose T is a bounded linear operator
from Lp(Rn) into Lq(Rn) that commutes with translations. Then, there
exists a unique tempered distribution u such that

T f = u ∗ f a.e., ∀ f ∈ S .

The theorem will be a consequence of the following lemma.

Lemma 3.48. Let 1 ⩽ p ⩽ ∞. If f ∈ Lp(Rn) has derivatives of all orders
⩽ n + 1 in the Lp norm, then f equals almost everywhere a continuous
function g satisfying

|g(0)| ⩽ C ∑
|α|⩽n+1

‖∂α f ‖p,

where C depends only on the dimension n and the exponent p.

Proof. Let ξ ∈ Rn. Then there exists a C′
n such that

(1 + |ξ|2)(n+1)/2 ⩽ (1 + |ξ1|+ · · ·+ |ξn|)n+1 ⩽ C′
n ∑
|α|⩽n+1

|ξα|.

Let us first suppose p = 1, and we shall show f

∨

∈ L1. By part (viii)
and part (x) in Proposition 3.2, we have

| f

∨

(ξ)| ⩽C′
n(1 + |ξ|2)−(n+1)/2 ∑

|α|⩽n+1
|ξα|| f

∨

(ξ)|

=C′
n(1 + |ξ|2)−(n+1)/2 ∑

|α|⩽n+1
|∂α f

∨

(ξ)|

⩽C′′(1 + |ξ|2)−(n+1)/2 ∑
|α|⩽n+1

‖∂α f ‖1.

Since (1 + |ξ|2)−(n+1)/2 defines an integrable function on Rn, it follows
that f

∨

∈ L1(Rn) and, letting C′′′ = C′′ ∫
Rn(1 + |ξ|2)−(n+1)/2dξ, we obtain

‖ f

∨

‖1 ⩽ C′′′ ∑
|α|⩽n+1

‖∂α f ‖1.

Thus, by Theorem 3.5 due to f , f̂ ∈ L1, f equals almost everywhere a
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continuous function g and by part (x) in Proposition 3.2,

|g(0)| ⩽ ‖ f ‖∞ ⩽ (2π)−n/2‖ f

∨

‖1 ⩽ C ∑
|α|⩽n+1

‖∂α f ‖1.

Suppose now that p > 1. Choose φ ∈ D(Rn) such that φ(x) = 1
if |x| ⩽ 1 and φ(x) = 0 if |x| > 2. Then, it is clear that f φ ∈ L1(Rn).
Thus, by the above argument, f φ equals almost everywhere a continuous
function h such that

|h(0)| ⩽ C ∑
|α|⩽n+1

‖∂α( f φ)‖1.

By Leibniz’ rule for differentiation, we have ∂α( f φ) = ∑
µ+ν=α

α!
µ!ν! ∂

µ f ∂ν φ,

and then

‖∂α( f φ)‖1 ⩽
∫
|x|⩽2

∑
µ+ν=α

α!
µ!ν!

|∂µ f ||∂ν φ|dx

⩽ ∑
µ+ν=α

C sup
|x|⩽2

|∂ν φ(x)|
∫
|x|⩽2

|∂µ f (x)|dx

⩽A ∑
|µ|⩽|α|

∫
|x|⩽2

|∂µ f (x)|dx ⩽ AB ∑
|µ|⩽|α|

‖∂µ f ‖p,

where A ⩾ C′‖∂ν φ‖∞, |ν| ⩽ |α|, and B depends only on p and n. Thus,
we can find a constant K such that

|h(0)| ⩽ K ∑
|α|⩽n+1

‖∂α f ‖p.

Since φ(x) = 1 if |x| ⩽ 1, we see that f is equal almost everywhere to
a continuous function g in the sphere of radius 1 centered at 0; moreover,

|g(0)| = |h(0)| ⩽ K ∑
|α|⩽n+1

‖∂α f ‖p.

However, by choosing φ appropriately, the argument clearly shows that f
equals almost everywhere a continuous function on any sphere centered
at 0. This proves the lemma. q

Now, we turn to the proof of the previous theorem.

Proof of Theorem 3.47. We first prove that

∂βT f = T∂β f , ∀ f ∈ S (Rn). (3.22)

In fact, if h = (0, · · · , hj, · · · , 0) lies on the j-th coordinate axis, we have

τh(T f )− T f
hj

=
T(τh f )− T f

hj
= T

(
τh f − f

hj

)
,

since T is linear and commuting with translations. By part (iii) in Proposi-

tion 3.13, we have τh f− f
hj

→ − ∂ f
∂xj

in S as |h| → 0 and in the Lp norm. Since

T is a bounded operator from Lp to Lq, it follows that τh(T f )−T f
hj

→ − ∂T f
∂xj

in



88 3. Fourier Transform and Tempered Distributions

Lq as |h| → 0. By induction, we obtain (3.22). By Lemma 3.48, T f equals
almost everywhere a continuous function g f satisfying

|g f (0)| ⩽C ∑
|β|⩽n+1

‖∂β(T f )‖q = C ∑
|β|⩽n+1

‖T(∂β f )‖q

⩽C‖T‖ ∑
|β|⩽n+1

‖∂β f ‖p ⩽ C ∑
|α|⩽m,|β|⩽n+1

| f |α,β.

Then, by Theorem 3.23 (ii), the mapping f 7→ g f (0) is a continuous linear
functional on S , denoted by u1. We claim that u = u1

∼

is the linear
functional we are seeking. Indeed, if f ∈ S , using Theorem 3.37, we
obtain

(u ∗ f )(x) =〈u, τx f

∼

〉 = 〈u, τ−x f

∼

〉 = 〈u

∼

, τ−x f 〉 = 〈u1, τ−x f 〉
=(T(τ−x f ))(0) = (τ−xT f )(0) = T f (x).

We note that it follows from this construction that u is unique. The
theorem is therefore proved. q

Now, we give a characterization of operators commuting with trans-
lations in p = 2.

Theorem 3.49. Let T be a bounded linear transformation mapping L2(Rn)

to itself. Then T commutes with translation iff there exists an m ∈ L∞(Rn)

such that T f = u ∗ f with u∨= (2π)−n/2m, for all f ∈ L2(Rn). We also
have ‖T‖ = ‖m‖∞.

Proof. Now, we prove the necessity. Suppose that T commutes with trans-
lations and ‖T f ‖2 ⩽ ‖T‖‖ f ‖2 for all f ∈ L2(Rn). Then, by Theorem 3.47,
there exists a unique tempered distribution u such that T f = u ∗ f for all
f ∈ S . The remainder is to prove u∨∈ L∞(Rn).

Let m = (2π)n/2u∨, from

‖mφ

∨‖2 =‖u ∗ φ

∨‖2 = ‖u ∗ φ‖2 ⩽ ‖T‖‖φ‖2 = ‖T‖‖φ

∨‖2, ∀φ ∈ S .

it follows that ∫
Rn

(
‖T‖2 − |m|2

)
|φ∨|2dξ ⩾ 0, ∀φ ∈ S .

This implies that ‖T‖2 − |m|2 ⩾ 0 for a.e. ξ ∈ Rn. Hence, m ∈ L∞(Rn)

and ‖m‖∞ ⩽ ‖T‖.
Finally, we can show the sufficiency easily. If u∨= (2π)−n/2m ∈

L∞(Rn), the Plancherel theorem immediately implies that

‖T f ‖2 = ‖u ∗ f ‖2 = ‖m f

∨

‖2 ⩽ ‖m‖∞‖ f ‖2,

which yields ‖T‖ ⩽ ‖m‖∞.
Thus, if m = (2π)n/2u∨∈ L∞, then ‖T‖ = ‖m‖∞. q
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§ 3.5 Fourier multipliers on Lp

We have shown that the translation invariant Lp-Lq operators are convolution-
type operators in Theorem 3.47. In this section, we briefly introduce
Fourier multipliers on Lp.

Definition 3.50. Let 1 ⩽ p ⩽ ∞ and m ∈ S ′. m is called a Fourier
multiplier on Lp(Rn) if the convolution m∨ ∗ f ∈ Lp(Rn) for all f ∈
S (Rn), and

‖m‖Mp(Rn) = (2π)−n/2 sup
‖ f ‖p=1

‖m∨ ∗ f ‖p

is finite. The linear space of all such m is denoted by Mp(Rn).

Since S is dense in Lp (1 ⩽ p < ∞), the mapping from S to Lp:
f 7→ m∨ ∗ f can be extended to a mapping from Lp to Lp with the same
norm. We write m∨ ∗ f also for the values of this extended mapping.

For p = ∞, we can characterize Mp. Considering the map:

f 7→ m∨ ∗ f for f ∈ S ,

we have

m ∈ M∞ ⇔ |(m∨ ∗ f )(0)| ⩽ C‖ f ‖∞, f ∈ S . (3.23)

Indeed, if m ∈ M∞, we have m∨ ∗ f ∈ C∞
poly by Theorem 3.37, and then

|(m∨ ∗ f )(0)| ⩽ ‖m∨ ∗ f ‖∞

‖ f ‖∞
‖ f ‖∞ ⩽ C‖ f ‖∞.

On the other hand, if |(m∨ ∗ f )(0)| ⩽ C‖ f ‖∞, we can obtain

‖m∨ ∗ f ‖∞ = sup
x∈Rn

|(m∨ ∗ f )(x)| = sup
x∈Rn

|[m∨ ∗ ( f (x + ·))](0)|

⩽C‖ f (x + ·)‖∞ = C‖ f ‖∞,

which yields m ∈ M∞.

However, (3.23) also means that m∨ is a bounded measure on Rn since
the dual space of L∞ is the space of all bounded finitely additive signed
measures on Rn that are absolutely continuous w.r.t. Lebesgue measure.
Thus, M∞ is equal to the space of all Fourier transforms of bounded mea-
sures. Moreover, ‖m‖M∞ is equal to the total variation norm of m∨. In view
of the inequality above and the Hahn-Banach theorem, we may extend the
mapping f 7→ m∨ ∗ f from S to L∞ to a mapping from L∞ to L∞ without
increasing its norm. We also write the extended mapping as f 7→ m∨ ∗ f
for f ∈ L∞.
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Theorem 3.51. (i) Let 1 ⩽ p ⩽ ∞ and 1/p + 1/p′ = 1; then, we have

Mp(R
n) = Mp′(R

n) (equal norms). (3.24)

(ii) M1(R
n) = {m ∈ S ′(Rn) : m∨ is a bounded measure on Rn}, and

‖m‖M1(Rn) = (2π)−n/2‖m∨‖1.
(iii) M2(Rn) = L∞(Rn) with equal norms.
(iv) Let 1 ⩽ p0, p1 ⩽ ∞ and 1/p = (1 − θ)/p0 + θ/p1 (0 ⩽ θ ⩽ 1), we

have ∀m ∈ Mp0(R
n) ∩Mp1(R

n)

‖m‖Mp(Rn) ⩽ ‖m‖1−θ
Mp0 (R

n)
‖m‖θ

Mp1 (R
n). (3.25)

(v) The norm ‖ · ‖Mp(Rn) decreases with p ∈ [1, 2], and

M1 ↪→ Mp ↪→ Mq ↪→ M2, (1 ⩽ p ⩽ q ⩽ 2). (3.26)

Proof. (i) Let f ∈ Lp, g ∈ Lp′ and m ∈ Mp. Then, we have

(2π)n/2‖m‖Mp′
= sup

‖g‖p′=1
‖m∨ ∗ g‖p′ = sup

‖ f ‖p=‖g‖p′=1
|〈m∨ ∗ g, f

∼

〉|

= sup
‖ f ‖p=‖g‖p′=1

|(m∨ ∗ g ∗ f )(0)|

= sup
‖ f ‖p=‖g‖p′=1

|(m∨ ∗ f ∗ g)(0)|

= sup
‖ f ‖p=‖g‖p′=1

|〈m∨ ∗ f , g̃〉|

= sup
‖ f ‖p=1

‖m∨ ∗ f ‖p = (2π)n/2‖m‖Mp .

(ii) It has already been established because of M1 = M∞.
(iii) It follows from Theorem 3.49 immediately.
(iv) It follows from the Riesz-Thorin theorem that the mapping f 7→

m∨ ∗ f maps Lp0 → Lp0 with norm ‖m‖Mp0
and Lp1 → Lp1 with norm

‖m‖Mp1
.

(v) Since 1/q = (1 − θ)/p + θ/p′ for some θ and p ⩽ q ⩽ 2 ⩽ p′, by
using (3.25) with p0 = p, p1 = p′, we see that

‖m‖Mq ⩽ ‖m‖Mp ,

from which (3.26) follows. q

Proposition 3.52. Let 1 ⩽ p ⩽ ∞. Then, Mp(Rn) is a Banach algebra
under pointwise multiplication.

Proof. It is clear that ‖ · ‖Mp is a norm. Note also that Mp is complete.
Indeed, let {mk} be a Cauchy sequence in Mp. So does it in L∞ because of
Mp ⊂ L∞. Thus, it is convergent in L∞ and we denote the limit by m. From
L∞ ⊂ S ′, we have m∨

k ∗ f → m∨ ∗ f for any f ∈ S in sense of the strong
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topology on S ′. On the other hand,
{

m∨
k ∗ f

}
is also a Cauchy sequence

in Lp ⊂ S ′, and converges to a function g ∈ Lp. By the uniqueness of
limit in S ′, we know that g = m∨ ∗ f . Thus, ‖mk − m‖Mp → 0 as k → ∞.
Therefore, Mp is a Banach space.

Let m1 ∈ Mp and m2 ∈ Mp. For any f ∈ S , we have

(2π)−n/2‖ ((m1m2))
∨ ∗ f ‖p =(2π)−n‖ (m1)

∨ ∗ (m2)
∨ ∗ f ‖p

⩽(2π)−n/2‖m1‖Mp‖ (m2)
∨ ∗ f ‖p

⩽‖m1‖Mp‖m2‖Mp‖ f ‖p,

which implies m1m2 ∈ Mp and

‖m1m2‖Mp ⩽ ‖m1‖Mp‖m2‖Mp .

Thus, Mp is a Banach algebra. q

The next theorem states that Mp(Rn) is isometrically invariant under
affine transforms1 of Rn.

Theorem 3.53. Let a : Rn → Rk be a surjective affine transform with n ⩾ k,
and m ∈ Mp(Rk). Then

‖m ◦ a‖Mp(Rn) = ‖m‖Mp(Rk).

In particular, we have

‖δcm‖Mp(Rn) =‖m‖Mp(Rn), ∀c > 0, (3.27)

‖m̃‖Mp(Rn) =‖m‖Mp(Rn), (3.28)

‖m(〈x, ·〉)‖Mp(Rn) =‖m‖Mp(R), ∀x 6= 0, (3.29)

where 〈x, ξ〉 =
n
∑

i=1
xiξi.

Proof. It suffices to consider the case that a : Rn → Rk is a linear trans-
form. Make the coordinate transform

ηi = ai(ξ), 1 ⩽ i ⩽ k; ηj = ξ j, k + 1 ⩽ j ⩽ n, (3.30)

which can be written as η = A−1ξ or ξ = Aη where det A 6= 0. Let A> be
the transposed matrix of A, η′ = (η1, · · · , ηk) and η′′ = (ηk+1, · · · , ηn). It
is easy to see, for any f ∈ S (Rn), that

F−1(m(a(ξ)) f

∨

)(x) =
∫

Rn
eix·ξm(a(ξ)) f

∨

(ξ)d̄ξ

=|det A|
∫

Rn
eix·Aηm(η′) f

∨

(Aη)d̄η

=|det A|
∫

Rn
eiA>x·ηm(η′) f

∨

(Aη)d̄η

1An affine transform of Rn is a map F : Rn → Rn of the form F(p) = Ap + q for all
p ∈ Rn, where A is a linear transform of Rn and q ∈ Rn.
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=
∫

Rn
eiA>x·ηm(η′) f ((A>)−1·)

∨

(η)d̄η

=
∫

Rk
ei(A>x)′·η′

m(η′)(∫
Rn−k

ei(A>x)′′·η′′
f ((A>)−1·)

∨

(η′, η′′)d̄η′′
)

d̄η′

=
∫

Rk
ei(A>x)′·η′

m(η′)
(
F−1

η′′ [ f ((A>)−1·)

∨

]
)
(η′, (A>x)′′)d̄η′

=
∫

Rk
ei(A>x)′·η′

m(η′)
(
[Fx′( f ((A>)−1·))]

)
(η′, (A>x)′′)d̄η′

=F−1
η′

[
m(η′)

(
[Fx′( f ((A>)−1·))]

)
(η′, (A>x)′′)

]
((A>x)′)

=
∫

Rk
m∨(y′) f ((A>)−1((A>x)′ − y′, (A>x)′′))d̄y′.

It follows from m ∈ Mp(Rk) that for any f ∈ S (Rn)

(2π)−np/2‖F−1(m(a(ξ))) ∗ f ‖p
Lp(Rn)

=‖F−1(m(a(ξ)) f

∨

)‖p
Lp(Rn)

=

∥∥∥∥∫
Rk

m∨(y′) f ((A>)−1((A>x)′ − y′, (A>x)′′))d̄y′
∥∥∥∥p

Lp(Rn)

=|det A|−1
∥∥∥∥∫

Rk
m∨(y′) f ((A>)−1(x′ − y′, x′′))d̄y′

∥∥∥∥p

Lp(Rn)

⩽|det A|−1‖m‖p
Mp(Rk)

∥∥∥‖ f ((A>)−1(x′, x′′))‖Lp(Rk)

∥∥∥p

Lp(Rn−k)

=|det A|−1‖m‖p
Mp(Rk)

‖ f ((A>)−1(x))‖p
Lp(Rn)

=‖m‖p
Mp(Rk)

‖ f ‖p
Lp(Rn)

.

Thus, we have

‖m(a(·))‖Mp(Rn) ⩽ ‖m‖Mp(Rk). (3.31)

Taking f ((A>)−1x) = f1(x′) f2(x′′), one can conclude that the reverse in-
equality of (3.31) also holds. q

The Fourier multipliers can also be defined on certain vector-valued
Lp spaces. We will use results for Fourier multipliers on Lp with values
in a Hilbert space. Therefore, we consider only this case. Let H be a
Hilbert space, and consider the space S (Rn,H) or S (H) of all mappings
f : Rn → H, such that (1 + |x|)N |∂α f (x)|H is bounded for each α ∈ Nn

0
and N ∈ N0. The space L(S (H0),H1) consists of all linear continuous
mappings from S (H0) to H1, where H0 and H1 are Hilbert spaces. This
space is S ′ if H0 = H1 = C. Clearly, we may define the Fourier transform
on S (H0) and on L(S (H0),H1) in the same way as before. The integrals
converge in H0, and it is obvious that the inversion formula holds. We
shall also use the notation S ′(H0,H1) for L(S (H0),H1).
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Definition 3.54. Let H0 and H1 be two Hilbert spaces with norms | · |0
and | · |1, respectively. Consider a mapping m ∈ S ′(H0,H1). We write
m ∈ Mp(H0,H1) if for all f ∈ S (H0) we have m∨ ∗ f ∈ Lp(H1) and if
the expression

sup
‖ f ‖Lp(H0)

=1
‖m∨ ∗ f ‖Lp(H1)

is finite. The last expression is the norm, ‖m‖Mp(H0,H1), in
Mp(H0,H1).

Theorems 3.51 and 3.53 have obvious analogues in this general situa-
tion. The proofs are the same with trivial changes. Now, we give a simple
but very useful theorem for Fourier multipliers.

Theorem 3.55 (Bernstein multiplier theorem). Assume that k > n/2 is
an integer, and that ∂αm ∈ L2(L(H0,H1)) for |α| = 0 and k with nonzero
norms. Then, we have m ∈ Mp(H0,H1) for 1 ⩽ p ⩽ ∞, and

‖m‖Mp ⩽ C‖m‖1−n/2k
2

(
sup
|α|=k

‖∂αm‖2

)n/2k
.

Proof. Clearly, m ∈ S ′(H0,H1). Let t > 0. By the Cauchy-Schwarz in-
equality and the Plancherel theorem, we obtain∫

|x|>t
|m∨(x)|L(H0,H1)dx

=
∫
|x|>t

|x|−k|x|k|m∨(x)|L(H0,H1)dx ⩽ Ctn/2−k sup
|α|=k

‖∂αm‖L2(L(H0,H1)).

Similarly, we have∫
|x|⩽t

|m∨(x)|L(H0,H1)dx ⩽ Ctn/2‖m‖L2(L(H0,H1)).

Choosing t such that ‖m‖2 = t−k sup
|α|=k

‖∂αm‖2, we infer, with the help of

Theorem 3.51, that

‖m‖Mp ⩽‖m‖M1 = (2π)−n/2
∫

Rn
|m∨(x)|L(H0,H1)dx

⩽C‖m‖1−n/2k
2

(
sup
|α|=k

‖∂αm‖2

)n/2k

. q

Remark 3.56. 1) From the proof of Theorem 3.55, we see that m∨ ∈ L1, in
other words, it is equivalent to the Young inequality for convolution, i.e.,
‖m∨ ∗ f ‖p ⩽ ‖m∨‖1‖ f ‖p for any 1 ⩽ p ⩽ ∞.

2) It is not valid if the r.h.s. of the inequality is equal to zero because
such a t ∈ (0, ∞) does not exist in this case in view of the proof. For
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example, one can consider m = χ[−1/2,1/2] ∈ L2, then ‖∂m‖2 = 0 but
m∨(ξ) = (2π)−1/2sinc ξ

2 /∈ L1, where the sinc function is defined by
sinc(ξ) = sin ξ

ξ for ξ 6= 0 and sinc(0) = 1.

Exercises

Exercise 3.1. Prove Proposition 3.12.

Exercise 3.2. Let

ρ(φ, ψ) = ∑
α,β∈Nn

0

2−|α|−|β| |φ − ψ|α,β

1 + |φ − ψ|α,β
.

Prove the space (S , ρ) is a complete metric space.

Exercise 3.3. [Spi74, Exercise 5.3, 5.4 with answers]

(i) In R, find the Fourier transform of

f (x) =

{
1, |x| < a,

0, |x| > a.

(ii) Use the result of (i) to evaluate
∫ ∞

−∞

sin(aξ) cos(xξ)

ξ
dξ.

(iii) Deduce the value of
∫ ∞

0

sin x
x

dx.

Exercise 3.4. For all a > 0, prove

(2π)−n/2e−a|x|

∨

(ξ) =
cna

(a2 + |ξ|2)(n+1)/2
, cn =

Γ((n + 1)/2)
π(n+1)/2

. (3.32)

Exercise 3.5. Let n = 1 and

g(ξ) =


1

ln ξ
, ξ > e,

ξ

e
, 0 ⩽ ξ ⩽ e,

g(ξ) =− g(−ξ), ξ < 0.

It is clear that g(ξ) is uniformly continuous on R and g(ξ) → 0 as |ξ| → ∞.
Prove that there is no integrable function whose Fourier transform is g.

Exercise 3.6 (Hardy-Littlewood-Paley theorem on Rn). Let w be a weight
function on Rn, i.e., a positive and measurable function on Rn. Then, we
denote by Lp(w) the Lp-space with respect to wdx. The norm on Lp(w) is

‖ f ‖Lp(w) =

(∫
Rn

| f (x)|pw(x)dx
)1/p

.

Assume p ∈ (1, 2]. Use the Marcinkiewicz interpolation theorem to prove

‖F f ‖Lp(|ξ|−n(2−p)) ⩽ Cp‖ f ‖p.



§3.5. Fourier multipliers on Lp 95

Exercise 3.7 (Bernstein’s inequality[Gra14a, Exercise 2.3.11]). Let f be a
bounded function on Rn with f

∨

supported in the ball B(0, R). Prove that
for all multi-indices α, there exists a constant Cα,n (depending only on α

and the dimension n) such that

‖∂α f ‖∞ ⩽ Cα,nR|α|‖ f ‖∞.

Hint Write f = f ∗ h1/R, where h ∈ S (Rn) whose Fourier transform is
equal to one on the ball B(0, 1) and vanishes outside the ball B(0, 2).

Exercise 3.8 (Homogeneous distributions[Gra14a, Exercise 2.3.9]). A dis-
tribution in S ′(Rn) is called homogeneous of degree γ ∈ C if for all λ > 0
and for all φ ∈ S (Rn), we have

〈u, δλ φ〉 = λ−n−γ〈u, φ〉.

(i) Prove that this definition agrees with the usual definition for func-
tions.

(ii) Show that the Dirac mass δ0 is homogeneous of degree −n.
(iii) Prove that if u is homogeneous of degree γ, then ∂αu is homogeneous

of degree γ − |α|.
(iv) Show that u is homogeneous of degree γ iff u∨is homogeneous of

degree −n − γ.

Exercise 3.9. [Gra14a, Exercise 2.5.11] Suppose that u ∈ C∞(Rn \ {0}) is
homogeneous of degree −n + iτ, τ ∈ R. Prove that the operator given by
convolution with u maps L2(Rn) to L2(Rn).





4
Hilbert Transform

The study of singular integrals is one of the most important topics in
harmonic analysis. The Hilbert transform is the prototypical example of a
singular integral. This is a particularly important operator for several rea-
sons: it is a model case for the general theory of singular integral operators;
it is a link between real and complex analysis; it is related to summability
for Fourier integrals in Lp norms. We will derive its Lp boundedness and
the maximal Hilbert transform.

§ 4.1 Hilbert transform

The Hilbert transform is given formally by the principal value integral

H f (x) := p.v.
1
π

∫
R

f (x − t)
t

dt := lim
ε→0

1
π

∫
|t|>ε

f (x − t)
t

dt. (4.1)

It is not immediately obvious that H f (x) is well-defined even for nice
functions f . We first observe that the Hilbert kernel kH(x) = p.v. 1

πx ∈
S ′(R). Indeed, we can write for any ϕ ∈ S〈

p.v.
1
x

, ϕ

〉
= lim

ε→0

∫
|x|>ε

ϕ(x)
x

dx

=
∫

ε<|x|<1

ϕ(x)− ϕ(0)
x

dx +
∫
|x|⩾1

ϕ(x)
x

dx,

this holds since the integral of 1/x on ε < |x| < 1 is zero. It is now
immediate that for any ϕ ∈ S (R)∣∣∣∣〈p.v.

1
x

, ϕ

〉∣∣∣∣ ⩽ 2(‖ϕ′‖∞ + ‖xϕ‖∞),

which implies kH ∈ S ′(R). Thus, for f ∈ S (R), it follows from Theo-
rem 3.37 that H f = kH ∗ f is a C∞ function, that is, H f is also well-defined
for f ∈ S (R), although it does not map S to itself.

For f ∈ S (R), by symmetry and Proposition 3.10, we have for |x| ⩾ 2∣∣∣∣πxH f (x)−
∫

R
f
∣∣∣∣

=

∣∣∣∣limε→0

∫
ε<|t|<1

x f (x − t)− x f (x)
t

dt
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+
∫
|t|⩾1

x f (x − t)
t

dt −
∫

R
f (x − t)dt

∣∣∣∣
=

∣∣∣∣limε→0

∫
ε<|t|<1

(x − t) f (x − t)− x f (x)
t

dt +
∫
|t|⩾1

(x − t) f (x − t)
t

dt
∣∣∣∣

⩽
∫
|t|<1

∫ 1

0
|(x f )′(x − θt)|dθdt + C

∫
|t|⩾1

dt
|t|(1 + |x − t|)3

⩽C
∫
|t|<1

∫ 1

0

dθdt
(1 + |x − θt|) + C

∫
|t|⩾1

dt
|x|(1 + |x − t|)2

⩽C
∫
|t|<1

∫ 1

0

dθdt
(1 + |x|/2)

+
C
|x|

∫
R

dt
(1 + |x − t|)2

⩽ C
|x| ,

since |x − θt| ⩾ |x| − |t| ⩾ |x|/2 for |t| < 1 and |t|(1 + |x − t|) ⩾ |t|+ |x −
t| ⩾ |x| for |t| ⩾ 1. Thus, for f ∈ S , we obtain the asymptotic

lim
|x|→∞

xH f (x) =
1
π

∫
R

f . (4.2)

Hence, if f has nonzero mean then H f only decays like 1
|x| at infinity. In

particular, we already see that H is not bounded on L1.

If f ∈ C1
c , then we can restrict the integral to a compact interval t ∈

[−R, R] for some large R depending on x and f , and use symmetry to
write ∫

|t|>ε

f (x − t)
t

dt =
∫

ε<|t|<R

f (x − t)− f (x)
t

dt.

The mean-value theorem then shows that f (x−t)− f (x)
t is uniformly bounded

on the interval t ∈ [−R, R] for fixed x and f , and thus, the limit actually
exists from the dominated convergence theorem.

Moreover, from the above arguments, it follows that H at least maps
S (R) to L2(R). It follows from the definition in (4.1) that H commutes
with translations. It is also formally skew-adjoint, i.e., the adjoint operator
H∗ = −H, indeed by symmetry we have for f , g ∈ S ,∫

R
H f (x)g(x)dx =

∫
R

∫
R

kH(x − y) f (y)dyg(x)dx

=−
∫

R

∫
R

f (y)kH(y − x)g(x)dxdy

=−
∫

R
f (y)Hg(y)dy.

Similarly, the dual operator H′ = −H, i.e.,∫
R

H f (x)g(x)dx = −
∫

R
f (y)Hg(y)dy. (4.3)

Now, we give an example.



§4.1. Hilbert transform 99

Example 4.1. Consider the characteristic function χ[a,b] of an interval [a, b].
It is a simple calculation to show that

H(χ[a,b])(x) =
1
π

ln
|x − a|
|x − b| . (4.4)

Let us verify this identity. By the definition, we have

H(χ[a,b])(x) =
1
π

lim
ε→0

∫
|y|>ε

χ[a,b](x − y)
y

dy =
1
π

lim
ε→0

∫
|y|>ε

x−b⩽y⩽x−a

1
y

dy.

It is clear that it will be −∞ and +∞ at x = a and x = b, respectively.
Thus, we only need to consider three cases: x − b > 0, x − a < 0 and
x − b < 0 < x − a. For the first two cases, we have

H(χ[a,b])(x) =
1
π

∫ x−a

x−b

1
y

dy =
1
π

ln
|x − a|
|x − b| .

For the third case, we obtain (without loss of generality, we can assume
ε < min(|x − a|, |x − b|))

H(χ[a,b])(x) =
1
π

lim
ε→0

(∫ −ε

x−b

1
y

dy +
∫ x−a

ε

1
y

dy
)

=
1
π

lim
ε→0

(
ln

ε

|x − b| + ln
|x − a|

ε

)
=

1
π

ln
|x − a|
|x − b| ,

where it is crucial to observe how the cancellation of the odd kernel 1/x
is manifested. Note that H(χ[a,b])(x) blows up logarithmically for x near
the points a and b and decays like x−1 as x → ±∞ by (4.2) (or a direct
computation with the help of L’Hospital’s rule). See the following graph
with a = 1 and b = 3:

The following is a graph of the function H(χ[−10,0]∪[1,2]∪[4,7]):
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The Hilbert transform is connected to complex analysis (and in par-
ticular to Cauchy integrals) by the following identities.

Proposition 4.2 (Plemelj formula, [Tao06]). Let f ∈ C1(R) obey a quali-
tative decay bound f (x) = O f (〈x〉−1) (say, these conditions are needed just
to make H f to be well-defined) where 〈x〉 =

√
1 + x2. Then, for any x ∈ R,

1
2πi

lim
ε→0

∫
R

f (y)
y − (x ± iε)

dy =
± f (x) + iH f (x)

2
.

Proof. By translation invariance, we can take x = 0. By taking complex
conjugates we may assume that the ± sign is +. Our task is then to show
that

lim
ε→0

1
2πi

∫
R

f (y)
y − iε

dy − 1
2

f (0)− i
2π

∫
|y|>ε

f (y)
0 − y

dy = 0.

Multiplying by 2πi and taking the change of variables y = εw, it reduces
to showing

lim
ε→0

∫
R

f (εw)

(
1

w − i
− χ{|w|>1}

1
w

)
dw − πi f (0) = 0.

∫
R

(
1

w − i
− χ{|w|>1}

1
w

)
dw

=
∫
|w|>1

(
1

w − i
− 1

w

)
dw +

∫
|w|⩽1

1
w − i

dw

=i
∫
|w|>1

dw
1 + w2 −

∫
|w|>1

dw
w(1 + w2)

+
∫
|w|⩽1

w
1 + w2 dw + i

∫
|w|⩽1

dw
1 + w2

=i
∫

R

dw
1 + w2 = πi.

Thus, we only need to show

lim
ε→0

∫
R
( f (εw)− f (0))

(
1

w − i
− χ{|w|>1}

1
w

)
dw = 0.



§4.1. Hilbert transform 101

Since f is bounded and∫
R

∣∣∣∣ 1
w − i

− χ{|w|>1}
1
w

∣∣∣∣ dw ⩽
∫
|w|>1

∣∣∣∣ 1
w − i

− 1
w

∣∣∣∣ dw +
∫
|w|⩽1

∣∣∣∣ 1
w − i

∣∣∣∣ dw

=
∫
|w|>1

dw
w
√

1 + w2
+
∫
|w|⩽1

dw√
1 + w2

⩽
∫
|w|>1

dw
w2 +

∫
|w|⩽1

dw

=2 + 2 = 4,

the claim follows from the dominated convergence theorem. q

Now suppose that f not only obeys the hypotheses of the Plemelj
formula but also extends holomorphically to the upper half-plane {z ∈ C :
Im z ⩾ 0} and obeys the decay bound f (x) = O f (〈x〉−1) in this region.
Then, Cauchy’s formula gives

1
2πi

lim
ε→0

∫
R

f (y)
y − (x + iε)

dy = f (x)

and
1

2πi
lim
ε→0

∫
R

f (y)
y − (x − iε)

dy = 0.

Thus, by either of the Plemelj formulae we see that f (x) + iH f (x) = 2 f (x),
i.e., H f = −i f in this case. In particular, comparing real and imaginary
parts we conclude that Im f = H Re f and Re f = −H Im f , so Re f =

−H2 Re f . Thus, for reasonably decaying holomorphic functions on the
upper half-plane, the real and imaginary parts of the boundary value are
connected via the Hilbert transform. In particular, this shows that such
functions are uniquely determined by just the real part of the boundary
value.

The above discussion also strongly suggests the identity H2 = −1.
This can be made more manifest by the following Fourier representation
of the Hilbert transform.

Proposition 4.3. If f ∈ S (R), then

H f

∨

(ξ) = −i sgn (ξ) f

∨

(ξ), a.e. ξ ∈ R. (4.5)

Proof. Since the Hilbert transform is odd, a symmetry argument allows
us to reduce to the case ξ > 0. Then, it suffices to show that − f+iH f

2 has a
vanishing Fourier transform in this half-line. Define the Cauchy integral
operator

Cε f (x) =
1

2πi

∫
R

f (y)
y − (x − iε)

dy. (4.6)

The Plemelj formulae show that these converge pointwise to − f+iH f
2 as
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ε → 0. Since f ∈ S , it is also not hard to show via the dominated conver-
gence theorem that they also converge in L2. Thus, by the L2 boundedness
of the Fourier transform, it suffices to show that each of the Cε f also has
a vanishing Fourier transform on the half-line. Fix ε > 0, we can truncate
and define

Cε,R f (x) =
1

2πi

∫
R

f (y)
y − (x − iε)

χ{|y−x|<R}dy.

By the dominated convergence theorem, we can show that Cε,R f converges
to Cε f in L2 as R → ∞, so it will suffice to show that the Fourier trans-
forms of Cε,R f converge pointiwse to zeros as R → ∞ on the half-line
ξ > 0. From the Fubini theorem, we easily compute

Cε,R f

∨

(ξ) =
1

2πi

∫
R

e−ixξ
∫

R

f (y)
y − (x − iε)

χ{|y−x|<R}dyd̄x

=
1

2πi

∫
R

e−iy′ξ
(∫

R
e−i(x−y′)ξ f (x − y′)d̄x

)
χ{|y′|<R}
−y′ + iε

dy′

=
1

2πi
f

∨

(ξ)
∫

R

e−iyξ

−(y − iε)
χ{|y|<R}dy.

Then, by shifting the contour to the lower semicircle of radius R and then
letting R → ∞, we obtain the result. q

From this proposition and Plancherel’s theorem, we conclude that H
is an isometry:

‖H f ‖2 = ‖ f ‖2, ∀ f ∈ S (R). (4.7)

Because of this, H has a unique dense extension to L2(R), and formula
(4.5) is valid for all f ∈ L2(R).

It is obvious, for the dilation operator δε with ε > 0, by changes of
variables (εy → y), that

(Hδε) f (x) = lim
σ→0

1
π

∫
|y|>σ

f (εx − εy)
y

dy

= lim
σ→0

∫
|y|>εσ

f (εx − y)
y

dy = (δεH) f (x),

Therefore, Hδε = δεH; and it follows obviously that Hδε = −δεH if ε < 0.

These simple considerations of dilation “invariance” and translation
invariance characterize the Hilbert transform.

Proposition 4.4 (Characterization of Hilbert transform). Suppose T is a
bounded linear operator on L2(R) which satisfies the following properties:

(i) T commutes with translations;
(ii) T commutes with positive dilations;

(iii) T anticommutes with the reflections.
Then, T is a constant multiple of the Hilbert transform.
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Proof. Since T commutes with translations and maps L2(R) to itself, ac-
cording to Theorem 3.49, there is a bounded function m(ξ) such that
T f

∨

(ξ) = m(ξ) f

∨

(ξ). Assumptions (ii) and (iii) may be written as Tδε f =

sgn (ε)δεT f for all f ∈ L2(R). By part (vi) in Proposition 3.2, we have

Tδε f

∨

(ξ) =m(ξ)δε f

∨

(ξ) = m(ξ)|ε|−1 f

∨

(ξ/ε),

sgn (ε)δεT f

∨

(ξ) = sgn (ε)|ε|−1T f

∨

(ξ/ε) = sgn (ε)|ε|−1m(ξ/ε) f

∨

(ξ/ε),

which means m(εξ) = sgn (ε)m(ξ), if ε 6= 0. This shows that m(ξ) =

c sgn (ξ), and the proposition is proven. q

§ 4.2 Lp boundedness of Hilbert transform

Kolmogorov’s theorem asserts that the Hilbert transform satisfies a
weak type (1, 1) estimate. He proved this using complex analysis. Here,
we shall give the real analysis proof based on the Calderon-Zygmund de-
composition since it goes over to dimension d > 1. The next theorem
shows that the Hilbert transform, now defined for functions in L2, can be
extended to functions in Lp, 1 ⩽ p < ∞.

Theorem 4.5. The following assertions hold:
(i) (Kolmogorov’s theorem) H is of weak type (1, 1): for f ∈ L1(R) ∩

L2(R)

|{x ∈ R : |H f (x)| > α}| ⩽ C
α
‖ f ‖1.

(ii) (Riesz’s theorem) H is of type (p, p), 1 < p < ∞: for f ∈ Lp(R) ∩
L2(R)

‖H f ‖p ⩽ Cp‖ f ‖p.

Proof. (i) Fix α > 0. From the Calderón-Zygmund decomposition of f
at height α (Theorem 2.17), there exist two functions g and b such that
f = g + b and

(1) ‖g‖1 ⩽ ‖ f ‖1 and ‖g‖∞ ⩽ 2α, thus g ∈ L1 ∩ L2 and so is b.
(2) b = ∑

j
bj, where each bj is supported in a dyadic interval Ij satis-

fying
∫

Ij
bj(x)dx = 0 and ‖bj‖1 ⩽ 4α|Ij|. Furthermore, the intervals Ij and

Ik have disjoint interiors when j 6= k.
(3) ∑

j
|Ij| ⩽ α−1‖ f ‖1.

Let 2Ij be the interval with the same center as Ij and twice the length,
and let Ω = ∪j Ij and Ω∗ = ∪j2Ij. Then, |Ω∗| ⩽ 2|Ω| ⩽ 2α−1‖ f ‖1.

Since H f = Hg + Hb, from parts (iv) and (vi) of Proposition 1.15,
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(4.7) and (1), we have

(H f )∗(α) ⩽ (Hg)∗(α/2) + (Hb)∗(α/2)

⩽(α/2)−2
∫

R
|Hg(x)|2dx + |Ω∗|+ |{x /∈ Ω∗ : |Hb(x)| > α/2}|

⩽ 4
α2

∫
R
|g(x)|2dx + 2α−1‖ f ‖1 + 2α−1

∫
R\Ω∗

|Hb(x)|dx

⩽8
α

∫
R
|g(x)|dx +

2
α
‖ f ‖1 +

2
α

∫
R\Ω∗ ∑

j
|Hbj(x)|dx

⩽8
α
‖ f ‖1 +

2
α
‖ f ‖1 +

2
α ∑

j

∫
R\2Ij

|Hbj(x)|dx.

For x /∈ 2Ij, we have

Hbj(x) =
1
π

p.v.
∫

Ij

bj(y)
x − y

dy =
1
π

∫
Ij

bj(y)
x − y

dy,

since supp bj ⊂ Ij and |x − y| ⩾ |Ij|/2 for y ∈ Ij. Denote the center of Ij
by cj; then, since bj is mean value zero, we have∫

R\2Ij

|Hbj(x)|dx =
∫

R\2Ij

∣∣∣∣ 1
π

∫
Ij

bj(y)
x − y

dy
∣∣∣∣ dx

=
1
π

∫
R\2Ij

∣∣∣∣∫Ij

bj(y)
(

1
x − y

− 1
x − cj

)
dy
∣∣∣∣ dx

⩽ 1
π

∫
Ij

|bj(y)|
(∫

R\2Ij

|y − cj|
|x − y||x − cj|

dx
)

dy

⩽ 1
π

∫
Ij

|bj(y)|
(∫

R\2Ij

|Ij|
|x − cj|2

dx
)

dy.

The last inequality follows from the fact that |y− cj| < |Ij|/2 and |x− y| >
|x − cj|/2 due to |x − cj| > |Ij|. The inner integral is bounded by

2|Ij|
∫ ∞

|Ij|

1
r2 dr = 2|Ij|

1
|Ij|

= 2.

Thus, by (2) and (3),

(H f )∗(α) ⩽
10
α
‖ f ‖1 +

4
απ ∑

j

∫
Ij

|bj(y)|dy ⩽ 10
α
‖ f ‖1 +

4
απ ∑

j
4α|Ij|

⩽10
α
‖ f ‖1 +

16
π

1
α
‖ f ‖1 =

10 + 16/π

α
‖ f ‖1.

(ii) Since H is of weak type (1, 1) and of type (2, 2), by the
Marcinkiewicz interpolation theorem, we have the strong type (p, p) in-
equality for 1 < p < 2. If p > 2, we apply the dual estimates with the
help of (4.3) and the result for p′ < 2 (where 1/p + 1/p′ = 1):

‖H f ‖p = sup
‖g‖p′⩽1

|〈H f , g〉| = sup
‖g‖p′⩽1

|〈 f , Hg〉|
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⩽‖ f ‖p sup
‖g‖p′⩽1

‖Hg‖p′ ⩽ Cp′‖ f ‖p.

This completes the proof. q

Remark 4.6. i) Recall from the proof of the Marcinkiewicz interpolation
theorem that the coefficient is

Cp =


2
p

[
(10 + 16/π)p

p − 1
+

2p
2 − p

]1/p

, 1 < p < 2,

2(p − 1)
p

[
(10 + 16/π)p +

2p
p − 2

]1/p′

, p > 2.

Therefore, the constant Cp tends to infinity as p tends to 1 or ∞. More
precisely,

Cp = O(p1/p′) as p → ∞, and Cp = O((p − 1)−1/p) as p → 1.

The best constant Cp is given by

Cp =


tan

π

2p
, 1 < p ⩽ 2,

cot
π

2p
, 2 < p < ∞,

which is due to [Pic72], see also [Gra14a, Remark 5.1.8].
ii) The strong (p, p) inequality is false if p = 1 or p = ∞, which can

be easily seen from the previous example Hχ[a,b] =
1
π ln |x−a|

|x−b| which is
neither integrable nor bounded. See the following figure.

Hχ[1,2]

The integral

iii) By using the inequalities in Theorem 4.5, we can extend the
Hilbert transform to functions in Lp, 1 ⩽ p < ∞.

If f ∈ L1 and { fn} is a sequence of functions in S that converges
to f in L1, then by the weak (1, 1) inequality, the sequence {H fn} is a
Cauchy sequence in measure: for any ε > 0,

lim
m,n→∞

|{x ∈ R : |(H fn − H fm)(x)| > ε}| = 0.

Therefore, it converges in measure to a measurable function, which we
define as the Hilbert transform of f .

If f ∈ Lp, 1 < p < ∞, and { fn} is a sequence of functions in S that
converges to f in Lp by the strong (p, p) inequality, {H fn} is a Cauchy
sequence in Lp, so it converges to a function in Lp which we call the
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Hilbert transform of f .
In either case, a subsequence of {H fn}, depending on f , converges

a.e. to H f as defined.

§ 4.3 The maximal Hilbert transform and Lp boundedness

Definition 4.7. The truncated Hilbert transform (at height ε) of a func-
tion f ∈ Lp(R), 1 ⩽ p < ∞, is defined by

H(ε) f (x) =
1
π

∫
|y|>ε

f (x − y)
y

dy =
1
π

∫
|x−y|>ε

f (y)
x − y

dy.

Observe that H(ε) f is well-defined for all f ∈ Lp(R), 1 ⩽ p < ∞. This
follows from Hölder’s inequality since 1/x is integrable to the power p′ on
the set |x| > ε.

Clearly, the Hilbert transform of f ∈ S can be given by

H f (x) = lim
ε→0

H(ε) f (x). (4.8)

We now introduce the maximal Hilbert transform.

Definition 4.8. The maximal Hilbert transform is the operator

H(∗) f (x) = sup
ε>0

|H(ε) f (x)| (4.9)

defined for all f ∈ Lp, 1 ⩽ p < ∞.

Since H(ε) f is well-defined, H(∗) f makes sense for f ∈ Lp(R), al-
though for some values of x, H(∗) f (x) may be infinite.

Example 4.9. Using the result of Example 4.1, we obtain that

H(∗)χ[a,b](x) =
1
π

∣∣∣∣ln |x − a|
|x − b|

∣∣∣∣ = ∣∣∣Hχ[a,b](x)
∣∣∣ .

However, in general, H(∗) f (x) 6= |H f (x)| by taking f to be the character-
istic function of the union of two disjointed closed intervals. (We leave
the calculation to the readers.)

The definition of H gives that H(ε) f converges pointwise to H f when-
ever f ∈ D(R). If we had the estimate ‖H(∗) f ‖p ⩽ Cp‖ f ‖p for f ∈ Lp(R),
1 ⩽ p < ∞, then it follows that H(ε) f converges to H f a.e. as ε → 0 for
any f ∈ Lp(R). This limit a.e. provides a way to describe H f for general
f ∈ Lp(R). Note that Theorem 4.5 implies only that H has a (unique)
bounded extension on Lp, but it does not provide a way to describe H f
when f is a general Lp function.
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The next theorem is a simple consequence of these ideas.

Theorem 4.10. There exists a constant C such that for all p ∈ (1, ∞), we
have

‖H(∗) f ‖p ⩽ C max(p, (p − 1)−2)‖ f ‖p. (4.10)

Moreover, for all f ∈ Lp(R), H(ε) f converges to H f a.e. and in Lp.

Proof. Consider the Poisson kernel and conjugate Poisson kernel with
ε > 0

Pε =
1
π

ε

x2 + ε2 , Qε =
1
π

x
x2 + ε2 ,

which satisfies the identity with

− 1
iπ(x + iε)

= Pε(x) + iQε(x).

Since ∫ ∞

0
ei(x+iε)ξdξ = − 1

i(x + iε)
,

and by Fubini’s theorem for f ∈ L2(R)∫ ∞

0
ei(x+iε)ξdξ ∗ f (x) =

∫
R

∫ ∞

0
ei(y+iε)ξdξ f (x − y)dy

=
∫ ∞

0

∫
R

ei(−y′+x+iε)ξ f (y′)dy′dξ

=(2π)1/2
∫ ∞

0
ei(x+iε)ξ f

∨

(ξ)dξ,

it follows that∫ ∞

0
ei(x+iε)ξ f

∨

(ξ)d̄ξ =
1
2
[(Pε ∗ f )(x) + i(Qε ∗ f )(x)]. (4.11)

Because Pε and Qε are even and odd functions of x, respectively, since

Pε ∗ f

∼

= Pε ∗ f

∼

, Qε ∗ f

∼

= −Qε ∗ f

∼

and f

∼∨

= f

∨
∼

, using (4.11) with f and f

∼

, we
obtain

(Pε ∗ f )(x) =
∫

R
f

∨

(ξ)eixξe−ε|ξ| d̄ξ =
(

e−ε|ξ| f

∨)∨
,

(Qε ∗ f )(x) =− i
∫

R
f

∨

(ξ)eixξe−ε|ξ| sgn (ξ)d̄ξ

=− i
(

sgn (ξ)e−ε|ξ| f

∨)∨
.

As a result, we obtain that the Fourier transforms of Pε and Qε (taken in
L2) are given by

Pε

∨

(ξ) = (2π)−1/2e−ε|ξ|, Qε

∨

(ξ) = −i sgn (ξ)(2π)−1/2e−ε|ξ|.

It also follows that
∫

Rn Pε(x)dx = (2π)1/2Pε

∨

(0) = 1 and then {Pε}ε>0 is an
approximate identity.
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Thus,

f ∗ Qε

∨

= −i sgn (ξ)e−ε|ξ| f

∨

= e−ε|ξ|H f

∨

= Pε ∗ H f

∨

,

which implies for all f ∈ L2 ∩ Lp

f ∗ Qε = H f ∗ Pε, ε > 0. (4.12)

Then, we have

H(ε) f = H(ε) f − f ∗ Qε + H f ∗ Pε. (4.13)

Using the identity

H(ε) f (x)− ( f ∗ Qε)(x) =− 1
π

[∫ ∞

−∞

t f (x − t)
t2 + ε2 dt −

∫
|t|>ε

f (x − t)
t

dt
]

=− 1
π

∫
R

f (x − t)ψε(t)dt, (4.14)

where ψε(x) = ε−1ψ(ε−1x) and

ψ(t) =


t

t2 + 1
− 1

t
, if |t| > 1,

t
t2 + 1

, if |t| ⩽ 1.

Note that ψ has an integral of zero since ψ is an odd function and is
integrable over the line. Indeed,∫

R
|ψ(t)|dt =

∫
|t|>1

∣∣∣∣ t
t2 + 1

− 1
t

∣∣∣∣ dt +
∫
|t|⩽1

|t|
t2 + 1

dt

=
∫
|t|>1

1
(t2 + 1)|t|dt +

∫
|t|⩽1

|t|
t2 + 1

dt

=
∫ ∞

1

dt2

(t2 + 1)t2 +
∫ 1

0

dt2

t2 + 1

=
∫ ∞

1

ds
(s + 1)s

+
∫ 1

0

ds
s + 1

=
∫ ∞

1

(
1
s
− 1

s + 1

)
ds +

∫ 1

0

ds
s + 1

=

[
ln
∣∣∣∣ s
s + 1

∣∣∣∣]∞

1
+ [ln |s + 1|]10

=2 ln 2.

The least decreasing radial majorant of ψ is

Ψ(t) = sup
|s|⩾|t|

|ψ(s)| =


1

(t2 + 1)|t| , if |t| > 1,

1
2

, if |t| ⩽ 1,

since the function g(x) = x
x2+1 is increasing for x ∈ [0, 1] and decreasing

for x ∈ (1, ∞). It is easy to see that ‖Ψ‖1 = ln 2 + 1. It follows from
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Theorem 2.10 that

sup
ε>0

|H(ε) f (x)− ( f ∗ Qε)(x)| ⩽ ln 2 + 1
π

M f (x). (4.15)

In view of (4.13) and (4.15), from Theorem 2.10 we obtain for f ∈ L2(R)∩
Lp(R) that

|H(∗) f (x)| = sup
ε>0

|H(ε) f (x)|

⩽ sup
ε>0

|H(ε) f (x)− ( f ∗ Qε)(x)|+ sup
ε>0

|H f ∗ Pε|

⩽ ln 2 + 1
π

M f (x) + M(H f )(x).

It follows immediately from Theorem 2.6 and Theorem 4.5 that H(∗) is Lp

bounded with norm at most C max(p, (p − 1)−2) since L2(R) ∩ Lp(R) is
dense in Lp(R).

Applying Theorem 2.9 to (4.14), we have lim
ε→0

‖H(ε) f − ( f ∗ Qε)‖p = 0

since ψ has an integral of zero. By Theorem 2.9, we also have lim
ε→0

‖H f ∗

Pε − H f ‖p = 0. Thus, from (4.13), it follows that lim
ε→0

‖H(ε) f − H f ‖p = 0,

and therefore, we also have H(ε) f → H f a.e. as ε → 0. q

Exercises

Exercise 4.1. [Zho99, Exercise 1, on p.143] Let f ∈ L2(R), x f ∈ L2(R)

and
∫

R
f (x)dx = 0. To show that H f ∈ L1(R), where H is the Hilbert

transform.

Exercise 4.2. [Gra14a, Exercise 5.1.3]

(i) Calculate the Hilbert transform of the following functions: eix, cos x,
sin x, sin(πx)/πx, where x ∈ R.

(ii) Show that the operators given by convolution with the smooth func-
tion sin t/t and the distribution p.v. cos t/t are bounded on Lp(R)

whenever 1 < p < ∞.

Exercise 4.3. [Gra14a, Exercise 5.1.4] Calculate the distribution function of
the Hilbert transform of the characteristic function of a measurable subset
E of the real line of finite measure, i.e., (HχE)∗(α).





5
Calderón-Zygmund Singular Integral Operators

In this chapter, we consider singular integrals whose kernels have the
same essential properties as the kernel of the Hilbert transform.

§ 5.1 Calderón-Zygmund singular integrals

We can generalize Theorem 4.5 to obtain the following result.

Theorem 5.1 (Calderón-Zygmund Theorem). Let K be a tempered distri-
bution in Rn that coincides with a locally integrable function on Rn \ {0}
and satisfies

|K

∨

(ξ)| ⩽ (2π)−n/2B, (5.1)

and the Hörmander condition∫
|x|⩾2|y|

|K(x − y)− K(x)|dx ⩽ B, y ∈ Rn. (5.2)

Then we have the strong type (p, p) estimate for 1 < p < ∞

‖K ∗ f ‖p ⩽ Cp‖ f ‖p, (5.3)

and the weak type (1, 1) estimate

(K ∗ f )∗(α) ⩽
C
α
‖ f ‖1. (5.4)

We will show that these inequalities are true for f ∈ S , but they
can be extended to arbitrary f ∈ Lp as we did for the Hilbert transform.
The Hörmander condition (5.2) is often deduced from another stronger
condition as follows.

Proposition 5.2. The Hörmander condition (5.2) holds if

|∇K(x)| ⩽ C
|x|n+1 , ∀x 6= 0. (gradient condition) (5.5)

Proof. By the integral mean value theorem and (5.5), we have∫
|x|⩾2|y|

|K(x − y)− K(x)|dx ⩽
∫
|x|⩾2|y|

∫ 1

0
|∇K(x − θy)||y|dθdx
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⩽
∫ 1

0

∫
|x|⩾2|y|

C|y|
|x − θy|n+1 dxdθ ⩽

∫ 1

0

∫
|x|⩾2|y|

C|y|
(|x|/2)n+1 dxdθ

⩽2n+1C|y|ωn−1

∫ ∞

2|y|

1
r2 dr = 2n+1C|y|ωn−1

1
2|y| = 2nCωn−1.

This completes the proof. q

Proof of Theorem 5.1. Let f ∈ S and T f = K ∗ f . From (5.1), it follows that

‖T f ‖2 =‖T f

∨

‖2 = (2π)n/2‖K

∨

f

∨

‖2

⩽(2π)n/2‖K

∨

‖∞‖ f

∨

‖2 ⩽ B‖ f

∨

‖2

=B‖ f ‖2,

(5.6)

by the Plancherel theorem (Theorem 3.16) and part (vii) in Proposition 3.2.

It suffices to prove that T is of weak type (1, 1) since the strong (p, p)
inequality, 1 < p < 2, follows from the interpolation, and for p > 2 it
follows from the duality since the conjugate operator T′ has kernel K′(x) =
K(−x), which also satisfies (5.1) and (5.2). In fact,

〈T f , φ〉 =
∫

Rn
T f (x)φ(x)dx =

∫
Rn

∫
Rn

K(x − y) f (y)dyφ(x)dx

=
∫

Rn

∫
Rn

K(−(y − x))φ(x)dx f (y)dy =
∫

Rn

∫
Rn
(K′ ∗ φ)(y) f (y)dy

=〈 f , T′φ〉.

To show that f is of weak type (1, 1), fix α > 0 and from the Calderón-
Zygmund decomposition of f at height α, then as in Theorem 4.5, we can
write f = g + b satisfying

(i) ‖g‖1 ⩽ ‖ f ‖1 and ‖g‖∞ ⩽ 2nα;
(ii) b = ∑

j
bj, where each bj is supported in a dyadic cube Qj satisfying

∫
Qj

bj(x)dx = 0 and ‖bj‖1 ⩽ 2n+1α|Qj|,

where the cubes Qj and Qk have disjoint interiors when j 6= k;
(iii) ∑

j
|Qj| ⩽ α−1‖ f ‖1.

The argument now proceeds as in Theorem 4.5, and the proof reduces
to showing that ∫

Rn\Q∗
j

|Tbj(x)|dx ⩽ C
∫

Qj

|bj(x)|dx, (5.7)

where Q∗
j is the cube with the same center as Qj and whose sides are

2
√

n times longer. Denote their common center by cj. Inequality (5.7)
follows from the Hörmander condition (5.2). Indeed, since each bj has
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zero average, we have for x /∈ Q∗
j

Tbj(x) =
∫

Qj

K(x − y)bj(y)dy =
∫

Qj

[K(x − y)− K(x − cj)]bj(y)dy,

then,∫
Rn\Q∗

j

|Tbj(x)|dx ⩽
∫

Qj

(∫
Rn\Q∗

j

|K(x − y)− K(x − cj)|dx

)
|bj(y)|dy.

By changing variables x − cj = x′ and y − cj = y′, and the fact that
|x − cj| ⩾ 2|y − cj| for all x /∈ Q∗

j and y ∈ Qj as an obvious geometric
consideration shows, and (5.2), we obtain∫

Rn\Q∗
j

|K(x − y)− K(x − cj)|dx ⩽
∫
|x′|⩾2|y′|

|K(x′ − y′)− K(x′)|dx′ ⩽ B.

Since the remainder proof is (essentially) a repetition of the proof of Theo-
rem 4.5, we omit the details and complete the proof. q

There is still an element that may be considered unsatisfactory in our
formulation because of the following related points:

1) The L2 boundedness of the operator has been assumed via the hy-
pothesis that K

∨

∈ L∞ and not obtained as a consequence of some condition
on the kernel K.

2) The results do not directly treat the “principal-value” singular in-
tegrals, which exist because of the cancellation of positive and negative
values. However, from what we have done, it is now a relatively simple
matter to obtain a theorem that covers the cases of interest.

Definition 5.3. Suppose that K ∈ L1
loc(R

n \ {0}) satisfies the following
conditions:

|K(x)| ⩽ B|x|−n, ∀x 6= 0,∫
|x|⩾2|y|

|K(x − y)− K(x)|dx ⩽ B, ∀y 6= 0,
(5.8)

and ∫
R1<|x|<R2

K(x)dx = 0, ∀0 < R1 < R2 < ∞. (5.9)

Then, K is called the Calderón-Zygmund kernel, where B is a constant
independent of x and y.

For L2 boundedness, we have the following lemma.

Lemma 5.4. Suppose that K satisfies conditions (5.8) and (5.9) of the above
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definition with bound B. Let

Kε(x) =
{

K(x), |x| ⩾ ε,
0, |x| < ε.

Then, we have the estimate

sup
ξ

|Kε

∨

(ξ)| ⩽ (2π)−n/2CB, ε > 0, (5.10)

where C depends only on the dimension n.

Proof. First, we prove inequality (5.10) for the special case ε = 1. Since
K1

∨

(0) = 0, we can assume ξ 6= 0 and have

K1

∨

(ξ) =
∫

Rn
e−ix·ξK1(x)d̄x

=
∫
|x|<2π/|ξ|

e−ix·ξK1(x)d̄x

+
∫

2π/|ξ|⩽|x|
e−ix·ξK1(x)d̄x

=:I1 + I2.

By condition (5.9),
∫

1<|x|<2π/|ξ| K(x)dx = 0 for |ξ| < 2π, which implies∫
|x|<2π/|ξ|

K1(x)dx = 0, ∀ξ 6= 0.

Thus,
∫
|x|<2π/|ξ| e−ix·ξK1(x)d̄x =

∫
|x|<2π/|ξ|[e

−ix·ξ − 1]K1(x)d̄x. Hence, from
the fact |eiθ − 1| ⩽ |θ| and the first condition in (5.8), we obtain

|I1| ⩽
∫
|x|<2π/|ξ|

|x||ξ||K1(x)|d̄x ⩽ B|ξ|
∫
|x|<2π/|ξ|

|x|−n+1 d̄x

=(2π)−n/2ωn−1B|ξ|
∫ 2π/|ξ|

0
dr = (2π)1−n/2ωn−1B.

To estimate I2, choose z = z(ξ) such that e−iξ·z = −1. This choice
can be realized if z = πξ/|ξ|2, with |z| = π/|ξ|. By changing variables
x + z = y, we obtain∫

Rn
e−ix·ξK1(x)d̄x =−

∫
Rn

e−i(x+z)·ξK1(x)d̄x = −
∫

Rn
e−iy·ξK1(y − z)d̄y

=−
∫

Rn
e−ix·ξK1(x − z)d̄x,

which implies
∫

Rn e−ix·ξK1(x)d̄x = 1
2

∫
Rn e−ix·ξ [K1(x)− K1(x − z)]d̄x, then

we have

I2 =

(∫
Rn

−
∫
|x|<2π/|ξ|

)
e−ix·ξK1(x)d̄x

=
1
2

∫
Rn

e−ix·ξ [K1(x)− K1(x − z)]d̄x
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−
∫
|x|<2π/|ξ|

e−ix·ξK1(x)d̄x

=
1
2

lim
R→∞

∫
2π/|ξ|⩽|x|⩽R

e−ix·ξ [K1(x)− K1(x − z)]d̄x

− 1
2

∫
|x|<2π/|ξ|

e−ix·ξK1(x)d̄x

− 1
2

∫
|x|<2π/|ξ|

e−ix·ξK1(x − z)d̄x.

The last two integrals are equal to, in view of integration by parts,

− 1
2

∫
|x|<2π/|ξ|

e−ix·ξK1(x)d̄x − 1
2

∫
|y+z|<2π/|ξ|

e−i(y+z)·ξK1(y)d̄y

=− 1
2

∫
|x|<2π/|ξ|

e−ix·ξK1(x)d̄x +
1
2

∫
|x+z|<2π/|ξ|

e−ix·ξK1(x)d̄x

=− 1
2

∫
|x|<2π/|ξ|⩽|x+z|

e−ix·ξK1(x)d̄x

+
1
2

∫
|x+z|<2π/|ξ|⩽|x|

e−ix·ξK1(x)d̄x.

2π
|ξ|O

−z

For the first integral, we have 2π/|ξ| > |x| ⩾
|x + z| − |z| > 2π/|ξ| − π/|ξ| = π/|ξ|, and
for the second one, 2π/|ξ| ⩽ |x| ⩽ |x + z|+
|z| < 3π/|ξ|. These two integrals are taken
over a region contained in the spherical shell,
π/|ξ| < |x| < 3π/|ξ| (see the figure), and
are bounded by 1

2 Bωn−1 ln 3 since |K1(x)| ⩽
B|x|−n. By |z| = π/|ξ| and condition (5.8),
the first integral of I2 is majorized by

1
2

∫
|x|⩾2π/|ξ|

|K1(x − z)− K1(x)|dx

=
1
2

∫
|x|⩾2|z|

|K1(x − z)− K1(x)|dx ⩽ 1
2

B.

Thus, we have obtained

|K1

∨

(ξ)| ⩽ (2π)−n/2
(

2πωn−1B +
1
2

B +
1
2

Bωn−1 ln 3
)
⩽ Cn(2π)−n/2B,

where C depends only on n. We finish the proof for K1.

To pass to the case of general Kε, we use a simple observation (dilation
argument) whose significance carries over to the whole theory presented
in this chapter.

Let δε be the dilation by the factor ε > 0, i.e., (δε f )(x) = f (εx). Thus,
if T is a convolution operator

T f (x) = φ ∗ f (x) =
∫

Rn
φ(x − y) f (y)dy,



116 5. Calderón-Zygmund Singular Integral Operators

then

δε−1
Tδε f (x) =

∫
Rn

φ(ε−1x − y) f (εy)dy

=ε−n
∫

Rn
φ(ε−1(x − z)) f (z)dz = φε ∗ f ,

where φε(x) = ε−n φ(ε−1x). In our case, if T corresponds to the kernel
K(x), then δε−1

Tδε corresponds to the kernel ε−nK(ε−1x). Note that if K
satisfies the assumptions of the theorem, then ε−nK(ε−1x) also satisfies
these assumptions with the same bounds. (A similar remark holds for the
assumptions of all theorems in this chapter.) Now, with a given K, let
K′ = εnK(εx). Then, K′ satisfies the conditions of the lemma with the same
bound B, and so if we denote

K′
1(x) =

{
K′(x), |x| ⩾ 1,
0, |x| < 1,

then we know that |K′
1

∨

(ξ)| ⩽ (2π)−n/2CB. The Fourier transform of
ε−nK′

1(ε
−1x) is K′

1

∨

(εξ) which is again bounded by (2π)−n/2CB; however,
ε−nK′

1(ε
−1x) = Kε(x); therefore, the lemma is completely proved. q

Theorem 5.5. Suppose that K is a Calderón-Zygmund kernel. For ε > 0
and f ∈ Lp(Rn), 1 < p < ∞, let

T(ε) f (x) =
∫
|y|⩾ε

f (x − y)K(y)dy. (5.11)

Then, the following conclusions hold:
(i) We have

‖T(ε) f ‖p ⩽ Ap‖ f ‖p (5.12)

where Ap is independent of f and ε.
(ii) For any f ∈ Lp(Rn), lim

ε→0
T(ε) f exists in the sense of the Lp norm. That

is, there exists an operator T such that

T f (x) = p.v.
∫

Rn
K(y) f (x − y)dy.

(iii) ‖T f ‖p ⩽ Ap‖ f ‖p for f ∈ Lp(Rn).

Proof. Since K satisfies conditions (5.8) and (5.9), then Kε(x) satisfies the
same conditions with bounds not greater than CB. By Lemma 5.4 and
Theorem 5.1, we have that the Lp boundedness of the operators {Kε}ε>0

is uniform. Thus, (i) holds.
Next, we prove that {T(ε) f1}ε>0 is a Cauchy sequence in Lp provided

f1 ∈ C1
c(R

n). In fact, we have

T(ε) f1(x)− T(η) f1(x) =
∫
|y|⩾ε

K(y) f1(x − y)dy −
∫
|y|⩾η

K(y) f1(x − y)dy
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= sgn (η − ε)
∫

min(ε,η)⩽|y|⩽max(ε,η)
K(y)[ f1(x − y)− f1(x)]dy,

because of the cancellation condition (5.9). For p ∈ (1, ∞), we obtain, by
the mean value theorem with some θ ∈ [0, 1], Minkowski’s inequality and
(5.8), that

‖T(ε) f1 − T(η) f1‖p ⩽
∥∥∥∥∫min(ε,η)⩽|y|⩽max(ε,η)

|K(y)||∇ f1(x − θy)||y|dy
∥∥∥∥

p

⩽
∫

min(ε,η)⩽|y|⩽max(ε,η)
|K(y)|‖∇ f1(x − θy)‖p|y|dy

⩽C
∫

min(ε,η)⩽|y|⩽max(ε,η)
|K(y)||y|dy

⩽CB
∫

min(ε,η)⩽|y|⩽max(ε,η)
|y|−n+1dy

=CBωn−1

∫ max(ε,η)

min(ε,η)
dr

=CBωn−1|η − ε|

which tends to 0 as ε, η → 0. Thus, we obtain T(ε) f1 converges in Lp as
ε → 0 by the completeness of Lp.

Finally, an arbitrary f ∈ Lp can be written as f = f1 + f2 where f1

is of the type described above and ‖ f2‖p is small. We apply (5.12) for f2

to obtain ‖T(ε) f2‖p ⩽ C‖ f2‖p; then, we see that lim
ε→0

T(ε) f exists in the Lp

norm; and that the limiting operator T also satisfies the inequality (5.12).
Thus, we complete the proof. q

Remark 5.6. 1) The linear operator T defined by (ii) of Theorem 5.5 is
called the Calderón-Zygmund singular integral operator. T(ε) is also
called the truncated operator of T.

2) The cancellation property alluded to is contained in condition
(5.9). This hypothesis, together with (5.8), allows us to prove the L2

boundedness and the Lp convergence of the truncated integrals (5.12).
3) We should note that the kernel K(x) = 1

πx , x ∈ R clearly satisfies
the hypotheses of Theorem 5.5. Therefore, the Hilbert transform exists
in the sense that if f ∈ Lp(R), 1 < p < ∞, then

lim
ε→0

1
π

∫
|y|⩾ε

f (x − y)
y

dy

exists in the Lp norm, and the resulting operator is bounded in Lp, as
shown in Theorem 4.5.
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§ 5.2 The method of rotations and singular integral with odd ker-
nels

We first introduce the homogeneous singular integrals.

Definition 5.7. Let Ω ∈ L1(Sn−1) have a mean value of zero. For
0 < ε < N < ∞ and f∈ ⋃

1⩽p<∞
Lp(Rn), we define the truncated singular

integral

T(ε,N)
Ω f (x) =

∫
ε⩽|y|⩽N

f (x − y)
Ω(y/|y|)

|y|n dy. (5.13)

Definition 5.8. Let Ω ∈ L1(Sn−1) have a mean value of zero. We de-
note by TΩ the singular integral operator whose kernel is p.v. Ω(x/|x|)

|x|n ,
i.e., for f ∈ S (Rn)

TΩ f (x) = p.v.
Ω(·/| · |)

| · |n ∗ f (x) = lim
ε→0

N→∞

T(ε,N)
Ω f (x).

The associated maximal singular integral is defined by

T(∗∗)
Ω f = sup

0<N<∞
sup

0<ε<N
|T(ε,N)

Ω f |. (5.14)

We note that if Ω is bounded, there is no need to use the upper trun-
cation in the definition of T(ε,N)

Ω given in (5.13). In this case, the maximal
singular integrals can be defined as

T(∗)
Ω f = sup

ε>0
|T(ε)

Ω f |, (5.15)

where for f ∈ ⋃
1⩽p<∞

Lp(Rn), ε > 0 and x ∈ Rn, T(ε)
Ω f (x) is defined in

terms of absolutely convergent integral

T(ε)
Ω f (x) =

∫
|y|⩾ε

Ω(y/|y|)
|y|n f (x − y)dy.

To examine the relationship between T(∗)
Ω and T(∗∗)

Ω for Ω ∈ L∞(Sn−1),
notice that ∣∣∣T(ε,N)

Ω f (x)
∣∣∣ ⩽ sup

0<N<∞

∣∣∣T(ε,N)
Ω f (x)

∣∣∣ . (5.16)

Then, for f ∈ Lp(Rn), 1 ⩽ p < ∞, we let N → ∞ on the l.h.s. in (5.16),
and we note that the limit exists in view of the absolute convergence of
the integral, which is |T(ε)

Ω f (x)|. Then we take the supremum over ε > 0
to deduce that T(∗)

Ω is pointwise bounded by T(∗∗)
Ω . Since T(ε,N)

Ω = T(ε)
Ω −
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T(N)
Ω , it also follows that T(∗∗)

Ω ⩽ 2T(∗)
Ω . Thus, T(∗)

Ω and T(∗∗)
Ω are pointwise

comparable when Ω lies in L∞(Sn−1).

A simple procedure called the method of rotations plays a crucial role
in the study of operators with odd kernels. This method is based on the
use of directional Hilbert transforms.

Fix a unit vector θ ∈ Rn. For f ∈ S (Rn), let

Hθ f (x) =
1
π

p.v.
∫ ∞

−∞
f (x − tθ)

dt
t

. (5.17)

We call Hθ f the directional Hilbert transform of f in the direction θ. For
functions f ∈ S (Rn), the integral in (5.17) is well-defined since it con-
verges rapidly at infinity, and by subtracting f (x), it also converges near
zero.

Now, we define the directional maximal Hilbert transforms. For a
function f ∈ ⋃

1⩽p<∞
Lp(Rn) and 0 < ε < N < ∞, let

H(ε,N)
θ f (x) =

1
π

∫
ε⩽|t|⩽N

f (x − tθ)
dt
t

,

H(∗∗)
θ f (x) = sup

0<ε<N<∞

∣∣∣H(ε,N)
θ f (x)

∣∣∣ .

We observe that for any fixed 0 < ε < N < ∞ and f ∈ Lp(Rn), H(ε,N)
θ f is

well-defined a.e. Indeed, by Minkowski’s integral inequality, we obtain∥∥∥H(ε,N)
θ f

∥∥∥
Lp(Rn)

⩽ 2
π
‖ f ‖Lp(Rn) ln

N
ε
< ∞,

which implies that H(ε,N)
θ f (x) is finite a.e. Thus, H(∗∗)

θ f is well-defined for
f ∈ ⋃

1⩽p<∞
Lp(Rn).

Note that for f ∈ Lp(Rn), we have by Minkowski’s inequality

‖T(ε,N)
Ω f ‖p ⩽‖ f ‖p

∫
ε⩽|y|⩽N

|Ω(y/|y|)|
|y|n dy

=‖ f ‖p

∫ N

ε

∫
Sn−1

|Ω(y′)|
rn rn−1dσ(y′)dr

=‖ f ‖p‖Ω‖L1(Sn−1) ln
N
ε

,

which implies that (5.13) is finite a.e. and therefore well-defined a.e.

Theorem 5.9. If Ω is odd and integrable over Sn−1, then TΩ and T(∗∗)
Ω are Lp

bounded for all 1 < p < ∞. More precisely, TΩ initially defined on Schwartz
functions has a bounded extension on Lp(Rn) (which is also denoted by TΩ).
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Proof. Let ej be the usual unit vectors in Sn−1. The operator He1 is the
directional Hilbert transform in direction e1. Clearly, He1 is bounded on
Lp(Rn) with norm bounded by that of the Hilbert transform on Lp(R).
Indeed, by Theorem 4.5, we have

‖He1 f ‖p
Lp(Rn)

=

∥∥∥∥ 1
π

lim
ε→0

∫
|t|⩾ε

f (x − te1)
dt
t

∥∥∥∥p

Lp(Rn)

=

∥∥∥∥ 1
π

lim
ε→0

∫
|t|⩾ε

f (x1 − t, x2, · · · , xn)
dt
t

∥∥∥∥p

Lp(Rn)

⩽
∥∥∥‖H‖Lp(R)→Lp(R)‖ f (x1, x′)‖Lp

x1 (R)

∥∥∥p

Lp
x′ (R

n−1)

=‖H‖p
Lp(R)→Lp(R)

‖ f ‖p
Lp(Rn)

.

Next, observe that the following identity is valid for all matrices A ∈
O(n) (the set of all n × n orthogonal matrices):

HAe1 f (x) =
1
π

p.v.
∫ ∞

−∞
f (x − tAe1)

dt
t

=
1
π

p.v.
∫ ∞

−∞
f (A(A−1x − te1))

dt
t

=He1( f ◦ A)(A−1x). (5.18)

This implies that the Lp boundedness of Hθ can be reduced to that of He1 .
We conclude that Hθ is Lp bounded for 1 < p < ∞ with norm bounded
by the norm of the Hilbert transform on Lp(R) for every θ ∈ Sn−1.

Identity (5.18) is also valid for H(ε,N)
θ and H(∗∗)

θ . Consequently, H(∗∗)
θ

is bounded on Lp(Rn) for 1 < p < ∞ with norm at most that of H(∗∗) on
Lp(R) (or twice the norm of H(∗) on Lp(R)).

Next, we realize a general singular integral TΩ with Ω odd as an av-
erage of the directional Hilbert transforms Hθ . We start with f ∈ S (Rn)

and the following identities:∫
ε⩽|y|⩽N

Ω(y/|y|)
|y|n f (x − y)dy =

∫
Sn−1

Ω(θ)
∫ N

ε
f (x − rθ)

dr
r

dσ(θ)

=−
∫

Sn−1
Ω(θ)

∫ N

ε
f (x + rθ)

dr
r

dσ(θ)

=
∫

Sn−1
Ω(θ)

∫ −ε

−N
f (x − rθ)

dr
r

dσ(θ),

where the first one follows by switching to polar coordinates, the second
one is a consequence of the first one and the fact that Ω is odd via the
change variables θ 7→ −θ, and the third one follows from the second one
by changing variables r 7→ −r. Averaging the first and third identities, we
obtain ∫

ε⩽|y|⩽N

Ω(y/|y|)
|y|n f (x − y)dy
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=
1
2

∫
Sn−1

Ω(θ)
∫

ε⩽|r|⩽N

f (x − rθ)

r
drdσ(θ) (5.19)

=
π

2

∫
Sn−1

Ω(θ)H(ε,N)
θ f (x)dσ(θ). (5.20)

Since Ω is odd and thus has a mean value of zero, we can obtain

(5.19) =
1
2

∫
Sn−1

Ω(θ)
∫

ε⩽|r|⩽1

f (x − rθ)− f (x)
r

drdσ(θ)

+
1
2

∫
Sn−1

Ω(θ)
∫

1<|r|⩽N

f (x − rθ)

r
drdσ(θ).

Because f ∈ S , the inner integrals are uniformly bounded, so we can
apply the dominated convergence theorem to obtain

TΩ f (x) =
π

2

∫
Sn−1

Ω(θ)Hθ f (x)dσ(θ). (5.21)

From (5.20), we conclude that

T(∗∗)
Ω f (x) ⩽ π

2

∫
Sn−1

|Ω(θ)|H(∗∗)
θ f (x)dσ(θ). (5.22)

The Lp boundedness of TΩ and T(∗∗)
Ω for Ω odd are then trivial con-

sequences of (5.22) and (5.21) via Minkowski’s integral inequality. q

Remark 5.10. It follows from the proof of Theorem 5.9 and from Theo-
rem 4.5 and Theorem 4.10 that whenever Ω is an odd function on Sn−1,
we have

‖TΩ‖Lp→Lp , ‖T(∗∗)
Ω ‖Lp→Lp ⩽‖Ω‖1

{
O(p1/p′), as p → ∞,

O((p − 1)−1/p), as p → 1.

We now define the n Riesz transforms. For f ∈ Lp(Rn), 1 ⩽ p < ∞,
we set

Rj = TΩj , j = 1, · · · , n. (5.23)

with Ωj(x) = cn
xj
|x| where cn = Γ((n+1)/2)

π(n+1)/2 . We can also define the maximal

Riesz transforms R(∗)
j and the maximal singular integral R(∗∗)

j as T(∗)
Ωj

and

T(∗∗)
Ωj

, respectively. Then, we have:

Corollary 5.11. The Riesz transforms Rj and the maximal Riesz transforms

R(∗)
j are bounded on Lp(Rn) for 1 < p < ∞.

Proof. The assertion follows from the fact that the Riesz transforms have
odd kernels. Since the kernel of Rj decays similar to |x|−n near infinity, it

follows that R(∗)
j f is well-defined for f ∈ Lp(Rn). Since R(∗)

j is pointwise

bounded by R(∗∗)
j , and the conclusion follows from Theorem 5.9. q
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§ 5.3 L2 boundedness of homogeneous singular integrals

In this section, we compute the Fourier transform of

p.v. Ω(x/|x|)/|x|n.

This provides information on whether the operator TΩ is L2 bounded. We
have the following result.

Theorem 5.12. Let Ω ∈ L1(Sn−1) have a mean value of zero. Then, the
Fourier transform of

(2π)n/2 p.v.
Ω(x/|x|)

|x|n
is a finite a.e. and a homogeneous function of degree 0 given by

m(ξ) =
∫

Sn−1

[
ln

1
|ξ · x| −

πi
2

sgn (ξ · x)
]

Ω(x)dσ(x). (5.24)

Proof. Since K(x) = Ω(x/|x|)/|x|n is not integrable, we first consider its
truncated function. Let 0 < ε < η < ∞, and

Kε,η(x) =


Ω(x/|x|)

|x|n , ε ⩽ |x| ⩽ η,

0, otherwise.

Clearly, Kε,η ∈ L1(Rn). If f ∈ L2(Rn), then Kε,η ∗ f

∨

(ξ) =

(2π)n/2Kε,η

∨

(ξ) f

∨

(ξ).
It is convenient to introduce polar coordinates. Let x = rx′, r = |x|,

x′ = x/|x| ∈ Sn−1, and ξ = Rξ ′, R = |ξ|, ξ ′ = ξ/|ξ| ∈ Sn−1. Then we have

(2π)n/2Kε,η

∨

(ξ) =
∫

Rn
e−ix·ξKε,η(x)dx =

∫
ε⩽|x|⩽η

e−ix·ξ Ω(x/|x|)
|x|n dx

=
∫

Sn−1
Ω(x′)

(∫ η

ε
e−iRrx′·ξ ′r−nrn−1dr

)
dσ(x′)

=
∫

Sn−1
Ω(x′)

(∫ η

ε
e−iRrx′·ξ ′ dr

r

)
dσ(x′).

Since ∫
Sn−1

Ω(x′)dσ(x′) = 0,

we can introduce the factor cos(Rr) (which does not depend on x′) in the
integral defining Kε,η

∨

(ξ). We shall also need the auxiliary integral

Iε,η(ξ, x′) =
∫ η

ε
[e−iRrx′·ξ ′ − cos(Rr)]

dr
r

, R > 0.
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Thus, it follows

(2π)n/2Kε,η

∨

(ξ) =
∫

Sn−1
Iε,η(ξ, x′)Ω(x′)dσ(x′).

Now, we first consider Iε,η(ξ, x′). For its imaginary part, by changing
the variable Rr(x′ · ξ ′) = t, we have

Im Iε,η(ξ, x′) =−
∫ η

ε

sin(Rr(x′ · ξ ′))

r
dr

=− sgn (x′ · ξ ′)
∫ Rη|x′·ξ ′|

Rε|x′·ξ ′|

sin t
t

dt

is uniformly bounded (i.e., | Im Iε,η(ξ, x′)| ⩽ 4) and converges to

− sgn (x′ · ξ ′)
∫ ∞

0

sin t
t

dt = −π

2
sgn (x′ · ξ ′),

as ε → 0 and η → ∞.
For its real part, since cos r is an even function, we have

Re Iε,η(ξ, x′) =
∫ η

ε
[cos(Rr|x′ · ξ ′|)− cos(Rr)]

dr
r

.

If x′ · ξ ′ = ±1, then Re Iε,η(ξ, x′) = 0. Next, we assume x′ · ξ ′ 6= ±1. By
the fundamental theorem of calculus, we can write∫ η

ε

cos(λr)− cos(µr)
r

dr = −
∫ η

ε

∫ λ

µ
sin(tr)dtdr = −

∫ λ

µ

∫ η

ε
sin(tr)drdt

=
∫ λ

µ

∫ η

ε

∂r cos(tr)
t

drdt =
∫ λ

µ

cos(tη)− cos(tε)
t

dt

=
∫ λη

µη

cos s
s

ds −
∫ λ

µ

cos(tε)
t

dt =
sin s

s

∣∣∣λη

µη
+
∫ λη

µη

sin s
s2 ds −

∫ λ

µ

cos(tε)
t

dt

→0 −
∫ λ

µ

1
t

dt = − ln(λ/µ) = ln(µ/λ), as η → ∞, ε → 0,

by the dominated convergence theorem with∫ λ

µ

∣∣∣∣cos(tε)
t

∣∣∣∣ dt ⩽
∫ λ

µ

1
t

dt = ln(λ/µ).

Take λ = R|x′ · ξ ′|, and µ = R. Therefore,

lim
ε→0

η→∞

Re (Iε,η(ξ, x′)) =
∫ ∞

0
[cos Rr(x′ · ξ ′)− cos Rr]

dr
r

= ln(1/|x′ · ξ ′|).

Next, we need to show that Kε,η

∨

(ξ) is finite for a.e. ξ ∈ Rn. Now
we assume 0 < ε < 1 < η. For the case x′ · ξ ′ 6= ±1, we obtain from the
previous identity∣∣Re Iε,η(ξ, x′)

∣∣ = ∣∣∣∣∫ Rη

Rη|ξ ′·x′|

cos s
s

ds −
∫ R

R|ξ ′·x′|

cos εs
s

ds
∣∣∣∣

⩽
∫ Rη

Rη|ξ ′·x′|

1
s

ds +
∫ R

R|ξ ′·x′|

1
s

ds
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=2 ln(1/|ξ ′ · x′|).

By the properties of Iε,η just proved, we have

(2π)n/2|Kε,η

∨

(ξ)| ⩽
∫

Sn−1

[
4 + 2 ln(1/|ξ ′ · x′|)

]
|Ω(x′)|dσ(x′) (5.25)

⩽4‖Ω‖L1(Sn−1) + 2
∫

Sn−1
ln(1/|ξ ′ · x′|)|Ω(x′)|dσ(x′).

For n = 1, we have S0 = {−1, 1} and then
∫

S0 ln(1/|ξ ′ ·
x′|)|Ω(x′)|dσ(x′) = 0. For n ⩾ 2, if we can show∫

Sn−1

∫
Sn−1

ln(1/|ξ ′ · x′|)|Ω(x′)|dσ(x′)dσ(ξ ′) < ∞,

then, Kε,η

∨

(ξ) is finite a.e. on Sn−1. We can select an orthogonal matrix A
such that Ae1 = x′, and thus, by changing the variables,∫

Sn−1

∫
Sn−1

ln(1/|ξ ′ · x′|)|Ω(x′)|dσ(x′)dσ(ξ ′)

=
∫

Sn−1

∫
Sn−1

ln(1/|ξ ′ · Ae1|)dσ(ξ ′)|Ω(x′)|dσ(x′)

=
∫

Sn−1

∫
Sn−1

ln(1/|e1 · A−1ξ ′|)dσ(ξ ′)|Ω(x′)|dσ(x′)

A−1ξ ′=y
====‖Ω‖L1(Sn−1)

∫
Sn−1

ln(1/|y1|)dσ(y).

If for ϕj ∈ [0, π] (j = 1, · · · , n − 2) and ϕn−1 ∈ [0, 2π], let

y1 = cos ϕ1, yk = cos ϕk

k−1

∏
j=1

sin ϕj, (k = 2, · · · , n − 1), yn =
n−1

∏
j=1

sin ϕj,

then the volume element dσSn−1(y) of the (n − 1)-sphere is given by

dσSn−1(y) =
n−2

∏
j=1

sinn−1−j ϕj dϕ1 dϕ2 · · · dϕn−1

= sinn−3(ϕ1) dy1

n−2

∏
j=2

sinn−1−j ϕj dϕ2 · · · dϕn−1

=(1 − y2
1)

(n−3)/2dy1dσSn−2(ȳ),

due to dy1 = sin(ϕ1)dϕ1 and sin ϕ1 =
√

1 − y2
1. Then, we obtain with the

notation ȳ = (y2, y3, ..., yn),∫
Sn−1

ln(1/|y1|)dσ(y)

=
∫ 1

−1
ln(1/|y1|)

∫
Sn−2

(1 − y2
1)

(n−3)/2dσ(ȳ)dy1

=ωn−2

∫ 1

−1
ln(1/|y1|)(1 − y2

1)
(n−3)/2dy1

=2ωn−2

∫ 1

0
ln(1/|y1|)(1 − y2

1)
(n−3)/2dy1
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=2ωn−2

∫ π/2

0
ln(1/ cos θ)(sin θ)n−2dθ (let y1 = cos θ)

=2ωn−2 I2.

For n ⩾ 3, by integration by parts, we have

I2 ⩽
∫ π/2

0
ln(1/ cos θ) sin θdθ =

∫ π/2

0
sin θdθ = 1.

For n = 2, we have by changing variables

I2 =
∫ π/2

0
ln(1/ cos θ)dθ = −

∫ π/2

0
ln(cos θ)dθ

=−
∫ π/2

0
ln sin

(π

2
− θ
)

dθ = −
∫ π/2

0
ln(sin θ)dθ

=−
∫ π/2

0
ln
(

2 sin
θ

2
cos

θ

2

)
dθ

=−
∫ π/2

0

(
ln 2 + ln sin

θ

2
+ ln cos

θ

2

)
dθ

=− π

2
ln 2 − 2

∫ π/4

0
ln sin xdx − 2

∫ π/4

0
ln cos xdx

=− π

2
ln 2 − 2

∫ π/4

0
ln sin xdx − 2

∫ π/2

π/4
ln sin xdx

=− π

2
ln 2 + 2I2,

which yields I2 = π
2 ln 2.

In view of the limit of Iε,η(ξ, x′) as ε → 0, η → ∞ just proved, we
obtain

(2π)n/2 lim
ε→0

η→∞

Kε,η

∨

(ξ) = m(ξ), a.e.

By the Plancherel theorem, if f ∈ L2(Rn), Kε,η ∗ f converges in the
L2 norm as ε → 0 and η → ∞, and the Fourier transform of this limit is
m(ξ) f

∨

(ξ). From the formula of the multiplier m(ξ), it is homogeneous of
degree 0 in view of the mean zero property of Ω. Thus, we obtain the
conclusion. q

Remark 5.13. 1) In the theorem, the condition that Ω is mean value zero
on Sn−1 is necessary and cannot be neglected. Since in the estimate∫

Rn

Ω(y/|y|)
|y|n f (x − y)dy =

[∫
|y|⩽1

+
∫
|y|>1

]
Ω(y/|y|)

|y|n f (x − y)dy,

the main difficulty lies in the first integral. For instance, if we assume
Ω(x) ≡ 1 ∈ L1(Sn−1), f (x) = χ|x|⩽1(x) ∈ L2(Rn), then this integral is
divergent for |x| ⩽ 1/2 since∫

Rn

Ω(y/|y|)
|y|n f (x − y)dy =

∫
|x−y|⩽1

1
|y|n dy ⩾

∫
|y|⩽1/2

1
|y|n dy = ∞.

2) The proof holds under very general conditions on Ω. Write
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Ω = Ωe + Ωo where Ωe is the even part of Ω, Ωe(x) = Ωe(−x), and
Ωo(x) is the odd part, Ωo(−x) = −Ωo(x). Then, because of the uni-
form boundedness of the sine integral, i.e., Im Iε,η(ξ, x′), we required
only

∫
Sn−1 |Ωo(x′)|dσ(x′) < ∞ for the odd part; and for the even part, the

proof requires the uniform boundedness of∫
Sn−1

|Ωe(x′)| ln(1/|ξ ′ · x′|)dσ(x′).

In addition, ln(1/|ξ ′ · x′|) is not bounded but any power (⩾ 1) of it is
integrable. We immediately obtain the following corollary and leave the
proof to readers.

Corollary 5.14. Given a function Ω = Ωe + Ωo with mean value zero on
Sn−1, suppose that the odd part Ωo ∈ L1(Sn−1) and the even part Ωe ∈
Lq(Sn−1) for some q > 1. Then, the Fourier transform of p.v. Ω(x′)/|x|n is
bounded.

If Ω ∈ L1(Sn−1) is odd, i.e., Ω(−x) = −Ω(x) for all x ∈ Sn−1, then∫
Sn−1

Ω(x) ln(1/|ξ · x|)dσ(x) = 0, ∀ξ ∈ Sn−1.

Thus, m ∈ L∞(Rn) in view of Theorem 5.12. We have the following result
by Theorem 3.49.

Corollary 5.15. Given an odd function Ω ∈ L1(Sn−1), then the singular

integral TΩ f (x) := p.v.
∫

Rn

Ω(y/|y|)
|y|n f (x − y)dy is always L2 bounded.

§ 5.4 Singular integral operators with Dini-type condition

In this section, we shall consider those operators that commute not
only with translations but also with dilations. Among these we shall
study the class of singular integral operators, falling under the scope of
Theorem 5.5.

If T corresponds to the kernel K(x), then as we have already pointed
out, δε−1

Tδε corresponds to the kernel ε−nK(ε−1x). Therefore, if δε−1
Tδε =

T, we are back to the requirement K(x) = ε−nK(ε−1x), i.e., K(εx) =

ε−nK(x), ε > 0, that is, K is homogeneous of degree −n. Put another
way

K(x) =
Ω(x)
|x|n , (5.26)

with Ω homogeneous of degree 0, i.e., Ω(εx) = Ω(x), ε > 0. This condition
on Ω is equivalent to the fact that it is constant on rays emanating from
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the origin; in particular, Ω is completely determined by its restriction to
the unit sphere Sn−1.

Let us try to reinterpret the conditions of Theorem 5.5 in terms of Ω.

1) By (5.8), Ω(x) must be bounded and consequently integrable on
Sn−1; and another condition

∫
|x|⩾2|y|

∣∣∣Ω(x−y)
|x−y|n − Ω(x)

|x|n

∣∣∣ dx ⩽ C which is not
easily restated precisely in terms of Ω. However, what is evident is that
it requires a certain continuity of Ω. Here we shall content ourselves in
treating the case where Ω satisfies the following “Dini-type” condition
suggested by (5.8):

if w(η) := sup
|x−x′ |⩽η

|x|=|x′ |=1

|Ω(x)− Ω(x′)|, then
∫ 1

0

w(η)

η
dη < ∞. (5.27)

Of course, any Ω that is of class C1 or even merely Lipschitz continu-
ous satisfies the condition (5.27).

2) The cancellation condition (5.9) is then the same as the mean value
zero of Ω on Sn−1.

Theorem 5.16. Let Ω ∈ L∞(Sn−1) be homogeneous of degree 0 with mean
value zero on Sn−1, and suppose that Ω satisfies the smoothness property
(5.27). For 1 < p < ∞ and f ∈ Lp(Rn), let

T(ε) f (x) =
∫
|y|⩾ε

Ω(y)
|y|n f (x − y)dy. (5.28)

(i) Then, there exists a bound Ap (independent of f and ε) such that

‖T(ε) f ‖p ⩽ Ap‖ f ‖p.

(ii) lim
ε→0

T(ε) f = T f exists in Lp, and

‖T f ‖p ⩽ Ap‖ f ‖p.

(iii) If f ∈ L2(Rn), then the Fourier multiplier m corresponding to T is a
homogeneous function of degree 0 expressed in (5.24).

Proof. Conclusions (i) and (ii) are immediately consequences of Theorem 5.5,
once we have shown that any K(x) of the form Ω(x)

|x|n satisfies∫
|x|⩾2|y|

|K(x − y)− K(x)|dx ⩽ B, (5.29)

if Ω is as in condition (5.27). Indeed,

K(x − y)− K(x) =
Ω(x − y)− Ω(x)

|x − y|n + Ω(x)
[

1
|x − y|n − 1

|x|n

]
.
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The second group of terms is bounded since Ω is bounded and∫
|x|⩾2|y|

∣∣∣∣ 1
|x − y|n − 1

|x|n

∣∣∣∣ dx =
∫
|x|⩾2|y|

∣∣∣∣ |x|n − |x − y|n
|x − y|n|x|n

∣∣∣∣ dx

=
∫
|x|⩾2|y|

||x| − |x − y|| ∑n−1
j=0 |x|n−1−j|x − y|j

|x − y|n|x|n dx

⩽
∫
|x|⩾2|y|

|y|
n−1

∑
j=0

|x|−j−1|x − y|j−ndx

⩽
∫
|x|⩾2|y|

|y|
n−1

∑
j=0

|x|−j−1(|x|/2)j−ndx (∵ |x − y| ⩾ |x| − |y| ⩾ |x|/2)

=
∫
|x|⩾2|y|

|y|
n−1

∑
j=0

2n−j|x|−n−1dx = 2(2n − 1)|y|
∫
|x|⩾2|y|

|x|−n−1dx

=2(2n − 1)|y|ωn−1
1

2|y| = (2n − 1)ωn−1.

Now, we estimate the first group of terms. Let θ be the angle with
sides x and x− y whose opposite side is y in the triangle formed by vectors
x, y and x − y.

Since |y| ⩽ |x|/2 ⩽ |x|, we have θ ⩽ π
2 and so cos θ

2 ⩾ cos π
4 = 1/

√
2.

1

O

x

x− y

y

P

Qθ

Moreover, by the sine theorem, we have sin θ ⩽
|y|
|x| . On the other hand, in the triangle formed by
−→
OP := x

|x| ,
−→
OQ := x−y

|x−y| and
−→
PQ := x−y

|x−y| −
x
|x| , it is

clear that θ = ∠POQ and sin θ

|−→PQ|
=

sin π−θ
2

|−→OP|
by the sine

theorem. Then, we have∣∣∣∣ x − y
|x − y| −

x
|x|

∣∣∣∣ =|−→PQ| = sin θ

sin(π
2 − θ

2 )
=

sin θ

cos θ
2

⩽
√

2
|y|
|x| ⩽ 2

|y|
|x| .

Thus, the integral corresponding to the first group of terms is dominated
by

2n
∫
|x|⩾2|y|

w
(

2
|y|
|x|

)
dx
|x|n = 2nωn−1

∫ ∞

2|y|
w(2|y|/r)

dr
r

= 2nωn−1

∫ 1

0

w(η)dη

η
< ∞

in view of changes of variables η = 2|y|/r and the Dini-type condition
(5.27).

Part (iii) is the same as the proof of Theorem 5.12 with minor mod-
ifications. Indeed, we only need to simplify the proof of (5.25) due to
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Ω ∈ L∞(Sn−1). We can control (5.25) by

4ωn−1‖Ω‖L∞(Sn−1) + 2‖Ω‖L∞(Sn−1)

∫
Sn−1

ln(1/|ξ ′ · x′|)dσ(x′),

where the integral in the last term is equal to∫
Sn−1

ln(1/|y1|)dσ(y) ⩽ Cn

which have been estimated in Theorem 5.12. Thus, we have completed the
proof. q

Theorem 5.16 guarantees the existence of the singular integral

lim
ε→0

∫
|y|⩾ε

Ω(y)
|y|n f (x − y)dy (5.30)

in the sense of convergence in the Lp norm. The natural counterpart of this
result is that of a.e. convergence. For the questions involving a.e. conver-
gence, it is best to also consider the corresponding maximal function.

Theorem 5.17. Suppose that Ω satisfies the conditions of Theorem 5.16. For
f ∈ Lp(Rn), 1 ⩽ p < ∞, consider

T(ε) f (x) =
∫
|y|⩾ε

Ω(y)
|y|n f (x − y)dy, ε > 0.

(The integral converges absolutely for every x.)
(i) lim

ε→0
T(ε) f (x) exists for almost every x.

(ii) Let T(∗) f (x) = sup
ε>0

|T(ε) f (x)|. If f ∈ L1(Rn), then the mapping T(∗)

is of weak type (1, 1).
(iii) If 1 < p < ∞, then ‖T(∗) f ‖p ⩽ Ap‖ f ‖p.

Proof. The argument for the theorem presents itself in three stages.

The first is the proof of inequality (iii), which can be obtained as a rel-
atively easy consequence of the existence of lim

ε→0
T(ε) in Lp, already proven

in Theorem 5.16, and certain general properties of “approximations to the
identity” as follows.

Let T f (x) = lim
ε→0

T(ε) f (x), where the limit is taken in the Lp norm.

Its existence is guaranteed by Theorem 5.16. We shall prove this part by
showing the following Cotlar inequality for f ∈ Lp(Rn) with p ∈ (1, ∞)

T(∗) f (x) ⩽ M(T f )(x) + CM f (x).

Let φ ∈ D(Rn) be a smooth nonnegative decreasing radial function,
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which is supported in the unit ball with integral one. Consider

Kε(x) =

{
Ω(x)
|x|n , |x| ⩾ ε,

0, |x| < ε.

This leads us to another function Φ defined by

Φ = φ ∗ K − K1, (5.31)

where φ ∗ K = lim
ε→0

φ ∗ Kε = lim
ε→0

∫
|x−y|⩾ε K(x − y)φ(y)dy.

We shall need to prove that the smallest decreasing radial majorant Ψ
of Φ is integrable (so as to apply Theorem 2.10).

If |x| < 1, then

|Φ| =|φ ∗ K| =
∣∣∣∣∫

Rn
K(y)φ(x − y)dy

∣∣∣∣ = ∣∣∣∣∫
Rn

K(y)(φ(x − y)− φ(x))dy
∣∣∣∣

⩽
∫

Rn
|K(y)||φ(x − y)− φ(x)|dy ⩽ C

∫
Rn

|φ(x − y)− φ(x)|
|y|n dy ⩽ C,

since the mean value zero of Ω on Sn−1 implies
∫

Rn K(y)dy = 0 and by the
smoothness of φ. If 1 ⩽ |x| ⩽ 2, then Φ = φ ∗ K − K is again bounded by
the same reason for φ ∗ K and the boundedness of K in this case. If |x| ⩾ 2,
we have

Φ(x) =
∫

Rn
K(x − y)φ(y)dy − K(x) =

∫
|y|⩽1

[K(x − y)− K(x)]φ(y)dy.

Similar to (5.29), we can obtain the bound for |y| ⩽ 1 and thus |x| ⩾ 2|y|,

|K(x − y)− K(x)| ⩽2nw
(

2|y|
|x|

)
|x|−n + 2(2n − 1)‖Ω‖L∞(Sn−1)|y||x|−(n+1)

⩽2nw
(

2
|x|

)
|x|−n + 2(2n − 1)‖Ω‖L∞(Sn−1)|x|−(n+1),

as in the proof of Theorem 5.16 since w is increasing. Thus, due to ‖φ‖1 =

1, we obtain for |x| ⩾ 2

|Φ(x)| ⩽2nw
(

2
|x|

)
|x|−n + 2(2n − 1)‖Ω‖L∞(Sn−1)|x|−(n+1).

Therefore, we obtain |Ψ| ⩽ C for |x| < 2, and

|Ψ(x)| ⩽2nw
(

2
|x|

)
|x|−n + 2(2n − 1)‖Ω‖L∞(Sn−1)|x|−(n+1),

for |x| ⩾ 2, and then we can prove that Ψ ∈ L1(Rn) with the help of the
Dini-type condition.

From (5.31), it follows, because the singular integral operator T : φ →
φ ∗ K commutes with dilations, that

φε ∗ K − Kε = Φε, with Φε(x) = ε−nΦ(x/ε). (5.32)
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Now, we claim that for any f ∈ Lp(Rn), 1 < p < ∞,

(φε ∗ K) ∗ f (x) = T f ∗ φε(x), (5.33)

where the identity holds for every x. In fact, we notice first that

(φε ∗ Kδ) ∗ f (x) = Tδ f ∗ φε(x), ∀δ > 0 (5.34)

because both sides of (5.34) are equal for each x to the absolutely con-
vergent double integral

∫
Rn

∫
|y|⩾δ K(y) f (z − y)φε(x − z)dydz. Moreover,

∇φε ∈ Lp′(Rn), with 1/p + 1/p′ = 1, so φε ∗ Kδ → φε ∗ K in Lp′ since

‖φε ∗ (Kδ − K)‖p′ =

∥∥∥∥∫|y|<δ

Ω(y)
|y|n φε(x − y)dy

∥∥∥∥
p′

=

∥∥∥∥∫|y|<δ

Ω(y)
|y|n (φε(x − y)− φε(x))dy

∥∥∥∥
p′

⩽
∥∥∥∥∫|y|<δ

Ω(y)
|y|n−1 |∇φε(x − θy)|dy

∥∥∥∥
p′

⩽δωn−1‖Ω‖L∞(Sn−1)‖∇φε‖p′ → 0, as δ → 0,

by Minkowski’s inequality. We also have Tδ f → T f in Lp, as δ → 0, by
Theorem 5.16. It follows (5.33), and so by (5.32)

T(ε) f = Kε ∗ f = φε ∗ K ∗ f − Φε ∗ f = T f ∗ φε − f ∗ Φε.

Passing to the supremum over ε and applying Theorems 2.10, 2.6 and
5.16, we obtain the Cotlar inequality and

‖T(∗) f ‖p ⩽‖ sup
ε>0

|T f ∗ φε|‖p + ‖ sup
ε>0

| f ∗ Φε|‖p

⩽C‖M(T f )‖p + C‖M f ‖p ⩽ C‖T f ‖p + C‖ f ‖p ⩽ C‖ f ‖p.

Thus, we have proved (iii).

The second and most difficult stage of the proof is conclusion (ii).
Here, the argument proceeds in the main as in the proof of the weak type
(1, 1) result for singular integrals in Theorem 5.1. We review it with delib-
erate brevity to avoid a repetition of details already examined.

For a given α > 0, we split f = g + b as in the proof of Theorem 5.1.
It is easy to check the part for g with the help of the Cotlar inequality.
Therefore, we only consider the part for b.

Figure 5.1: Observation for ii)
and iii)

We also consider for each cube Qj
its mate Q∗

j , which has the same center
cj but whose side length is expanded
2
√

n times. The following geomet-
ric remarks concerning these cubes are
nearly obvious.

i) If x /∈ Q∗
j , then |x− cj| ⩾ 2|y− cj|
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for all y ∈ Qj, as an obvious geometric
consideration shows.

ii) Suppose x ∈ Rn \ ∪jQ∗
j and as-

sume that for some y ∈ Qj, |x − y| = ε.
Then, we have (

√
n − 1

2 )`(Q) ⩽ ε ⩽√
n

2 (2
√

n + 1)`(Qj) = (n +
√

n
2 )`(Qj). It follows that sup

z∈Qj

|x − z| ⩽ ε +

√
n`(Qj) ⩽ ε +

√
n ε√

n− 1
2
. If we take γn = 1 +

√
n√

n− 1
2

and r = γnε, then the

closed ball centered at x of radius γnε contains Qj, i.e., B(x, r) ⊃ Qj.

iii) Under the same hypotheses as ii), we have inf
z∈Qj

|x − z| ⩾ (
√

n −

1
2 )`(Q) ⩾ γ′

nε by taking γ′
n =

√
n− 1

2

n+
√

n
2

. Thus, we obtain |x − y| ⩾ γ′
nε for

every y ∈ Qj.

With these observations and following the development in the proof
of Theorem 5.1, we shall prove for x ∈ Rn \ ∪jQ∗

j ,

sup
ε>0

|T(ε)b(x)| ⩽∑
j

∫
Qj

|K(x − y)− K(x − cj)||bj(y)|dy

+ C sup
r>0

1
m(B(x, r))

∫
B(x,r)

|b(y)|dy, (5.35)

with K(x) = Ω(x)
|x|n .

The addition of the maximal function to the r.h.s of (5.35) is the main
new element of the proof.

To prove (5.35), fix x ∈ Rn \ ∪jQ∗
j , and ε > 0. Now the cubes Qj fall

into three classes:

1) for all y ∈ Qj, |x − y| < ε;

2) for all y ∈ Qj, |x − y| > ε;

3) there is a y ∈ Qj such that |x − y| = ε.

We now examine

T(ε)b(x) = ∑
j

∫
Qj

Kε(x − y)bj(y)dy. (5.36)

Case 1). Kε(x − y) = 0 if |x − y| < ε, and thus, the integral over these
cubes Qj in (5.36) is zero.

Case 2). Kε(x − y) = K(x − y), if |x − y| > ε, and therefore the integral
over Qj equals∫

Qj

K(x − y)bj(y)dy =
∫

Qj

[K(x − y)− K(x − cj)]bj(y)dy.
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This term is majorized in absolute value by∫
Qj

|K(x − y)− K(x − cj)||bj(y)|dy,

which expression appears in the r.h.s. of (5.35).

Case 3). We write simply∣∣∣∣∫Qj

Kε(x − y)bj(y)dy
∣∣∣∣ ⩽ ∫Qj

|Kε(x − y)||bj(y)|dy

=
∫

Qj∩B(x,r)
|Kε(x − y)||bj(y)|dy,

by ii), with r = γnε. However, by iii) and because Ω(x) is bounded, we
have

|Kε(x − y)| =
∣∣∣∣Ω(x − y)
|x − y|n

∣∣∣∣ ⩽ C
(γ′

nε)n .

Thus, in this case,∣∣∣∣∫Qj

Kε(x − y)bj(y)dy
∣∣∣∣ ⩽ C

|B(x, r)|

∫
Qj∩B(x,r)

|bj(y)|dy.

If we sum over all cubes Qj, we finally obtain, for r = γnε,

|T(ε)b(x)| ⩽∑
j

∫
Qj

|K(x − y)− K(x − cj)||bj(y)|dy

+
C

|B(x, r)|

∫
B(x,r)

|b(y)|dy.

Taking the supremum over ε gives (5.35). This inequality can be written in
the form

T(∗)b(x) ⩽ Σ(x) + CMb(x), x ∈ Rn \ ∪jQ∗
j ,

and so

|{x ∈ Rn \ ∪jQ∗
j : T(∗)b(x) > α/2}|

⩽|{x ∈ Rn \ ∪jQ∗
j : Σ(x) > α/4}|+ |{x ∈ Rn \ ∪jQ∗

j : CMb(x) > α/4}|.

The first term in the r.h.s. is similar to (5.7), and we can obtain∫
Rn\∪jQ∗

j

Σ(x)dx ⩽ C‖b‖1

which implies |{x ∈ Rn \ ∪jQ∗
j : Σ(x) > α/4}| ⩽ 4C

α ‖b‖1 by Chebyshev’s
inequality. For the second one, by Theorem 2.6, i.e., the weak type estimate
for the maximal function M, we obtain |{x ∈ Rn \ ∪jQ∗

j : CMb(x) >

α/4}| ⩽ C
α ‖b‖1. The weak type (1, 1) property of T(∗) then follows as in

the proof of the same property for T, in Theorem 5.1 for more details.

The final stage of the proof, i.e., (i), the passage from the inequalities of
T(∗) to the existence of the a.e. limits, follows the familiar pattern described
in the proof of the Lebesgue differential theorem (i.e., Theorem 2.12).
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More precisely, for any f ∈ Lp(Rn), 1 ⩽ p < ∞, let

Λ f (x) =
∣∣∣∣lim sup

ε→0
T(ε) f (x)− lim inf

ε→0
T(ε) f (x)

∣∣∣∣ .

Clearly, Λ f (x) ⩽ 2T(∗) f (x). Now for any δ > 0, write f = f1 + f2 where
f1 ∈ C1

c , and ‖ f2‖p ⩽ δ.

We have already proved in the proof of Theorem 5.5 that T(ε) f1 con-
verges uniformly as ε → 0, so Λ f1(x) ≡ 0. By (5.12), we have ‖Λ f2‖p ⩽
2Ap‖ f2‖p ⩽ 2Apδ if 1 < p < ∞. This shows that Λ f2 = 0 a.e.; thus, by
Λ f (x) ⩽ Λ f1(x) + Λ f2(x), we have Λ f = 0 almost everywhere. Therefore,
lim
ε→0

T(ε) f exists a.e. if 1 < p < ∞.

In the case p = 1, we obtain similarly

|{x : Λ f (x) > α}| ⩽ A
α
‖ f2‖1 ⩽

Aδ

α
,

and so again Λ f (x) = 0 a.e., which implies that lim
ε→0

T(ε) f (x) exists a.e. q

§ 5.5 Vector-valued analogues

It is interesting to note that the results of this chapter, where our func-
tions were assumed to take real or complex values, can be extended to the
case of functions taking their values in a Hilbert space. We present this
generalization because it can be put to good use in several problems. An
indication of this usefulness is given in the Littlewood-Paley theory.

We begin by quickly reviewing certain aspects of integration theory in
this context.

Let H be a separable Hilbert space. Then, a function f (x), from Rn to
H, is measurable if the scalar valued functions ( f (x), φ) are measurable,
where (·, ·) denotes the inner product of H, and φ denotes an arbitrary
vector of H.

If f (x) is such a measurable function, then | f (x)| is also measurable
(as a function with nonnegative values), where | · | denotes the norm of H.

Thus, Lp(Rn,H) is defined as the equivalent classes of measurable
functions f (x) from Rn to H, with the property that the norm ‖ f ‖p =

(
∫

Rn | f (x)|pdx)1/p is finite, when p < ∞; when p = ∞ there is a similar
definition, except ‖ f ‖∞ = ess sup | f (x)|.

Next, let H1 and H2 be two separable Hilbert spaces, and let L(H1,H2)

denote the Banach space of bounded linear operators from H1 to H2, with
the usual operator norm.

We say that a function f (x), from Rn to L(H1,H2), is measurable if
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f (x)φ is an H2-valued measurable function for every φ ∈ H1. In this case,
| f (x)| is also measurable, and we can define the space Lp(Rn,L(H1,H2)),
as before; here again | · | denotes the norm, this time in L(H1,H2).

The usual facts about convolution hold in this setting. For example,
let f ∈ Lp(Rn,H1) and K ∈ Lq(Rn,L(H1,H2)), then g(x) =

∫
Rn K(x −

y) f (y)dy converges in the norm of H2 for almost every x, and by the
Cauchy-Schwarz inequality

|g(x)| ⩽
∫

Rn
|K(x − y) f (y)|dy ⩽

∫
Rn

|K(x − y)|| f (y)|dy.

Additionally, ‖g‖r ⩽ ‖K‖q‖ f ‖p, if 1/r = 1/p + 1/q − 1, with 1 ⩽ r ⩽ ∞.

Suppose that f ∈ L1(Rn,H). Then we can define its Fourier transform

f

∨

(ξ) =
∫

Rn
e−ix·ξ f (x)d̄x,

which is an element of L∞(Rn,H). If f ∈ L1(Rn,H) ∩ L2(Rn,H), then f

∨

∈
L2(Rn,H) with ‖ f

∨

‖2 = ‖ f ‖2. The Fourier transform can then be extended
by continuity to a unitary mapping of the Hilbert space L2(Rn,H) to itself.

These facts can be obtained easily from the scalar-valued case by in-
troducing an arbitrary orthonormal basis in H.

Now suppose that H1 and H2 are two given Hilbert spaces. Assume
that f (x) takes values in H1, and K(x) takes values in L(H1,H2). Then

T f (x) =
∫

Rn
K(y) f (x − y)dy,

whenever defined, takes values in H2.

Theorem 5.18. The results in this chapter, in particular Theorems 5.1, 5.5,
5.16 and 5.17, and Proposition 5.2 are valid in the more general context where
f takes its value in H1, K takes its values in L(H1,H2) and T f and T(ε) f
take their values in H2, and throughout, the absolute value | · | is replaced by
the appropriate norm in H1, L(H1,H2) and H2, respectively.

This theorem is not a corollary of the scalar-valued case treated in
any obvious way. However, its proof consists of nothing but an identical
repetition of the arguments given for the scalar-valued cases if we take into
account the remarks made in the above paragraphs. Therefore, we leave
the proof to the interested reader.

Remark 5.19. 1) The final bounds obtained do not depend on the Hilbert
spaces H1 or H2 but only on B, p, and n, as in the scalar-valued cases.

2) Most of the argument goes through in the even greater generality
of Banach space-valued functions, appropriately defined, one can refer
to [Gra14a, pp. 385-414]. The Hilbert space structure is used only in L2

theory when applying the variant of Plancherel’s formula.
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The Hilbert space structure also enters in the following corollary.

Corollary 5.20. With the same assumptions as in Theorem 5.18, if in addi-
tion

‖T f ‖2 = c‖ f ‖2, c > 0, f ∈ L2(Rn,H1),

then ‖ f ‖p ⩽ A′
p‖T f ‖p, if f ∈ Lp(Rn,H1), 1 < p < ∞.

Proof. We remark that L2(Rn,Hj) are Hilbert spaces. In fact, let (·, ·)j
denote the inner product of Hj, j = 1, 2, and let 〈·, ·〉j denote the corre-
sponding inner product in L2(Rn,Hj); that is,

〈 f , g〉j =
∫

Rn
( f (x), g(x))jdx.

Now, T is a bounded linear transformation from the Hilbert space
L2(Rn,H1) to the Hilbert space L2(Rn,H2), and thus, by the general
theory of inner products (see the theory of Hilbert spaces, e.g., [Din07,
Chapter 6, p279]), there exists a unique adjoint transformation T∗, from
L2(Rn,H2) to L2(Rn,H1), which satisfies the characterizing property

〈T f1, f2〉2 = 〈 f1, T∗ f2〉1, with f j ∈ L2(Rn,Hj).

However, in view of the polarization identity, our assumption is equiva-
lent to the identity

〈T f , Tg〉2 = c2〈 f , g〉1, for all f , g ∈ L2(Rn,H1).

Thus, using the definition of the adjoint, 〈T∗T f , g〉1 = c2〈 f , g〉1, the as-
sumption can be restated as

T∗T f = c2 f , f ∈ L2(Rn,H1). (5.37)

T∗ is again an operator of the same kind as T, but it takes a function
with values in H2 to functions with values in H1, with the kernel K∗

∼

(x) =
K∗(−x), where ∗ denotes the adjoint of an element in L(H1,H2).

This is obvious on the formal level since

〈T f1, f2〉2 =
∫

Rn

∫
Rn
(K(x − y) f1(y), f2(x))2dydx

=
∫

Rn

∫
Rn
( f1(y), K∗(−(y − x)) f2(x))1dxdy = 〈 f1, T∗ f2〉1.

The rigorous justification of this identity is achieved by a simple limiting
argument. We will not tire the reader with the routine details.

This being said we have only to add the remark that K∗(−x) satisfies
the same conditions as K(x), and so we have, for it, similar conclusions as
for K (with the same bounds). Thus, by (5.37), for f ∈ (L2 ∩ Lp)(Rn,H1),

c2‖ f ‖p = ‖T∗T f ‖p ⩽ Ap‖T f ‖p.

This proves the corollary with A′
p = Ap/c2 in view of the density argu-

ment of L2 ∩ Lp in Lp for 1 < p < ∞. q
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Remark 5.21. This corollary applies in particular to the singular integrals
commuted with dilations; then, the condition required is that the multi-
plier m(ξ) has a constant absolute value. This is the case, for example,
when T is the Hilbert transform, K(x) = 1

πx , and m(ξ) = −i sgn (ξ).

§ 5.6 Littlewood-Paley square function theorem

In harmonic analysis, Littlewood-Paley theory is a term used to de-
scribe a theoretical framework used to extend certain results about L2 func-
tions to Lp functions for 1 < p < ∞, in which the Littlewood-Paley square
function theorem is a fundamental result.

Definition 5.22. Let ϕ be a real-valued function in D(Rn) that is
supported in A =

{
ξ : 2−1 ⩽ |ξ| ⩽ 2

}
and satisfies ∑

k∈Z

ϕ2
k(ξ) = 1 in

Rn \ {0}, where ϕk(ξ) = ϕ(2−kξ), we call ϕ a Littlewood-Paley func-
tion.

It is not completely obvious that such a function exists.

Lemma 5.23. A Littlewood-Paley function exists.

Proof. By the C∞ Urysohn lemma (i.e., Theorem 3.21), there exists a func-
tion f̃ ∈ D such that f̃ ∈ [0, 1], f̃ = 1 on {ξ : |ξ| ⩽ 1/2} and
supp f̃ ⊂ {ξ : |ξ| < 1}. Thus, we can take f (ξ) = f̃ (ξ/2)− f̃ (ξ), which is
nonnegative, supported in A. Then,

supp f (2−kξ) ⊂ {ξ : 2k−1 ⩽ |ξ| ⩽ 2k+1}.

Therefore, the sum

F(ξ) = ∑
k∈Z

f 2(2−kξ)

contains at most five nonvanishing terms for each ξ 6= 0. Clearly, F ∈ S ,
and F(ξ) > 0 for ξ 6= 0. We set ϕ(ξ) = f (ξ)/F1/2(ξ). Obviously, ϕ ∈ S ,
and satisfies the conditions since F(2−jξ) = F(ξ). q

Definition 5.24. For f ∈ Lp, we can define Qk f = (2π)−n/2 (ϕk)
∨ ∗ f =(

ϕk f

∨)∨
. We define the square function S f by

S f (x) =

(
∑

k∈Z

|Qk f (x)|2
)1/2

.

From the Tonelli theorem and the Plancherel theorem, it is easy to see
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that

‖ f ‖2 = ‖S f ‖2 (5.38)

and of course this depends on the identity ∑
k∈Z

ϕ2
k(ξ) = 1. We are interested

in this operator because we can characterize the Lp spaces similarly.

Theorem 5.25 (Littlewood-Paley square function theorem). Let 1 <

p < ∞. There is a finite nonzero constant C = C(p, n, ϕ) such that if
f ∈ Lp, then

C−1
p′ ‖ f ‖p ⩽ ‖S f ‖p ⩽ Cp‖ f ‖p.

Proof. We prove this theorem via the Calderón-Zygmund Theorem (i.e.,
Theorem 5.1) and Proposition 5.2 by considering a vector-valued singular
integral with the kernel

K(x) = (· · · , (2π)−n/22nkϕ∨(2kx), · · · ),

i.e., K ∗ f = (· · · , Qk f , · · · ). Clearly, K ∈ S ′(Rn) ∩ L1
loc(R

n). Then, it
follows

|K

∨

(ξ)|2 = (2π)−n ∑
k∈Z

|ϕk(ξ)|2 = (2π)−n.

We write out the norm of K

|K(x)|2 = (2π)−n ∑
k∈Z

22nk|ϕ∨(2kx)|2.

We choose N such that 2N ⩽ |x| ⩽ 2N+1 and split the sum above at
−N. Recall that ϕ∨ ∈ S (Rn) and decays faster than the reciprocal of
any polynomial. To estimate the gradient, we observe that ∇K(x) =

(· · · , (2π)−n/22(n+1)k∇ϕ∨(2kx), · · · ). Near 0, i.e., for k ⩽ −N, we use
that |∇ϕ∨(2kx)| ⩽ C. For k > −N, we use that |∇ϕ∨(x)| ⩽ C|x|−n−2.
Thus, we have

|∇K(x)|2 ⩽ C

(
∑

k⩽−N
22k(n+1) + ∑

k>−N
22k(n+1)(2k+N)−2(n+2)

)
= C2−2N(n+1).

Recalling that 2N ∼ |x|, we obtain the desired upper-bound for |∇K(x)| ⩽
C|x|−(n+1). Therefore, by the vector-valued version of Theorem 5.1 and
Proposition 5.2, i.e., Theorem 5.18, we obtain the right-hand inequality in
the theorem

‖S f ‖p =

∥∥∥∥∥∥
(

∑
k∈Z

|Qk f |2
)1/2

∥∥∥∥∥∥
p

= ‖K ∗ f ‖p ⩽ Cp‖ f ‖p.

For the converse inequality, it follows from Corollary 5.20 due to (5.38).
q
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§ 5.7 Mikhlin and Hörmander multiplier theorem

We introduce a partition of unity to be frequently used later.

Lemma 5.26. There exists a function φ(Rn), such that
(i) supp φ = {ξ : 2−1 ⩽ |ξ| ⩽ 2};

(ii) φ(ξ) > 0 for 2−1 < |ξ| < 2;
(iii) ∑

k∈Z

φ(2−kξ) = 1 for ξ 6= 0.

Proof. The proof is similar to that of Lemma 5.23. Choose any function
f ∈ S such that (i) and (ii) are satisfied. Then,

supp f (2−kξ) = {ξ : 2k−1 ⩽ |ξ| ⩽ 2k+1}.

Therefore, the sum

F(ξ) = ∑
k∈Z

f (2−kξ)

contains at most five nonvanishing terms for each ξ 6= 0. Clearly, F ∈ S ,
and F(ξ) > 0 for ξ 6= 0. Let φ = f /F. Obviously, φ ∈ S , and satisfies (i)
and (ii). Since F(2−jξ) = F(ξ), φ also satisfies (iii). q

Theorem 5.27 (Mikhlin multiplier theorem). Let H0 and H1 be Hilbert
spaces. Assume that m is a mapping from Rn to L(H0,H1) and that

|ξ||α||∂α
ξ m(ξ)|L(H0,H1) ⩽ A, |α| ⩽ k, (5.39)

for some integer k > n/2. Then m ∈ Mp(H0,H1), 1 < p < ∞, and

‖m‖Mp ⩽ Cp A.

Proof. We use the vector version of the Calderón-Zygmund theorem (i.e.,

Theorem 5.1) to prove it. Denote Tm f =
(

m f

∨)∨
= (2π)−n/2m∨ ∗ f =:

K ∗ f . It is clear that K ∈ S ′(Rn) ∩ L1
loc(R

n) by the assumption. For
convenience, we denote | · |L(H0,H1) by | · |. Thus, taking k = 0 in (5.39),
we have |K

∨

| = (2π)−n/2|m(ξ)| ⩽ (2π)−n/2 A. Thus, we only need to verify∫
|x|⩾2|y|

|K(x − y)− K(x)|dx ⩽ C uniformly in y. (5.40)

Denote φj(ξ) = φ(2−jξ), where φ is given by Lemma 5.26. We write

m(ξ) = ∑
j∈Z

mj(ξ), where mj = φjm.

Let us now prove (5.40) assuming (5.39) holds for |α| ⩽ k. By the
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Plancherel theorem and Leibniz’ rule, we obtain∫
Rn

|xαm∨
j (x)|2dx =C

∫
Rn

|∂α
ξ mj(ξ)|2dξ

=C
∫

Rn

∣∣∣∣∣ ∑
α1+α2=α

cα1,α2 ∂α1
ξ m(ξ)∂α2

ξ φj(ξ)

∣∣∣∣∣
2

dξ

⩽CA2 ∑
α1+α2=α

∫
|ξ|∼2j

2−2j|α2||ξ|−2|α1|

⩽CA22j(n−2|α|).

Using the Cauchy-Schwarz inequality and applying the above with |α| =
0, we have ∫

|x|⩽R
|m∨

j (x)|dx ⩽ CA(2jR)n/2.

By applying the above with |α| = k, we obtain∫
|x|>R

|m∨
j (x)|dx ⩽

(∫
Rn

|xαm∨
j (x)|2dx

)1/2 (∫
|x|>R

|x|−2|α|dx
)1/2

⩽CA(2jR)
n
2 −k. (5.41)

Choosing R ∼ 2−j, we find∫
Rn

|m∨
j (x)|dx ⩽ CA uniformly in j.

Arguing in the same way, we have∫
Rn

|∇m∨
j (x)|dx ⩽ CA2j.

In particular, by the mean value theorem, this shows∫
Rn

|m∨
j (x − y)− m∨

j (x)|dx ⩽ CA2j|y|. (5.42)

Thus, we have from (5.42) and (5.41)∫
|x|⩾2|y|

|K(x − y)− K(x)|dx ⩽ ∑
j∈Z

∫
|x|⩾2|y|

|m∨
j (x − y)− m∨

j (x)|dx

⩽CA ∑
2j⩽|y|−1

2j|y|+ C ∑
2j>|y|−1

∫
|x|⩾|y|

|m∨
j (x)|dx

⩽CA + CA ∑
2j>|y|−1

(2j|y|) n
2 −k

⩽CA.

This completes the proof by the vector version of the Calderón-Zygmund
theorem (Theorem 5.1), i.e., Theorem 5.18. q

Remark 5.28. This result is sharp in the sense that the L1 and L∞ bounds
can fail. To see this, let us consider the Hilbert transform, which es-
sentially corresponds to taking m∨(x) = C

x in n = 1. We know that
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m(ξ) = c sgn (ξ), which satisfies the condition (5.39) with k = 1. How-
ever, as we have shown before, the Hilbert transform is not bounded on
L1 or L∞.

Example 5.29. One application of the Mikhlin multiplier theorem is the
following “Schauder” type estimate, which is useful in the setting of
elliptic PDEs: for any i, j = 1, · · · , n, 1 < p < ∞, and any f ∈ S (Rn)∥∥∥∥ ∂2 f

∂xi∂xj

∥∥∥∥
p
⩽ C‖∆ f ‖p.

Indeed, this is equivalent to mij(ξ) := ξiξ j

|ξ|2 , which is a consequence of the
Mikhlin multiplier theorem.

The proof of the theorem leads to a generalization of its statement,
which we formulate as a corollary. We leave the proof as an exercise.

Corollary 5.30 (Hörmander multiplier theorem). Let H0 and H1 be
Hilbert spaces. Assume that m is a mapping from Rn to L(H0,H1) and
that

|m(ξ)|L(H0,H1) ⩽A,

sup
0<R<∞

R2|α|−n
∫

R⩽|ξ|⩽2R

∣∣∣∂α
ξ m(ξ)

∣∣∣2
L(H0,H1)

dξ ⩽A, |α| ⩽ k,
(5.43)

for some integer k > n/2. Then, m ∈ Mp(H0,H1), 1 < p < ∞, and

‖m‖Mp ⩽ Cp A.

Exercises

Exercise 5.1. Let Ω be an integrable function with mean value zero on
the sphere Sn−1. Suppose that Ω satisfies a Hölder condition of order
0 < α < 1 on Sn−1. This means that

|Ω(x)− Ω(y)| ⩽ B0|x − y|α

for all x, y ∈ Sn−1. Prove that the function K(x) = Ω(x/|x|)/|x|n satisfies
Hörmander’s condition with a constant at most a multiple of B0 + ‖Ω‖∞.

Exercise 5.2. [Gra14a, Exercise 5.1.8] Let Q(j)
y be the jth conjugate Poisson

kernel of Py defined by

Q(j)
y (x) =

Γ
( n+1

2

)
π

n+1
2

xj

(|x|2 + y2)
n+1

2
.

(i) Calculate the Fourier transform of Q(j)
y .

(ii) Conclude that RjPy = Q(j)
y and for f ∈ L2(Rn), we have Rj f ∗ Py =

f ∗ Q(j)
y .
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Exercise 5.3. [Gra14a, Exercise 5.1.5] Let 1 ⩽ p < ∞ and let T be a linear
operator defined on S that commutes with dilations. Suppose that there
exists a constant C > 0 such that for all f ∈ S (Rn) with Lp norm one we
have

|{x : |T f (x)| > 1}| ⩽ C.

Prove that T admits a bounded extension from Lp(Rn) to Lp,∞(Rn) with
norm at most C1/p.

Hint Try functions of the form λ−n/p f (λ−1x)/‖ f ‖p with λ > 0.

Exercise 5.4. [Gra14a, Exercise 5.2.6] For Ω ∈ L1(Sn−1) and f ∈ L1
loc(R

n),
define

MΩ f (x) = sup
R>0

1
VnRn

∫
|y|⩽R

|Ω(y/|y|)|| f (x − y)|dy.

Apply the method of rotations to prove that MΩ maps Lp(Rn) to itself for
1 < p < ∞.

Exercise 5.5. Prove Corollary 5.30 .

Exercise 5.6. [Gra14b, Exercise 6.2.5] Suppose that φ(ξ) is a smooth func-
tion on Rn that vanishes in a neighborhood of the origin and is equal to
1 in a neighborhood of infinity. Prove that the function eiξ j|ξ|−1

φ(ξ) is in
Mp(Rn) for 1 < p < ∞ for every ξ j.

Exercise 5.7. [Gra14b, Exercise 6.2.7] Let ζ(ξ) be a smooth function on the
line that is supported in a compact set that does not contain the origin and
let aj be a bounded sequence of complex numbers. Prove that the function
m(ξ) = ∑

j∈Z

ajζ(2−jξ) is in Mp(R) for all 1 < p < ∞.

Exercise 5.8. Let P be a polynomial with complex coefficients, of degree
greater than or equal to 1, without a real root.

i) Prove that sup
x∈R

1/|P(x)| and sup
x∈R

|P′(x)/P(x)| are finite.

ii) Prove that, for all p > 1, 1/P(ln |x|) ∈ Mp(R).

Exercise 5.9. Let x ∈ R. Is (1 + | ln |x||)−1/2 a Fourier multiplier?

Exercise 5.10. [Gra14b, Exercise 6.1.3, 6.1.2, 6.1.4] Let Ψ be an integrable
function on Rn with mean value zero that satisfies

|Ψ(x)| ⩽ B(1 + |x|)−n−ε,
∫

Rn
|Ψ(x − y)− Ψ(x)|dx ⩽ B|y|ε′ ,

for some B, ε, ε′ > 0 and for all y 6= 0. Let Ψt = t−nΨ(x/t).

(i) Prove that |Ψ

∨

(ξ)| ⩽ cn,ε,ε′B min(|ξ|min(1,ε/2), |ξ|−ε) for some constant
cn,ε,ε′ and conclude that∥∥∥∥∥∥

(
∑

k∈Z

|Ψ2−k ∗ f |2
)1/2

∥∥∥∥∥∥
2

⩽ CnB‖ f ‖2.
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(ii) Prove that for some constant Cε,ε′ < ∞ we have

sup
ξ∈Rn

(∫ ∞

0
|Ψ

∨

(tξ)|2 dt
t

)1/2

+ sup
ξ∈Rn

(
∑

k∈Z

|Ψ

∨

(2−kξ)|2
)1/2

⩽ Cε,ε′B.

(iii) Prove that there exists a constant Cn such that for all f ∈ L2(Rn) we
have ∥∥∥∥∥

(∫ ∞

0
| f ∗ Ψt|2

dt
t

)1/2
∥∥∥∥∥

2

⩽ CnB‖ f ‖2.

Hint i) Make use of the identity

Ψ

∨

(ξ) =
∫

Rn
e−ix·ξΨ(x)d̄x = −

∫
Rn

e−ix·ξΨ(x − y)d̄x,

where y = ξ
2|ξ|2 when |ξ| ⩾ 1. For |ξ| ⩽ 1 use the mean value property

of Ψ to write Ψ

∨

(ξ) =
∫

Rn(e−ix·ξ − 1)Ψ(x)d̄x and split the integral in the
regions |x| ⩽ 1 and |x| ⩾ 1.

Exercise 5.11. [Gra14b, Exercise 6.2.8] Let ζ

∨

(ξ) be a smooth function on
Rn supported in a compact set that does not contain the origin and let
∆̇ζ

j f = F−1(ζ

∨

(2−jξ) f

∨

(ξ)). Show that the operator

f → sup
N∈Z

∣∣∣∣∣∑j<N
∆̇ζ

j f

∣∣∣∣∣
is bounded on Lp(R) when 1 < p < ∞.
Hint Pick φ ∈ S satisfying ∑

j∈Z

φ

∨

(2−jξ) = 1 on Rn \ {0} with supp φ

∨⊂

{ξ : 2−1 ⩽ |ξ| ⩽ 2}. Then, ∆̇φ
k ∆̇ζ

j = 0 if |j − k| < c0, and we have

∑
j<N

∆̇ζ
j = ∑

k<N+c0

∆̇φ
k ∑

j<N
∆̇ζ

j = ∑
k<N+c0

∆̇φ
k ∑

j
∆̇ζ

j − ∑
k<N+c0

∆̇φ
k ∑

j⩾N
∆̇ζ

j ,

which is a finite sum plus a term controlled by a multiple of the operator

f → M

(
∑
j∈Z

∆̇ζ
j f

)
,

where M is the Hardy-Littlewood maximal function.

Exercise 5.12. [Gra14b, Exercise 6.2.9] Let φ be given in Lemma 5.23. Let
∆̇jg =

(
φ(2−jξ)g∨

)∨. Prove that∥∥∥∥∥∥ ∑
|j|<N

∆̇jg − g

∥∥∥∥∥∥
p

→ 0

as N → ∞ for all g ∈ S (Rn). Deduce that Schwartz functions whose
Fourier transforms have compact supports that do not contain the origin
are dense in Lp(Rn) for 1 < p < ∞.
Hint Use the result of Exercise 5.11 and the dominated convergence the-
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orem.



6
Riesz and Bessel potentials

In this chapter, we introduce the Riesz and Bessel potentials. Based
on these potentials, we introduce the general Sobolev spaces, i.e., Bessel
(Riesz) potential spaces.

§ 6.1 Riesz potentials and fractional integrals

The Laplacian satisfies the following identity for all f ∈ S (Rn):

−∆ f

∨

(ξ) = |ξ|2 f

∨

(ξ). (6.1)

From this, we replace the exponent 2 in |ξ|2 by a general exponent s
and thus define (at least formally) the fractional power of the Laplacian by

(−∆)s/2 f =
(
|ξ|s f

∨)∨
. (6.2)

Of special significance will be the negative powers s in the range −n <

s < 0. In general, with a slight change in notation, we can define

Definition 6.1. Let s > 0. The Riesz potential of order s is the operator

Is = (−∆)−s/2. (6.3)

For 0 < s < n and f ∈ L1
loc(R

n), Is is actually given in the form

Is f (x) =
1

γ(s)

∫
Rn

|x − y|−n+s f (y)dy, (6.4)

with

γ(s) = 2−
n
2 2s Γ(s/2)

Γ((n − s)/2)
.

Now, we state two further identities that can be obtained from (6.2) or
(6.3) and that reflect the essential properties of the potentials Is:

Is(It f ) = Is+t f , f ∈ S , s, t > 0, s + t < n; (6.5)

∆(Is f ) = Is(∆ f ) = −Is−2 f , f ∈ S , n ⩾ 3, 2 ⩽ s ⩽ n. (6.6)

The deduction of these two identities has no real difficulties, and these
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are best left to the interested reader to work out.

A simple consequence of (6.5) is the n-dimensional variant of the Beta
function,1∫

Rn
|x − y|−n+s|y|−n+tdy =

γ(s)γ(t)
γ(s + t)

|x|−n+(s+t) in S ′, (6.7)

with s, t > 0 and s + t < n. Indeed, for any φ ∈ S , we have, by the
definition of Riesz potentials and (6.5), that∫∫

Rn×Rn
|x − y|−n+s|y|−n+tdyφ(z − x)dx

=
∫

Rn
|y|−n+t

∫
Rn

|x − y|−n+s φ(z − y − (x − y))dxdy

=
∫

Rn
|y|−n+tγ(s)Is φ(z − y)dy = γ(s)γ(t)It(Is φ)(z) = γ(s)γ(t)Is+t φ(z)

=
γ(s)γ(t)
γ(s + t)

∫
Rn

|x|−n+(s+t)φ(z − x)dx.

We have considered the Riesz potentials formally and the operation
for Schwartz functions. However, since the Riesz potentials are integral
operators, it is natural to inquire about their actions on the spaces Lp(Rn).

For this reason, we formulate the following problem. Given s ∈ (0, n),
for what pairs p and q, is the operator f → Is f bounded from Lp(Rn) to
Lq(Rn)? That is, when do we have the inequality

‖Is f ‖q ⩽ A‖ f ‖p? (6.8)

There is a simple necessary condition that is merely a reflection of the
homogeneity of the kernel (γ(s))−1|y|−n+s. In fact, we have

Proposition 6.2. If inequality (6.8) holds for all f ∈ S and a finite constant
A, then 1/q = 1/p − s/n.

Proof. Let us consider the dilation operator δε, defined by δε f (x) = f (εx)
for ε > 0. Then clearly, for ε > 0 and any f ∈ S (Rn), we have

(Isδ
ε f )(x) =

1
γ(s)

∫
Rn

|x − y|−n+s f (εy)dy

z=εy
==ε−n 1

γ(s)

∫
Rn

|x − ε−1z|−n+s f (z)dz

=ε−s Is f (εx). (6.9)

Noticing that

‖δε f ‖p = ε−n/p‖ f ‖p, ‖δε−1 Is f ‖q = εn/q‖Is f ‖q. (6.10)

1The Beta function, also called the Euler integral of the first kind, is a special function
defined by B(α, β) =

∫ 1
0 tα−1(1 − t)β−1dt for Re α > 0 and Re β > 0. It has the relation

with Γ-function: B(α, β) = Γ(α)Γ(β)/Γ(α + β).
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By (6.8), we obtain

‖Is f ‖q =εs‖δε−1
Isδ

ε f ‖q = εs+n/q‖Isδ
ε f ‖q

⩽Aεs+n/q‖δε f ‖p = Aεs+n/q−n/p‖ f ‖p.

If s + n/q − n/p > 0, let ε → 0+; if s + n/q − n/p < 0, let ε → ∞,
we always have ‖Is f ‖q = 0 for any f ∈ S (Rn). However, if f 6≡ 0 is
nonnegative, then Is f > 0 everywhere and hence ‖Is f ‖q > 0; thus, we can
conclude the desired relations

1/q = 1/p − s/n. q

Now, we give the following Hardy-Littlewood-Sobolev theorem of
fractional integration. The result was first considered in one dimension
on the circle by Hardy and Littlewood and n-dimension by Sobolev.

Theorem 6.3 (Hardy-Littlewood-Sobolev theorem). Let 0 < s < n,
1 ⩽ p < q < ∞, 1/q = 1/p − s/n.

(i) If f ∈ Lp(Rn), then the integral (6.4), defining Is f , converges abso-
lutely for almost every x.

(ii) If, in addition, p > 1, then ‖Is f ‖q ⩽ Ap,q‖ f ‖p.
(iii) If f ∈ L1(Rn), then |{x : |Is f (x)| > α}| ⩽ (Aα−1‖ f ‖1)

q, for all α >

0. That is, the mapping Is is of weak type (1, q), with 1/q = 1 − s/n.

Proof. We first prove parts (i) and (ii). Let us write

γ(s)Is f (x) =
∫

B(x,δ)
|x − y|−n+s f (y)dy +

∫
Rn\B(x,δ)

|x − y|−n+s f (y)dy

=:Lδ(x) + Hδ(x).

Divide the ball B(x, δ) into the shells Ej := B(x, 2−jδ) \ B(x, 2−(j+1)δ),
j = 0, 1, 2, ..., we have

|Lδ(x)| ⩽
∣∣∣∣∣ ∞

∑
j=0

∫
Ej

|x − y|−n+s f (y)dy

∣∣∣∣∣ ⩽ ∞

∑
j=0

∫
Ej

|x − y|−n+s| f (y)|dy

⩽
∞

∑
j=0

∫
Ej

(2−(j+1)δ)−n+s| f (y)|dy

⩽
∞

∑
j=0

∫
B(x,2−jδ)

(2−(j+1)δ)−n+s| f (y)|dy

=
∞

∑
j=0

(2−(j+1)δ)−n+s|B(x, 2−jδ)|
|B(x, 2−jδ)|

∫
B(x,2−jδ)

| f (y)|dy

=
∞

∑
j=0

(2−(j+1)δ)−n+sVn(2−jδ)n

|B(x, 2−jδ)|

∫
B(x,2−jδ)

| f (y)|dy
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⩽Vnδs2n−s
∞

∑
j=0

2−sj M f (x) =
Vnδs2n

2s − 1
M f (x).

Now, we derive an estimate for Hδ(x). By Hölder’s inequality and
the condition 1/p > s/n (i.e., q < ∞), we obtain

|Hδ(x)| ⩽‖ f ‖p

(∫
Rn\B(x,δ)

|x − y|(−n+s)p′dy
)1/p′

=‖ f ‖p

(∫
Sn−1

∫ ∞

δ
r(−n+s)p′rn−1drdσ

)1/p′

=ω
1/p′
n−1‖ f ‖p

(∫ ∞

δ
r(−n+s)p′+n−1dr

)1/p′

=

(
ωn−1

(n − s)p′ − n

)1/p′

δn/p′−(n−s)‖ f ‖p = C(n, s, p)δs−n/p‖ f ‖p.

By the above two inequalities, we have

|γ(s)Is f (x)| ⩽ C(n, s)δs M f (x) + C(n, s, p)δs−n/p‖ f ‖p =: F(δ).

Choose δ = C(n, s, p)[‖ f ‖p/M f ]p/n, such that the two terms of the r.h.s.
of the above are equal, i.e., the minimizer of F(δ), to obtain

|γ(s)Is f (x)| ⩽ C(M f (x))1−ps/n‖ f ‖ps/n
p .

Therefore, by part (i) of Theorem 2.6 for maximal functions, i.e., M f
is finite almost everywhere if f ∈ Lp (1 ⩽ p ⩽ ∞), it follows that |Is f (x)|
is finite almost everywhere, which proves part (i) of the theorem.

By part (iii) of Theorem 2.6, we know ‖M f ‖p ⩽ Ap‖ f ‖p (1 < p ⩽ ∞);
thus,

‖Is f ‖q ⩽ C‖M f ‖1−ps/n
p ‖ f ‖ps/n

p = C‖ f ‖p.

This gives the proof of part (ii).
Finally, we prove (iii). Since we also have |Hδ(x)| ⩽ ‖ f ‖1δ−n+s, taking

α = ‖ f ‖1δ−n+s, i.e., δ = (‖ f ‖1/α)1/(n−s), by part (ii) of Theorem 2.6, we
obtain

|{x : |Is f (x)| > 2(γ(s))−1α}|
⩽|{x : |Lδ(x)| > α}|+ |{x : |Hδ(x)| > α}|
⩽|{x : |Cδs M f (x)| > α}|+ 0

⩽ C
δ−sα

‖ f ‖1 = C[‖ f ‖1/α]n/(n−s) = C[‖ f ‖1/α]q.

This completes the proof of part (iii). q
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§ 6.2 Bessel potentials

While the behavior of the kernel (γ(s))−1|x|−n+s as |x| → 0 is well
suited for their smoothing properties, their decay as |x| → ∞ worsens as s
increases.

We can slightly adjust the Riesz potentials such that we maintain their
essential behavior near zero but achieve exponential decay at infinity. The
simplest way to achieve this is by replacing the “nonnegative” operator
−∆ by the “strictly positive” operator I − ∆, where I = identity. Here the
terms nonnegative and strictly positive, as one may have surmised, refer
to the Fourier transforms of these expressions.

Definition 6.4. Let s > 0. The Bessel potential of order s is the opera-
tor

Js = (I − ∆)−s/2

whose action on functions f is given by

Js f = (2π)n/2
(

Gs

∨

f

∨)∨
= Gs ∗ f ,

where

Gs(x) = (2π)−n/2
(
〈ξ〉−s

)∨
(x), 〈ξ〉 = (1 + |ξ|2)1/2.

Now we give some properties of Gs(x) and show why this adjustment
yields exponential decay for Gs at infinity.

Proposition 6.5. Let s > 0.

(i) Gs(x) =
1

(4π)n/2Γ(s/2)

∫ ∞

0
e−te−

|x|2
4t t

s−n
2

dt
t

.

(ii) Gs(x) > 0, ∀x ∈ Rn; and Gs ∈ L1(Rn); precisely,
∫

Rn Gs(x)dx =

1.
(iii) There exist two constants 0 < C(s, n), c(s, n) < ∞ such that

Gs(x) ⩽ C(s, n)e−|x|/2, when |x| ⩾ 2,

and
1

c(s, n)
⩽ Gs(x)

Hs(x)
⩽ c(s, n), when |x| ⩽ 2,

where Hs is a function satisfying

Hs(x) =


|x|s−n + 1 + O(|x|s−n+2), 0 < s < n,

ln
2
|x| + 1 + O(|x|2), s = n,

1 + O(|x|s−n), s > n,
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as |x| → 0.
(iv) Gs ∈ Lp′(Rn) for any 1 ⩽ p ⩽ ∞ and s > n/p.

Proof. (i) For A, s > 0, we have the Γ-function identity

A−s/2 =
1

Γ(s/2)

∫ ∞

0
e−tAts/2 dt

t
,

which we use to obtain

〈ξ〉−s =
1

Γ(s/2)

∫ ∞

0
e−te−t|ξ|2 ts/2 dt

t
.

Note that the above integral converges at both ends (as |ξ| → 0, or ∞).
Now, taking the inverse Fourier transform in ξ and using Theorem 3.3,
we obtain

Gs(x) =(2π)−n/2 1
Γ(s/2)

F−1
ξ

∫ ∞

0
e−te−t|ξ|2 ts/2 dt

t

=(2π)−n/2 1
Γ(s/2)

∫ ∞

0
e−tF−1

ξ

(
e−t|ξ|2

)
ts/2 dt

t

=
1

(4π)n/2Γ(s/2)

∫ ∞

0
e−te−

|x|2
4t t

s−n
2

dt
t

.

(ii) We have easilya
∫

Rn Gs(x)dx = (2π)n/2Gs

∨

(0) = 1. Thus, Gs ∈
L1(Rn).

(iii) First, we suppose |x| ⩾ 2. Then t + |x|2
4t ⩾ t + 1

t and also t + |x|2
4t ⩾

|x|. This implies that

−t − |x|2
4t

⩽ − t
2
− 1

2t
− |x|

2
,

from which it follows that when |x| ⩾ 2

Gs(x) ⩽ 1
(4π)n/2Γ(s/2)

∫ ∞

0
e−

t
2 e−

1
2t t

s−n
2

dt
t

e−
|x|
2 ⩽ C(s, n)e−

|x|
2 ,

where C(s, n) = 2|s−n|/2Γ(|s−n|/2)
(4π)n/2Γ(s/2) for s 6= n, and C(s, n) = 4

(4π)n/2Γ(s/2) for
s = n since∫ ∞

0
e−

t
2 e−

1
2t

dt
t
⩽
∫ 1

0
e−

1
2t

dt
t
+
∫ ∞

1
e−

t
2 dt =

∫ ∞

1/2
e−y dy

y
+ 2e−1/2

⩽2
∫ ∞

1/2
e−ydy + 2 ⩽ 4.

Next, suppose that |x| ⩽ 2. Write Gs(x) = G1
s (x) + G2

s (x) + G3
s (x),

where

G1
s (x) =

1
(4π)n/2Γ(s/2)

∫ |x|2

0
e−te−

|x|2
4t t

s−n
2

dt
t

,

G2
s (x) =

1
(4π)n/2Γ(s/2)

∫ 4

|x|2
e−te−

|x|2
4t t

s−n
2

dt
t

,
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G3
s (x) =

1
(4π)n/2Γ(s/2)

∫ ∞

4
e−te−

|x|2
4t t

s−n
2

dt
t

.

Since t|x|2 ⩽ 16 in G1
s , we have e−t|x|2 = 1 + O(t|x|2) as |x| → 0; thus,

after changing variables, we can write

G1
s (x) =

|x|s−n

(4π)n/2Γ(s/2)

∫ 1

0
e−t|x|2 e−

1
4t t

s−n
2

dt
t

=
|x|s−n

(4π)n/2Γ(s/2)

∫ 1

0
e−

1
4t t

s−n
2

dt
t
+

O(|x|s−n+2)

(4π)n/2Γ(s/2)

∫ 1

0
e−

1
4t t

s−n
2 dt

=
2n−s−2|x|s−n

(4π)n/2Γ(s/2)

∫ ∞

1/4
e−yy

n−s
2

dy
y

+
2n−s−4O(|x|s−n+2)

(4π)n/2Γ(s/2)

∫ ∞

1/4
e−yy

n−s
2

dy
y2

=c1
s,n|x|s−n + O(|x|s−n+2), as |x| → 0.

Since 0 ⩽ |x|2
4t ⩽ 1

4 and 0 ⩽ t ⩽ 4 in G2
s , we have e−17/4 ⩽ e−t− |x|2

4t ⩽ 1,
thus as |x| → 0, we obtain

G2
s (x) ∼

∫ 4

|x|2
t(s−n)/2 dt

t
=


|x|s−n

n − s
− 2s−n+1

n − s
, s < n,

2 ln 2
|x| , s = n,

2s−n+1

s − n
, s > n.

Finally, we have e−1/4 ⩽ e−
|x|2
4t ⩽ 1 in G3

s , which yields that G3
s (x)

is bounded above and below by fixed positive constants. Combining the
estimates for Gj

s(x), we obtain the desired conclusion.
(iv) For p = 1 and so p′ = ∞, by part (iii), we have ‖Gs‖∞ ⩽ C for

s > n.
Next, we assume that 1 < p ⩽ ∞ and so 1 ⩽ p′ < ∞. Again by part

(iii), we have, for |x| ⩾ 2, that Gp′
s ⩽ Ce−p′|x|/2, and then the integration

over this range |x| ⩾ 2 is clearly finite.
On the range |x| ⩽ 2, it is clear that

∫
|x|⩽2 Gp′

s (x)dx ⩽ C for s > n. For

the case s = n and n 6= 1, we also have
∫
|x|⩽2 Gp′

s (x)dx ⩽ C by noticing
that ∫

|x|⩽2

(
ln

2
|x|

)q

dx = C
∫ 2

0

(
ln

2
r

)q

rn−1dr ⩽ C

for any q > 0 since lim
r→0

rε ln(2/r) = 0. For the case s = n = 1, we have∫
|x|⩽2

(ln
2
|x| )

qdx =2
∫ 2

0
(ln 2/r)qdr = 4

∫ 1

0
(ln 1/r)qdr

=4
∫ ∞

0
tqe−tdt = 4Γ(q + 1)

for q > 0 by changing the variable r = e−t. For the final case s < n, we
have

∫ 2
0 r(s−n)p′rn−1dr ⩽ C if (s − n)p′ + n > 0, i.e., s > n/p.

Thus, we obtain ‖Gs‖p′ ⩽ C for any 1 ⩽ p ⩽ ∞ and s > n/p, which
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implies the desired result. q

aOr use (i) to show it. From part (i), we know Gs(x) > 0. Since
∫

Rn e−π|x|2/tdx = tn/2,
by Fubini’s theorem, we have∫

Rn
Gs(x)dx =

∫
Rn

1
(4π)n/2Γ(s/2)

∫ ∞

0
e−te−

|x|2
4t t

s−n
2

dt
t

dx

=
1

(4π)n/2Γ(s/2)

∫ ∞

0
e−t

∫
Rn

e−
|x|2
4t dxt

s−n
2

dt
t

=
1

(4π)n/2Γ(s/2)

∫ ∞

0
e−t(4πt)n/2t

s−n
2

dt
t
=

1
Γ(s/2)

∫ ∞

0
e−tt

s
2 −1dt = 1.

We also have a result analogous to that of Riesz potentials for the
operator Js.

Theorem 6.6. (i) For all 0 < s < ∞, the operator Js maps Lr(Rn) into
itself with norm 1 for all 1 ⩽ r ⩽ ∞.

(ii) Let 0 < s < n and 1 < p < q < ∞ satisfy 1/q = 1/p − s/n. Then
there exists a constant Cn,s,p > 0 such that for all f ∈ Lp(Rn), we have

‖Js f ‖q ⩽ Cn,s,p‖ f ‖p.

(iii) If f ∈ L1(Rn), then |{x : |Js f (x)| > α}| ⩽ (Cn,sα
−1‖ f ‖1)

q, for all
α > 0. That is, the mapping Js is of weak type (1, q), with 1/q =

1 − s/n.

Proof. By Young’s inequality, we have ‖Js f ‖r = ‖Gs ∗ f ‖r ⩽ ‖Gs‖1‖ f ‖r =

‖ f ‖r. This proves result (i).
In the special case 0 < s < n, we have, from the above proposition,

that the kernel Gs of Js satisfies

Gs(x) ∼
{
|x|−n+s, |x| ⩽ 2,

e−|x|/2, |x| ⩾ 2.

Then, we can write

Js f (x) ⩽Cn,s

[∫
|y|⩽2

| f (x − y)||y|−n+sdy +
∫
|y|⩾2

| f (x − y)|e−|y|/2dy
]

⩽Cn,s

[
Is(| f |)(x) +

∫
Rn

| f (x − y)|e−|y|/2dy
]

.

We can use the function e−|y|/2 ∈ Lr for all 1 ⩽ r ⩽ ∞, Young’s inequality
and Theorem 6.3 to complete the proofs of (ii) and (iii). q

§ 6.3 General Sobolev spaces Hs
p and Ḣs

p

We start by weakening the notation of partial derivatives by the theory
of distributions. The appropriate definition is stated in terms of the space
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S (Rn).

Let ∂α be a differential monomial, whose total order is |α|. Suppose
we are given two locally integrable functions on Rn, f and g. Then, we say
that ∂α f = g (in the weak sense), if∫

Rn
f (x)∂α φ(x)dx = (−1)|α|

∫
Rn

g(x)φ(x)dx, ∀φ ∈ S . (6.11)

Integration by parts shows us that this is indeed the relation that we
would expect if f had continuous partial derivatives up to order |α|, and
∂α f = g had the usual meaning.

Of course, it is not true that every locally integrable function has par-
tial derivatives in this sense: consider, for example, f (x) = ci/|x|n . How-
ever, when partial derivatives exist, they are determined almost every-
where by the defining relation (6.11).

In this section, we study a quantitative way of measuring the smooth-
ness of functions. Sobolev spaces serve exactly this purpose. They mea-
sure the smoothness of a given function in terms of the integrability of its
derivatives. We begin with the classical definition of Sobolev spaces.

Definition 6.7. Let k ∈ N0 and 1 ⩽ p ⩽ ∞. The (Lp-)Sobolev space of
order k (on Rn) is defined by

Wk,p(Rn) = { f ∈ Lp(Rn) : ∂α f ∈ Lp(Rn) for all |α| ⩽ k},

where ∂α f must be understood in the sense of S ′(Rn), i.e., (6.11).
Moreover, we define

‖ f ‖Wk,p(Rn) =


(

∑
|α|⩽k

‖∂α f ‖p
p

)1/p

, if 1 ⩽ p < ∞,

max
|α|⩽k

‖∂α f ‖∞, if p = ∞.

where ∂(0,...,0) f = f .

The index k indicates the “degree” of smoothness of a given function
in Wk,p. As k increases, the functions become smoother. Equivalently, these
spaces form a decreasing sequence

Lp ⊃ W1,p ⊃ W2,p ⊃ · · ·

meaning that each Wk+1,p(Rn) is a subspace of Wk,p(Rn) in view of the
Sobolev norms.

We next observe that the space Wk,p(Rn) is complete. Indeed, if { fm}
is a Cauchy sequence in Wk,p, then for each α, {∂α fm} is a Cauchy sequence
in Lp, |α| ⩽ k. By the completeness of Lp, there exist functions f (α) such
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that f (α) = lim
m

∂α fm in Lp, then clearly

(−1)|α|
∫

Rn
fm∂α φdx =

∫
Rn

∂α fm φdx →
∫

Rn
f (α)φdx,

for each φ ∈ S . Since the first expression converges to

(−1)|α|
∫

Rn
f ∂α φdx,

it follows that the distributional derivative ∂α f is f (α). This implies that
fm → f in Wk,p(Rn) and proves the completeness of this space.

Now, we generalize the Riesz and Bessel potentials to any s ∈ R by

Is f =F−1(|ξ|s f

∨

), f ∈ S ′(Rn), 0 /∈ supp f

∨

, (6.12)

Js f =F−1(〈ξ〉s f

∨

), f ∈ S ′(Rn). (6.13)

It is clear that I−s = Is and J−s = Js for s > 0 are exactly Riesz and Bessel
potentials, respectively. We also note that Js · Jt = Js+t for any s, t ∈ R

from the definition.

Observe that the condition 0 /∈ supp f

∨

in (6.12) induces that ‖Is f ‖p

does not satisfy the condition of the norms when s ∈ N, since for k > m ∈
N we have IkP(x) = 0 in S ′ for any P ∈ Pm where Pm denotes the set of
all polynomials of degree less than or equal to m. Indeed, we have for any
α ∈ Nn

0 with |α| = m < k and any g ∈ S∫
Rn
(Ikxα)g(x)dx =

∫
Rn

xα|ξ|kg

∧∨

(x)dx

=
∫

Rn
eix·0i−|α|∂α

ξ (|ξ|kg

∧

)

∨

(x)dx

=(2π)n/2i−|α|
[
∂α

ξ (|ξ|kg

∧

)
]
(0) = 0.

It is not good to focus upon S ′(Rn) when we consider the homogeneous
spaces. We need to work on the quotient space S ′(Rn)/P(Rn), where
P denotes the set of all polynomials. Generally speaking, it is slightly
nasty to consider the quotient space; handling the representative is not
so intuitive. Therefore, we seek to find an expression of the quotient
S ′(Rn)/P(Rn). From this standpoint, we give the following definition.

Definition 6.8. Define the Lizorkin function space ˙S (Rn)a

˙S (Rn) =

{
f ∈ S (Rn) :

∫
Rn

xα f (x)dx = 0, ∀α ∈ Nn
0

}
, (6.14)

with the topology induced by S (Rn) . The Lizorkin distribution
space ˙S ′(Rn) is the topological dual space ˙S (Rn).

aIt also uses the symbols S0 or S∞ in other references, e.g., [Jaw77; Saw18].

The main advantage of defining the class ˙S is that for given f ∈ ˙S ,
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the function given by g = F−1[|ξ|α f

∨

] is in ˙S . In fact, for f ∈ S ,

f ∈ ˙S ⇐⇒ (∂α f

∨

)(0) = 0, ∀α ∈ Nn
0 .

We have the following fundamental theorem.

Theorem 6.9. As a linear space, we have the following isomorphism
˙S ′(Rn) = S ′(Rn)/P(Rn).

Proof. For each u ∈ S ′(Rn), let J(u) be the restriction of u on the subspace
˙S (Rn) of S (Rn). Then J is a linear mapping from S ′(Rn) to ˙S ′(Rn).

First, we claim that the kernel of J is exactly P(Rn), i.e., ker(J) =

{u ∈ S ′ : J(u) = 0 in ˙S ′} = P . In fact, if 〈u, ϕ〉 = 0 for all ϕ ∈ ˙S (Rn),
then 〈u∨, ϕ

∧

〉 = 0 for all ϕ ∈ ˙S (Rn), i.e., 〈u∨, ψ〉 = 0 for all ψ ∈ S (Rn)

supported in Rn \ {0}. It follows that u∨is supported at the origin and
thus u must be a polynomial by Corollary 3.43. This proves that the
kernel of the mapping J is P(Rn).

We also claim that the range of J is the entire ˙S ′(Rn). Indeed, given
v ∈ ˙S ′(Rn), v is a linear functional on ˙S (Rn), which is a subspace of the
vector space S , and |〈v, φ〉| ⩽ p(φ) for all φ ∈ ˙S , where p(φ) is equal to
a constant times a finite sum of Schwartz seminorms of φ. By the Hahn-
Banach theorem, v has an extension V on S such that |〈V, Φ〉| ⩽ p(Φ)

for all Φ ∈ S . Then, J(V) = v, and this shows that J is surjective.
Combining these two facts, we conclude that there is an identification

S ′(Rn)/P(Rn) = ˙S ′(Rn),

as claimed. q

In view of the identification in Theorem 6.9, we have that uj → u in
˙S ′ iff uj, u are elements of ˙S ′ and

〈uj, ϕ〉 → 〈u, ϕ〉

as j → ∞ for all ϕ ∈ ˙S . Note that convergence in S implies convergence
in ˙S , and consequently, convergence in S ′ implies convergence in ˙S ′.

The Fourier transform of ˙S (Rn) functions can be multiplied by |ξ|s,
s ∈ R, and still be smooth and vanish to infinite order at zero.

Indeed, let ϕ ∈ ˙S (Rn). Then, we show that ∂j(|ξ|sϕ

∨

)(0) exists. Since
every Taylor polynomial of ϕ

∨

at zero is identically equal to zero, it follows
from Taylor’s theorem2 that |ϕ

∨

(ξ)| ⩽ CM|ξ|M for every M ∈ N0, whenever

2Let f : U → R be a real-valued function defined on an open subset of Rn. Suppose
that f ∈ Ck+1(U), let P be a point of U such that B(P, δ) ⊂ U for some δ > 0. For any
h ∈ Rn with |h| < δ, there exists a real number c = cP,h ∈ [0, 1] such that

f (P + h) =

(
k

∑
i=0

1
i!

Hi( f )(P)(h)

)
+

1
(k + 1)!

Hk+1( f )(P + ch)(h),
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ξ lies in a compact set. Consequently, if M > 1 − s,

lim
t→0

|tej|sϕ

∨

(tej)

t
= 0,

where ej is the vector with 1 in the jth entry and zero elsewhere. This
shows that all partial derivatives of |ξ|sϕ

∨

(ξ) at zero exist and are equal to
zero.

By induction, we assume that ∂α(|ξ|sϕ

∨

(ξ))(0) = 0, and we need to
prove that

∂j∂
α(|ξ|sϕ

∨

(ξ))(0)

also exists and equals zero. Applying Leibniz’s rule, we express ∂α(|ξ|sϕ

∨

(ξ))

as a finite sum of derivatives of |ξ|s times derivatives of ϕ

∨

(ξ). How-
ever, for each |β| ⩽ |α|, we have |∂βϕ

∨

(ξ)| ⩽ CM,β|ξ|M for all M ∈ N0

whenever |ξ| ⩽ 1. Picking M > |α| + 1 − s and using the fact that
|∂α−β(|ξ|s)| ⩽ Cα|ξ|s−|α|+|β|, we deduce that ∂j∂

α(|ξ|sϕ

∨

(ξ))(0) also exists
and equals zero.

We have now proved that F−1(|ξ|sϕ

∨

(ξ)) ∈ ˙S for ϕ ∈ ˙S and all
s ∈ R. This allows us to introduce the operation of multiplication by |ξ|s
on the Fourier transforms of distributions modulo polynomials. For s ∈ R

and u ∈ ˙S ′(Rn), we define another distribution F−1(|ξ|su∨) ∈ ˙S ′(Rn) by
setting for all ϕ ∈ ˙S (Rn)

〈F−1(| · |su∨), ϕ〉 = 〈u, | · |sϕ

∧∨

〉.

This definition is consistent with the corresponding operations on func-

tions and makes sense since ϕ ∈ ˙S implies that | · |sϕ

∧∨

also lies in ˙S (Rn),
and thus, the action of u on this function is defined.

Moreover, recall 〈ξ〉 = (1 + |ξ|2)1/2, since for any s ∈ R the function
〈ξ〉s is a smooth function satisfying

|∂α
ξ 〈ξ〉

s | ⩽ Cs,α(1 + |ξ|)s−|α| for all ξ ∈ Rn

for all α ∈ Nn
0 and some Cs,α > 0. Thus, 〈ξ〉s ∈ C∞

poly(R
n). Hence,

〈ξ〉s f

∨

(ξ) ∈ S (Rn) for all f ∈ S (Rn) from Proposition 3.11. By dual-
ity 〈ξ〉s f

∨

∈ S ′(Rn) for all f ∈ S ′(Rn). Therefore, Js : S ′(Rn) → S ′(Rn)

is well-defined for any s ∈ R.

Next, we shall extend the spaces Wk,p(Rn) to the case where the num-
ber k is real.

where Hi( f )(P)(h) = ∑
|α|=i

(
i
α

)
(∂α f )(P)hα for i ∈ N and H0( f )(P)(h) = f (P) with

(
i
α

)
=

i!
α1 !···αn ! for α ∈ Nn

0 .
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Definition 6.10. Let s ∈ R and 1 ⩽ p ⩽ ∞. We write

‖ f ‖Ḣs
p
= ‖Is f ‖p, ‖ f ‖Hs

p
= ‖Js f ‖p.

Then, the homogeneous Sobolev space Ḣs
p(R

n) is defined by

Ḣs
p(R

n) =
{

f ∈ ˙S ′(Rn) : ‖ f ‖Ḣs
p
< ∞

}
,

and the nonhomogeneous Sobolev space Hs
p(R

n) is defined by

Hs
p(R

n) =
{

f ∈ S ′(Rn) : ‖ f ‖Hs
p
< ∞

}
.

If p = 2, we denote Ḣs
2(R

n) by Ḣs(Rn) and Hs
2(R

n) by Hs(Rn) for
simplicity.

It is clear that space Hs
p(R

n) is a normed linear space with the above
norm. Moreover, it is complete and therefore Banach space. To prove
the completeness, let { fm} be a Cauchy sequence in Hs

p. Then, by the
completeness of Lp, there exists a g ∈ Lp such that

‖ fm − J−sg‖Hs
p
= ‖Js fm − g‖p → 0, as m → ∞.

Clearly, J−sg ∈ S ′ and thus Hs
p is complete.

We give some elementary results about Sobolev spaces.

Theorem 6.11. Let s ∈ R and 1 ⩽ p ⩽ ∞; then, we have
(i) S is dense in Hs

p, 1 ⩽ p < ∞.
(ii) Hs+ε

p ↪→ Hs
p, ∀ε > 0.

(iii) Hs
p ↪→ L∞, ∀s > n/p.

(iv) Suppose 1 < p < ∞ and s ⩾ 1. Then f ∈ Hs
p(R

n) iff f ∈ Hs−1
p (Rn)

and for each j, ∂ f
∂xj

∈ Hs−1
p (Rn). Moreover, the two norms are equiva-

lent:

‖ f ‖Hs
p
∼ ‖ f ‖Hs−1

p
+

n

∑
j=1

∥∥∥∥ ∂ f
∂xj

∥∥∥∥
Hs−1

p

.

(v) Hk
p(R

n) = Wk,p(Rn), 1 < p < ∞, ∀k ∈ N.

Proof. (i) Take f ∈ Hs
p, i.e., Js f ∈ Lp. Since S is dense in Lp (1 ⩽ p < ∞),

there exists a g ∈ S such that

‖ f − J−sg‖Hs
p
= ‖Js f − g‖p

is smaller than any given positive number. Since J−sg ∈ S , S is dense in
Hs

p.
(ii) Suppose that f ∈ Hs+ε

p . By part (i) in Theorem 6.6, we see that Jε

maps Lp into Lp with norm 1 for ε > 0. From this, we obtain the result
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since

‖ f ‖Hs
p
= ‖Js f ‖p = ‖J−ε Js+ε f ‖p = ‖Jε Js+ε f ‖p ⩽ ‖Js+ε f ‖p = ‖ f ‖Hs+ε

p
.

(iii) By Young’s inequality, the definition of the kernel Gs(x) and part
(iv) of Proposition 6.5, we obtain for s > 0

‖ f ‖∞ =‖F−1[〈ξ〉−s 〈ξ〉s f

∨

]‖∞

=(2π)−n/2‖F−1 〈ξ〉−s ∗ Js f ‖∞

⩽(2π)−n/2‖F−1 〈ξ〉−s ‖p′‖Js f ‖p

=‖Gs(x)‖p′‖ f ‖Hs
p
⩽ C‖ f ‖Hs

p
.

(iv) From the Mikhlin multiplier theorem, we can obtain ξ j 〈ξ〉−1 ∈
Mp for 1 < p < ∞, and thus,∥∥∥∥ ∂ f

∂xj

∥∥∥∥
Hs−1

p

=‖F−1[〈ξ〉(s−1) (iξ j) f

∨

]‖p

=‖F−1[〈ξ〉−1 ξ j 〈ξ〉s f

∨

]‖p

=(2π)−n/2‖F−1[〈ξ〉−1 ξ j] ∗ Js f ‖p

⩽C‖Js f ‖p = C‖ f ‖Hs
p
.

Combined with ‖ f ‖Hs−1
p

⩽ ‖ f ‖Hs
p
, we obtain

‖ f ‖Hs−1
p

+
n

∑
j=1

∥∥∥∥ ∂ f
∂xj

∥∥∥∥
Hs−1

p

⩽ C‖ f ‖Hs
p
.

Now, we prove the converse inequality. We use the Mikhlin multiplier
theorem once more and an auxiliary function 0 ⩽ χ ∈ C∞(R) with χ(x) =
1 for |x| > 2 and χ(x) = 0 for |x| < 1. We obtain

〈ξ〉
(

1 +
n

∑
j=1

χ(ξ j)|ξ j|
)−1

∈ Mp, χ(ξ j)|ξ j|ξ−1
j ∈ Mp, 1 < p < ∞,

and then

‖ f ‖Hs
p
=‖Js f ‖p = ‖F−1[〈ξ〉 Js−1 f

∨

]‖p

⩽C‖F−1[(1 +
n

∑
j=1

χ(ξ j)|ξ j|)Js−1 f

∨

]‖p

⩽C‖ f ‖Hs−1
p

+ C
n

∑
j=1

∥∥∥∥F−1(χ(ξ j)|ξ j|ξ−1
j Js−1 ∂ f

∂xj

∨

)

∥∥∥∥
p

⩽C‖ f ‖Hs−1
p

+ C
n

∑
j=1

∥∥∥∥ ∂ f
∂xj

∥∥∥∥
Hs−1

p

.

Thus, we have obtained the desired result.
(v) It is obvious that W0,p = H0

p = Lp for k = 0. However, from part

(iv), if k ⩾ 1, then f ∈ Hk
p iff f and ∂ f

∂xj
∈ Hk−1

p , j = 1, ..., n. Thus, we can
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extend the identity of Wk,p = Hk
p from k = 0 to k = 1, 2, .... q

Due to (ii) of Theorem 6.11, we will also use the notation H−∞ =
⋃
s

Hs

and H∞ =
⋂
s

Hs. The inclusion S ⊂ H∞ ⊂ H−∞ ⊂ S ′ are immediate,

they are all strict. It is not true that S = H∞ by taking f (x) = 〈x〉−2n,
which satisfies f ∈ H∞ but f /∈ S ; nor is it true that H−∞ = S ′ since the
control of the growth of f at infinity is not sufficient, or on the Fourier side
the smoothness of f

∨

is not surfficient, i.e., f

∨

is not a function.

We continue with the Sobolev embedding theorem.

Theorem 6.12 (Sobolev embedding theorem). Let 1 < p ⩽ p1 < ∞ and
s, s1 ∈ R. Assume that s − n

p = s1 − n
p1

. The following conclusions hold

Hs
p ↪→ Hs1

p1
, Ḣs

p ↪→ Ḣs1
p1

.

Proof. It is trivial for the case p = p1 since we also have s = s1 in this
case. Now, we assume that p < p1. Since 1

p1
= 1

p − s−s1
n , by part (ii) of

Theorem 6.6, we get

‖ f ‖Hs1
p1
= ‖Js1 f ‖p1 = ‖Js1−s Js f ‖p1 = ‖Js−s1 Js f ‖p1 ⩽ C‖Js f ‖p = C‖ f ‖Hs

p
.

Similarly, we can show the homogeneous case. q

Theorem 6.13. Let s, σ ∈ R and 1 ⩽ p ⩽ ∞. Then Jσ is an isomorphism
between Hs

p and Hs−σ
p .

Proof. It is clear from the definition. q

Corollary 6.14. Let s ∈ R and 1 ⩽ p < ∞. Then

(Hs
p)

′ = H−s
p′ .

Proof. It follows from the above theorem and (Lp)′ = Lp′ if 1 ⩽ p < ∞. q

Exercises

Exercise 6.1. For 0 ⩽ s < n, define the fractional maximal function

Ms f (x) = sup
t>0

1

(Vntn)
n−s

n

∫
|y|⩽t

| f (x − y)|dy

where Vn is the volume of the unit ball in Rn.

(i) Show that for some constant C we have

Ms f ⩽ CIs f
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for all f ⩾ 0 and conclude that Ms maps Lp into Lq whenever the
Riesz potential Is of order s does.

(ii) Let s > 0, 1 < p < n
s , 1 ⩽ q ⩽ ∞ such that 1

r = 1
p −

s
n + sp

nq . Show that
there is a constant C > 0 (depending on the previous parameters)
such that for all positive functions f we have

‖Is f ‖r ⩽ C‖Mn/p f ‖sp/n
q ‖ f ‖1−sp/n

p .

Hint For f 6= 0, write Is f = I1 + I2, where

I1 =
∫
|x−y|⩽δ

f (y)|y|s−ndy, I2 =
∫
|x−y|>δ

f (y)|y|s−ndy.

Show that I1 ⩽ Cδs M0( f ) and that I2( f ) ⩽ Cδs−n/p Mn/p f . Optimize over
δ > 0 to obtain Is f ⩽ C(Mn/p f )sp/n(M0 f )1−sp/n from which the required
conclusion follows easily.

Exercise 6.2. Find all s ∈ R such that the Dirac distribution δ0 is in Hs(Rn).

Exercise 6.3. Let 1 < p < ∞ and s ∈ N.

(i) Suppose that f ∈ Hs
p(R

n) and φ ∈ S (Rn). Prove that φ f is also an
element of Hs

p(R
n).

(ii) Let v be a function whose Fourier transform is a bounded and com-
pactly supported function. Prove that if f is in Hs(Rn), then so is
v f .

Exercise 6.4. Consider the equation

ut + ∆2u = 0 in (0, T)× Rn,

with the initial condition

u|t=0 = u0 on Rn,

where u0 ∈ Hs(Rn) for an s > 0. Prove that there exists a solution u
belonging to the space C([0, T]; Hs(Rn)).



7
Hardy and BMO Spaces

In this chapter, we introduce the Hardy and BMO spaces, and the
duality between them. We also introduce the Carleson measures and their
relations with BMO functions.

§ 7.1 Hardy spaces

Hardy spaces are function spaces designed to be better suited to some
application than L1. We consider atomic Hardy spaces in this section.

Definition 7.1 (p-atom). Let Q be a cube in Rn, 1 < p ⩽ ∞ and p′ be
its conjugate exponent. A Lebesgue measurable function a : Q → C is
called a p-atom on Q if

(i) supp a ⊂ Q,
(ii) ‖a‖p ⩽ |Q|−1/p′ ,

(iii)
∫

Q a dx = 0.
We denote the collection of p-atoms on Q by A

p
Q and Ap =

⋃
Q A

p
Q.

Remark 7.2. Note that (i) along with (ii) implies that ‖a‖1 ⩽ 1.

Definition 7.3 (H1,p). Let 1 < p ⩽ ∞ and f ∈ L1(Rn). We say that
f ∈ H1,p if there exist p-atoms {ai}i∈N ⊂ Ap and (λi)i∈N ∈ `1(N)

such that

f =
∞

∑
i=1

λiai, a.e.,

and define the norm

‖ f ‖H1,p = inf
{
∑ |λi| : f = ∑ λiai

}
,

where the infinimum is taken over all possible representations of f .

Remark 7.4. From (λi) ∈ `1 and ‖ai‖1 ⩽ 1, it follows that ∑ λiai converges
in L1(Rn). For f ∈ L1(Rn), then the equality f = ∑ λiai holds in L1(Rn).
We could certainly give a similar definition in the more general setting
of f ∈ S ′(Rn). Then, we ask about the convergence of the series in
the sense of S ′(Rn) in the definition. As L1(Rn) embeds in S ′(Rn), it
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coincides with the L1 function ∑ λiai after identification.

We have the following completeness and embedding relations, whose
proofs are left to the reader.

Proposition 7.5. (i) For 1 < p ⩽ ∞, (H1,p, ‖ · ‖H1,p) is a Banach space.
(ii) For 1 < p < r < ∞, we have

H1,∞ ⊂ H1,r ⊂ H1,p ⊂ L1.

We begin with the construction of dyadic cubes on Rn.

Definition 7.6 (Dyadic cubes). Let [0, 1)n be the reference cube and let
j ∈ Z and k ∈ Zn. Then define the dyadic cube of generation j with
lower left corner 2−jk

Qj,k =
{

x ∈ Rn : 2jx − k ∈ [0, 1)n
}

,

the set of generation j dyadic cubes

Qj =
{

Qj,k : k ∈ Zn} ,

and the set of all dyadic cubes

Q =
⋃
j∈Z

Qj =
{

Qj,k : j ∈ Z and k ∈ Zn} .

We define the length of a cube to be its side length `(Qj,k) = 2−j.

The crucial property of dyadic cubes is the nesting property: if two
dyadic cubes overlap, then one must contain the other. This leads to a
dyadic version of Vitali-type covering lemma (Lemma 2.5):

Lemma 7.7 (Dyadic Vitali-type covering lemma). Let Q1, · · · , QN be a
finite collection of dyadic cubes. Then there is a subcollection Qn1 , · · · , Qnk

of disjoint cubes such that

Qn1

⋃
· · ·

⋃
Qnk = Q1

⋃
· · ·

⋃
QN .

Proof. Take the Qni to be the maximal dyadic cubes in Q1, · · · , QN , i.e.,
the cubes that are not contained in any other cubes in this collection.
The nesting property then ensures that they are disjoint and cover all of
Q1, · · · , QN between them. q

If we define the dyadic maximal function

M∆ f (x) := sup
Q3x

1
|Q|

∫
Q
| f (y)|dy

where Q ranges over the dyadic cubes that contain x; then, the same argu-
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ment as before gives the dyadic Hardy-Littlewood maximal inequality

‖M∆ f ‖L1,∞(Rn) ⩽ ‖ f ‖L1(Rn), (7.1)

(with no constant loss whatsoever!) which then leads via Marcinkiewicz
interpolation to

‖M∆ f ‖Lp(Rn) ⩽ Cp‖ f ‖Lp(Rn),

for 1 < p ⩽ ∞.

If we consider a Q0 ∈ Q, let D(Q0) be the collection of dyadic subcubes
of Q0, then we may define

M∆ f (x) = sup
Q∈D(Q0),Q3x

1
|Q|

∫
Q
| f (y)|dy

for x ∈ Q0 and f ∈ L1
loc(Q0). We also have the weak type (1, 1) and type

(p, p) estimates for p ∈ (1, ∞].

Theorem 7.8 (Equivalence of H1,p spaces). For 1 < p < ∞, H1,∞ = H1,p

with equivalent norms.

Proof. (i) We establish the Calderón-Zygmund decomposition of func-
tions. More precisely, for a given p-atom a, we show that there exists
a decomposition a = b + g where b ∈ H1,p with ‖b‖H1,p ⩽ 1/2 (due to
‖a‖H1,p ⩽ 1) and g ∈ H1,∞ with ‖g‖H1,∞ ⩽ C(n, p).

Let Q be a dyadic cube in Rn such that a ∈ A
p
Q. Let D(Q) denote the

dyadic subcubes of Q. We have

Avg
Q

|a|p =
1
|Q|

∫
Q
|a|pdx ⩽ 1

|Q|p .

Fix α > 0 with αp > Avg
Q

|a|p to be chosen later and let

Eα =
{

x ∈ Q : [(M∆|a|p)(x)]1/p > α
}

.

If Eα 6= ∅, then for x ∈ Eα, there exists a Qi ∈ D(Q) such that x ∈ Qi
and Avg

Qi

|a|p > αp. Let B be the collection of all such cubes. Since Q is

countable, B is also countable. Then, for every Qi ∈ B, we have Qi ⊂ Eα;
therefore, Eα =

⋃
Qi∈B Qi. The nesting property ensures that Eα =

⋃∞
i=1 Qi

where Qi ∈ D(Q) is maximal for the property that Avg
Qi

|a|p > αp. We also

have Eα 6= Q. Set

bi = (a − Avg
Qi

a)χQi

and b =
∞
∑

i=1
bi. Then, let g = a − b.
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Let us see the properties of bi. First, supp bi ⊂ Qi and∫
Qi

bidx = 0.

Due to
∫

Qi
|a|pdx = |Qi|Avg

Qi

|a|p and |Avg
Qi

a| ⩽ (Avg
Qi

|a|p)1/p, we also have

‖bi‖p ⩽
(∫

Qi

|a|pdx
)1/p

+ |Avg
Qi

a||Qi|1/p = |Qi|−1/p′λi,

where λi = 2[Avg
Qi

|a|p]1/p|Qi| > 2α|Qi| > 0. Thus, ai =
1
λi

bi is a p-atom.

By the Hölder inequality and the dyadic maximal inequality, we ob-
tain

∞

∑
i=1

λi =2
∞

∑
i=1

[∫
Qi

|a|pdx
]1/p

|Qi|1−1/p ⩽ 2

[
∞

∑
i=1

∫
Qi

|a|pdx

]1/p [ ∞

∑
i=1

|Qi|
]1/p′

⩽2
[∫

Q
|a|pdx

]1/p

|Eα|1/p′ ⩽ 2
[∫

Q
|a|pdx

]1/p
(
‖a‖p

p

αp

)1−1/p

=2‖a‖p
pα1−p ⩽ 2|Q|−p/p′α1−p = 2

(
1

α|Q|

)p−1

.

Now, we choose α such that

2
(

1
α|Q|

)p−1

=
1
2

,

that is,

α =
cp

|Q| ,

with cp = 41/(p−1). Then, it follows that ‖b‖H1,p ⩽ 1/2.
Next, we consider g, i.e.,

g =

a in Q \ Eα,

Avg
Qi

a in Qi, for each i.

In Q \ Eα, since |a|p ⩽ M∆|a|p ⩽ αp a.e., we have |g| ⩽ α a.e. In Qi, by
maximality of Qi and the Hölder inequality, it yields

|Avg
Qi

a| ⩽ Avg
Qi

|a| ⩽ 2n Avg
Qi

∨

|a| ⩽ 2n(Avg
Qi

∨

|a|p)1/p ⩽ 2nα,

where Qi

∨

is the parent cube of Qi. Hence, |g| ⩽ 2nα. It follows that

‖g‖∞ ⩽ 2nα =
2ncp

|Q| .

We also have
∫

Q g =
∫

Q a = 0, so 1
2ncp

g ∈ A∞
Q which implies that g ∈ H1,∞

with ‖g‖H1,∞ ⩽ 2ncp.
(ii) Fix f0 ∈ H1,p with f0 6= 0. We show that there exists a decompo-
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sition f0 = f1 + g0 with

‖ f1‖H1,p ⩽ 2
3
‖ f0‖H1,p , ‖g0‖H1,∞ ⩽ 4

3
2ncp‖ f0‖H1,p .

In fact, for every ε > 0, there exists an atomic decomposition f0 =
∞
∑

i=1
λiai

such that
∞

∑
i=1

|λi| ⩽ ‖ f0‖H1,p + ε.

Applying (i) to each ai to find a decomposition ai = bi + gi with ‖bi‖H1,p ⩽
1/2. Then, f1 =

∞
∑

i=1
λibi exists since H1,p is a Banach space, and

‖ f1‖H1,p ⩽ 1
2

∞

∑
i=1

|λi| ⩽
1
2
(‖ f0‖H1,p + ε).

Thus, we may choose ε = ‖ f0‖H1,p /3, then ‖ f1‖H1,p ⩽ 2
3‖ f0‖H1,p . Let

g0 =
∞
∑

i=1
λigi, where the sum converges in H1,∞ because it is a Banach

space and ‖gj‖H1,∞ ⩽ 2ncp, we find

‖g0‖H1,∞ ⩽ 2ncp(‖ f0‖H1,p + ε) =
4
3

2ncp‖ f0‖H1,p .

(iii) We iterate

f0 = f1 + g0,

f1 = f2 + g1,

f2 = f3 + g2,
... =

...

and so for each k,

f0 = fk + g0 + g1 + · · ·+ gk−1.

Of course, as k → ∞, fk → 0 in H1,p due to ‖ fk‖H1,p ⩽
( 2

3

)k ‖ f0‖H1,p and
g0 + g1 + · · ·+ gk−1 converges to g in H1,∞ with

‖g‖H1,∞ ⩽ 4
3

2ncp

∞

∑
j=0

(
2
3

)j

‖ f0‖H1,p = 2n+2p/(p−1)‖ f0‖H1,p .

By Proposition 7.5, convergence in H1,∞ implies convergence in H1,p and
thus f0 = g and f0 ∈ H1,∞. q

This motivates the following definition.

Definition 7.9 (Hardy space H1). We define Hardy space H1 to be any
H1,p for 1 < p ⩽ ∞ with the corresponding norm.

Now, we state a characterization of this space.
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Definition 7.10. Let a, b > 0. Let Φ ∈ S (Rn) and f ∈ S ′(Rn). We
define the smooth maximal function of f with respect to Φ as

M( f ; Φ)(x) = sup
t>0

|(Φt ∗ f )(x)|.

Then, we recall the following result, and one can see [Gra14b, Theo-
rem 2.1.4] and subsequent discussion therein.

Theorem 7.11. For any Φ ∈ S with
∫

Rn Φ(x)dx = 1 and any bounded
f ∈ S ′(Rn), the following quasinorms are equivalent

‖ f ‖H1 ∼ ‖M( f ; Φ)‖1,

with constants that depend only on Φ and n.

§ 7.2 BMO spaces

§ 7.2.1 Definition and basic properties of BMO

Functions of bounded mean oscillation were introduced by F. John
and L. Nirenberg [JN61] in connection with differential equations.

Definition 7.12. The mean oscillation of f ∈ L1
loc(R

n) over a cube
Q ⊂ Rn is defined as

f̃Q =
1
|Q|

∫
Q
| f (x)− Avg

Q
f |dx,

where Avg
Q

f is the average value of f on the cube Q, i.e.,

Avg
Q

f =
1
|Q|

∫
Q

f (x)dx.

Definition 7.13 (BMO). For f a complex-valued locally integrable
function of Rn, set

‖ f ‖BMO = sup
Q

f̃Q = sup
Q

Avg
Q

| f − Avg
Q

f |,

where the supremum is taken over all cubes Q in Rn. The function f
is of bounded mean oscillation if ‖ f ‖BMO < ∞, the set

BMO(Rn) = { f ∈ L1
loc(R

n) : ‖ f ‖BMO < ∞}

is called the function space of bounded mean oscillation or the BMO
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space.

Remark 7.14. 1) BMO(Rn) is a linear space, that is, if f , g ∈ BMO(Rn)

and λ ∈ C, then f + g and λ f are also in BMO(Rn) and

‖ f + g‖BMO ⩽‖ f ‖BMO + ‖g‖BMO,

‖λ f ‖BMO =|λ|‖ f ‖BMO.

2) ‖ · ‖BMO is not a norm. The problem is that if ‖ f ‖BMO = 0, this
does not imply that f = 0 but that f is a constant. Moreover, every
constant function c satisfies ‖c‖BMO = 0. Consequently, functions f and
f + c have the same BMO norms whenever c is a constant. In the sequel,
we keep in mind that elements of BMO whose difference is a constant
are identified. Although ‖ · ‖BMO is only a seminorm, we occasionally
refer to it as a norm when there is no possibility of confusion.

We give a list of basic properties of BMO.

Proposition 7.15. The following properties of the space BMO(Rn) are valid:
(i) If ‖ f ‖BMO = 0, then f is a.e. equal to a constant.

(ii) L∞(Rn) ↪→ BMO(Rn) and ‖ f ‖BMO ⩽ 2‖ f ‖∞.
(iii) Suppose that there exists an A > 0 such that for all cubes Q in Rn

there exists a constant cQ such that

sup
Q

1
|Q|

∫
Q
| f (x)− cQ|dx ⩽ A. (7.2)

Then f ∈ BMO(Rn) and ‖ f ‖BMO ⩽ 2A.
(iv) For all f ∈ L1

loc(R
n), we have

1
2
‖ f ‖BMO ⩽ sup

Q

1
|Q| inf

cQ

∫
Q
| f (x)− cQ|dx ⩽ ‖ f ‖BMO.

(v) If f ∈ BMO(Rn), h ∈ Rn and τh f is given by τh f (x) = f (x − h),
then τh f is also in BMO(Rn) and

‖τh f ‖BMO = ‖ f ‖BMO.

(vi) If f ∈ BMO(Rn) and λ > 0, then the function δλ( f ) defined by
δλ f (x) = f (λx) is also in BMO(Rn) and

‖δλ f ‖BMO = ‖ f ‖BMO.

(vii) If f ∈ BMO(Rn), then so is | f |. Similarly, if f and g are real-valued
BMO functions, then so are max( f , g) and min( f , g). Moreover,

‖| f |‖BMO ⩽2‖ f ‖BMO,

‖max( f , g)‖BMO ⩽3
2
(‖ f ‖BMO + ‖g‖BMO) ,
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‖min( f , g)‖BMO ⩽3
2
(‖ f ‖BMO + ‖g‖BMO) .

(viii) For f ∈ L1
loc(R

n), define

‖ f ‖BMOballs = sup
B

1
|B|

∫
B
| f (x)− Avg

B
f |dx, (7.3)

where the supremum is taken over all balls B in Rn. Then there are
positive constants cn and Cn such that

cn‖ f ‖BMO ⩽ ‖ f ‖BMOballs ⩽ Cn‖ f ‖BMO.

(ix) Let f ∈ BMO be real valued. Then we have the following approxima-
tion by truncation. For N > 0, let

fN(x) =


N, f (x) > N,

f (x), −N ⩽ f (x) ⩽ N,

−N, f (x) < −N.

Then, fN ∈ L∞(Rn), ‖ fN‖BMO ⩽ 2‖ f ‖BMO and fN → f a.e. in Rn.
(x) Assume f is complex valued. Then f ∈ BMO iff Re f , Im f ∈ BMO

and

‖Re f ‖BMO, ‖ Im f ‖BMO ⩽ ‖ f ‖BMO ⩽ ‖Re f ‖BMO + ‖ Im f ‖BMO.

Proof. To prove (i), note that f has to be a.e. equal to its average cN over
every cube [−N, N]n. Since [−N, N]n is contained in [−N − 1, N + 1]n, it
follows that cN = cN+1 for all N. This implies the required conclusion.

To prove (ii), observe that

Avg
Q

| f − Avg
Q

f | ⩽ Avg
Q

(
| f |+ |Avg

Q
f |
)

⩽ 2 Avg
Q

| f | ⩽ 2‖ f ‖∞.

For (iii), note that

| f − Avg
Q

f | ⩽ | f − cQ|+ |Avg
Q

f − cQ| ⩽ | f − cQ|+
1
|Q|

∫
Q
| f (t)− cQ|dt.

Averaging over Q and using (7.2), we obtain that ‖ f ‖BMO ⩽ 2A.
The lower inequality in (iv) follows from the last inequality while the

upper inequality is trivial.
(v) follows from Avg

Q
τh f = Avg

Q−h
f .

For (vi), note that Avg
Q

δλ f = Avg
λQ

f and thus

1
|Q|

∫
Q
| f (λx)− Avg

Q
δλ f |dx =

1
|λQ|

∫
λQ

| f (x)− Avg
λQ

f |dx.
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The first inequality in (vii) is a consequence of the fact that∣∣∣∣∣| f (x)| − Avg
Q

| f |
∣∣∣∣∣ =

∣∣∣∣| f (x)| − 1
|Q|

∫
Q
| f (t)|dt

∣∣∣∣
=

∣∣∣∣ 1
|Q|

∫
Q
(| f (x)| − | f (t)|)dt

∣∣∣∣
⩽
∣∣∣∣ 1
|Q|

∫
Q
(| f (x)− f (t)|)dt

∣∣∣∣
⩽
∣∣∣∣∣ 1
|Q|

∫
Q
| f (x)− Avg

Q
f |dt +

1
|Q|

∫
Q
|Avg

Q
f − f (t)|dt

∣∣∣∣∣
⩽| f − Avg

Q
f |+ Avg

Q
| f − Avg

Q
f |.

The second and the third inequalities in (vii) follow from the first inequal-
ity in (vii) and the facts that

max( f , g) =
f + g + | f − g|

2
, min( f , g) =

f + g − | f − g|
2

.

We now turn to (viii). Given any cube Q in Rn, let B be the smallest
ball that contains it. Then |B|/|Q| = 2−nVn

√
nn due to |Q| = (2r)n and

|B| = Vn(
√

nr)n, and

1
|Q|

∫
Q
| f (x)− Avg

B
f |dx ⩽ |B|

|Q|
1
|B|

∫
B
| f (x)− Avg

B
f |dx

⩽Vn
√

nn

2n ‖ f ‖BMOballs .

It follows from (iii) that

‖ f ‖BMO ⩽ 21−nVn
√

nn‖ f ‖BMOballs .

To obtain the reverse conclusion, given any ball B find the smallest cube
Q that contains it, with |B| = Vnrn and |Q| = (2r)n, and argue similarly
using a version of (iii) for the space BMOballs.

For (ix), let Q be a cube and x, y ∈ Q. Then, | fN(x) − fN(y)| ⩽
| f (x)− f (y)| and

fN(x)− Avg
Q

fN =
1
|Q|

∫
Q
( fN(x)− fN(y))dy.

Thus, it follows
1
|Q|

∫
Q
| fN(x)− Avg

Q
fN |dx

⩽ 1
|Q|2

∫
Q

∫
Q
| fN(x)− fN(y)|dxdy

⩽ 1
|Q|2

∫
Q

∫
Q
| f (x)− Avg

Q
f + Avg

Q
f − f (y)|dxdy
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⩽ 1
|Q|2

∫
Q

∫
Q
[| f (x)− Avg

Q
f |+ |Avg

Q
f − f (y)|]dxdy

⩽2‖ f ‖BMO.

Taking the supremum over all Q yields the desired result.
For (x), we leave it as an exercise. q

From Proposition 7.15 (ii), we know L∞ ↪→ BMO. However, the con-
verse is false; that is, L∞(Rn) is a proper subspace of BMO(Rn). A simple
example that already typifies some of the essential properties of BMO is
given by the following.

Example 7.16. ln |x| ∈ BMO(Rn).

Solution. For every x0 ∈ Rn and R > 0, we find a constant Cx0,R such that
the average of | ln |x|−Cx0,R| over the ball B(x0, R) = {x ∈ Rn : |x − x0| ⩽ R}
is uniformly bounded. The constant Cx0,R = ln |x0| if |x0| > 2R and
Cx0,R = ln R if |x0| ⩽ 2R has this property. Indeed, if |x0| > 2R, then

1
VnRn

∫
|x−x0|⩽R

|ln |x| − Cx0,R| dx

=
1

VnRn

∫
|x−x0|⩽R

∣∣∣∣ln |x|
|x0|

∣∣∣∣ dx ⩽ max
(

ln
3
2

,
∣∣∣∣ln 1

2

∣∣∣∣) = ln 2,

since 1
2 |x0| ⩽ |x| ⩽ 3

2 |x0| when |x − x0| ⩽ R and |x0| > 2R. Additionally, if
|x0| ⩽ 2R, then

1
VnRn

∫
|x−x0|⩽R

|ln |x| − Cx0,R| dx

=
1

VnRn

∫
|x−x0|⩽R

∣∣∣∣ln |x|
R

∣∣∣∣ dx ⩽ 1
VnRn

∫
|x|⩽3R

∣∣∣∣ln |x|
R

∣∣∣∣ dx

=
1

Vn

∫
|x|⩽3

|ln |x|| dx =
ωn−1

Vn

∫ 3

0
rn−1| ln r|dr

=n
∫ 1

0
(−1)rn ln r

dr
r
+ n

∫ 3

1
rn−1 ln rdr (let ln r = −t)

⩽n
∫ ∞

0
te−ntdt + n ln 3

∫ 3

1
rn−1dr ⩽ 1

n
+ 3n ln 3.

Thus, ln |x| is in BMO in view of Proposition 7.15 (viii). q

Example 7.17. Let

f (x) =

{
ln |x|, x ⩽ 0,

− ln |x|, x > 0.

Since f is an odd function, we have Avg
[−a,a]

f = 1
2a

∫ a
−a f (x)dx = 0 for every

interval [−a, a] ⊂ R. For 0 < a < 1, we obtain

‖ f ‖BMO ⩾ 1
2a

∫ a

−a
| f (x)|dx = −1

a

∫ a

0
ln xdx
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=
1
a

[
−x ln x|a0 +

∫ a

0
dx
]
= 1 − ln a → ∞, as a → 0+.

Thus, f /∈ BMO, even though | f (x)| = | ln |x|| ∈ BMO by Example 7.16
and Proposition 7.15 (vii). Thus, | f | ∈ BMO does NOT imply that f ∈
BMO. Since f = | f | sgn f with | f | ∈ BMO and sgn f ∈ L∞(Rn) ⊂
BMO, this also shows that the product of two functions in BMO does
not necessarily belong to BMO.

It is interesting to observe that an abrupt cut-off of a BMO function
may not give a function in the same space.

Example 7.18. The function h(x) = χ{x>0} ln 1
x = 1

2 ( f (x)− ln |x|) /∈ BMO
in view of Examples 7.16 and 7.17.

A useful related fact is the following, which describes the behavior of
BMO functions at infinity.

Theorem 7.19. Let f ∈ BMO; then, f (x)(1 + |x|n+1)−1 is integrable on
Rn, and we have

I =
∫

Rn

| f (x)− Avg
Q0

f |

1 + |x|n+1 dx ⩽ C‖ f ‖BMO,

where C is independent of f , and Q0 = Q(0, 1) is the cube centered at the
origin with side length 1.

Proof. Let Qk = Q(0, 2k), Sk = Qk \ Qk−1 for k ∈ N, S0 = Q0, and

Ik =
∫

Sk

| f (x)− Avg
Q0

f |

1 + |x|n+1 dx, k ∈ N0.

Then, we have

I = I0 +
∞

∑
k=1

Ik.

Since

I0 =
∫

Q0

| f (x)− Avg
Q0

f |

1 + |x|n+1 dx ⩽
∫

Q0

| f (x)− Avg
Q0

f |dx ⩽ |Q0| ‖ f ‖BMO,

it suffices to prove Ik ⩽ Ck‖ f ‖BMO and ∑
k

Ck < ∞. For x ∈ Sk = Q(0, 2k) \

Q(0, 2k−1), we have |x| > 2k−2 and then

1 + |x|n+1 > 1 + 2(k−2)(n+1) > 4−(n+1)2k(n+1).

Hence,

Ik ⩽4n+12−k(n+1)
∫

Qk

| f (x)− Avg
Q0

f |dx
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⩽4n+12−k(n+1)
∫

Qk

[| f (x)− Avg
Qk

f |+ |Avg
Qk

f − Avg
Q0

f |]dx

⩽4n+12−k(n+1) |Qk| (‖ f ‖BMO + |Avg
Qk

f − Avg
Q0

f |)

=4n+12−k(n+1)2kn(‖ f ‖BMO + |Avg
Qk

f − Avg
Q0

f |).

The second term can be controlled as follows:

|Avg
Qk

f − Avg
Q0

f | ⩽
k

∑
i=1

|Avg
Qi

f − Avg
Qi−1

f |

⩽
k

∑
i=1

1
|Qi−1|

∫
Qi−1

| f (x)− Avg
Qi

f |dx

⩽
k

∑
i=1

2n

|Qi|

∫
Qi

| f (x)− Avg
Qi

f |dx

⩽k · 2n‖ f ‖BMO. (7.4)

Therefore,

Ik ⩽ 4n+12−k(1 + k2n)‖ f ‖BMO,

where Ck = Ck2−k and
∞
∑

k=1
Ck = 2C < ∞ due to

∞

∑
k=1

k2−k =2
∞

∑
k=1

k2−k −
∞

∑
k=1

k2−k =
∞

∑
k=0

(k + 1)2−k −
∞

∑
k=1

k2−k

=1 +
∞

∑
k=1

2−k = 2.

This completes the proof. q

Let us now look at more basic properties of BMO functions. As in
(7.4), if a cube Q1 is contained in a cube Q2, then

|Avg
Q1

f − Avg
Q2

f | =
∣∣∣∣∣ 1
|Q1|

∫
Q1

f dx − Avg
Q2

f

∣∣∣∣∣ ⩽ 1
|Q1|

∫
Q1

| f − Avg
Q2

f |dx

⩽ 1
|Q1|

∫
Q2

| f − Avg
Q2

f |dx

⩽ |Q2|
|Q1|

‖ f ‖BMO. (7.5)

The same estimate holds if sets Q1 and Q2 are balls.

A version of this inequality is the first statement in the following
proposition. For simplicity, we denote by ‖ f ‖BMO the expression given
by ‖ f ‖BMOballs in (7.3) since these quantities are comparable. For a ball B
and a > 0, aB denotes the ball that is concentric with B and whose radius
is a times the radius of B.
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Proposition 7.20. (i) Let f ∈ BMO(Rn). Given a ball B and a positive
integer m, we have

|Avg
B

f − Avg
2mB

f | ⩽ 2nm‖ f ‖BMO. (7.6)

(ii) For any δ > 0, there is a constant Cn,δ such that for any ball B(x0, R)
we have

Rδ
∫

Rn

| f (x)− Avg
B(x0,R)

f |

(R + |x − x0|)n+δ
dx ⩽ Cn,δ‖ f ‖BMO. (7.7)

An analogous estimate holds for cubes with center x0 and side length
R.

(iii) There exists a constant Cn such that for all f ∈ BMO(Rn), we have

sup
y∈Rn

sup
t>0

∫
Rn

| f (x)− (Pt ∗ f )(y)|Pt(x − y)dx ⩽ Cn‖ f ‖BMO. (7.8)

Here

Pt(x) =
Γ
( n+1

2

)
π

n+1
2

t

(t2 + |x|2) n+1
2

denotes the Poisson kernel.
(iv) Conversely, there is a constant C′

n such that for all f ∈ L1
loc(R

n) for
which ∫

Rn

| f (x)|
(1 + |x|)n+1 dx < ∞,

we have f ∗ Pt is well-defined and

C′
n‖ f ‖BMO ⩽ sup

y∈Rn
sup
t>0

∫
Rn

| f (x)− (Pt ∗ f )(y)|Pt(x − y)dx. (7.9)

Proof. (i) We have the desired result as in (7.4).
(ii) In the proof below, we take B(x0, R) to be the ball B = B(0, 1)

with radius 1 centered at the origin. Once this case is known, given a
ball B(x0, R), we replace the function f by the function f (Rx + x0). When
B = B(0, 1), we have by (i)

∫
Rn

| f (x)− Avg
B

f |

(1 + |x|)n+δ
dx

⩽
∫

B

| f (x)− Avg
B

f |

(1 + |x|)n+δ
dx

+
∞

∑
k=0

∫
2k+1B\2kB

| f (x)− Avg
2k+1B

f |+ | Avg
2k+1B

f − Avg
B

f |

(1 + |x|)n+δ
dx



174 7. Hardy and BMO Spaces

⩽
∫

B
| f (x)− Avg

B
f |dx

+
∞

∑
k=0

2−k(n+δ)
∫

2k+1B
(| f (x)− Avg

2k+1B
f |+ | Avg

2k+1B
f − Avg

B
f |)dx

⩽Vn‖ f ‖BMO +
∞

∑
k=0

2−k(n+δ)(1 + 2n(k + 1))(2k+1)nVn‖ f ‖BMO

=C′
n,δ‖ f ‖BMO.

(iii) The proof of (7.8) is a reprise of the argument given in (ii). Set
Bt = B(y, t). We first prove a version of (7.8) in which the expression
(Pt ∗ f )(y) is replaced by Avg

Bt

f . For fixed y, t, we have by (ii)

Γ
( n+1

2

)
π

n+1
2

∫
Rn

t| f (x)− Avg
Bt

f |

(t2 + |x − y|2) n+1
2

dx ⩽ C′′
n‖ f ‖BMO. (7.10)

Moving the absolute value outside, this inequality implies∫
Rn

|(Pt ∗ f )(y)− Avg
Bt

f |Pt(x − y)dx

=|(Pt ∗ f )(y)− Avg
Bt

f |

⩽
∫

Rn
Pt(x − y)| f (x)− Avg

Bt

f |dx

⩽C′′
n‖ f ‖BMO.

Combining this last inequality with (7.10) yields (7.8) with constant Cn =

2C′′
n .

(iv) Conversely, let A be the expression on the right side of (7.9). For
|x − y| ⩽ t, we have Pt(x − y) ⩾ cnt(2t2)−(n+1)/2 = c′nt−n, which gives

A ⩾
∫

Rn
| f (x)− (Pt ∗ f )(y)|Pt(x − y)dx ⩾ c′n

tn

∫
|x−y|⩽t

| f (x)− (Pt ∗ f )(y)|dx.

Proposition 7.15 (iii) now implies that

‖ f ‖BMO ⩽ 2A/(Vnc′n).

This concludes the proof of the proposition. q

§ 7.2.2 John-Nirenberg inequality

Having set down some basic facts about BMO, we now turn to a
deeper property of BMO functions: their exponential integrability. We
begin with a preliminary example.

Example 7.21. Let f (x) = ln |x|, I = (0, b), and

Eα = {x ∈ I : | ln x − Avg
I

f | > α},
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then we have

Eα ={x ∈ I : ln x − Avg
I

f > α} ∪ {x ∈ I : ln x − Avg
I

f < −α}

={x ∈ I : x > e
α+Avg

I
f
} ∪ {x ∈ I : x < e

−α+Avg
I

f
}.

When α is sufficiently large, the first set is an empty set, and the second

set is
(

0, e
−α+Avg

I
f
)

. Thus,

|Eα| = e
−α+Avg

I
f
.

Since

Avg
I

f =
1
b

∫ b

0
ln xdx =

1
b

(
x ln x|b0 −

∫ b

0
dx
)
= ln b − 1,

we have,

|Eα| = |I|e−α−1.

That is, the distribution function decays exponentially.

Although the above relation is obtained from the function ln |x| over
(0, b), it indeed reflects an essential property for any BMO function in the
BMO space. The John-Nirenberg inequality gives a similar exponential
estimate for the distribution function of oscillation of an arbitrary BMO
function. The proof that we present here is based on a recursive use of the
Calderón-Zygmund decomposition of cubes.

Theorem 7.22 (John-Nirenberg inequality). For all f ∈ BMO(Rn) such
that ‖ f ‖BMO 6= 0, for all cubes Q, and all α > 0, we have

|{x ∈ Q : | f (x)− Avg
Q

f | > α}| ⩽ e|Q|e−Aα/‖ f ‖BMO (7.11)

with A = (2ne)−1.

Proof. Since inequality (7.11) is not altered when we multiply both f and
α by the same constant, it suffices to assume that ‖ f ‖BMO = 1. Let us now
fix a closed cube Q and a constant b > 1 to be chosen later.

We apply the Calderón-Zygmund decomposition for the function f −
Avg

Q
f at height b in the cube Q (similar to Theorem 2.13 by replacing Rn

with Q).
Step 1. We introduce the following selection criterion for a cube R:

1
|R|

∫
R
| f (x)− Avg

Q
f |dx > b. (7.12)

Since
1
|Q|

∫
Q
| f (x)− Avg

Q
f |dx ⩽ ‖ f ‖BMO = 1 < b,
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the cube Q does not satisfy the selection criterion (7.12). Set Q(0) = Q
and subdivide Q(0) into 2n equal closed subcubes of side length equal to
half of the side length of Q. Select such a subcube R if it satisfies the
selection criterion (7.12). Now subdivide all nonselected cubes into 2n

equal subcubes of half their side length by bisecting the sides and select
among these subcubes those that satisfy (7.12). Continue this process
indefinitely. We obtain a countable collection of dyadic cubes {Q(1)

j }j
satisfying the following properties:

(A-1) The interior of every Q(1)
j is contained in Q(0).

(B-1) b <
∣∣∣Q(1)

j

∣∣∣−1 ∫
Q(1)

j
| f (x)− Avg

Q(0)

f |dx ⩽ 2nb.

(C-1)
∣∣∣Avg

Q(1)
j

f − Avg
Q(0)

f
∣∣∣ ⩽ 2nb.

(D-1) ∑
j

∣∣∣Q(1)
j

∣∣∣ ⩽ 1
b ∑

j

∫
Q(1)

j
| f (x)− Avg

Q(0)

f |dx ⩽ 1
b

∣∣∣Q(0)
∣∣∣.

(E-1) | f − Avg
Q(0)

f | ⩽ b a.e. on the set Q(0) \ ∪jQ
(1)
j .

We call the cubes Q(1)
j of the first generation. Note that (C-1) is due to

the upper inequality in (B-1), and (D-1) follows from the lower inequality
in (B-1) and the fact

1
|Q|

∫
Q
| f (x)− Avg

Q
f |dx ⩽ ‖ f ‖BMO = 1.

Step 2. We now fix a selected first-generation cube Q(1)
j , and we

introduce the following selection criterion for a cube R:

1
|R|

∫
R
| f (x)− Avg

Q(1)
j

f |dx > b. (7.13)

Observe that Q(1)
j does not satisfy the selection criterion (7.13). We apply

a similar Calderón-Zygmund decomposition for the function f −Avg
Q(1)

j

f at

height b in every cube Q(1)
j . Subdivide Q(1)

j into 2n equal closed subcubes

of side length equal to half of the side length of Q(1)
j by bisecting the

sides, and select such a subcube R if it satisfies the selection criterion
(7.13). Continue this process indefinitely. This process is repeated for any
other cube Q(1)

j of the first generation. We obtain a collection of dyadic

cubes {Q(2)
l }l of the second generation each contained in some Q(1)

j such
that versions of (A-1)-(E-1) are satisfied, with the superscript (2) replacing
(1) and the superscript (1) replacing (0). We use superscript (k) to denote
the generation of the selected cubes.

Step 3. For a fixed selected cube Q(2)
l of the second generation, intro-
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duce the selection criterion
1
|R|

∫
R
| f (x)− Avg

Q(2)
l

f |dx > b. (7.14)

and repeat the previous process to obtain a collection of cubes of third
generation inside Q(2)

l . Repeat this procedure for any other cube Q(2)
l of

the second generation. Denote by {Q(3)
s }s the thus obtained collection of

all cubes of the third generation.
Step 4. We iterate this procedure indefinitely to obtain a doubly

indexed family of dyadic cubes Q(k)
j satisfying the following properties:

(A-k) The interior of every Q(k)
j is contained in Q(k−1)

j′ .

(B-k) b <
∣∣∣Q(k)

j

∣∣∣−1 ∫
Q(k)

j
| f (x)− Avg

Q(k−1)
j′

f |dx ⩽ 2nb.

(C-k)
∣∣∣Avg

Q(k)
j

f − Avg
Q(k−1)

j′

f
∣∣∣ ⩽ 2nb.

(D-k) ∑
j

∣∣∣Q(k)
j

∣∣∣ ⩽ 1
b ∑

j′

∣∣∣Q(k−1)
j′

∣∣∣.
(E-k) | f − Avg

Q(k−1)
j′

f | ⩽ b a.e. on the set Q(k−1)
j′ \ ∪jQ

(k)
j .

We prove (A-k)-(E-k). Note that (A-k) and the lower inequality in
(B-k) are satisfied by construction. The upper inequality in (B-k) is a con-
sequence of the fact that the unique cube Q(k)

j0
with double the side length

of Q(k)
j that contains it was not selected in the process. Now, (C-k) follows

from the upper inequality in (B-k). (E-k) is a consequence of the Lebesgue
differentiation theorem, since for almost every point in Q(k−1)

j \ ∪jQ
(k)
j

there is a sequence of cubes shrinking to it, and the averages of

| f − Avg
Q(k−1)

j′

f |

over all these cubes is at most b.
It remains to be proven (D-k). We have by (B-k)

∑
j

∣∣∣Q(k)
j

∣∣∣ <1
b ∑

j

∫
Q(k)

j

| f (x)− Avg
Q(k−1)

j′

f |dx

=
1
b ∑

j′
∑

j corresp. to j′

∫
Q(k)

j

| f (x)− Avg
Q(k−1)

j′

f |dx

⩽1
b ∑

j′

∫
Q(k−1)

j′
| f (x)− Avg

Q(k−1)
j′

f |dx

⩽1
b ∑

j′

∣∣∣Q(k−1)
j′

∣∣∣ ‖ f ‖BMO =
1
b ∑

j′

∣∣∣Q(k−1)
j′

∣∣∣ .
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Having established (A-k)-(E-k), we turn to some consequences. Applying
(D-k) successively k − 1 times, we obtain

∑
j

∣∣∣Q(k)
j

∣∣∣ ⩽ b−k
∣∣∣Q(0)

∣∣∣ . (7.15)

For any fixed j, since (C-1) |Avg
Q(1)

j

f −Avg
Q(0)

f | ⩽ 2nb and (E-2) | f −Avg
Q(1)

j

f | ⩽ b

a.e. on Q(1)
j \ ∪lQ

(2)
l , we have

| f − Avg
Q(0)

f | ⩽ 2nb + b a.e. on Q(1)
j \ ∪lQ

(2)
l ,

which, combined with (E-1), yields

| f − Avg
Q(0)

f | ⩽ 2n2b a.e. on Q(0) \ ∪lQ
(2)
l . (7.16)

For every fixed l, we also have (E-3) | f − Avg
Q(2)

l

f | ⩽ b a.e. on Q(2)
l \ ∪sQ(3)

s ,

which combined with (C-2) |Avg
Q(2)

l

f − Avg
Q(1)

l′

f | ⩽ 2nb and (C-1) |Avg
Q(1)

l′

f −

Avg
Q(0)

f | ⩽ 2nb yields

| f − Avg
Q(0)

f | ⩽ 2n3b a.e. on Q(2)
l \ ∪sQ(3)

s .

In view of (7.16), the same estimate is valid on Q(0) \ ∪sQ(3)
s . Continuing

this reasoning, we obtain by induction that for all k ⩾ 1, we have

| f − Avg
Q(0)

f | ⩽ 2nkb a.e. on Q(0) \ ∪sQ(k)
s .

This proves the almost everywhere inclusion

{x ∈ Q : | f (x)− Avg
Q

f | > 2nkb}
a.e.
⊂ ∪jQ

(k)
j (7.17)

for all k = 1, 2, 3, · · · . (This also holds when k = 0.) We fix an α > 0. If

2nkb < α ⩽ 2n(k + 1)b

for some k ⩾ 0, then from (7.17) and (7.15), we have∣∣∣∣∣
{

x ∈ Q : | f (x)− Avg
Q

f | > α

}∣∣∣∣∣ ⩽
∣∣∣∣∣
{

x ∈ Q : | f (x)− Avg
Q

f | > 2nkb

}∣∣∣∣∣
⩽∑

j

∣∣∣Q(k)
j

∣∣∣ ⩽ 1
bk

∣∣∣Q(0)
∣∣∣ = |Q|e−k ln b ⩽ |Q|be−α ln b/(2nb),

since −k ⩽ 1 − α
2nb . Choosing b = e > 1 yields (7.11). q

The John-Nirenberg inequality tells us that logarithmic blowup, as for
f (x) = ln |x|, is the worst possible behavior for a general BMO function.
In this sense the John-Nirenberg inequality is the best possible result we
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can hope for.

Having proven the important John-Nirenberg inequality (7.11), we are
now able to deduce from it a few corollaries.

Corollary 7.23. Every BMO function is exponentially integrable over any
cube. More precisely, for any γ < 1/(2ne), for all f ∈ BMO(Rn), and all
cubes Q, we have

1
|Q|

∫
Q

e
γ
∣∣ f (x)−Avg

Q
f
∣∣/‖ f ‖BMO

dx ⩽ 1 +
2ne2γ

1 − 2neγ
.

Proof. Let h = γ| f (x)− Avg
Q

f |/‖ f ‖BMO and γ < A = (2ne)−1. By (7.11),

we have the distribution function

h∗(α) = |{x ∈ Q : | f (x)− Avg
Q

f | > α‖ f ‖BMO/γ}| ⩽ e|Q|e−Aα/γ,

which yields, by Theorem 1.16 with φ(t) = et − 1 (so φ(0) = 0) and
integration by parts, that

1
|Q|

∫
Q

ehdx =1 +
1
|Q|

∫
Q
(eh − 1)dx = 1 − 1

|Q|

∫ ∞

0
(eα − 1)dh∗(α)

=1 +
1
|Q|

[
−(eα − 1)h∗(α)|∞0 +

∫ ∞

0
eαh∗(α)dα

]
=1 +

1
|Q|

∫ ∞

0
eαh∗(α)dα.

Then, we obtain

1
|Q|

∫
Q

e
γ| f (x)−Avg

Q
f |/‖ f ‖BMO

dx

⩽1 +
∫ ∞

0
eαee−A α

γ dα

=1 + e
∫ ∞

0
eα(1−1/(2neγ))dα = 1 +

2ne2γ

1 − 2neγ
,

thus, we complete the proof. q

For another important corollary, we define the following.

Definition 7.24 (BMOp). Let 1 < p < ∞; for f ∈ Lp
loc(R

n), we define

‖ f ‖BMOp = sup
Q

(
Avg

Q
| f − Avg

Q
f |p
)1/p

,

and

BMOp =
{

f ∈ Lp
loc(R

n) : ‖ f ‖BMOp < ∞
}

.
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Corollary 7.25. For all 1 < p < ∞, there exists a finite constant Bp,n such
that

‖ f ‖BMOp ⩽ Bp,n‖ f ‖BMO(Rn). (7.18)

Proof. We have from Theorem 1.17 and the John-Nirenberg inequality

1
|Q|

∫
Q
| f (x)− Avg

Q
f |pdx =

p
|Q|

∫ ∞

0
αp−1

∣∣∣∣∣{x ∈ Q : | f (x)− Avg
Q

f | > α}
∣∣∣∣∣ dα

⩽ p
|Q| e|Q|

∫ ∞

0
αp−1e−Aα/‖ f ‖BMO dα

=pΓ(p)
e

Ap ‖ f ‖p
BMO,

where A = (2ne)−1. Setting Bp,n = (pΓ(p) e
Ap )1/p = (pΓ(p))1/pe1+1/p2n,

we conclude the proof. q

Since the inequality in Corollary 7.25 can be reversed via Hölder’s
inequality, we obtain the following important Lp characterization of BMO
norms.

Corollary 7.26. For all 1 < p < ∞ and f ∈ L1
loc(R

n), we have

‖ f ‖BMOp ∼ ‖ f ‖BMO. (7.19)

Proof. One direction follows from Corollary 7.25, and the other follows
from the Hölder inequality. q

§ 7.3 Duality between H1 and BMO

The next result we give is a remarkable duality relationship between
the Hardy space H1 and BMO. Specifically, we have that BMO is isomor-
phic to the dual space of H1 with equivalent norms. This means that every
continuous linear functional on the Hardy space H1 can be realized as in-
tegration against a fixed BMO function, where integration in this context
is an abstract operation, not necessarily given by an absolutely convergent
integral. This relationship was first established by Fefferman and Stein in
[FS72] but using a different characterization of H1.

Theorem 7.27 (H1-BMO duality). The dual of H1 is isomorphic to BMO
with equivalent norms.

Proof. We work with H1 = H1,2 and BMO = BMO2 with corresponding
norms ‖ · ‖H1,2 and ‖ · ‖BMO2 , in view of Definition 7.9 and Corollary 7.26.
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(i) Take b ∈ L∞(Rn) and f ∈ H1,2. Define

Lb( f ) =
∫

Rn
b(x) f (x)dx,

which is well-defined since H1,2 ⊂ L1. If f =
∞
∑

i=1
λiai, we can apply the

dominated convergence theorem due to∫
Rn

∞

∑
i=1

|b(x)λiai(x)|dx ⩽ ‖b‖∞

∞

∑
i=1

|λi|.

If supp ai ⊂ Qi, then
∫

Qi
aidx = 0 by definition. Thus, ‖ai‖1 ⩽ 1 yields

|Lb(ai)| =
∣∣∣∣∣
∫

Rn
(b(x)− Avg

Qi

b)ai(x)dx

∣∣∣∣∣ ⩽ 2‖b‖∞,

which implies, by Hölder’s inequality, that

|Lb( f )| =
∣∣∣∣∣ ∞

∑
i=1

∫
Qi

(b(x)− Avg
Qi

b)λiai(x)dx

∣∣∣∣∣
⩽

∞

∑
i=1

(
1

|Qi|

∫
Qi

|b(x)− Avg
Qi

b|2dx

)1/2

|λi|
(
|Qi|

∫
Qi

|ai(x)|2dx
)1/2

⩽‖b‖BMO2

∞

∑
i=1

|λi|.

Taking an infinimum over all possible λi, we have

|Lb( f )| ⩽ ‖b‖BMO2‖ f ‖H1,2 .

(ii) Now take b ∈ BMO2 to be real-valued without loss of generality
(for complex-valued b, we may separate real and imaginary parts), and
f ∈ spanA2. Let (bk)

∞
k=1 be the truncation of b given by (ix) in Proposi-

tion 7.15. Thus, |bk| ⩽ |b| a.e., bk ↗ b a.e., and ‖bk‖BMO2 ⩽ 2‖b‖BMO2 . Sup-

pose that f =
m
∑

i=1
λiai and Lbk( f ) =

m
∑

i=1
λiLbk(ai). Since b ∈ BMO2, we have

b ∈ L1
loc(R

n), which implies b ∈ L2( supp ai). Thus, |bkai| ⩽ |bai| ∈ L1(Rn)

a.e. and by the dominated convergence theorem∫
Rn

bkaidx →
∫

Rn
baidx,

i.e., Lbk(ai) → Lb(ai) as k → ∞. It follows from |Lbk( f )| ⩽
‖bk‖BMO2‖ f ‖H1,2 ⩽ 2‖b‖BMO2‖ f ‖H1,2 that

|Lb( f )| ⩽ 2‖b‖BMO2‖ f ‖H1,2 .

(iii) By the density of spanA2 in H1,2, we can extend Lb to the whole
of H1,2. Let L̃b denote this extension. Thus, we have shown that whenever
b ∈ BMO2 we have L̃b ∈ (H1,2)′. Let T : BMO2 → (H1,2)′ denote the map
b 7→ L̃b which is linear.

(iv) We show that T is injective. Let b ∈ BMO2 be such that
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L̃b = 0 and show that b is constant. Fix a cube Q and let L2
0(Q) ={

f ∈ L2(Q) :
∫

Q f dx = 0
}

. Note that L2
0(Q) ⊂ H1,2. In fact, we take

f ∈ L2
0(Q) and λ = ‖ f ‖2|Q|1/2, then∥∥∥∥ f

λ

∥∥∥∥
2
⩽ 1

|Q|1/2 ,

so f /λ is a 2-atom. Thus, we get an expression f = λ f /λ, then by
definition

‖ f ‖H1,2 ⩽ λ = ‖ f ‖2|Q|1/2.

Thus, from

0 = L̃b( f ) = Lb( f ) =
∫

Q
b f dx, ∀ f ∈ L2

0(Q),

it follows that b|Q is constant a.e., since we can take a special f = b −
Avg

Q
b ∈ L2

0(Q) due to b ∈ BMO2 and then 0 =
∫

Q |b − Avg
Q

b|2dx. By

exhaustion of Rn by increasing Q, we deduce that b is constant.
(v) Finally, we show that T is surjective. Let L ∈ (H1,2)′ and fix a cube

Q. Since L2
0(Q) ⊂ H1,2, we have L|L2

0(Q) ∈ (L2
0(Q))′ = L2(Q)/{constants},

and thus, by the Riesz representation theorem, there exists a bQ ∈
(L2

0(Q))′ such that for all f ∈ L2
0(Q),

L( f ) =
∫

Q
bQ f dx

and ‖bQ‖L2(Q) = sup
‖ f ‖L2

0(Q)
⩽1

|L( f )| ⩽ sup
‖ f ‖L2

0(Q)
⩽1

‖L‖(H1,2)′‖ f ‖H1,2 ⩽

‖L‖(H1,2)′ |Q|1/2.
Let Q and Q′ denote two cubes with Q ⊂ Q′. Then, whenever f ∈

L2
0(Q), we have f ∈ L2

0(Q
′) and

L( f ) =
∫

Q
bQ f dx =

∫
Q′

bQ′ f dx,

so bQ − bQ′ is constant a.e. in Q as before. Define b as follows:

b(x) =

{
b[−1,1]n(x), x ∈ [−1, 1]n,

b[−2j,2j]n(x) + cj, x ∈ [−2j, 2j]n \ [−2j−1, 2j−1]n, j ⩾ 1,

where cj is the constant such that b[−2j,2j]n − b[−1,1]n = −cj on [−1, 1]n.
We show that b ∈ BMO2, ‖b‖BMO2 ⩽ ‖L‖(H1,2)′ and L = L̃b.

Fix Q, and let j ∈ N such that Q ⊂ [−2j, 2j]n. Let k be such that
2 ⩽ k ⩽ j. Then, ck − ck−1 = b[−2k ,2k ]n − b[−2k−1,2k−1]n which is constant on
[−2k−1, 2k−1]n and in particular on [−2k−1, 2k−1]n \ [−2k−2, 2k−2]n. There-
fore, b(x) = b[−2j,2j]n(x) + cj on all of [−2j, 2j]n and in particular on Q.
Additionally, there exists a constant c such that b[−2j,2j]n − bQ = c on the



§7.4. Carleson measures 183

cube Q and so b = bQ + c + cj on Q. Then,

b − Avg
Q

b = bQ + c + cj − Avg
Q

bQ − c − cj = bQ

since Avg
Q

bQ = 0. Therefore,

∫
Q
|b − Avg

Q
b|2dx =

∫
Q
|bQ|2dx ⩽ ‖L‖2

(H1,2)′ |Q|.

The fact that L = L̃b follows from the fact that L(a) = L̃b(a) for all a ∈
A2. q

§ 7.4 Carleson measures

§ 7.4.1 Nontangential maximal functions and Carleson measures

Definition 7.28 (Cone). Let x ∈ Rn. We define the cone over x as
follows:

Γ(x) = {(y, t) ∈ Rn+1
+ : |x − y| < t}.

Definition 7.29 (Nontangential maximal function). Let F : Rn+1
+ → C

and define the nontangential maximal function of F:

M∗F(x) = sup
(y,t)∈Γ(x)

|F(y, t)| ∈ [0, ∞].

Remark 7.30. (i) We observe that if M∗F(x) = 0 for almost all x ∈ Rn, then
F is identically equal to zero on Rn+1

+ . To establish this claim, suppose
that |F(x0, t0)| > 0 for some point (x0, t0) ∈ Rn ×R+. Then, for all z with
|z − x0| < t0, we have (x0, t0) ∈ Γ(z); hence, M∗F(z) ⩾ |F(x0, t0)| > 0.
Thus, M∗F > 0 on the ball B(x0, t0), which is a set of positive measures,
a contradiction.

(ii) Given a Borel measure µ on Rn+1
+ , we can define the nontangen-

tial maximal function M∗
µ w.r.t. µ by replacing sup with ess sup. Note

then that M∗
µ is defined µ-a.e.

Definition 7.31 (Tent). Let B = B(x0, r) ⊂ Rn be an open ball. We
define the cylindrical tent over B to be the “cylindrical set”

T(B) = {(x, t) ∈ Rn+1
+ : x ∈ B, 0 < t ⩽ r} = B × (0, r].

Similarly, for a cube Q in Rn, we define the tent over Q to be the cube

T(Q) = Q × (0, `(Q)].
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Definition 7.32 (Carleson measure). A Carleson measure is a positive
measure µ on Rn+1

+ such that there exists a constant C < ∞ for which

µ(T(B)) ⩽ C|B|

for all B = B(x, r). We define the Carleson norm as

‖µ‖C = sup
B

µ(T(B))
|B| .

Remark 7.33. In the definition of the Carleson norm, B and T(B) can be
replaced by the cubes Q and T(Q), respectively. One can easily verify
that they are equivalent.

Example 7.34. The following measures are not Carleson measures.
(i) The Lebesgue measure dµ(x, t) = dxdt since no such constant C

is possible for large balls.
(ii) dµ(x, t) = dx dt

t since µ(B × (0, r]) = |B|
∫ r

0
dt
t = ∞.

(iii) dµ(x, t) = dxdt
tα for α ∈ R. Note that

µ(B × (0, r]) = |B|
∫ r

0

dt
tα

=

|B| r1−α

1 − α
, 1 − α > 0,

∞, otherwise.

Therefore, we only need to consider the case α < 1, but in this case, we
cannot obtain uniform control via a constant C.

Example 7.35. The following are examples of Carleson measures.
(i) dµ(x, t) = χ[a,b](t)dx dt

t where 0 < a < b < ∞. Then, the constant
C = ln b

a .
(ii) dµ(y, t) = χΓ(x)(y)dy dt

t . Then,

µ(B × (0, r]) ⩽
∫ r

0
|B(x, t)|dt

t
=
∫ r

0
tn|B(0, 1)|dt

t
=

rn|B(0, 1)|
n

=
|B|
n

.

(iii) Let L be a line in R2. For measurable subsets A ⊂ R2
+, define

µ(A) to be the linear Lebesgue measure of the set L ∩ A. Then µ is
a Carleson measure on R2

+. Indeed, the linear measure of the part of
a line inside the box T(B) = [x0 − r, x0 + r] × (0, r] is at most equal
to the diagonal of the box, i.e.,

√
5r where B = [x0 − r, x0 + r], thus

µ(T(B)) ⩽
√

5r =
√

5
2 |B|.

Definition 7.36 (Carleson function). The Carleson function of the mea-
sure µ is defined as

C (µ)(x) = sup
B3x

µ(T(B))
|B| ∈ [0, ∞].

Observe that ‖C (µ)‖∞ = ‖µ‖C for Carleson measure µ.
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Theorem 7.37 (Carleson Lemma). There exists a dimensional constant
Cn such that for all α > 0, all measure µ on Rn+1

+ , and all µ-measurable
functions F : Rn+1

+ → C, the set Ωα = {x ∈ Rn : M∗F(x) > α} is open
(thus M∗F is Lebesgue measurable) and we have

µ({(x, t) ∈ Rn+1
+ : |F(x, t)| > α}) ⩽ Cn

∫
{M∗F>α}

C (µ)(x)dx. (7.20)

In particular, if µ is a Carleson measure, then

µ({|F| > α}) ⩽ Cn‖µ‖C |{M∗F > α}|. (7.21)

Proof. We first prove that for any µ-measurable function F, the set Ωα is
open, and consequently, M∗F is Lebesgue measurable. Indeed, if x0 ∈ Ωα,
then for any ε ∈ (0, M∗F(x0)− α) there exists a (y0, t0) ∈ Γ(x0) = {(y, t) ∈
Rn × R+ : |y − x0| < t} such that |F(y0, t0)| > M∗F(x0)− ε > α. If d0 is
the distance from (y0, t0) to the sphere formed by the intersection of the
hyperplane t0 + Rn (i.e., Rn × {t0}) with the boundary of the cone Γ(x0),
then |x0 − y0| = t0 − d0. It follows the open ball B(x0, d0) ⊂ Ωα since for
z ∈ B(x0, d0) we have |z − y0| ⩽ |z − x0|+ |x0 − y0| < d0 + t0 − d0 = t0,
i.e., (y0, t0) ∈ Γ(z); hence, M∗F(z) ⩾ |F(y0, t0)| > α.

Let {Qk} be the Whitney decomposition (i.e., Lemma 2.15) of the set
Ωα. For each x ∈ Ωα, set δα(x) = dist (x, Ωc

α). Then, for z ∈ Qk, we have

δα(z) ⩽
√

n`(Qk) + dist (Qk, Ωc
α)

⩽
√

n`(Qk) + 4 diam (Qk) = 5
√

n`(Qk) (7.22)

in view of Lemma 2.15 (iii). For each Qk (centered at z0), let Bk be the
smallest ball that contains Qk. Then Bk is of radius

√
n`(Qk)/2 and cen-

tered at z0. Combine this observation with (7.22) to obtain that for any
z ∈ Qk and y ∈ B(z, δα(z))

|y − z0| ⩽|y − z|+ |z − z0| ⩽ δα(z) +
√

n`(Qk)/2

⩽11
2
√

n`(Qk) = 11rad(Bk),

namely,

z ∈ Qk =⇒ B(z, δα(z)) ⊂ 11Bk.

This implies that ⋃
z∈Ωα

T(B(z, δα(z))) ⊂
⋃
k

T(11Bk). (7.23)

Next, we claim that

{|F| > α} ⊂
⋃

z∈Ωα

T(B(z, δα(z))). (7.24)

Indeed, let (x, t) ∈ Rn+1
+ be such that |F(x, t)| > α. Then by the def-

inition of M∗F, we have that M∗F(y) > α for all y ∈ Rn satisfying
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|x − y| < t. Thus, B(x, t) ⊂ Ωα and so δα(x) ⩾ t. This gives that
(x, t) ∈ T(B(x, δα(x))), which proves (7.24).

Combining (7.23) and (7.24), we obtain

{|F| > α} ⊂
⋃
k

T(11Bk).

Applying the measure µ and using the definition of the Carleson function,
we obtain

µ({|F| > α}) ⩽∑
k

µ(T(11Bk))

⩽∑
k
|11Bk| inf

x∈11Bk
C (µ)(x)

⩽∑
k
|11Bk| inf

x∈Qk
C (µ)(x) (∵ Qk ⊂ 11Bk)

⩽11n ∑
k

|Bk|
|Qk|

∫
Qk

C (µ)(x)dx

⩽(11
√

n/2)nVn

∫
Ωα

C (µ)(x)dx.

This proves (7.20). It follows (7.21) in view of ‖C (µ)‖∞ = ‖µ‖C . q

Corollary 7.38. For any Carleson measure µ and every µ-measurable func-
tion F on Rn+1

+ , we have∫
Rn+1

+

|F(x, t)|pdµ(x, t) ⩽ Cn‖µ‖C

∫
Rn
(M∗F(x))pdx (7.25)

for all p ∈ [1, ∞).

Proof. From (7.21), applying Theorem 1.17 twice, we obtain∫
Rn+1

+

|F(x, t)|pdµ(x, t) =p
∫ ∞

0
αp−1µ({|F| > α})dα

⩽Cn‖µ‖C p
∫ ∞

0
αp−1|{M∗F > α}|dα

=Cn‖µ‖C

∫
Rn
(M∗F(x))pdx. q

A particular example of this situation arises when F(x, t) = f ∗ Φt(x)
for some nice integrable function Φ. Here and in the sequel, Φt(x) =

t−nΦ(t−1x). For instance, one may take Φt to be the Poisson kernel Pt.

Theorem 7.39. Let Φ be a function on Rn that satisfies for some 0 < C, δ <

∞,

|Φ(x)| ⩽ C
(1 + |x|)n+δ

. (7.26)

Let µ be a Carleson measure on Rn+1
+ . Then for every 1 < p < ∞, there is a



§7.4. Carleson measures 187

constant Cp,n(µ) such that for all f ∈ Lp(Rn) we have∫
Rn+1

+

|(Φt ∗ f )(x)|pdµ(x, t) ⩽ Cp,n(µ)
∫

Rn
| f (x)|pdx, (7.27)

where Cp,n(µ) ⩽ C(p, n)‖µ‖C .
Conversely, suppose that Φ is a nonnegative function that satisfies (7.26)

and
∫
|x|⩽1 Φ(x)dx > 0. If µ is a measure on Rn+1

+ such that for some 1 <

p < ∞ there is a constant Cp,n(µ) such that (7.27) holds for all f ∈ Lp(Rn),
then µ is a Carleson measure with norm at most a multiple of Cp,n(µ).

Proof. If µ is a Carleson measure, we may obtain (7.27) as a sequence of
Corollary 7.38. Indeed, for F(x, t) = (Φt ∗ f )(x), we have

M∗F(x) = sup
t>0

sup
y∈Rn

|y−x|<t

|(Φt ∗ f )(y)|

⩽ sup
t>0

sup
y∈Rn

|y−x|<t

∫
Rn

|Φt(y − z)|| f (z)|dz

= sup
t>0

sup
y∈Rn

|y−x|<t

∫
Rn

|Φt(y − x + x − z)|| f (z)|dz

⩽ sup
t>0

(
sup
y∈Rn

|y−x|<t

|Φt(y − x + ·)| ∗ | f |
)
(x)

= sup
t>0

(Ψt ∗ | f |)(x),

where

Ψ(x) := sup
|u|⩽1

|Φ(x − u)| ⩽


C, |x| ⩽ 1,

C
|x|n+δ

, |x| > 1,

by condition (7.26). Thus, it is clear that ‖Ψ‖L1(Rn) ⩽ C(Vn + ωn−1/δ). It
follows from Theorem 2.10 that

M∗F(x) ⩽ C(n, δ)M(| f |)(x).

Then, by Theorem 2.6, we obtain∫
Rn
(M∗F(x))pdx ⩽ C(n, δ)

∫
Rn
(M(| f |)(x))pdx ⩽ C(n, δ, p)

∫
Rn

| f (x)|pdx.

Therefore, from Corollary 7.38, (7.27) follows.
Conversely, if (7.27) holds, then we fix a ball B = B(x0, r) in Rn with

center x0 and radius r > 0. Then for (x, t) ∈ T(B), we have

(Φt ∗ χ2B)(x) =
∫

2B
Φt(x − y)dy =

∫
x−2B

Φt(y)dy

⩾
∫

B(0,t)
Φt(y)dy =

∫
B(0,1)

Φ(y)dy = cn > 0,
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since B(0, t) ⊂ x − 2B(x0, r) whenever t ⩽ r. Therefore, we have from
(7.27)

µ(T(B)) =
∫

T(B)
dµ(x, t) ⩽ 1

cp
n

∫
T(B)

cp
ndµ(x, t)

⩽ 1
cp

n

∫
T(B)

|(Φt ∗ χ2B)(x)|pdµ(x, t)

⩽ 1
cp

n

∫
Rn+1

+

|(Φt ∗ χ2B)(x)|pdµ(x, t)

⩽Cp,n(µ)

cp
n

∫
Rn

|χ2B(x)|pdx

=
2nCp,n(µ)

cp
n

|B|.

This proves that µ is a Carleson measure with ‖µ‖C ⩽ 2nc−p
n Cn,p(µ). q

§ 7.4.2 BMO functions and Carleson measures

We now turn to an interesting connection between BMO functions and
Carleson measures as follows.

Theorem 7.40. Let b ∈ BMO(Rn) and Ψ ∈ L1(Rn) with
∫

Rn Ψ(x)dx = 0
satisfying

|Ψ(x)| ⩽ A(1 + |x|)−n−δ (7.28)

for some 0 < A, δ < ∞. Consider the dilation Ψt = t−nΨ(t−1x).
(i) Suppose that

sup
ξ∈Rn

∑
j∈Z

|Ψ

∨

(2−jξ)|2 ⩽ B2 < ∞ (7.29)

and let δ2−j(t) be the Dirac mass at the point t = 2−j. Then there is a
constant Cn,δ such that

dµ(x, t) = ∑
j∈Z

|(Ψ2−j ∗ b)(x)|2dxδ2−j(t)dt

is a Carleson measure on Rn+1
+ with norm at most Cn,δ(A +

B)2‖b‖2
BMO.

(ii) Suppose that

sup
ξ∈Rn

∫ ∞

0
|Ψ

∨

(tξ)|2 dt
t
⩽ B2 < ∞. (7.30)

Then the continuous version dν(x, t) of dµ(x, t) defined by

dν(x, t) = |(Ψt ∗ b)(x)|2dx
dt
t

is a Carleson measure on Rn+1
+ with norm at most Cn,δ(A +
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B)2‖b‖2
BMO for some constant Cn,δ.

(iii) Let δ, A > 0. Suppose that {Kt}t>0 are functions on Rn × Rn that
satisfy

|Kt(x, y)| ⩽ Atδ

(t + |x − y|)n+δ
(7.31)

for all t > 0 and all x, y ∈ Rn. Let Rt be the linear operator

Rt( f )(x) =
∫

Rn
Kt(x, y) f (y)dy,

which is well-defined for all f ∈ ⋃
p∈[1,∞]

Lp(Rn). Suppose that Rt(1) =

0 for all t > 0 and that there is a constant B > 0 such that∫ ∞

0

∫
Rn

|Rt( f )(x)|2 dxdt
t

⩽ B2‖ f ‖2
L2(Rn) (7.32)

for all f ∈ L2(Rn). Then for all b ∈ BMO, the measure

|Rt(b)(x)|2 dxdt
t

is Carleson with norm at most a constant multiple of (A+ B)2‖b‖2
BMO.

Proof. (i) The measure µ is defined so that for every µ-integrable function
F on Rn+1

+ , we have∫
Rn+1

+

F(x, t)dµ(x, t) = ∑
j∈Z

∫
Rn

|(Ψ2−j ∗ b)(x)|2F(x, 2−j)dx, (7.33)

since
∫

R+ δ2−j(t)F(x, t)dt = F(x, 2−j).
For a cube Q ⊂ Rn, let Q∗ be the cube with the same center and

orientation whose side length is 3
√

n`(Q), where `(Q) is the side length
of Q. Fix a cube Q ⊂ Rn, take F = χT(Q), and split b as

b = (b − Avg
Q

b)χQ∗ + (b − Avg
Q

b)χ(Q∗)c + Avg
Q

b.

Since Ψ has a mean value of zero, Ψ2−j ∗ Avg
Q

b = 0. Then, (7.33) gives

µ(T(Q)) = ∑
2−j⩽`(Q)

∫
Q
|Ψ2−j ∗ b(x)|2dx ⩽ 2Σ1 + 2Σ2,

where

Σ1 = ∑
j∈Z

∫
Rn

|Ψ2−j ∗ ((b − Avg
Q

b)χQ∗)(x)|2dx,

Σ2 = ∑
2−j⩽`(Q)

∫
Q
|Ψ2−j ∗ ((b − Avg

Q
b)χ(Q∗)c)(x)|2dx.
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Using Plancherel’s theorem twice and (7.29), we obtain

Σ1 =(2π)n
∫

Rn
∑
j∈Z

|Ψ

∨

(2−jη)|2|((b − Avg
Q

b)χQ∗)

∨

(η)|2dη

⩽(2π)n sup
ξ

∑
j∈Z

|Ψ

∨

(2−jξ)|2
∫

Rn
|((b − Avg

Q
b)χQ∗)

∨

(η)|2dη

⩽CnB2
∫

Q∗
|b(x)− Avg

Q
b|2dx

⩽CnB2

[∫
Q∗

|b(x)− Avg
Q∗

b|2dx + |Q∗||Avg
Q∗

b − Avg
Q

b|2
]

⩽CnB2

[∫
Q∗

|b(x)− Avg
Q∗

b|2dx + ‖b‖2
BMO|Q|

]
⩽CnB2‖b‖2

BMO|Q|,

in view of (7.5) and Corollary 7.25. To estimate Σ2, we use the size esti-
mate (7.28) of the function Ψ to obtain

|(Ψ2−j ∗ (b − Avg
Q

b)χ(Q∗)c)(x)| ⩽
∫
(Q∗)c

A2−jδ|b(y)− Avg
Q

b|

(2−j + |x − y|)n+δ
dy. (7.34)

Denote cQ as the center of Q; then, for x ∈ Q and y ∈ (Q∗)c, we obtain

|y − x| ⩾ |y − cQ| − |cQ − x|

⩾1
2
|y − cQ|+

3
√

n
4

`(Q)− |cQ − x| (∵ |y − cQ| ⩾
1
2
`(Q∗) =

3
√

n
2

`(Q))

⩾1
2
|y − cQ|+

3
√

n
4

`(Q)−
√

n
2

`(Q)

=
1
2

(
|y − cQ|+

√
n

2
`(Q)

)
⩾1

4
(|y − cQ|+ `(Q)) .

Inserting this estimate in (7.34), integrating over Q, and summing over j
with 2−j ⩽ `(Q), we obtain

Σ2 ⩽Cn A2 ∑
j: 2−j⩽`(Q)

∫
Q

∫
Rn

2−jδ|b(y)− Avg
Q

b|

(`(Q) + |cQ − y|)n+δ
dy


2

dx

⩽Cn A2|Q|

∫
Rn

`(Q)δ|b(y)− Avg
Q

b|

(`(Q) + |cQ − y|)n+δ
dy


2

⩽Cn,δ A2|Q|‖b‖2
BMO

in view of (7.7). This proves that

Σ1 + Σ2 ⩽ Cn,δ(A2 + B2)|Q|‖b‖2
BMO,
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which implies that µ(T(Q)) ⩽ Cn,δ(A2 + B2)|Q|‖b‖2
BMO; thus, µ is a Car-

leson measure.
(ii) The proof can be obtained in a similar fashion as in (i).
(iii) This is a generalization of (ii) and is proven likewise. We sketch

its proof. Write

b = (b − Avg
Q

b)χQ∗ + (b − Avg
Q

b)χ(Q∗)c + Avg
Q

b

and note that Rt(Avg
Q

b) = 0 because Rt(1) = 0. We handle the term

containing Rt((b − Avg
Q

b)χQ∗) by using an L2 estimate over Q∗ and con-

dition (7.32), while for the term containing Rt((b − Avg
Q

b)χ(Q∗)c), we use

an L1 estimate and condition (7.31). In both cases, we obtain the required
conclusion in a way analogous to that in (i). q

Exercises

Exercise 7.1. Prove Proposition 7.5. (Notice: Do NOT use Theorem 7.8!)

Exercise 7.2. [Gra14b, Exercise 2.1.7(a)] Let 1 < q ⩽ ∞ and let g ∈ Lq(Rn)

be a compactly supported function with integral zero. Show that g ∈
H1(Rn).

Hint Pick a function Φ ∈ D supported in the unit ball with a nonvanish-
ing integral and suppose that supp g ⊂ B(0, R). For |x| ⩽ 2R, we have that
M(g; Φ)(x) ⩽ CΦ Mg(x), and since Mg ∈ Lq, it also lies in L1(B(0, 2R)).
For |x| > 2R, write (Φt ∗ g)(x) =

∫
Rn(Φt(x − y)− Φt(x))g(y)dy and use

the mean value theorem to estimate this expression by

t−n−1‖∇Φ‖∞‖g‖1 ⩽ |x|−n−1CΦ‖g‖q,

since t ⩾ |x − y| ⩾ |x| − |y| ⩾ |x|/2 whenever |x| ⩾ 2R and |y| ⩽ R. Thus,
M(g, Φ) ∈ L1(Rn) and then g ∈ H1 by Theorem 7.11.

Exercise 7.3. Prove (x) in Proposition 7.15.

Exercise 7.4. [Pey18, Exercise 6.8] Prove that BMO(Rn) is complete.

Exercise 7.5. [Gra14b, Exercise 3.1.6] Let a > 1 and f ∈ BMO(Rn). Show
that there exist dimensional constants Cn, C′

n such that

(i) for all balls B1 and B2 in Rn with radius R whose centers are at dis-
tance aR we have

|Avg
B1

f − Avg
B2

f | ⩽ C′
n ln(a + 1)‖ f ‖BMO.

(ii) Conclude that

| Avg
(a+1)B1

f − Avg
B2

f | ⩽ Cn ln(a + 1)‖ f ‖BMO.
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Hint (i) Replace Avg
B1

f by Avg
2aB1

f and Avg
B2

f by Avg
aB2

f and use the fact that

aB2 ⊂ 2aB1 and use Proposition 7.20 (i).

Exercise 7.6. [Pey18, Exercise 6.5] Let f ∈ L1
loc(R

2) be real valued only.
One assumes that there exists a constant C0 such that the following hold:

• for all x, the function y 7→ f (x, y) lies in BMO with a norm less than
or equal to C0;

• for all y, the function x 7→ f (x, y) lies in BMO with a norm less than
or equal to C0.

(i) Show that if Q = I × J is a square in R2, one has

1
|J|

∫
J

∣∣∣∣ 1
|I|

∫
I

f (x, y)dx − 1
|Q|

∫
Q

f (x, t)dxdt
∣∣∣∣ dy ⩽ C0.

(ii) Deduce from this that ‖ f ‖BMO(R2) ⩽ 2C0.
(iii) Let P be a polynomial in two variables with complex coefficients.

Show that ln |P| is in BMO and give an upper bound of its norm.

Exercise 7.7. [Pey18, Exercise 6.6] For α > 0, set gα(x) = ln(x2 + α).

(i) Show that, for all a and b such that 0 ⩽ a ⩽ b, one has∫ b

a
(ln(1 + b2)− ln(1 + x2))dx ⩽ 2(b − a).

Conclude that g1 ∈ BMO.
(ii) Show that, for all α > 0, one has ‖gα‖BMO = ‖g1‖BMO. Deduce from

this fact that ‖gα‖BMO = 2‖ ln |x|‖BMO.
(iii) Show that if P is a polynomial of degree n with complex coefficients

(the coefficient is 1 for the term with the highest degree), then ln |P|
is in BMO with a norm not exceeding n‖ ln |x|‖BMO.

Hint (ii) Use the monotonicity of the integral and Fatou’s lemma. (iii) To
factor P and use (ii).

Exercise 7.8. [Pey18, Exercise 6.11] Show that (ln |x|)2 is not in BMO(R).
Hint This function does not fulfil the John-Nirenberg inequality.



8
Standard Kernels and T(1) Theorem

We study singular integrals whose kernels do not necessarily com-
mute with translations. Such operators appear in many places in harmonic
analysis and PDEs. For instance, a large class of pseudodifferential opera-
tors fall under the scope of this theory.

This broader point of view does not necessarily bring additional com-
plications in the development of the subject except in the study of L2

boundedness, where Fourier transform techniques are lacking. The L2

boundedness of convolution operators is easily understood via a careful
examination of the Fourier transform of the kernel, but for nonconvolu-
tion operators different tools are required in this study. The main result of
this chapter is the derivation of a set of necessary and sufficient conditions
for non-convolution singular integrals to be L2 bounded. This result is re-
ferred to as the T(1) theorem and owes its name to a condition expressed
in terms of the action of operator T on function 1.

§ 8.1 General background and the role of BMO

We begin by recalling the notion of the adjoint and transpose operator.
One may choose to work with either a real or a complex inner product
on pairs of functions. For f , g complex-valued functions with integrable
products, we denote the real inner product by

〈 f , g〉 =
∫

Rn
f (x)g(x)dx.

This notation is suitable when we think of f as a distribution acting on a
test function g. We also have the complex inner product

( f , g) =
∫

Rn
f (x)g(x)dx,

which is an appropriate notation when we think of f and g as elements of
a Hilbert space over the complex numbers. Now suppose that T is a linear
operator bounded on Lp. Then the adjoint operator T∗ of T is uniquely
defined via the identity

(T f , g) = ( f , T∗g)
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for all f ∈ Lp and g ∈ Lp′ . The transpose operator Tt of T is uniquely
defined via the identity

〈T f , g〉 = 〈 f , Ttg〉 = 〈Ttg, f 〉

for all f ∈ Lp and g ∈ Lp′ . We easily have the following relationship
between the transpose and the adjoint of a linear operator T:

T∗ f = Tt f̄ ,

indicating that they have almost interchangeable use. In fact, it holds

(g, T∗ f ) = (Tg, f ) = 〈Tg, f̄ 〉 = 〈g, Tt f̄ 〉 = (g, Tt f̄ ),

which also implies that

T∗ f = Tt f̄ , Tt f = T∗ f̄ .

Because of these, in many cases, it is convenient to avoid complex conju-
gates and work with the transpose operator for simplicity. Observe that if
a linear operator T has kernel K(x, y), that is,

T f (x) =
∫

K(x, y) f (y)dy,

then the kernel of Tt is Kt(x, y) = K(y, x) and that of T∗ is K∗(x, y) =

K(y, x). Indeed, we have for f , g ∈ S (Rn)〈
Ttg, f

〉
= 〈T f , g〉 =

∫∫
K(x, y) f (y)dy g(x)dx =

∫∫
K(x, y)g(x)dx f (y)dy

=
∫∫

K(y, x)g(y)dy f (x)dx =

〈∫
K(y, ·)g(y)dy, f

〉
,

and

( f , T∗g) =(T f , g) =
∫∫

K(x, y) f (y)dy g(x)dx =
∫∫

K(x, y)g(x)dx f (y)dy

=
∫∫

K(y, x)g(y)dy f (x)dx =

(
f ,
∫

K(y, x)g(y)dy
)

.

An operator is called self-adjoint if T = T∗ and self-transpose if T =

Tt. For example, the operator iH, where H is the Hilbert transform, is
self-adjoint but not self-transpose, and the operator with kernel i(x + y)−1

is self-transpose but not self-adjoint.

§ 8.1.1 Standard kernels

The singular integrals we study in this chapter have kernels that sat-
isfy size and regularity properties similar to those of Calderón-Zygmund
operators of the classical convolution type. We introduce the relevant back-
ground.
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Definition 8.1 (Standard kernels). The function K(x, y) defined on
Rn × Rn \ {(x, x) : x ∈ Rn} that satisfies for some A > 0 the stan-
dard size condition

|K(x, y)| ⩽ A
|x − y|n (8.1)

and for some δ > 0 the (Hölder) regularity conditions

|K(x, y)− K(x′, y)| ⩽ A|x − x′|δ
(|x − y|+ |x′ − y|)n+δ

, (8.2)

whenever |x − x′| ⩽ 1
2 max(|x − y|, |x′ − y|) and

|K(x, y)− K(x, y′)| ⩽ A|y − y′|δ
(|x − y|+ |x − y′|)n+δ

, (8.3)

whenever |y− y′| ⩽ 1
2 max(|x − y|, |x − y′|), is called a standard kernel

(or Calderón-Zygmund kernel) with constants δ, A. The class of all
standard kernels with constants δ, A is denoted by SK(δ, A).

Given a kernel K(x, y) in SK(δ, A), we observe that the functions
K(y, x) and K(y, x) are also in SK(δ, A). These kernels have special names.
The function Kt(x, y) = K(y, x) is called the transpose kernel of K, while
the function K∗(x, y) = K(y, x) is called the adjoint kernel of K.

Remark 8.2. (i) Observe that if |x − x′| ⩽ 1
2 max(|x − y|, |x′ − y|), then

2 min(|x − y|, |x′ − y|) =|x − y|+ |x′ − y| −
∣∣|x − y| − |x′ − y|

∣∣
⩾|x − y|+ |x′ − y| − |x − x′|

⩾|x − y|+ |x′ − y| − 1
2

max(|x − y|, |x′ − y|)

=max(|x − y|, |x′ − y|) + min(|x − y|, |x′ − y|)

− 1
2

max(|x − y|, |x′ − y|),

which yields

max(|x − y|, |x′ − y|) ⩽ 2 min(|x − y|, |x′ − y|),

and
1
2
|x − y| ⩽min(|x − y|, |x′ − y|) ⩽ |x′ − y|

⩽max(|x − y|, |x′ − y|) ⩽ 2|x − y|,

i.e., the numbers |x − y| and |x′ − y| are comparable. Likewise, if the
roles of x and y are interchanged.

(ii) If (8.1) holds, we assume

|∇xK(x, y)|+ |∇yK(x, y)| ⩽ A
|x − y|n+1 , ∀x 6= y,
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then K ∈ SK(1, 4n+1A). In fact, if |x − x′| ⩽ 1
2 max(|x − y|, |x′ − y|), by

the mean value theorem, we obtain, for some θ = σx + (1 − σ)x′ and
σ ∈ [0, 1], that

|K(x, y)− K(x′, y)| ⩽|∇xK(θ, y)||x − x′| ⩽ A|x − x′|
|θ − y|n+1 ,

and from

|θ − y| =|σx + (1 − σ)x′ − y|

=
1
2
[|σ(x − x′) + x′ − y|+ |(1 − σ)(x′ − x) + x − y|]

⩾1
2
[|x′ − y| − σ|x − x′|+ |x − y| − (1 − σ)|x − x′|]

=
1
2
[|x − y|+ |x′ − y| − |x − x′|]

⩾1
2

[
|x − y|+ |x′ − y| − 1

2
max(|x − y|, |x′ − y|)

]
⩾1

4
(|x − y|+ |x′ − y|), (8.4)

it follows that

|K(x, y)− K(x′, y)| ⩽ 4n+1A|x − x′|
(|x − y|+ |x′ − y|)n+1 ,

i.e., (8.1). Similarly, we also have (8.2) whenever |y − y′| ⩽ 1
2 max(|x −

y|, |x − y′|). Thus, K ∈ SK(1, 4n+1 A).

Example 8.3. The function K(x, y) = |x − y|−n defined away from the
diagonal of Rn ×Rn is in SK(1, n4n+1). Indeed, for |x − x′| ⩽ 1

2 max(|x −
y|, |x′ − y|), the mean value theorem gives∣∣|x − y|−n − |x′ − y|−n∣∣ ⩽ n|x − x′|

|θ − y|n+1

for some θ = σx + (1 − σ)x′ and σ ∈ [0, 1]. From (8.4), it follows (8.2)
with A = n4n+1 and δ = 1. Likewise, (8.3) holds.

We are interested in standard kernels K ∈ SK(δ, A) for which there
are tempered distributions W ∈ S ′(Rn × Rn) that coincide with K on
Rn × Rn \ {(x, x) : x ∈ Rn}. This means that the convergent integral
representation

〈W, F〉 =
∫

Rn

∫
Rn

K(x, y)F(x, y)dxdy (8.5)

is valid whenever the Schwartz function F ∈ S (Rn × Rn) is supported
away from the diagonal {(x, x) : x ∈ Rn}. Note that the integral in (8.5) is
well-defined and absolutely convergent whenever F is a Schwartz function
whose support does not intersect the set {(x, x) : x ∈ Rn}. Additionally,
observe that there may be several distributions W coinciding with a fixed
function K(x, y). In fact, if W is such a distribution, then so is W + δx=y,
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where δx=y denotes the Lebesgue measure on the diagonal of R2n (i.e.,
some kind of Dirac distribution).

We recall a result about the Schwartz kernel (cf. [H0̈3, pp.128-130]) as
follows.

Theorem 8.4 (Schwartz kernel theorem). Every K ∈ D ′(X1 ×X2) defines
according to

〈Kϕ, ψ〉 = 〈K, ψ ⊗ ϕ〉 , ψ ∈ D(X1), ϕ ∈ D(X2), (8.6)

a linear map K from D(X2) to D ′(X1), which is continuous in the sense that
Kϕj → 0 in D ′(X1) if ϕj → 0 in D(X2). Conversely, for every such linear
map K, there is one and only one distribution K such that (8.6) is valid. One
calls K the kernel of K.

Remark 8.5. The same theorem also holds when D , D ′, X1 and X2 re-
placed by S , S ′, Rn and Rm, respectively.a The Schwartz kernel the-
orem is a philosophically useful fact, establishing a 1-1 correspondence
between the ‘most general’ operators in the present context and distri-
butional integral kernels, also called Schwartz kernels.

aOne can see the proof in http://math.mit.edu/˜eyjaffe/Short Notes/Distribution
Theory/.

For continuous linear operators

T : S (Rn) → S ′(Rn),

it follows that there is a distribution W ∈ S ′(R2n) satisfying

〈T f , ϕ〉 = 〈W, ϕ ⊗ f 〉 (8.7)

for f , ϕ ∈ S (Rn), where (ϕ ⊗ f )(x, y) = ϕ(x) f (y) for all x, y ∈ Rn, and
there exist constants C, N, M such that for all f , g ∈ S (Rn), we have

|〈T f , g〉| = |〈W, g ⊗ f 〉| ⩽ C
[

∑
|α|,|β|⩽N

|g|α,β

][
∑

|α|,|β|⩽N
| f |α,β

]
. (8.8)

Here |ϕ|α,β = sup
x∈Rn

|∂α
x(xβϕ)(x)| are the seminorms for the topology in S .

A distribution W that satisfies (8.7) and (8.8) is called a Schwartz kernel or
the distributional kernel of T.

Here, we study continuous linear operators T : S (Rn) → S ′(Rn)

whose distributional kernels coincide with standard kernels K(x, y) on
Rn × Rn \ {(x, x) : x ∈ Rn}. This means that (8.7) admits the absolutely
convergent integral representation

〈T f , ϕ〉 =
∫

Rn

∫
Rn

K(x, y) f (y)ϕ(x)dxdy (8.9)

whenever f and ϕ are Schwartz functions whose supports do not intersect.

http://math.mit.edu/~eyjaffe/Short Notes/Distribution Theory/Schwartz_Kernel_Theorem.pdf
http://math.mit.edu/~eyjaffe/Short Notes/Distribution Theory/Schwartz_Kernel_Theorem.pdf
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We make some remarks concerning duality in this context. Given
a continuous linear operator T : S (Rn) → S ′(Rn) with distributional
kernel W, we can define another distribution Wt as follows:〈

Wt, F
〉
=
〈
W, Ft〉 ,

where Ft(x, y) = F(y, x). This implies that for all f , ϕ ∈ S (Rn) we have

〈W, ϕ ⊗ f 〉 =
〈
Wt, f ⊗ ϕ

〉
.

It is a simple fact that the transpose operator Tt of T, which satisfies

〈Tϕ, f 〉 =
〈

Tt f , ϕ
〉

(8.10)

for all f , ϕ ∈ S (Rn), is the unique continuous linear operator from S (Rn)

to S ′(Rn) whose Schwartz kernel is the distribution Wt, that is, we have〈
Tt f , ϕ

〉
= 〈Tϕ, f 〉 = 〈W, f ⊗ ϕ〉 =

〈
Wt, ϕ ⊗ f

〉
. (8.11)

We now observe that a large class of standard kernels admits exten-
sions to tempered distributions W on R2n.

Example 8.6. Suppose that K(x, y) satisfies (8.1) and (8.2) and is anti-
symmetric in the sense that

K(x, y) = −K(y, x)

for all x 6= y in Rn. Then K also satisfies (8.3), and moreover, there is a
distribution W on R2n that extends K on Rn × Rn.

Indeed, define

〈W, F〉 = lim
ε→0

∫∫
|x−y|>ε

K(x, y)F(x, y)dydx (8.12)

for all F ∈ S (R2n). In view of anti-symmetry, we may write∫∫
|x−y|>ε

K(x, y)F(x, y)dydx =
1
2

∫∫
|x−y|>ε

K(x, y)[F(x, y)− F(y, x)]dydx.

By the mean value theorem, it holds for some θ, σ ∈ [0, 1] and F ∈
S (R2n)

|F(x, y)− F(y, x)|
⩽|F(x, y)− F(y, y)|+ |F(y, y)− F(y, x)|
=[|∇xF(θx + (1 − θ)y, y)|+ |∇yF(y, σy + (1 − σ)x)|]|x − y|

⩽ C|x − y|
(1 + |x|2 + |y|2)n+1 .

Then, by (8.1), we have

| 〈W, F〉 | ⩽ lim
ε→0

C
∫∫

|x−y|>ε

A
|x − y|n−1

1
(1 + |x|2 + |y|2)n+1 dydx

⩽CA lim
ε→0

∫∫
ε<|x−y|⩽1

1
|x − y|n−1

1
(1 + |x|2)n+1 dydx
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+ CA
∫∫

|x−y|>1

1
(1 + |x|2 + |y|2)n+1 dydx

⩽CA.

Thus, the limit in (8.12) exists and gives a tempered distribution on R2n.
We can then define an operator T : S (Rn) → S ′(Rn) with kernel W via

〈T f , ϕ〉 = lim
ε→0

∫∫
|x−y|>ε

K(x, y) f (y)ϕ(x)dydx

=
1
2

∫
Rn

∫
Rn

K(x, y)[ f (y)ϕ(x)− f (x)ϕ(y)]dydx,

for all f , ϕ ∈ S (Rn).

Example 8.7. Let A be a real-valued Lipschitz function on R. This means
that it satisfies the estimate |A(x) − A(y)| ⩽ L|x − y| for some L < ∞
and all x, y ∈ R. For x, y ∈ R, x 6= y, let

KA(x, y) =
1

x − y + i(A(x)− A(y))
. (8.13)

When |y − y′| ⩽ 1
2 max(|x − y|, |x − y′|), which yields 1

2 |x − y′| ⩽ |x −
y| ⩽ 2|x − y′| by Remark 8.2, it holds

|KA(x, y)− KA(x, y′)|

=

∣∣∣∣ 1
x − y + i(A(x)− A(y))

− 1
x − y′ + i(A(x)− A(y′))

∣∣∣∣
=

∣∣∣∣ y − y′ + i(A(y)− A(y′))
[x − y + i(A(x)− A(y))][x − y′ + i(A(x)− A(y′))]

∣∣∣∣
=

[(y − y′)2 + (A(y)− A(y′))2]1/2

[(x − y)2 + (A(x)− A(y))2]1/2[(x − y′)2 + (A(x)− A(y′))2]1/2

⩽ [1 + L2]1/2|y − y′|
|x − y||x − y′| ⩽ 4(1 + L)|y − y′|

|x − y|2 + |x − y′|2

⩽ 8(1 + L)|y − y′|
(|x − y|+ |x − y′|)2 .

Since KA is anti-symmetric, it follows that KA satisfies (8.2), and then
KA ∈ SK(1, 8(1 + L)).

Example 8.8. Let function A be as in the previous example. For each
integer m ⩾ 1 and x, y ∈ R, we set

Km(x, y) =
(

A(x)− A(y)
x − y

)m 1
x − y

. (8.14)

Clearly, Km is an anti-symmetric function. To see that each Km is a stan-
dard kernel, notice that when |y − y′| ⩽ 1

2 max(|x − y|, |x − y′|) we have∣∣Km(x, y)− Km(x, y′)
∣∣

=

∣∣∣∣(A(x)− A(y)
x − y

)m 1
x − y

−
(

A(x)− A(y′)
x − y′

)m 1
x − y′

∣∣∣∣
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⩽
∣∣∣∣(A(x)− A(y)

x − y

)m

−
(

A(x)− A(y′)
x − y′

)m∣∣∣∣ 1
|x − y|

+

∣∣∣∣A(x)− A(y′)
x − y′

∣∣∣∣m ∣∣∣∣ 1
x − y

− 1
x − y′

∣∣∣∣
⩽
∣∣∣∣A(x)− A(y)

x − y
− A(x)− A(y′)

x − y′

∣∣∣∣ 1
|x − y|

·
m−1

∑
j=0

∣∣∣∣A(x)− A(y)
x − y

∣∣∣∣m−1−j ∣∣∣∣A(x)− A(y′)
x − y′

∣∣∣∣j
+

∣∣∣∣A(x)− A(y′)
x − y′

∣∣∣∣m |y − y′|
|x − y||x − y′|

⩽mLm−1 1
|x − y|

|(x − y′)(A(x)− A(y))− (x − y)(A(x)− A(y′))|
|x − y||x − y′|

+ Lm |y − y′|
|x − y||x − y′|

=mLm−1 1
|x − y|

|(y − y′)(A(x)− A(y)) + (x − y)(A(y′)− A(y))|
|x − y||x − y′|

+ Lm |y − y′|
|x − y||x − y′|

⩽2mLm |y − y′|
|x − y||x − y′| + Lm |y − y′|

|x − y||x − y′|

⩽8(2m + 1)Lm |y − y′|
(|x − y|+ |x − y′|)2 .

It follows that Km ∈ SK(1, 8(2m + 1)Lm). The linear operator with kernel
(πi)−1Km is called the m-th Calderón commutator.

§ 8.1.2 Operators associated with standard kernels

Having introduced standard kernels, we are in a position to define
linear operators associated with them.

Definition 8.9. Let 0 < δ, A < ∞, and K ∈ SK(δ, A). A continuous
linear operator T from S (Rn) to S ′(Rn) is said to be associated with
K if it satisfies

T f (x) =
∫

Rn
K(x, y) f (y)dy (8.15)

for all f ∈ D and x /∈ supp f . If T is associated with K, then the
Schwartz kernel W of T coincides with K on Rn × Rn \ {(x, x) : x ∈
Rn}.

If T is associated with K and satisfies

‖Tϕ‖2 ⩽ B‖ϕ‖2 (8.16)
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for all ϕ ∈ S (Rn), then T is called a Calderón-Zygmund operator
associated with the standard kernel K. Such operators T admit a
bounded extension on L2(Rn), i.e., given any f ∈ L2(Rn) one can de-
fine T f as the unique L2 limit of the Cauchy sequence {Tϕk}k, where
ϕk ∈ S (Rn) and ϕk → f in L2. In this case, we keep the same notation
for the L2 extension of T.

In the sequel, we denote by CZO(δ, A, B) the class of all Calderón-
Zygmund operators associated with standard kernels in SK(δ, A) that
admit L2-bounded extensions with norm at most B.

Next, we discuss the important fact that once an operator T admits an
extension that is L2 bounded, then (8.15) holds for all f that are bounded
and compactly supported whenever x /∈ supp f .

Proposition 8.10. Let T ∈ CZO(δ, A, B) be associated with K ∈ SK(δ, A).
Then for every bounded and compactly supported function f and ϕ that sat-
isfy

dist ( supp ϕ, supp f ) > 0, (8.17)

then we have the (absolutely convergent) integral representation∫
Rn

T f (x)ϕ(x)dx =
∫

Rn

∫
Rn

K(x, y) f (y)ϕ(x)dydx. (8.18)

Moreover, given any bounded function f with compact support, there is a set
of measure zero E( f ) such that x0 /∈ E( f )

⋃
supp f we have the (absolutely

convergent) integral representation

T f (x0) =
∫

Rn
K(x0, y) f (y)dy. (8.19)

Proof. We first prove (8.18). Given f and ϕ bounded functions with com-
pact support, we select f j, ϕj ∈ D such that ϕj are uniformly bounded and
supported in a small neighborhood of the support of ϕ, ϕj → ϕ in L2 and
a.e., f j → f in L2 and a.e., and

dist ( supp ϕj, supp f j) ⩾
1
2

dist ( supp ϕ, supp f ) = c > 0 (8.20)

for all j ∈ Z+. In view of (8.9), identity (8.18) is valid for the functions f j
and ϕj in place of f and ϕ, i.e.,∫

Rn

∫
Rn

K(x, y) f j(y)ϕj(x)dydx =
∫

Rn
T f j(x)ϕj(x)dx. (8.21)

By the boundedness of T, it follows that T f j converges to T f in L2 and
thus as j → ∞ we have∣∣∣∣∫

Rn
T f j(x)ϕj(x)dx −

∫
Rn

T f (x)ϕ(x)dx
∣∣∣∣
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⩽
∫

Rn

∣∣T f j(x)− T f (x)
∣∣ |ϕj(x)|dx +

∫
Rn

|T f (x)|
∣∣ϕj(x)− ϕ(x)

∣∣ dx

⩽‖T f j − T f ‖2‖ϕj‖2 + ‖T f ‖2‖ϕj − ϕ‖2 → 0,

i.e., ∫
Rn

T f j(x)ϕj(x)dx →
∫

Rn
T f (x)ϕ(x)dx. (8.22)

From (8.20), it follows that as j → ∞∣∣∣∣∫
Rn

∫
Rn

K(x, y) f j(y)ϕj(x)dydx −
∫

Rn

∫
Rn

K(x, y) f (y)ϕ(x)dydx
∣∣∣∣

⩽
∣∣∣∣∫

Rn

∫
Rn

K(x, y)[ f j(y)− f (y)]ϕj(x)dydx
∣∣∣∣

+

∣∣∣∣∫
Rn

∫
Rn

K(x, y) f (y)[ϕj(x)− ϕ(x)]dydx
∣∣∣∣

⩽Ac−n (‖ f j − f ‖1‖ϕj‖1 + ‖ f ‖1‖ϕj − ϕ‖1
)

⩽CAc−n (‖ f j − f ‖2‖ϕj‖2 + ‖ f ‖2‖ϕj − ϕ‖2
)
→ 0,

which proves the validity of (8.18). Note that the double integral on the
right of (8.18) is absolutely convergent and bounded by A(2c)−n‖ f ‖1‖ϕ‖1

in view of (8.20).
To prove (8.19), we fix a compactly supported and bounded function

f , and we pick f j as before. Then, T f j → T f in L2, and thus, a sub-
sequence T f jl converges pointwise on Rn \ E( f ) by Riesz’s theorem, for
some measurable set E( f ) with |E( f )| = 0. Given x0 /∈ E( f )

⋃
supp f , we

have

T f jl(x0) =
∫

Rn
K(x0, y) f jl(y)dy

and letting l → ∞, we obtain (8.19) since T f jl(x0) → T f (x0) and∣∣∣∣∫
Rn

K(x0, y) f jl(y)dy −
∫

Rn
K(x0, y) f (y)dy

∣∣∣∣
⩽Ac−n‖ f jl − f ‖1 ⩽ CAc−n‖ f jl − f ‖2 → 0,

as l → ∞. Thus, (8.19) holds. q

We now define truncated kernels and operators.

Definition 8.11. Given a kernel K ∈ SK(δ, A) and ε > 0, we define the
truncated kernel

K(ε)(x, y) = K(x, y)χ|x−y|>ε.

Given a continuous linear operator T from S (Rn) to S ′(Rn) and
ε > 0, we define the truncated operator T(ε) by

T(ε) f (x) =
∫

Rn
K(ε)(x, y) f (y)dy
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and the maximal singular operator associated with T as follows:

T(∗) f (x) = sup
ε>0

∣∣∣T(ε) f (x)
∣∣∣ .

Note that both T(ε) and T(∗) are well-defined for f ∈ ⋃
1⩽p<∞ Lp(Rn)

by an application of Hölder’s inequality.

We investigate a certain connection between the boundedness of T
and the boundedness of the family {T(ε)}ε>0 uniformly in ε > 0.

Proposition 8.12. Let T ∈ CZO(δ, A, B) be associated with K ∈ SK(δ, A).
For ε > 0, let T(ε) be the truncated operators obtained from T. Assume that
there exists a constant B′ < ∞ such that

sup
ε>0

‖T(ε)‖L2→L2 ⩽ B′. (8.23)

Then, there exists a linear operator T0 defined on L2(Rn) such that
(i) For some subsequence ε j ↘ 0, we have∫

Rn
T(ε j) f (x)g(x)dx →

∫
Rn

T0 f (x)g(x)dx (8.24)

as j → ∞ for all f , g ∈ L2(Rn).
(ii) The distributional kernel of T0 coincides with K on

Rn × Rn \ {(x, x) : x ∈ Rn}.

(iii) T0 is bounded on L2(Rn) with norm

‖T0‖L2→L2 ⩽ B′.

(iv) There exists a measurable function b on Rn with ‖b‖∞ ⩽ B + B′ such
that

T0 f − T f = b f ,

for all f ∈ L2(Rn).

Proof. (i) Since L2(Rn) is separable, let { fk}∞
k=1 be a dense countable subset

of L2(Rn). By (8.23), the functions T(ε) fk lie in multiple of the unit closed
ball of (L2)∗, which is weak* compact by the Banach-Alaoglu theorem,
and then has a weak* converging subsequence due to the separability of
L2(Rn). Hence for each fk, we find a sequence {εk

j}∞
j=1 such that for each

g ∈ L2(Rn), we have

lim
j→∞

∫
Rn

T(εk
j ) fk(x)g(x)dx =

∫
Rn

T fk
0 (x)g(x)dx, (8.25)

for some function T fk
0 ∈ L2(Rn). Moreover, each {εk

j}∞
j=1 can be chosen

to be a subsequence of {εk−1
j }∞

j=1, k ⩾ 2. Then, the diagonal sequence
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{ε
j
j}∞

j=1 = {ε j}∞
j=1 satisfies

lim
j→∞

∫
Rn

T(ε j) fk(x)g(x)dx =
∫

Rn
T fk

0 (x)g(x)dx (8.26)

for each k and g ∈ L2. Since { fk}∞
k=1 is dense in L2(Rn), a standard ε/4

argument gives that the sequence of complex numbers

N(j) :=
∫

Rn
T(ε j) f (x)g(x)dx

=
∫

Rn
T(ε j)[ f (x)− fk(x)]g(x)dx +

∫
Rn

T(ε j) fk(x)g(x)dx

is Cauchy, and thus, it converges. Indeed, for sufficiently large j, l > k, it
holds

|N(j)− N(l)| ⩽
∣∣∣∣∫

Rn
T(ε j)[ f (x)− fk(x)]g(x)dx

∣∣∣∣
+

∣∣∣∣∫
Rn

T(ε l)[ f (x)− fk(x)]g(x)dx
∣∣∣∣

+

∣∣∣∣∫
Rn

T(ε j) fk(x)g(x)dx −
∫

Rn
T fk

0 (x)g(x)dx
∣∣∣∣

+

∣∣∣∣∫
Rn

T fk
0 (x)g(x)dx −

∫
Rn

T(ε l) fk(x)g(x)dx
∣∣∣∣

⩽2B′‖ f − fk‖2‖g‖2 + ε/4 + ε/4 ⩽ ε/2 + ε/2 = ε.

Now L2 is complete in the weak* topology since the unit ball of L2 in the
weak* topology is compact and metrizable; therefore, for each f ∈ L2(Rn),
there is a function T0 f such that (8.24) holds for all f , g ∈ L2(Rn) as j → ∞.
It is easy to see that T0 is a linear operator with the property T0 fk = T fk

0
for each k = 1, 2, . . .. This proves (i).

(ii) Let j → ∞ in the integral representation∫
Rn

T(ε j) f (x)g(x)dx =
∫

Rn

∫
Rn

K(ε j)(x, y) f (y)dyg(x)dx,

the l.h.s. tends to
∫

Rn T0 f (x)g(x)dx and the r.h.s. tends to∫
Rn

∫
Rn K(x, y) f (y)dyg(x)dx whenever f , g are Schwartz functions with

disjoint supports. This gives the result.
(iii) From (8.24) and (8.23), it follows that

‖T0 f ‖2 ⩽ sup
‖g‖2⩽1

lim sup
j→∞

∣∣∣∣∫
Rn

T(ε j) f (x)g(x)dx
∣∣∣∣ ⩽ B′‖ f ‖2.

(iv) We first observe that if g is a bounded function with compact
support and Q is an open cube in Rn, we have

(T(ε j) − T)(gχQ)(x) = χQ(x)(T(ε j) − T)g(x), (8.27)

for a.e. x /∈ ∂Q whenever ε j is small enough (depending on x). In-
deed, since gχQ is bounded and has compact support, by the integral
representation formula (8.19), there is a null set E(gχQ) such that for
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x /∈ Q
⋃

E(gχQ) and for ε j < dist (x, supp gχQ), the l.h.s. in (8.27) , i.e.,

(T(ε j) − T)(gχQ)(x) = −
∫
|x−y|⩽ε j

K(x, y)(gχQ)(y)dy,

is zero due to y /∈ supp gχQ for |x − y| ⩽ ε j, which implies (8.27) for
a.e. x ∈ Qc

. Moreover, since gχQc is also bounded and compactly
supported, there is a null set E(gχQc) such that for x /∈ Qc ⋃ E(gχQc)

and ε j < dist (x, supp gχQc), we have y /∈ supp gχQc , and thus (T(ε j) −
T)(gχQc)(x) = 0 which implies for a.e. x ∈ Q

(T(ε j) − T)(gχQ)(x) = (T(ε j) − T)g(x).

Hence, (8.27) holds for a.e. x /∈ ∂Q.
Taking weak limits in (8.27) as ε j → 0, we obtain that

(T0 − T)(gχQ) = χQ(T0 − T)g, a.e., (8.28)

for all open cubes Q in Rn. This means that for any g bounded function
with compact support and open cube Q in Rn, there is a set of measure
zero EQ,g such that (8.28) holds on Rn \ EQ,g. Consider the countable
family F of all cubes in Rn with corners in Qn and set Eg =

⋃
Q∈F EQ,g.

Then |Eg| = 0 and by linearity we obtain

(T0 − T)(gh) = h(T0 − T)g, on Rn \ Eg

whenever h is a finite linear combination of the characteristic functions
of cubes in F , which is a dense subspace of L2. Via a simple density
argument, using the fact that T0 − T is L2 bounded, we obtain that for all
f ∈ L2 and g bounded with compact support, there is a null set E f ,g such
that

(T0 − T)(g f ) = f (T0 − T)g, on Rn \ E f ,g. (8.29)

Now, if B(0, j) is the open ball with center 0 and radius j, when j ⩽ j′,
we have

(T0 − T)χB(0,j) = (T0 − T)(χB(0,j)χB(0,j′)) = χB(0,j)(T0 − T)(χB(0,j′)), a.e.

Therefore, the functions (T0 − T)χB(0,j) satisfy the “consistency” property

(T0 − T)χB(0,j) = (T0 − T)χB(0,j′), a.e. on B(0, j)

when j ⩽ j′. It follows that there exists a well-defined measurable function
b such that

bχB(0,j) = (T0 − T)χB(0,j), a.e.

Applying (8.29) with f ∈ L2 and g = χB(0,j), we obtain

(T0 − T)( f χB(0,j)) = f (T0 − T)χB(0,j) = f b, a.e. on B(0, j). (8.30)

Since the norm of T − T0 on L2 is at most B + B′, we obtain from (8.30)
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that

B + B′ ⩾ sup
j⩾1

sup
0 6= f∈L2

supp f⊂B(0,j)

‖(T0 − T)( f χB(0,j))‖2

‖ f ‖2

= sup
0 6= f∈L2

supp f compact

‖ f b‖2

‖ f ‖2
= ‖b‖∞.

The fact that b ∈ L∞ together with (8.30) easily yields

(T0 − T) f = b f a.e.

for all f ∈ L2. This identifies T0 − T and concludes the proof of (iv). q

We give a special name to operators of this form.

Definition 8.13. Suppose that for a given T ∈ CZO(δ, A, B), there is a
sequence ε j ↘ 0 as j → ∞ such that for all f ∈ L2(Rn),

T(ε j) f → T f

weakly in L2. Then, T is called a Calderón-Zygmund singular inte-
gral operator. Thus, Calderón-Zygmund singular integral operators
are special kinds of Calderón-Zygmund operators. The subclass of
CZO(δ, A, B), consisting of all Calderón-Zygmund singular integral
operators, is denoted by CZSIO(δ, A, B).

§ 8.1.3 Calderón-Zygmund operators acting on bounded functions

We are now interested in defining the action of a Calderón-Zygmund
operator T on bounded and smooth functions. To achieve this, we first
need to define the space of special test functions D0.

Definition 8.14. We define D0(Rn) to be the space of all smooth func-
tions with compact support and integral zero, i.e.,

D0(R
n) =

{
ϕ ∈ D(Rn) :

∫
Rn

ϕ(x)dx = 0
}

.

We equip D0(Rn) with the same topology as the space D(Rn). This
means that a linear functional u ∈ D ′(Rn) is continuous if for any
compact set K ⊂ Rn there is a constant CK and an integer M such that

| 〈u, ϕ〉 | ⩽ CK ∑
|α|⩽M

‖∂αϕ‖∞

for all ϕ smooth functions supported in K. The dual space of D0(Rn)

under this topology is denoted by D ′
0(R

n). This is a space of distribu-
tions larger than D ′(Rn).
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Example 8.15. BMO(Rn) ⊂ D ′
0(R

n). Indeed, given b ∈ BMO(Rn), for any
compact set K, there is the smallest cube Q ⊃ K and a constant CK such
that ∣∣∣∣∫

Rn
b(x)ϕ(x)dx

∣∣∣∣ =
∣∣∣∣∣
∫

Q
(b(x)− Avg

Q
b)ϕ(x)dx

∣∣∣∣∣
⩽|Q|‖b‖BMO‖ϕ‖∞ ⩽ CK‖ϕ‖∞

for any ϕ ∈ D0(K). Moreover, observe that the preceding integral re-
mains unchanged if the BMO function b is replaced by b + c, where c is
a constant, since

∫
ϕ(x)dx = 0.

Definition 8.16. Let T be a continuous linear operator from S (Rn) to
S ′(Rn) that satisfies (8.7) for some distribution W that coincides with
a standard kernel K ∈ SK(δ, A). Given f bounded and smooth, we
define an element T f of D ′

0(R
n) as follows: For a given ϕ ∈ D0(Rn),

select η ∈ D with 0 ⩽ η ⩽ 1 and equal to 1 in a neighborhood of
supp ϕ. Since T maps S to S ′, the expression T( f η) is a tempered
distribution, and its action on ϕ is well-defined. We define the action
of T f on ϕ via the identity

〈T f , ϕ〉 = 〈T( f η), ϕ〉+
∫

Rn

[∫
Rn

K(x, y)ϕ(x)dx
]

f (y)(1 − η(y))dy,

(8.31)

provided we make sense of the double integral as an absolutely con-
vergent integral.

To show T f ∈ D ′
0(R

n), we pick x0 ∈ supp ϕ and split the y-integral in
(8.31) into the sum of integrals over the regions I0 = {y ∈ Rn : |x − x0| >
1
2 |x0 − y|} and I∞ = {y ∈ Rn : |x − x0| ⩽ 1

2 |x0 − y|}.

By the choice of η, we must necessarily have c = dist ( supp (1 −
η), supp ϕ) > 0, and hence the part of the double integral in (8.31) is
absolutely convergent in view of (8.1) when y is restricted to I0, i.e.,∫

I0

∫
Rn

|K(x, y)ϕ(x) f (y)(1 − η(y))|dxdy

⩽
∫

I0

∫
Rn

A
|x − y|n |ϕ(x)|| f (y)|(1 − η(y))dxdy

⩽CA
cn

∫
I0

∫
Rn

|ϕ(x)|dxdy < ∞,

since I0 is compact due to x, x0 ∈ supp ϕ.

For y ∈ I∞, we use the zero mean value property of ϕ to write the
expression inside the square brackets in (8.31) as∫

Rn
(K(x, y)− K(x0, y))ϕ(x)dx.
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With the aid of (8.2), we have∫
I∞

∫
Rn

|(K(x, y)− K(x0, y))ϕ(x) f (y)(1 − η(y))|dxdy

=
∫∫

|y−x0|⩾2|x−x0|
|K(x, y)− K(x0, y)||ϕ(x)|| f (y)|(1 − η(y))|dydx

⩽
∫∫

|y−x0|⩾2|x−x0|

A|x − x0|δ
(|x − y|+ |x0 − y|)n+δ

|ϕ(x)|| f (y)|dydx

⩽‖ f ‖∞

∫
Rn

A|x − x0|δ
∫
|y−x0|⩾2|x−x0|

|x0 − y|−n−δdy|ϕ(x)|dx

⩽‖ f ‖∞

∫
Rn

A|x − x0|δωn−1

∫ ∞

2|x−x0|
r−n−δrn−1dr|ϕ(x)|dx

⩽‖ f ‖∞

∫
Rn

A|x − x0|δ
ωn−1

δ
(2|x − x0|)−δ|ϕ(x)|dx

=A
ωn−1

δ2δ
‖ϕ‖1‖ f ‖∞ < ∞.

Thus, the double integral in (8.31) is absolutely integrable for f ∈
L∞ ∩ C∞. Hence, this yields T f ∈ D ′

0 when f ∈ L∞ ∩ C∞ and certainly
(8.31) is independent of x0, but leaves two points open. First, we need to
show that this definition is independent of η, and second, that whenever f
is a Schwartz function, the distribution T f defined in (8.31) coincides with
the original element of S ′(Rn) given in Definition 8.9.

We first show that the definition of T f is independent of the choice of
the function η. Indeed, if ζ is another function satisfying 0 ⩽ ζ ⩽ 1 that is
also equal to 1 in a neighborhood of the supp ϕ, then f (η − ζ) and ϕ have
disjoint supports, and by (8.9), we have the absolutely convergent integral
realization

〈T( f (η − ζ)), ϕ〉 =
∫

Rn

∫
Rn

K(x, y) f (y)(η − ζ)(y)dyϕ(x)dx.

It follows

〈T( f ζ), ϕ〉+
∫

Rn

[∫
Rn

K(x, y)ϕ(x)dx
]

f (y)(1 − ζ(y))dy

= 〈T( f η), ϕ〉+
∫

Rn

[∫
Rn

K(x, y)ϕ(x)dx
]

f (y)(1 − η(y))dy.

Next, if f is a Schwartz function, then both η f and (1 − η) f are
Schwartz functions. By the linearity of T, we have

〈T f , ϕ〉 = 〈T(η f ), ϕ〉+ 〈T((1 − η) f ), ϕ〉 ,

and by (8.9), the second expression in (8.31) can be written as the double
absolutely convergent integral, since ϕ and (1− η) f have disjoint supports.
Thus, the distribution T f defined in (8.31) coincides with the original ele-
ment of S ′(Rn) given in Definition 8.9.
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Remark 8.17. When T has a bounded extension that maps L2 to itself,
we may define T f for all f ∈ L∞(Rn), which is not necessarily smooth.
Simply observe that under this assumption, the expression T( f η) is a
well-defined L2 function and thus

〈T( f η), ϕ〉 =
∫

Rn
T( f η)(x)ϕ(x)dx

is given by an absolutely convergent integral for all ϕ ∈ D0.

Finally, observe that although 〈T f , ϕ〉 is defined for f ∈ L∞ and
ϕ ∈ D0, this definition is valid for all square integrable functions ϕ with
compact support and integral zero; indeed, the smoothness of ϕ was never
an issue in the definition of 〈T f , ϕ〉. In summary, if T is a Calderón-
Zygmund operator and f ∈ L∞(Rn), then T f has a well-defined action
〈T f , ϕ〉 on square integrable functions ϕ with compact support and inte-
gral zero. This action satisfies

| 〈T f , ϕ〉 | ⩽ ‖T( f η)‖2‖ϕ‖2 + Cn,δ A‖ϕ‖1‖ f ‖∞ < ∞. (8.32)

In the next section, we show that in this case, T f is in fact an element of
BMO.

§ 8.2 Consequences of L2 boundedness

Calderón-Zygmund singular integral operators admit L2-bounded ex-
tensions. As in the case of convolution operators, L2 boundedness has
several consequences. In this section, we are concerned with the conse-
quences of the L2 boundedness of Calderón-Zygmund singular integral
operators. Throughout the entire discussion, we assume that K(x, y) is a
kernel defined away from the diagonal in R2n that satisfies the standard
size and regularity conditions (8.1), (8.2) and (8.3). These conditions may
be relaxed.

§ 8.2.1 Weak type (1, 1) and Lp boundedness of singular integrals

We now prove that operators in CZO(δ, A, B) have bounded exten-
sions from L1 to L1,∞.

Theorem 8.18. Assume that K(x, y) is in SK(δ, A) and let T be an ele-
ment of CZO(δ, A, B) associated with the kernel K. Then T has a bounded
extension that maps L1(Rn) to L1,∞(Rn) with norm

‖T‖L1→L1,∞ ⩽ Cn(A + B),

and also maps Lp(Rn) to itself for 1 < p < ∞ with norm

‖T‖Lp→Lp ⩽ Cn max(p, (p − 1)−1/p)(A + B),
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where Cn is a dimensional constant.

Proof. Fix α > 0 and let f ∈ L1(Rn). Since T may not be defined on
general integrable functions, we work with the class F0 of finite linear
combination of characteristic functions of dyadic cubes. The class F0 is
dense in L1 and also contained in L2, on which the operator is already
defined. Once we obtain a weak type (1, 1) estimate for F0, by density,
this extends to the entire L1.

We apply the Calderón-Zygmund decomposition to f ∈ F0 at height
γα, where γ is a positive constant to be chosen later. Write f = g + b,
where b = ∑

j
bj and conditions (i)-(iii) of Theorem 2.17 are satisfied with

the constant α replaced by γα. Due to f ∈ F0, the sum b = ∑
j

bj extends

over a finite set of indices. Moreover, each bad function bj is bounded by
the boundedness of f and is also compactly supported by construction.
Thus, Tbj is an L2 function, and for almost all x /∈ supp bj we have the
integral representation

Tbj(x) =
∫

Qj

K(x, y)bj(y)dy

in view of Proposition 8.10.
We denote by `(Q) the side length of a cube Q. Let Q∗

j be the unique
cube with sides parallel to the axes having the same center as Qj and
having side length

`(Q∗
j ) = 2

√
n`(Qj).

We have

(T f )∗(α) ⩽(Tg)∗(α/2) + (Tb)∗(α/2)

=
∣∣∣{x ∈ Rn : |Tg(x)| > α

2

}∣∣∣+ ∣∣∣{x ∈ Rn : |Tb(x)| > α

2

}∣∣∣
⩽
(

2
α

)2

‖Tg‖2
2 + |

⋃
j

Q∗
j |+

∣∣∣∣∣∣
x /∈

⋃
j

Q∗
j : |Tb(x)| > α

2


∣∣∣∣∣∣

⩽22

α2 B2‖g‖2
2 + ∑

j
|Q∗

j |+
2
α

∫
(
⋃

j Q∗
j )

c
|Tb(x)|dx

⩽22

α2 B2‖ f ‖12nγα + (2
√

n)n ‖ f ‖1

γα
+

2
α ∑

j

∫
(
⋃

j Q∗
j )

c
|Tbj(x)|dx

⩽
(
(2n+1Bγ)2

2nγ
+

(2
√

n)n

γ

)
‖ f ‖1

α
+

2
α ∑

j

∫
(
⋃

j Q∗
j )

c
|Tbj(x)|dx.

It suffices to show that the last sum is bounded by some constant multiple
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of ‖ f ‖1. Let yj be the center of the cube Qj. For x ∈ (Q∗
j )

c, we have

|x − yj| ⩾
1
2
`(Q∗

j ) =
√

n`(Qj).

However, if y ∈ Qj, we have |y − yj| ⩽ √
n`(Qj)/2; thus, |y − yj| ⩽

1
2 |x − yj| since the diameter of a cube is equal to

√
n times its side length.

We now estimate the last sum as follows.

∑
j

∫
(
⋃

j Q∗
j )

c
|Tbj(x)|dx = ∑

j

∫
(
⋃

j Q∗
j )

c

∣∣∣∣∫Qj

bj(y)K(x, y)dy
∣∣∣∣ dx

=∑
j

∫
(
⋃

j Q∗
j )

c

∣∣∣∣∫Qj

bj(y)(K(x, y)− K(x, yj))dy
∣∣∣∣ dx

⩽∑
j

∫
Qj

|bj(y)|
∫
(
⋃

j Q∗
j )

c
|K(x, y)− K(x, yj)|dxdy

⩽∑
j

∫
Qj

|bj(y)|
∫
|x−yj|⩾2|y−yj|

|K(x, y)− K(x, yj)|dxdy

⩽∑
j

∫
Qj

|bj(y)|
∫
|x−yj|⩾2|y−yj|

A|y − yj|δ

(|x − y|+ |x − yj|)n+δ
dxdy

⩽∑
j

∫
Qj

|bj(y)|Aωn−1|y − yj|δ
∫ ∞

2|y−yj|
r−n−δrn−1drdy

⩽Cn A ∑
j

∫
Qj

|bj(y)|dy

⩽Cn A ∑
j

2n+1γα|Qj|

⩽Cn A2n+1‖ f ‖1.

Combining these facts and choosing γ = B−1, we deduce the claimed
inequality for f ∈ F0. By density, we obtain that T has a bounded ex-
tension from L1 to L1,∞ with bound at most Cn(A + B). The Lp result for
1 < p < 2 follows from interpolation, while the fact that the constant
blows up like (p − 1)−1/p as p → 1 can be deduced from the result of
Exercise 1.9. The result for 2 < p < ∞ follows from duality; one uses here
that the dual operator Tt has a kernel Kt(x, y) = K(y, x) that satisfies the
same estimates as K, and by the result just proved, it is also bounded on
Lp for 1 < p < 2 with norm at most Cn(A + B). Thus T must be bounded
on Lp for 2 < p < ∞ with norm at most a constant multiple of A + B. q

Consequently, for operators T ∈ CZO(δ, A, B) and f ∈ Lp, 1 ⩽ p < ∞,
the expression T f makes sense as Lp (or L1,∞ when p = 1) functions. The
following result addresses whether these functions can be expressed as
integrals.
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Proposition 8.19. Let T ∈ CZO(δ, A, B) be an operator associated with a
kernel K ∈ SK(δ, A). Then for g ∈ Lp(Rn), 1 ⩽ p < ∞, the following
absolutely convergent integral representation is valid

Tg(x) =
∫

Rn
K(x, y)g(y)dy (8.33)

for almost all x ∈ Rn \ supp g, provided that supp g ⊊ Rn.

Proof. Set gk(x) = g(x)χ|g(x)|⩽kχ|x|⩽k. These are Lp functions with com-
pact support contained in the support of g. Additionally, the gk converge
to g in Lp as k → ∞. In view of Proposition 8.10, for every k we have

Tgk(x) =
∫

Rn
K(x, y)gk(y)dy

for almost all x ∈ Rn \ supp g. Since T maps Lp to Lp (or to weak L1

when p = 1), it follows that Tgk converges to Tg in Lp,∞ and hence in
measure by Proposition 1.20. From Riesz’s theorem, a subsequence of Tgk
a.e. converges to Tg. On the other hand, for x ∈ Rn \ supp g we have∫

Rn
K(x, y)gk(y)dy →

∫
Rn

K(x, y)g(y)dy

when k → ∞, since the absolute value of the difference is bounded by
B′‖gk − g‖p, which tends to zero. The constant B′ is the Lp′ norm of the
function |x − y|−n on the support of g, and one has |x − y| ⩾ c > 0 for
all y ∈ supp g because Rn \ supp g is open, and thus B′ < ∞. Therefore,
Tgk(x) converges a.e. to both sides of the identity (8.33) for x /∈ supp g.
This concludes the proof of this identity. q

§ 8.2.2 Boundedness of maximal singular integrals

We pose the question whether there is a result concerning the maximal
singular integral operator T(∗) analogous to Theorem 8.18. We note that
given f ∈ Lp(Rn) for some 1 ⩽ p < ∞, the expression T(∗) f (x) is well-
defined for all x ∈ Rn. This is a simple consequence of condition (8.1) and
the Hölder inequality.

Theorem 8.20. Let K be in SK(δ, A) and T ∈ CZO(δ, A, B) be associated
with K. Let r ∈ (0, 1). Then, there is a constant C(n, r) such that Cotlar’s
inequality

|T(∗) f (x)| ⩽ C(n, r)
[
(M(|T f |r)(x))1/r + (A + B)M f (x)

]
(8.34)

is valid for all functions in
⋃

1⩽p<∞
Lp(Rn). Additionally, there exist dimen-
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sional constants Cn, C′
n such that

‖T(∗) f ‖L1,∞ ⩽C′
n(A + B)‖ f ‖1, (8.35)

‖T(∗) f ‖p ⩽Cn(A + B)max(p, (p − 1)−1/p)‖ f ‖p, (8.36)

for all 1 < p < ∞ and all f ∈ Lp(Rn).

Proof. We fix r ∈ (0, 1) and f ∈ Lp(Rn) for some p ∈ [1, ∞). To prove
(8.34), we also fix ε > 0 and set f ε,x

0 = f χB(x,ε) and f ε,x
∞ = f χB(x,ε)c . Since

x /∈ supp f ε,x
∞ , using Proposition 8.19, we can write

T f ε,x
∞ (x) =

∫
Rn

K(x, y) f ε,x
∞ (y)dy =

∫
|x−y|⩾ε

K(x, y) f (y)dy = T(ε) f (x).

In view of (8.2), for z ∈ B(x, ε/2), we have |z − x| ⩽ |x − y|/2 whenever
|x − y| ⩾ ε and thus

|T f ε,x
∞ (x)− T f ε,x

∞ (z)| =
∣∣∣∣∫|x−y|⩾ε

(K(z, y)− K(x, y)) f (y)dy
∣∣∣∣

⩽|x − z|δ
∫
|x−y|⩾ε

A| f (y)|
(|x − y|+ |y − z|)n+δ

dy

⩽
( ε

2

)δ
∫
|x−y|⩾ε

A| f (y)|
(|x − y|+ ε/2)n+δ

dy

⩽Cn,δ AM f (x),

where the last estimate is a consequence of Theorem 2.10 (with φ =
χ|x|⩾1

(|x|+1)n+δ ). We conclude that for all z ∈ B(x, ε/2), we have

|T(ε) f (x)| =|T f ε,x
∞ (x)|

⩽|T f ε,x
∞ (x)− T f ε,x

∞ (z)|+ |T f ε,x
∞ (z)|

⩽Cn,δ AM f (x) + |T f ε,x
0 (z)|+ |T f (z)|. (8.37)

For r ∈ (0, 1), it follows from (8.37) that for z ∈ B(x, ε/2), we have

|T(ε) f (x)|r ⩽ Cr
n,δ Ar(M f (x))r + |T f ε,x

0 (z)|r + |T f (z)|r. (8.38)

Integrating over z ∈ B(x, ε/2), dividing by |B(x, ε/2)|, and raising to the
power 1/r, we obtain

|T(ε) f (x)| ⩽ 31/r
[
Cn,δ A(M f (x)) +

(
1

|B(x, ε/2)|

∫
B(x,ε/2)

|T f ε,x
0 (z)|rdz

)1/r

+ (M(|T f |r)(x))1/r
]
.

For the middle term, by Theorems 1.17 and 8.18, we have∫
B(x,ε/2)

|T f ε,x
0 (z)|rdz

=
∫ ∞

0
rαr−1|

{
z ∈ B(x, ε/2) : |T f ε,x

0 (z)| > α
}
|dα
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⩽
∫ ∞

0
rαr−1 min (|B(x, ε/2)|, C‖ f ε,x

0 ‖1/α) dα

=
∫ C‖ f ε,x

0 ‖1
|B(x,ε/2)|

0
rαr−1|B(x, ε/2)|dα +

∫ ∞

C‖ f ε,x
0 ‖1

|B(x,ε/2)|

rαr−1C‖ f ε,x
0 ‖1/αdα

=|B(x, ε/2)|
(

C‖ f ε,x
0 ‖1

|B(x, ε/2)|

)r

+ C‖ f ε,x
0 ‖1

r
1 − r

(
C‖ f ε,x

0 ‖1

|B(x, ε/2)|

)r−1

=(C‖ f ε,x
0 ‖1)

r|B(x, ε/2)|1−r +
r

1 − r
(C‖ f ε,x

0 ‖1)
r|B(x, ε/2)|1−r

=
1

1 − r
(C‖ f ε,x

0 ‖1)
r|B(x, ε/2)|1−r,

where C = Cn(A + B), and thus(
1

|B(x, ε/2)|

∫
B(x,ε/2)

|T f ε,x
0 (z)|rdz

)1/r

⩽
(

1
1 − r

(C‖ f ε,x
0 ‖1)

r|B(x, ε/2)|−r
)1/r

=Cn,r(A + B)
1

|B(x, ε/2)|

∫
B(x,ε)

| f (y)|dy

⩽C′
n,r(A + B)M f (x).

This proves (8.34).
We now use (8.34) to show that T(∗) is Lp bounded and of weak

type (1, 1). To obtain the weak type (1, 1) estimate for T(∗), we need to
use that the Hardy-Littlewood maximal operator maps Lp,∞ to Lp,∞ for
all p ∈ (1, ∞) (see Exercise 2.2). We also use the trivial fact that for all
0 < p, q < ∞, we have

‖| f |q‖Lp,∞ = ‖ f ‖q
Lpq,∞ .

Take any r < 1 in (8.34). Then, we have

‖(M(|T f |r))1/r‖L1,∞ =‖M(|T f |r)‖1/r
L1/r,∞

⩽Cn,r‖|T f |r‖1/r
L1/r,∞ = Cn,r‖T f ‖L1,∞

⩽C′
n,r(A + B)‖ f ‖1,

where we used the weak type (1, 1) bound for T in the last estimate.
To obtain the Lp boundedness of T(∗) for p ∈ (1, ∞), we use the same

argument as before. We fix r = 1/2. Recall that the maximal function
is bounded on L2p with norm at most 2(3n/(2p − 1))1/2p ⩽ Cn by Theo-
rem 2.6. We have

‖(M(|T f |1/2))2‖p =‖M(|T f |1/2)‖2
2p ⩽ Cn‖|T f |1/2‖2

2p ⩽ Cn‖T f ‖p

⩽Cn max(1/(p − 1)1/p, p)(A + B)‖ f ‖p,

where we use the Lp boundedness of T in the last estimate. q

From the above proof, we have the following corollary by noticing
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B = ‖T‖L2→L2 .

Corollary 8.21. Let K be in SK(δ, A) and T ∈ CZO(δ, A, B) be associated
with K. Then there exists a dimensional constant Cn such that

sup
ε>0

‖T(ε)‖L2→L2 ⩽ Cn (A + ‖T‖L2→L2) .

§ 8.2.3 H1 → L1 and L∞ → BMO boundedness of singular integrals

We discuss some endpoint results concerning operators in CZO(δ, A, B).

Theorem 8.22. Let T ∈ CZO(δ, A, B). Then, T has an extension that maps
H1(Rn) to L1(Rn). Precisely, there is a constant Cn,δ such that

‖T‖H1→L1 ⩽ Cn,δ(A + ‖T‖L2→L2). (8.39)

Proof. Recall B = ‖T‖L2→L2 . We start by examining the action of T on L2

atoms for H1. Let f = a be such an atom supported in a cube Q. Let cQ
be the center of Q and let Q∗ = 2

√
nQ. We write∫

Rn
|Ta(x)|dx =

∫
Q∗

|Ta(x)|dx +
∫
(Q∗)c

|Ta(x)|dx (8.40)

and we estimate each term separately. By the Cauchy-Schwarz inequality,
T : L2 → L2, and property (ii) of atoms in Definition 7.1, we have∫

Q∗
|Ta(x)|dx ⩽|Q∗|1/2

(∫
Q∗

|Ta(x)|2dx
)1/2

⩽B|Q∗|1/2
(∫

Q∗
|a(x)|2dx

)1/2

⩽B|Q∗|1/2|Q|−1/2

=CnB.

Now, observe that if x /∈ Q∗ and y ∈ Q, then

|y − cQ| ⩽
1
2
|x − cQ|;

hence, x − y stays away from zero due to |x − y| ⩾ 1
2 (`(Q

∗) − `(Q)) =
1
2 (2

√
n − 1)`(Q), and Ta(x) can be expressed as a convergent integral by

Proposition 8.19

Ta(x) =
∫

Rn
K(x, y)a(y)dy.

We have, due to supp a ⊂ Q,
∫

Q a(y)dy = 0, Fubini’s theorem, (8.3),
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Remark 7.2, that∫
(Q∗)c

|Ta(x)|dx =
∫
(Q∗)c

∣∣∣∣∫
Rn

K(x, y)a(y)dy
∣∣∣∣ dx

=
∫
(Q∗)c

∣∣∣∣∫
Rn
(K(x, y)− K(x, cQ))a(y)dy

∣∣∣∣ dx

⩽
∫

Q

∫
(Q∗)c

|K(x, y)− K(x, cQ)|dx|a(y)|dy

⩽
∫

Q

∫
(Q∗)c

A|y − CQ|δ
(|x − y|+ |x − cQ|)n+δ

dx|a(y)|dy

⩽
∫

Q

∫
|x−cQ|⩾2|y−cQ|

A|y − CQ|δ
|x − cQ|n+δ

dx|a(y)|dy

=C′
n,δ A

∫
Q
|a(y)|dy

⩽C′
n,δ A.

Thus, we obtain for L2 atoms of H1

‖Ta‖1 ⩽ Cn,δ(A + B). (8.41)

To pass to general functions in H1, we use Definition 7.3 to write an
f ∈ H1 as

f =
∞

∑
j=1

λjaj,

where the series converges in H1, aj are L2 atoms for H1, and

‖ f ‖H1 = inf
∞

∑
j=1

|λj|. (8.42)

Since T maps L1 to L1,∞, by Theorem 8.18, T f is already a well-defined
L1,∞ function. We plan to prove that

T f =
∞

∑
j=1

λjTaj a.e., (8.43)

where the series converges in L1 and defines an a.e. integrable function.
Once (8.43) is established, the required conclusion (8.39) follows easily by
taking L1 norms in (8.43) and using (8.41) and (8.42).

To prove (8.43), we use that T is of weak type (1, 1). For a given
µ > 0, we have, by Proposition 7.5 and (8.41),∣∣∣∣∣

{∣∣∣∣∣T f −
∞

∑
j=1

λjTaj

∣∣∣∣∣ > µ

}∣∣∣∣∣
⩽
∣∣∣∣∣
{∣∣∣∣∣T f −

N

∑
j=1

λjTaj

∣∣∣∣∣ > µ/2

}∣∣∣∣∣+
∣∣∣∣∣
{∣∣∣∣∣ ∞

∑
j=N+1

λjTaj

∣∣∣∣∣ > µ/2

}∣∣∣∣∣
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⩽ 2
µ
‖T‖L1→L1,∞

∥∥∥∥∥ f −
N

∑
j=1

λjaj

∥∥∥∥∥
1

+
2
µ

∥∥∥∥∥ ∞

∑
j=N+1

λjTaj

∥∥∥∥∥
1

⩽ 2
µ
‖T‖L1→L1,∞

∥∥∥∥∥ f −
N

∑
j=1

λjaj

∥∥∥∥∥
H1

+
2
µ

Cn,δ(A + B)
∞

∑
j=N+1

|λj|.

Since
N
∑

j=1
λjaj converges to f in H1 and

∞
∑

j=1
|λj| < ∞, both terms in the sum

converge to zero as N → ∞. We conclude that∣∣∣∣∣
{∣∣∣∣∣T f −

∞

∑
j=1

λjTaj

∣∣∣∣∣ > µ

}∣∣∣∣∣ = 0

for all µ > 0, which implies (8.43). q

Theorem 8.23. Let T ∈ CZO(δ, A, B). Then for any bounded function f ,
the distribution T f can be identified with a BMO function that satisfies

‖T f ‖BMO ⩽ Cn,δ(A + B)‖ f ‖∞, (8.44)

where Cn,δ is a constant.

Proof. Let L2
0,c be the space of all square integrable functions with compact

support and integral zero on Rn. This space is contained in H1(Rn) (cf.
Exercise 7.2) and contains the set of finite sums of L2 atoms for H1, which
is dense in H1; thus, L2

0,c is dense in H1. Recall that for f ∈ L∞, T f has a
well-defined action 〈T f , φ〉 on functions φ ∈ L2

0,c and (8.32) holds, i.e., for
η ∈ D

|〈T f , φ〉| ⩽ ‖T( f η)‖2‖φ‖2 + Cn,δ A‖φ‖1‖ f ‖∞ < ∞. (8.45)

Suppose we have proved the identity

〈T f , φ〉 =
∫

Rn
Tt φ(x) f (x)dx, (8.46)

for all bounded functions f and all φ ∈ L2
0,c. Since such a φ is in H1,

Theorem 8.22 yields that Tt φ ∈ L1. Consequently, the integral in (8.46)
converges absolutely. Assuming (8.46) and using Theorem 8.22 we obtain
that

|〈T f , φ〉| ⩽ ‖Tt φ‖1‖ f ‖∞ ⩽ Cn,δ(A + B)‖φ‖H1‖ f ‖∞.

We conclude that L(φ) = 〈T f , φ〉 is a bounded linear functional on L2
0,c ⊂

H1 with norm at most Cn,δ(A + B)‖ f ‖∞. By Theorem 7.27, there exists a
BMO function b f that satisfies

‖b f ‖BMO ⩽C′
n‖L‖H1→C = C′

n sup
|L(φ)|
‖φ‖H1

= C′
n sup

|〈T f , φ〉|
‖φ‖H1

⩽C′
nCn,δ(A + B)‖ f ‖∞
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such that the linear functional L has the form Lb f . In other words, the
distribution T f can be identified with a BMO function that satisfies (8.44)
with the constant C′

nCn,δ, i.e.,

‖T f ‖BMO = ‖b f ‖BMO ⩽ C′
nCn,δ(A + B)‖ f ‖∞.

We return to the proof of identity (8.46). Pick a smooth function
with compact support η that satisfies η ∈ [0, 1] and is equal to 1 in a
neighborhood of the support of φ. We write the r.h.s. of (8.46) as∫

Rn
Tt(φ)η f dx +

∫
Rn

Tt(φ)(1 − η) f dx = 〈T(η f ), φ〉+
∫

Rn
Tt(φ)(1 − η) f dx.

In view of Definition 8.16, to prove (8.46) it will suffice to show that∫
Rn

Tt(φ)(1 − η) f dx =
∫

Rn

∫
Rn
(K(x, y)− K(x0, y))φ(x)dx(1 − η(y)) f (y)dy,

where x0 ∈ supp φ. In the outer integral above, we have y /∈ supp φ and
the inner integral above is absolutely convergent and equal to∫

Rn
(K(x, y)− K(x0, y))φ(x)dx =

∫
Rn

Kt(y, x)φ(x)dx = Tt φ(y),

by Proposition 8.10, since y /∈ supp φ. Thus, (8.46) is valid. q

§ 8.3 The T(1) theorem

We now turn to one of the main results of this chapter, the so-called
T(1) theorem. This theorem gives necessary and sufficient conditions for
linear operators T with standard kernels to be bounded on L2(Rn). In this
section we obtain several such equivalent conditions. The name of theorem
T(1) is due to the fact that one of the equivalent ways to characterize
boundedness is expressed in terms of properties of the distribution T(1),
which was introduced in Definition 8.16.

§ 8.3.1 Preliminaries and statement of the theorem

We begin with some preliminary facts and definitions.

Definition 8.24. A normalized bump is a smooth function φ supported
in the ball B(0, 10) that satisfies

|(∂α
x φ)(x)| ⩽ 1

for all multi-indices |α| ⩽ 2
[ n

2

]
+ 2, where [x] denotes the integer part

of x.

Observe that every smooth function supported inside the ball B(0, 10)
is a constant multiple of a normalized bump. Additionally, note that if a
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normalized bump is supported in a compact subset of B(0, 10), then small
translations of it are also normalized bumps.

Given a function f on Rn, R > 0, and x0 ∈ Rn, we use the notation
fR to denote the function fR(x) = R−n f (R−1x) and τx0 f to denote the
function τx0 f (x) = f (x − x0). Thus,

τx0 fR(y) = fR(y − x0) = R−n f (R−1(y − x0)).

Set N =
[ n

2

]
+ 1. Using that all derivatives up to order 2N of normalized

bumps are bounded by 1, we easily deduce that for all x0 ∈ Rn, all R > 0,
and all normalized bumps φ we have the estimate

Rn
∫

Rn

∣∣∣τx0 φR

∨

(ξ)
∣∣∣ dξ

=Rn
∫

Rn

∣∣∣e−ix0·ξ φR

∨

(ξ)
∣∣∣ dξ

=
∫

Rn
|(φ

∨

)R−1(ξ)| dξ

=
∫

Rn
|φ∨(ξ)| dξ

=
∫

Rn

∣∣∣∣∫
Rn

e−iy·ξ φ(y)d̄y
∣∣∣∣ dξ

=
∫

Rn

∣∣∣∣∫B(0,10)
e−iy·ξ(I − ∆)N φ(y)d̄y

∣∣∣∣ dξ

(1 + |ξ|2)N

⩽Cn, (8.47)

since |(∂α
x φ)(x)| ⩽ 1 for all multi-indices α with |α| ⩽ 2N, and Cn is inde-

pendent of the bump φ. Here I − ∆ denotes the operator

(I − ∆)φ = φ −
n

∑
j=1

∂2φ

∂x2
j

.

Definition 8.25. We say that a continuous linear operator

T : S (Rn) → S ′(Rn)

satisfies the weak boundedness property (WBP) if there is a constant C
such that for all normalized bumps f and g and for all x0 ∈ Rn and
R > 0 we have

|〈T(τx0 fR), τx0 gR〉| ⩽ CR−n. (8.48)

The smallest constant C in (8.48) is denoted by ‖T‖WB.

Note that

‖τx0 fR‖2 = ‖ fR‖2 =

(∫
Rn

|R−n f (x/R)|2Rnd(x/R)
)1/2

= ‖ f ‖2R−n/2

and thus if T has a bounded extension from L2(Rn) to itself, then T satisfies
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the weak boundedness property with bound

‖T‖WB = sup Rn|〈T(τx0 fR), τx0 gR〉|
⩽‖T‖L2→L2 sup Rn‖τx0 fR‖2‖τx0 gR‖2

=‖T‖L2→L2 sup ‖ f ‖2‖g‖2

⩽‖T‖L2→L2

∫
B(0,10)

dx

=10nVn‖T‖L2→L2 ,

where the supremum is taken over all normalized bumps f and g.

We now state one of the main theorems in this chapter.

Theorem 8.26. Let T be a continuous linear operator from S (Rn) to
S ′(Rn) whose Schwartz kernel coincides with a standard kernel K ∈
SK(δ, A) for some 0 < A < ∞ and 0 < δ ⩽ 1. Let K(ε) and T(ε) be
the usual truncated kernel and operator for ε > 0. Assume that there exists a
sequence ε j ↘ 0 such that for all φ, ψ ∈ S (Rn), we have

〈T(ε j)φ, ψ〉 → 〈Tφ, ψ〉. (8.49)

Consider the assertions:
(i) The following statement is valid:

B1 = sup
B

sup
ε>0

[
‖T(ε)χB‖2

|B|1/2 +
‖(T(ε))tχB‖2

|B|1/2

]
< ∞,

where the first supremum is taken over all balls B in Rn.
(ii) We have that

B2 = sup
ε,N,x0

[
1

Nn

∫
B(x0,N)

∣∣∣∣∫|x−y|<N
K(ε)(x, y)dy

∣∣∣∣2 dx

+
1

Nn

∫
B(x0,N)

∣∣∣∣∫|x−y|<N
K(ε)(y, x)dy

∣∣∣∣2 dx

]1/2

< ∞,

where the supremum is taken over all 0 < ε, N < ∞ with ε < N, and
all x0 ∈ Rn.

(iii) The following statement is valid:

B3 = sup
φ

sup
x0∈Rn

sup
R>0

Rn/2 [‖T(τx0 φR)‖2 + ‖Tt(τx0 φR)‖2
]
< ∞,

where the first supremum is taken over all normalized bumps φ.
(iv) The operator T satisfies the weak boundedness property and the distri-

butions T(1) and Tt(1) coincide with BMO functions, that is,

B4 = ‖T(1)‖BMO + ‖Tt(1)‖BMO + ‖T‖WB < ∞.

(v) For every ξ ∈ Rn the distributions T(ei(·)·ξ) and Tt(ei(·)·ξ) coincide
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with BMO functions such that

B5 = sup
ξ∈Rn

‖T(ei(·)·ξ)‖BMO + sup
ξ∈Rn

‖Tt(ei(·)·ξ)‖BMO < ∞.

(vi) The following statement is valid:

B6 = sup
φ

sup
x0∈Rn

sup
R>0

Rn [‖T(τx0 φR)‖BMO + ‖Tt(τx0 φR)‖BMO
]
< ∞,

where the first supremum is taken over all normalized bumps φ.
Then assertions (i)-(vi) are all equivalent to each other and to the L2 bound-
edness of T, and we have the following equivalence of the previous quantities:

cn,δ(A + Bj) ⩽ ‖T‖L2→L2 ⩽ Cn,δ(A + Bj),

for all j ∈ {1, 2, 3, 4, 5, 6}, for some constants cn,δ, Cn,δ that depend only on
the dimension n and on the parameter δ > 0.

Remark 8.27. Condition (8.49) says that the operator T is the weak limit
of a sequence of its truncations. We already know from Proposition 8.12
that if T is bounded on L2, then it must be equal to an operator that sat-
isfies (8.49) plus a bounded function times the identity operator. There-
fore, it is not a serious restriction to assume condition (8.49).

One should always keep in mind the following pathological situ-
ation: consider the distribution W0 ∈ S ′(Rn × Rn) defined for F in
S (R2n) by

〈W0, F〉 =
∫

Rn
F(t, t)h(t)dt,

where h(t) = |t|2. In this case, for all ε > 0, F(ε)(t, t) = F(t, t)χ|t−t|>ε = 0
then T(ε) = 0; hence, T(ε) is uniformly bounded on L2, but 〈T f , φ〉 =∫

Rn φ(t) f (t)h(t)dt; thus, T f can be identified with f h for all f ∈ S ,
which is certainly an unbounded operator on L2(Rn). Note that (8.49)
fails in this case; indeed,

‖T‖L2→L2 = sup
f∈S

‖T f ‖2

‖ f ‖2
= sup

‖ f h‖2

‖ f ‖2
= ‖h‖∞ = ∞.

Before we begin the lengthy proof of this theorem, we state a lemma
that we need.

Lemma 8.28. Let K ∈ SK(δ, A); then, there is a constant Cn such that for
all normalized bumps φ, we have

sup
x0∈Rn

∫
|x−x0|⩾20R

∣∣∣∣∫
Rn

K(x, y)τx0 φR(y)dy
∣∣∣∣2 dx ⩽ Cn A2

Rn . (8.50)

Proof. Note that the interior integral in (8.50) is absolutely convergent
since τx0 φR is supported in the ball B(x0, 10R) and x lies in the com-
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plement of the double of this ball. To prove (8.50), simply observe that
since |K(x, y)| ⩽ A|x − y|−n, we have that∣∣∣∣∫

Rn
K(x, y)τx0 φR(y)dy

∣∣∣∣ = ∣∣∣∣∫
Rn

K(x, y)φR(y − x0)dy
∣∣∣∣

=

∣∣∣∣∫
Rn

K(x, y + x0)φR(y)dy
∣∣∣∣ = ∣∣∣∣∫

Rn
K(x, Ry + x0)φ(y)dy

∣∣∣∣
⩽
∫

B(0,10)

A
|x − Ry − x0|n

|φ(y)|dy ⩽
∫

B(0,10)

2n A
|x − x0|n

|φ(y)|dy

⩽ 2n A
|x − x0|n

∫
B(0,10)

dy =
20nVn A
|x − x0|n

,

since |x − Ry − x0| ⩾ |x − x0| − R|y| ⩾ |x − x0| − 10R ⩾ |x − x0|/2 when-
ever |x − x0| ⩾ 20R. It follows that

sup
x0∈Rn

∫
|x−x0|⩾20R

∣∣∣∣∫
Rn

K(x, y)τx0 φR(y)dy
∣∣∣∣2 dx

⩽ sup
x0∈Rn

∫
|x−x0|⩾20R

202nV2
n A2

|x − x0|2n dx

=202nV2
n A2ωn−1

∫ ∞

20R
r−2n+n−1dr

=
202nV2

n A2ωn−1

n
(20R)−n

=
20nV3

n A2

Rn .

Therefore, we complete the proof. q

§ 8.3.2 Proof of the T(1) theorem

This subsection is dedicated to the proof of Theorem 8.26.

Proof. The proof is based on a series of steps as described in the following
picture.

(iv)

(iii)

(v)

L2 boundedness of T

(vi)

(iii)’

(ii)

(i)

T (ε) : L2 → L2 uniformly

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6 Step 7

Step 8Step 9

Step 10

Step 1. (iii) =⇒ (iv).
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Fix a ϕ ∈ D with 0 ⩽ ϕ ⩽ 1, supported in ball B(0, 4) and equal to 1
on ball B(0, 2). We consider the function ϕ(·/R) that tends to 1 as R → ∞,
and we show that T(1) is the weak limit of the functions T(ϕ(·/R)). This
means that for all g ∈ D0, one has

〈T(ϕ(·/R)), g〉 → 〈T(1), g〉 (8.51)

as R → ∞. To prove (8.51), we fix an η ∈ D that is equal to 1 on a
neighborhood of the support of g, which implies dist ( supp g, supp (1 −
η)) = c > 0 and g = 0 on ( supp η)c. Then we write

〈T(ϕ(·/R)), g〉 =〈T(ηϕ(·/R)), g〉+ 〈T((1 − η)ϕ(·/R)), g〉
=〈T(ηϕ(·/R)), g〉 (8.52)

+
∫

Rn

∫
Rn
(K(x, y)− K(x0, y))g(x)(1 − η(y))ϕ(

y
R
)dydx,

(8.53)

where x0 ∈ supp g. There exists R0 > 0 such that supp η ⊂ {y : |y| ⩽ 2R0},
then for R ⩾ R0, ϕ(·/R) is equal to 1 on supp η. By the similar argument
(to the integration over I0 and I∞) behind Definition 8.16, we obtain that
(8.53) converges to∫

Rn

∫
Rn
(K(x, y)− K(x0, y))g(x)(1 − η(y))dydx

as R → ∞ by the dominated convergence theorem. By Definition 8.16, we
obtain the validity of (8.51).

Next, we observe that the function ϕ(·/R) is in L2 since ‖ϕ(·/R)‖2 =

Rn/2‖ϕ‖2. We show that

‖T(ϕ(·/R))‖BMO ⩽ Cn,δ(A + B3) (8.54)

uniformly in R > 0. Once (8.54) is established, then the sequence

{T(ϕ(·/j))}∞
j=1

lies in a multiple of the unit ball of BMO = (H1)∗, and by the Banach-
Alaoglu theorem, there is a subsequence of the positive integers Rj such
that T(ϕ(·/Rj)) converges weakly to an element b in BMO. This means
that

〈T(ϕ(·/Rj)), g〉 → 〈b, g〉 (8.55)

as j → ∞ for all g ∈ D0. Using (8.51), we conclude that T(1) can be
identified with the BMO function b, and as a consequence of (8.54), it
satisfies

‖T(1)‖BMO ⩽ Cn,δ(A + B3).

In a similar fashion, we identify Tt(1) with a BMO function with norm
satisfying

‖Tt(1)‖BMO ⩽ Cn,δ(A + B3).
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We return to the proof of (8.54). We fix a ball B = B(x0, r) with radius
r > 0 centered at x0 ∈ Rn. If for all R > 0, we had a constant cB,R such that

1
|B|

∫
B
|T(ϕ(·/R))(x)− cB,R|dx ⩽ cn,δ(A + B3), (8.56)

then property (iii) in Proposition 7.15 (adapted to balls) would yield (8.54).
Obviously, (8.56) is a consequence of the two estimates

1
|B|

∫
B

∣∣∣∣T [ϕ

(
· − x0

r

)
ϕ
( ·

R

)]
(x)
∣∣∣∣ dx ⩽ cnB3, (8.57)

1
|B|

∫
B

∣∣∣∣T [(1 − ϕ

(
· − x0

r

))
ϕ
( ·

R

)]
(x)

−T
[(

1 − ϕ

(
· − x0

r

))
ϕ
( ·

R

)]
(x0)

∣∣∣∣ dx ⩽ cn

δ
A. (8.58)

We bound the double integral in (8.58) by

1
|B|

∫
B

∫
|y−x0|⩾2r

|K(x, y)− K(x0, y)|ϕ(y/R)dydx, (8.59)

since 1 − ϕ((y − x0)/r) = 0 when |y − x0| ⩽ 2r. Since |x − x0| ⩽ r ⩽
1
2 |y − x0|, condition (8.2) gives that (8.58) holds with cn = ωn−1.

It remains to be proven (8.57). It is easy to verify that there is a con-
stant C0 = C0(n, ϕ) such that for 0 < ε ⩽ 1 and for all a ∈ Rn, the functions

C−1
0 ϕ(ε(x + a))ϕ(x), C−1

0 ϕ(x)ϕ(−a + εx) (8.60)

are normalized bumps. The important observation is that with a = x0/r
we have

ϕ
( x

R

)
ϕ

(
x − x0

r

)
=rnτx0

[(
ϕ
( r

R
(·+ a)

)
ϕ (·)

)
r

]
(x) (8.61)

=Rn
(

ϕ (·) ϕ

(
−a +

R
r
(·)
))

R
(x), (8.62)

and thus in either case r ⩽ R or R ⩽ r, one may express the product
ϕ
( x

R

)
ϕ
( x−x0

r

)
as a multiple of a translation of an L1 dilation of a normal-

ized bump.

Case 1: r ⩽ R. In view of (8.61), we write

T
[

ϕ

(
· − x0

r

)
ϕ
( ·

R

)]
(x) = C0rnT[τx0 φr](x)

for some normalized bump φ. Using this fact and the Cauchy-Schwarz
inequality, we estimate the expression on the left in (8.57) by

1
|B|

∫
B
|C0rnT[τx0 φr](x)|dx

⩽C0rn 1
|B| |B|

1/2
(∫

B
|T[τx0 φr](x)|2dx

)1/2



§8.3. The T(1) theorem 225

⩽C0
rn/2

|B|1/2 B3 ⩽
C0

V1/2
n

B3 = cnB3,

where the second inequality follows by applying hypothesis (iii).

Case 2: R ⩽ r. In view of (8.62), we write

T
[

ϕ

(
· − x0

r

)
ϕ
( ·

R

)]
(x) = C0RnT(φR)(x)

for some other normalized bump φ. Using this fact and the Cauchy-
Schwarz inequality, we estimate the expression on the left in (8.57) by

1
|B|

∫
B
|C0RnT(φR)(x)|dx

⩽ C0Rn

|B|1/2

(∫
B
|T(φR)(x)|2dx

)1/2

⩽C0Rn/2

|B|1/2 B3 =
C0Rn/2

V1/2
n rn/2

B3 ⩽
C0

V1/2
n

B3 = cnB3

by applying hypothesis (iii) and recalling that R ⩽ r. This proves (8.57).

To finish the proof of (iv), we need to prove that T satisfies the weak
boundedness property. However, this is elementary, since for all normal-
ized bumps φ and ψ and all x ∈ Rn and R > 0, we have

|〈T(τxψR), τx φR〉| ⩽‖T(τxψR)‖2‖τx φR‖2

⩽B3R−n/2R−n/2‖φ‖2

⩽B3R−n(Vn10n)1/2 = CnB3R−n.

This gives ‖T‖WB ⩽ CnB3, which implies the estimate B4 ⩽ Cn,δ(A + B3)

and concludes the proof of the fact that condition (iii) implies (iv).

Step 2. (iv) =⇒ L2 boundedness of T.

We now assume condition (iv), and we present the most important
step of the proof, establishing the fact that T has an extension that maps
L2(Rn) to itself. The assumption that the distributions T(1) and Tt(1) co-
incide with BMO functions leads to the construction of Carleson measures
that provide the key tool in the boundedness of T.

We pick a radial function Φ ∈ D supported in the ball B(0, 1/2) that
satisfies

∫
Rn Φ(x)dx = 1. For t > 0, we define Φt(x) = t−nΦ(x/t). Since Φ

is a radial function, the operator

Pt( f ) = f ∗ Φt (8.63)

is self-transpose.

We now fix a Schwartz function f whose Fourier transform is sup-
ported away from a neighborhood of the origin. We discuss an integral
representation for T( f ). We begin with the facts that can be found in Ex-



226 8. Standard Kernels and T(1) Theorem

ercises 8.3 and 8.4:

T( f ) = lim
s→0

P2
s TP2

s ( f ) in S ′,

0 = lim
s→∞

P2
s TP2

s ( f ) in ˙S ′,

where ˙S (Rn) = { f ∈ S (Rn) :
∫

Rn xα f (x)dx = 0, ∀α ∈ Nn
0} is a sub-

space of S (Rn) with the same topology, and its dual space ˙S ′(Rn) =

S ′(Rn)/P(Rn). Thus, by the fundamental theorem of calculus and the
product rule, we can write

T( f ) = lim
s→0

P2
s TP2

s ( f )− lim
s→∞

P2
s TP2

s ( f )

=− lim
ε→0

∫ 1/ε

ε
s

d
ds

(P2
s TP2

s )( f )
ds
s

=− lim
ε→0

∫ 1/ε

ε

[(
s

d
ds

P2
s

)
TP2

s ( f ) + P2
s

(
Ts

d
ds

P2
s

)
( f )
]

ds
s

, (8.64)

where the limit is in the sense of ˙S ′. For g ∈ S , we have by (8.63)(
s d

ds P2
s (g)

)∨

(ξ) =(2π)ng∨(ξ)s
d
ds

(Φs(ξ)

∨2
)

=(2π)ng∨(ξ)s
d
ds

((Φ

∨

(sξ))2)

=(2π)ng∨(ξ)Φ

∨

(sξ)2sξ · ∇Φ

∨

(sξ)

=(2π)ng∨(ξ)
n

∑
k=1

Ψk

∨

(sξ)Θk

∨

(sξ)

=
n

∑
k=1

Q

∼

k,sQk,s(g)

∨

(ξ) =
n

∑
k=1

Qk,sQ

∼

k,s(g)

∨

(ξ),

where for 1 ⩽ k ⩽ n, Ψk

∨

(ξ) = 2ξkΦ

∨

(ξ), Θk

∨

(ξ) = ∂kΦ

∨

(ξ), and Qk,s, Q

∼

k,s are
operators defined by

Qk,s(g) = g ∗ (Ψk)s, Q

∼

k,s(g) = g ∗ (Θk)s;

where (Θk)s = s−nΘk(s−1x) and (Ψk)s are defined similarly. Observe that
Ψk and Θk are smooth odd bumps supported in B(0, 1/2) and have an
integral of zero. Since it is easy to see that Φ

∨

is also radial, we obtain

Ψk(−x) =
∫

Rn
eix·(−ξ)2ξkΦ

∨

(ξ)d̄ξ

=−
∫

Rn
eix·η2ηkΦ

∨

(η)d̄η = −Ψk(x),

and

Ψk(x) = −2i∂kΦ(x), Θk(x) = −ixkΦ(x).

Since Ψk and Θk are odd, we have (Qk,s)
t = −Qk,s and (Q

∼

k,s)
t = −Q

∼

k,s,
that is, they are anti-self-transpose. We now write the expression in (8.64)
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as

− lim
ε→0

n

∑
k=1

[∫ 1/ε

ε
Q

∼

k,sQk,sTPsPs( f )
ds
s
+
∫ 1/ε

ε
PsPsTQk,sQ

∼

k,s( f )
ds
s

]
, (8.65)

where the limit is in the sense of ˙S ′. We set

Tk,s = Qk,sTPs,

and then taking the transpose, i.e.,

(Tk,s)
t = (Qk,sTPs)

t = Pt
s Tt(Qk,s)

t = −PsTtQk,s,

we obtain PsTQk,s = −((Tt)k,s)
t.

Recall the notation τxh(z) = h(z − x). For a given φ ∈ S (Rn), we
have

Tk,s(φ)(x) =Qk,sTPs(φ)(x) = TPs(φ) ∗ (Ψk)s(x)

=
∫

TPs(φ)(y)(Ψk)s(x − y)dy

=−
∫

TPs(φ)(y)(Ψk)s(y − x)dy (since Ψk is odd)

=−
∫

TPs(φ)(y)τx(Ψk)s(y)dy

=− 〈TPs(φ), τx(Ψk)s〉
=− 〈T(Φs ∗ φ), τx(Ψk)s〉

=−
〈

T
(∫

Rn
φ(y)(Φs(· − y))dy

)
, τx(Ψk)s

〉
=−

〈
T
(∫

Rn
φ(y)(τyΦs)(·)dy

)
, τx(Ψk)s

〉
=−

∫
Rn
〈T(τyΦs), τx(Ψk)s〉φ(y)dy. (8.66)

The last equality is justified by the convergence of the Riemann sums RN

of the integral I =
∫

Rn φ(y)(τyΦs)(·)dy to itself in the topology of S

(this is contained in the proof of Theorem 3.37); by the continuity of T,
T(RN) converges to T(I) in S ′ and thus 〈T(RN), τx(Ψk)s〉 converges to
〈T(I), τx(Ψk)s〉. However, 〈T(RN), τx(Ψk)s〉 is also a Riemann sum for the
rapidly convergent integral in (8.66); hence it converges to it as well.

We have deduced that the operator Tk,s = Qk,sTPs has kernel

Kk,s(x, y) = −〈T(τyΦs), τx(Ψk)s〉 = −〈Tt(τx(Ψk)s), τyΦs〉. (8.67)

Hence, the operator PsTQk,s = −((Tt)k,s)
t has kernel

−((Kt)k,s)
t(x, y) = (〈T(τx(Ψk)s), τyΦs〉)t = 〈T(τy(Ψk)s), τxΦs〉.

For 1 ⩽ k ⩽ n, we need the following facts regarding these kernels:

|〈T(τy(Ψk)s), τxΦs〉| ⩽Cn,δ(‖T‖WB + A)ps(x − y), (8.68)

|〈Tt(τx(Ψk)s), τyΦs〉| ⩽Cn,δ(‖T‖WB + A)ps(x − y), (8.69)
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where

pt(u) =
1
tn

1
(1 + |u/t|)n+δ

is the L1 dilation of the function p(u) = (1 + |u|)−n−δ.

To prove (8.69), we consider the following two cases.

Case 1: |x − y| ⩽ 5s. The weak boundedness property gives

|〈T(τyΦs), τx(Ψk)s〉| = |〈T(τx((τ(y−x)/sΦ)s)), τx(Ψk)s〉| ⩽
Cn,Φ‖T‖WB

sn ,

since

τyΦs(z) =Φs(z − y) = s−nΦ((z − y)/s) = s−nΦ((z − x)/s − (y − x)/s)

=s−nτ(y−x)/sΦ((z − x)/s) = (τ(y−x)/sΦ)s(z − x)

=τx(τ(y−x)/sΦ)s(z),

and both Ψk and τ(y−x)/sΦ are multiples of normalized bumps. Note here
that supp Ψk ⊂ B(0, 1/2) ⊂ B(0, 10), and supp τ(y−x)/sΦ ⊂ B(0, 10) due
to |z| ⩽ |z − s−1(y − x)| + |s−1(y − x)| ⩽ 1/2 + 5 ⩽ 10 from supp Φ ⊂
B(0, 1/2) and s−1|x − y| ⩽ 5. This estimate proves (8.69) when |x − y| ⩽ 5s
due to s−n ⩽ Cps(x − y).

Case 2: |x − y| ⩾ 5s. For z1 ∈ supp τyΦs and z2 ∈ τx(Ψk)s, we have

|z1 − z2| =|z1 − y + y − x + x − z2| ⩾ |y − x| − |z1 − y| − |x − z2|
⩾5s − s/2 − s/2 = 4s > 0,

i.e., the functions τyΦs and τx(Ψk)s have disjoint supports and so we have
the integral representation by Proposition 8.10

〈Tt(τx(Ψk)s), τyΦs〉 =
∫

Rn

∫
Rn

Φs(v − y)K(u, v)(Ψk)s(u − x)dudv.

Because Ψk has a mean value of zero, we can write the previous expression
as ∫

Rn

∫
Rn

Φs(v − y)(K(u, v)− K(x, v))(Ψk)s(u − x)dudv.

We observe that |u − x| ⩽ s and |v − y| ⩽ s in the preceding double
integral. Since |x − y| ⩾ 5s, |u − v| ⩾ |x − y| − 2s ⩾ 3s, which implies
that |u − x| ⩽ |u − v|/2. Using (8.2), we obtain

|K(u, v)− K(x, v)| ⩽ A|x − u|δ
(|u − v|+ |x − v|)n+δ

⩽ Cn,δ Asδ

(s + |x − y|)n+δ
,

where we used the fact that |x − v| ⩾ |x − y| − |y − v| ⩾ 4s and |u − v| ≈
|x− y| due to |u− v| ⩽ |u− x|+ |x− y|+ |y− v| ⩽ |u− v|/2+ |x− y|+ s ⩽
5|u − v|/6 + |x − y| and |u − v| ⩾ |x − y| − 2s ⩾ |x − y| − 2|x − y|/5 =

3|x − y|/5. Inserting this estimate in the double integral, we obtain (8.69).
Estimate (8.68) is proved similarly.

At this point, we drop the dependence of Qk,s and Q

∼

k,s on the index
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k since we can concentrate on one term of the sum in (8.65). We have
managed to express −T( f ) as a finite sum of operators of the form∫ ∞

0
Q

∼

sTsPs( f )
ds
s

(8.70)

and of the form ∫ ∞

0
PsTsQ

∼

s( f )
ds
s

, (8.71)

where the preceding integrals converge in ˙S ′(Rn) and Ts’s have kernels
Ks(x, y), which are pointwise dominated by a constant multiple of (A +

B4)ps(x − y).

It suffices to prove L2 bounds for an operator of the form (8.70) with
constant at most a multiple of A + B4, since by duality the same estimate
also holds for the operators of the form (8.71). We make one more obser-
vation. Using (8.67) (recall that we have dropped the indices k), we obtain

Ts(1)(x) =
∫

Rn
Ks(x, y)dy = −

∫
Rn
〈T(τyΦs), τx(Ψs)〉dy

=−
∫

Rn

∫
Rn

T(τyΦs)(z)Ψs(z − x)dzdy

=−
∫

Rn
T
(∫

Rn
Φs(z − y)dy

)
Ψs(z − x)dz

=−
∫

Rn
T(1)Ψs(z − x)dz

=
∫

Rn
T(1)Ψs(x − z)dz

=(Ψs ∗ T(1))(x), (8.72)

where all integrals converge absolutely.

We can therefore concentrate on the L2 boundedness of the operator
in (8.70). We pair this operator with g ∈ ˙S and we use the convergence of
the integral in ˙S ′(Rn) and the property (Q

∼

s)
t = −Q

∼

s to obtain〈∫ ∞

0
Q

∼

sTsPs( f )
ds
s

, g
〉

=
∫ ∞

0

〈
Q

∼

sTsPs( f ), g
〉 ds

s

=−
∫ ∞

0

〈
TsPs( f ), Q

∼

s(g)
〉 ds

s
.

The intuition here is as follows: Ts is an averaging operator at scale s,
and Ps( f ) is essentially constant on that scale. Therefore, the expression
TsPs( f ) must look like Ts(1)Ps( f ). To be precise, we introduce this term
and try to estimate the error that occurs. We have

TsPs( f ) = Ts(1)Ps( f ) + [TsPs( f )− Ts(1)Ps( f )]. (8.73)

We estimate the terms that arise from this splitting. Recalling (8.72), we



230 8. Standard Kernels and T(1) Theorem

write by using the Cauchy-Schwarz inequality∣∣∣∣∫ ∞

0

〈
(Ψs ∗ T(1))Ps( f ), Q

∼

s(g)
〉 ds

s

∣∣∣∣
⩽
(∫ ∞

0
‖Ps( f )(Ψs ∗ T(1))‖2

2
ds
s

)1/2 (∫ ∞

0
‖Q

∼

s(g)‖2
2

ds
s

)1/2

=

(∫ ∞

0

∫
Rn

|Ps( f )(Ψs ∗ T(1))|2dx
ds
s

)1/2
∥∥∥∥∥
(∫ ∞

0
|Q

∼

s(g)|2 ds
s

)1/2
∥∥∥∥∥

2

. (8.74)

Since T(1) ∈ BMO, Ψ ∈ L1 with
∫

Rn Ψ(x)dx = 0 satisfying |Ψ(x)| ⩽
C(1 + |x|)−n−δ, and due to Φ ∈ D ⊂ S , we obtain for some N ∈ N

sup
ξ∈Rn

∫ ∞

0
|Ψ

∨

(sξ)|2 ds
s

= sup
ξ

∫ ∞

0
|2sξΦ

∨

(sξ)|2 ds
s

= sup
ξ

∫ ∞

0
|Φ

∨

(sξ)|2d(s2|ξ|2)

⩽C sup
ξ

∫ ∞

0

d(s2|ξ|2)
(1 + |sξ|2)N < ∞,

We obtain from Theorem 7.40 (ii) that |(Ψs ∗ T(1))(x)|2dx ds
s is a Carleson

measure on Rn+1
+ with norm at most Cn,δ‖T(1)‖2

BMO. Then, from Theo-
rem 7.39, it follows(∫ ∞

0

∫
Rn

|Ps( f )(x)|2|(Ψs ∗ T(1))(x)|2dx
ds
s

)1/2

⩽ Cn‖T(1)‖BMO‖ f ‖2.

For the second factor in (8.74), by the continuous version of the Littlewood-
Paley theorem (Exercise 5.10), we have∥∥∥∥∥

(∫ ∞

0
|Q

∼

s(g)|2 ds
s

)1/2
∥∥∥∥∥

2

⩽ Cn‖g‖2.

Thus, we obtain

(8.74) ⩽ Cn‖T(1)‖BMO‖ f ‖2‖g‖2 ⩽ CnB4‖ f ‖2‖g‖2.

This gives the sought estimate for the first term in (8.73). For the second
term in (8.73), we have by the Cauchy-Schwarz inequality, Exercise 5.10,
(8.67) and (8.69)∣∣∣∣∫ ∞

0

∫
Rn

Q

∼

s(g)(x)[TsPs( f )− Ts(1)Ps( f )](x)dx
ds
s

∣∣∣∣
⩽
(∫ ∞

0

∫
Rn

|Q

∼

s(g)(x)|2dx
ds
s

)1/2

·
(∫ ∞

0

∫
Rn

|[TsPs( f )− Ts(1)Ps( f )](x)|2dx
ds
s

)1/2

⩽Cn‖g‖2

(∫ ∞

0

∫
Rn

∣∣∣∣∫
Rn

Ks(x, y)[Ps( f )(y)− Ps( f )(x)]dy
∣∣∣∣2 dx

ds
s

)1/2
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⩽Cn(‖T‖WB + A)‖g‖2(∫ ∞

0

∫
Rn

(∫
Rn

ps(x − y)|Ps( f )(y)− Ps( f )(x)|dy
)2

dx
ds
s

)1/2

⩽Cn(A + B4)‖g‖2

( ∫ ∞

0

∫
Rn

∫
Rn

ps(x − y)|Ps( f )(y)− Ps( f )(x)|2dy( ∫
Rn

ps(x − y)dy
)

dx
ds
s

)1/2

⩽Cn(A + B4)‖g‖2

·
(∫ ∞

0

∫
Rn

∫
Rn

ps(x − y)|Ps( f )(y)− Ps( f )(x)|2dydx
ds
s

)1/2

.

It suffices to estimate the last displayed square root. Changing variables
u = x − y, applying Plancherel’s theorem and the inequality |1− eiθ | ⩽ |θ|,
we express this square root as(∫ ∞

0

∫
Rn

∫
Rn

ps(u)|Ps( f )(y)− Ps( f )(y + u)|2dudy
ds
s

)1/2

=(2π)n/2
(∫ ∞

0

∫
Rn

∫
Rn

ps(u)|Φ

∨

(sξ)(1 − eiu·ξ)|2| f̂ (ξ)|2dudξ
ds
s

)1/2

⩽(2π)n/2
(∫ ∞

0

∫
Rn

∫
Rn

ps(u)|Φ

∨

(sξ)|222−δ/2|u|δ/2|ξ|δ/2| f̂ (ξ)|2dudξ
ds
s

)1/2

=(2π)n/221−δ/4

·
(∫

Rn

∫ ∞

0

(∫
Rn

ps(u)|u/s|δ/2du
)
|Φ

∨

(sξ)|2|sξ|δ/2 ds
s
| f̂ (ξ)|2dξ

)1/2

,

and we claim that this last expression is bounded by Cn,δ‖ f ‖2. Indeed, we
first bound the quantity∫

Rn
ps(u)|u/s|δ/2du =

∫
Rn

|u/s|δ/2

(1 + |u/s|)n+δ
d(u/s)

⩽
∫

Rn

1
(1 + |v|)n+δ/2 dv = C < ∞,

and then we use the estimate (due to Φ

∨

∈ S )∫ ∞

0
|Φ

∨

(sξ)|2|sξ|δ/2 ds
s

=
∫ ∞

0
|Φ

∨

(se1)|2sδ/2 ds
s

⩽ C′
n,δ < ∞

where e1 = (1, 0, · · · , 0), and Plancherel’s theorem to obtain the claim.
Since ˙S (Rn) is dense in L2(Rn) by Exercise 5.12, we deduce by duality
that

‖T f ‖2 = sup
g∈ ˙S , ‖g‖2⩽1

|〈T f , g〉| ⩽ Cn,δ(A + B4)‖ f ‖2,

for all f ∈ ˙S . Thus T admits an extension on L2 that satisfies

‖T‖L2→L2 ⩽ Cn,δ(A + B4).
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Step 3. L2 boundedness of T =⇒ (v).

If T has an extension that maps L2 to itself, then by Theorem 8.23, we
have

B5 ⩽ Cn,δ(A + ‖T‖L2→L2).

Thus, the boundedness of T on L2 implies (v).

Step 4. (v) =⇒ (vi).

At a formal level the proof of this fact is clear, since we can write a
normalized bump as the inverse Fourier transform of its Fourier transform
and interchange the integration with the action of T to obtain

T(τx0 φR) =
∫

Rn
τx0 φR

∨

(ξ)T(eiξ·(·))d̄ξ. (8.75)

The conclusion follows by taking BMO norms. To make identity (8.75)
precise, we provide the following argument.

Let us fix a normalized bump φ and a function g ∈ D0. We select a
function η ∈ D that is equal to 1 on the unit ball and vanishes outside
the double of that ball. Define ηk(ξ) = η(ξ/k) and note that ηk tends
pointwise to 1 as k → ∞. Observe that ηkτx0 φR converges to τx0 φR in
S (Rn) as k → ∞, and by the continuity of T we obtain

lim
k→∞

〈T(ηkτx0 φR), g〉 = 〈T(τx0 φR), g〉.

We have

T(ηkτx0 φR) =T
(∫

Rn
τx0 φR

∨

(ξ)ηk(·)eiξ·(·) d̄ξ

)
(8.76)

=
∫

Rn
τx0 φR

∨

(ξ)T(ηk(·)eiξ·(·))d̄ξ,

where the second equality is justified by the continuity and linearity of T
along with the fact that the Riemann sums of the integral in (8.76) converge
to that integral in S (a proof of this fact is essentially contained in the
proof of Theorem 3.37). Consequently,

〈T(τx0 φR), g〉 = lim
k→∞

∫
Rn

τx0 φR

∨

(ξ)〈T(ηkeiξ·(·)), g〉d̄ξ. (8.77)

We show that 〈T(ηkeiξ·(·)), g〉 is uniformly bounded in k for k large. Sup-
pose that g is supported in the ball B(0, M). Let k0 = 2M. Then, for k ⩾ k0

write

〈T(ηkeiξ·(·)), g〉 = 〈T(eiξ·(·)), g〉 − 〈T((1 − ηk)eiξ·(·)), g〉. (8.78)

The first expression on the r.h.s. of (8.78) is bounded by B5‖g‖H1 , while
the second expression can be written as∫

|y|⩾k

[∫
Rn
(K(x, y)− K(0, y))g(x)dx

]
(1 − ηk(y))eiξ·ydy,

in view of Definition 8.16. As |x| ⩽ max(|x − y|, |y|)/2 when |y| ⩾ k ⩾
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k0 = 2M and |x| ⩽ M, we use (8.2) to bound the absolute value of the
preceding expression by

2‖g‖∞

∫
|y|⩾2M

∫
|x|⩽M

A|x|δ
|x − y|n+δ

dxdy

=2‖g‖∞

∫
|x|⩽M

A|x|δ
∫
|x−y|⩾|x|

dy
|x − y|n+δ

dx = C′ < ∞.

The dominated convergence theorem allows us to pass the limit inside the
integrals in (8.77) to obtain

〈T(τx0 φR), g〉 =
∫

Rn
τx0 φR

∨

(ξ)〈T(eiξ·(·)), g〉d̄ξ.

We now use assumption (v). The distribution T(eiξ·(·)) coincides with a
BMO function whose norm is at most B5. It follows that

|〈T(τx0 φR), g〉| ⩽(2π)−n/2‖τx0 φR

∨

‖1 sup
ξ∈Rn

‖T(eiξ·(·))‖BMO‖g‖H1

⩽CnB5‖φ

∨

(R·)‖1‖g‖H1

⩽CnB5R−n‖g‖H1 , (8.79)

where the constant Cn is independent of the normalized bump φ in view
of (8.47). It follows from (8.79) that

g 7→ 〈T(τx0 φR), g〉

is a bounded linear functional on BMO with norm at most a multiple of
B5R−n. It follows from Theorem 7.27 that T(τx0 φR) coincides with a BMO
function that satisfies

Rn‖T(τx0 φR)‖BMO ⩽ CnB5.

The same argument is valid for Tt, which shows that

B6 ⩽ Cn,δ(A + B5)

and concludes the proof that (v) implies (vi).

Step 5. (vi) =⇒ (iii).

We fix x0 ∈ Rn and R > 0. Pick z0 ∈ Rn such that |x0 − z0| = 40R.
Then, if |y − x0| ⩽ 10R and |x − z0| ⩽ 20R, we have

10R ⩽|z0 − x0| − |x − z0| − |y − x0|
⩽|x − y|
⩽|x − z0|+ |z0 − x0|+ |x0 − y| ⩽ 70R.

From this it follows that when |x − z0| ⩽ 20R, we have

|T(τx0 φR)| =
∣∣∣∣∫|y−x0|⩽10R

K(x, y)τx0 φR(y)dy
∣∣∣∣

⩽
∫

10R⩽|x−y|⩽70R
|K(x, y)| dy

Rn
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⩽Cn,δ A
Rn ,

and thus ∣∣∣∣∣ Avg
B(z0,20R)

T(τx0 φR)

∣∣∣∣∣ ⩽ Cn,δ A
Rn , (8.80)

where Avg
B

g denotes the average of g over B. Because of assumption

(vi), the BMO norm of the function T(τx0 φR) is bounded by a multiple
of B6R−n, a fact used in the following sequence of implications. We have
by Corollary 7.26, Exercise 7.5 with |x0 − z0| = 40R and (8.80)

‖T(τx0 φR)‖L2(B(x0,20R))

⩽
∥∥∥∥∥T(τx0 φR)− Avg

B(x0,20R)
T(τx0 φR)

∥∥∥∥∥
L2(B(x0,20R))

+ V1/2
n (20R)n/2

∣∣∣∣∣ Avg
B(x0,20R)

T(τx0 φR)− Avg
B(z0,20R)

T(τx0 φR)

∣∣∣∣∣
+ V1/2

n (20R)n/2

∣∣∣∣∣ Avg
B(z0,20R)

T(τx0 φR)

∣∣∣∣∣
⩽Cn‖T(τx0 φR)‖BMO|B(x0, 20R)|1/2

+ V1/2
n (20R)n/2Cn ln(|x0 − z0|/(20R) + 1)‖T(τx0 φR)‖BMO

+ V1/2
n (20R)n/2 Cn,δ A

Rn

⩽Cn,δ

(
Rn/2‖T(τx0 φR)‖BMO + R−n/2 A

)
⩽Cn,δR−n/2(B6 + A).

Now, we have from Lemma 8.28 that

‖T(τx0 φR)‖L2(B(x0,20R)c) ⩽ Cn,δ AR−n/2.

Since the same computations can apply to Tt, it follows that

Rn/2 (‖T(τx0 φR)‖L2 + ‖Tt(τx0 φR)‖L2

)
⩽ Cn,δ(A + B6), (8.81)

which proves that B3 ⩽ Cn,δ(A + B6) and hence (iii). This concludes the
proof of the fact that (vi) implies (iii).

We have now completed the proof of the following equivalence of
statements:

L2 boundedness of T ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi) (8.82)

and we have established that

‖T‖L2→L2 ≈ A + B3 ≈ A + B4 ≈ A + B5 ≈ A + B6.

Step 6. (i) =⇒ (ii).
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We show that the quantity B2 is bounded by a multiple of A + B1; if
so, then so would do the quantity A + B2. We set

Iε,N(x) =
∫

ε<|x−y|<N
K(x, y)dy and It

ε,N(x) =
∫

ε<|x−y|<N
Kt(x, y)dy.

It suffices to show that there is a constant Cn such that for any x1 ∈ Rn,
we have

sup
ε,N

[
1

Nn

∫
|x−x1|<N/2

|Iε,N(x)|2dx
]1/2

⩽ Cn(A + B1). (8.83)

If (8.83) holds, then we can cover the ball B(x0, N) by finitely many balls
B(x1, N/2) and thus deduce

sup
x0∈Rn

sup
ε,N

[
1

Nn

∫
|x−x0|<N

|Iε,N(x)|2dx
]1/2

⩽ C′
n(A + B1) (8.84)

with a larger constant C′
n in place of Cn.

We estimate the expression on the left in (8.83) by I + I I, where

I = sup
ε,N

[
1

Nn

∫
|x−x1|<N/2

|Iε,N(x)− T(ε)(χB(x1,N))(x)|2dx
]1/2

,

I I = sup
ε,N

[
1

Nn

∫
|x−x1|<N

|T(ε)(χB(x1,N))(x)|2dx
]1/2

.

By hypothesis, we have that I I is bounded by B1. Additionally, for |x −
x1| < N/2 we have by (8.1)∣∣∣Iε,N(x)− T(ε)(χB(x1,N))(x)

∣∣∣ = ∣∣∣∣∣
∫

ε<|x−y|<N
K(x, y)dy −

∫
ε<|x−y|
|x1−y|<N

K(x, y)dy

∣∣∣∣∣
⩽
∫{

ε<|x−y|<N
|x1−y|⩾N

}⋃{ |x−y|⩾N
|x1−y|<N

} |K(x, y)|dy

⩽
∫

N/2⩽|x−y|⩽3N/2

A
|x − y|n dy

=Aωn−1 ln 3.

Thus, I is bounded by ωn−1(ln 3)A2−n/2. Combining the estimates for
I and I I yields the proof of (8.83) and hence of (8.84). Similarly, we can
prove that

sup
x0∈Rn

sup
ε,N

[
1

Nn

∫
|x−x0|<N

|It
ε,N(x)|2dx

]1/2

⩽ C′
n(A + B1),

which together with (8.84) implies that B2 ⩽ 2C′
n(A + B1).

We now consider the following condition analogous to (iii):

(iii)’ B′
3 = sup

φ
sup

x0∈Rn
sup

ε>0
R>0

Rn/2
[
‖T(ε)(τx0 φR)‖2 + ‖(T(ε))t(τx0 φR)‖2

]
< ∞,
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where the first supremum is taken over all normalized bumps φ. We con-
tinue the proof by showing that this condition is a consequence of (ii).

Step 7. (ii) =⇒ (iii)’.

More precisely, we prove that B′
3 ⩽ Cn,δ(A + B2). To prove (iii)’, fix a

normalized bump φ, a point x0 ∈ Rn, and R > 0. Additionally, fix x ∈ Rn

with |x − x0| ⩽ 20R. Then, we have

T(ε)(τx0 φR)(x) =
∫

ε<|x−y|⩽30R
K(x, y)τx0 φR(y)dy = U1(x) + U2(x),

where

U1(x) =
∫

ε<|x−y|⩽30R
K(x, y)(τx0 φR(y)− τx0 φR(x))dy,

U2(x) =τx0 φR(x)
∫

ε<|x−y|⩽30R
K(x, y)dy.

However, we have that

|τx0 φR(y)− τx0 φR(x)| =R−n [φ((y − x0)/R)− φ((x − x0)/R)]

⩽R−n‖∇φ‖∞R−1|x − y|
⩽CnR−n−1|x − y|.

Thus, we obtain

|U1(x)| ⩽ CnR−n−1 A
∫

ε<|x−y|⩽30R

1
|x − y|n−1 dy ⩽ Cn AR−n

on B(x0, 20R); hence,

‖U1‖L2(B(x0,20R)) ⩽ Cn AR−n/2.

Condition (ii) gives that

‖U2‖L2(B(x0,20R)) ⩽ R−n‖Iε,30R‖L2(B(x0,30R)) ⩽ B2(30R)n/2R−n.

Combining these two, we obtain

‖T(ε)(τx0 φR)‖L2(B(x0,20R)) ⩽ Cn(A + B2)R−n/2 (8.85)

and likewise for (T(ε))t. It follows from Lemma 8.28 that

‖T(ε)(τx0 φR)‖L2(B(x0,20R)c) ⩽ Cn,δ AR−n/2,

which combined with (8.85) gives condition (iii)’ with constant B′
3 ⩽ Cn,δ(A+

B2). This concludes the proof that condition (ii) implies (iii)’.

Step 8. (iii)’ =⇒ T(ε) : L2 → L2 uniformly in ε > 0.

For ε > 0, we introduce the smooth truncation T(ε)
ζ of T by setting

T(ε)
ζ f (x) =

∫
Rn

K(x, y)ζ
(

x − y
ε

)
f (y)dy,

where ζ(x) ∈ [0, 1] is a smooth function that is equal to 1 for |x| ⩾ 1 and



§8.3. The T(1) theorem 237

vanishes for |x| ⩽ 1/2. We observe that

|T(ε)
ζ f (x)− T(ε) f (x)| =

∣∣∣∣∫
Rn

K(x, y)
(

ζ

(
x − y

ε

)
− χ|x−y|⩾ε

)
f (y)dy

∣∣∣∣
⩽
∫

ε/2⩽|x−y|⩽ε
|K(x, y)|| f (y)|dy

⩽A
∫

ε/2⩽|x−y|⩽ε

1
|x − y|n | f (y)|dy

⩽A2n 1
εn

∫
|x−y|⩽ε

| f (y)|dy

⩽Cn AM f (x), (8.86)

thus, the uniform boundedness of T(ε) on L2 is equivalent to the uniform
boundedness of T(ε)

ζ . In view of Exercise 8.1, the kernels of the operators

T(ε)
ζ lie in SK(δ, cA) uniformly in ε > 0 (for some constant c), since δ ⩽ 1.

Moreover, because of (8.86), we see that the operators T(ε)
ζ satisfy (iii)’ with

constant Cn A + B′
3.

A careful examination of the proof of the implications

(iii) =⇒ (iv) =⇒ L2 boundedness of T

reveals that all the estimates obtained depend only on the constants B3,
B4 and A but not on the specific operator T. Therefore, these estimates
are valid for the operators T(ε)

ζ that satisfy condition (iii)’. This gives the

uniform boundedness of T(ε)
ζ on L2(Rn) with bounds at most a constant

multiple of A + B′
3. The same conclusion also holds for the operators T(ε).

Step 9. T(ε) : L2 → L2 uniformly in ε > 0 =⇒ (i).

This implication holds trivially.

We have now established the equivalence of the following statements:

(i) ⇐⇒ (ii) ⇐⇒ (iii)’ ⇐⇒ T(ε) : L2 → L2 uniformly in ε > 0, (8.87)

so that

A + B1 ≈ A + B2 ≈ A + B′
3 ≈ sup

ε>0
‖T(ε)‖L2→L2 .

Finally, it remains to link the sets of equivalent conditions (8.82) and
(8.87). We do this by proving the equivalence of (iii) and (iii)’.

Step 10. (iii) ⇐⇒ (iii)’.

We will prove this by the following steps:

(iii)’ =⇒ (iii) =⇒ T : L2 → L2

=⇒ T(ε) : L2 → L2 uniformly in ε > 0 =⇒ (iii)’.
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We first observe that (iii)’ implies (iii). Indeed, using duality and
(8.49), we obtain

‖T(τx0 φR)‖2 = sup
h∈S
‖h‖2⩽1

∣∣∣∣∫
Rn

T(τx0 φR)(x)h(x)dx
∣∣∣∣

= sup
h∈S
‖h‖2⩽1

lim
j→∞

∣∣∣∣∫
Rn

T(ε j)(τx0 φR)(x)h(x)dx
∣∣∣∣

⩽ sup
h∈S
‖h‖2⩽1

lim sup
j→∞

‖T(ε j)(τx0 φR)‖2‖h‖2

⩽B′
3R−n/2,

which gives B3 ⩽ B′
3.

We have shown that (iii) implies the L2 boundedness of T. However,
in view of Corollary 8.21, the boundedness of T on L2 implies the bound-
edness of T(ε) on L2 uniformly in ε > 0, which implies (iii)’. Moreover, B′

3
is bounded by a constant multiple of A + B3.

This completes the proof of the equivalence of the six statements (i)–
(vi) in such a way that

‖T‖L2→L2 ≈ A + Bj

for all j ∈ {1, 2, 3, 4, 5, 6}. The proof of the theorem is now complete. q

Remark 8.29. Suppose that condition (8.49) is removed from the hypoth-
esis of Theorem 8.26. Then the given proof of Theorem 8.26 actually
shows that (i) and (ii) are equivalent to each other and to the statement
that the T(ε)’s have bounded extensions on L2(Rn) that satisfy

sup
ε>0

‖T(ε)‖L2→L2 < ∞.

Additionally, without hypothesis (8.49), the proof of Theorem 8.26
also shows that conditions (iii), (iv), (v) and (vi) are equivalent to each
other and to the statement that T has an extension that maps L2(Rn) to
itself.

Exercises

Exercise 8.1. [Gra14b, Exercise 4.1.3] Let φ(x) be a smooth radial function
that is equal to 1 when |x| ⩾ 1 and vanishes when |x| ⩽ 1/2. Let 0 < δ ⩽ 1.
Show that there is a constant c > 0 that depends only on n, φ, and δ such
that if K ∈ SK(δ, A), then all the smooth truncations K(ε)

φ = K(x, y)φ( x−y
ε )

lie in SK(δ, cA) uniformly in ε > 0.

Exercise 8.2. [Gra14b, Exercise 4.2.1] Let T : S (Rn) → S ′(Rn) be a con-
tinuous linear operator whose Schwartz kernel coincides with a function
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K(x, y) on (Rn ×Rn) \ {(x, x) : x ∈ Rn}. Suppose that the function K(x, y)
satisfies

sup
R>0

∫
R⩽|x−y|⩽2R

|K(x, y)|dy = A < ∞.

(i) Show that the previous condition is equivalent to

sup
R>0

1
R

∫
|x−y|⩽R

|x − y||K(x, y)|dy = A′ < ∞

by proving that A′/2 ⩽ A ⩽ 2A′.
(ii) For ε > 0, let T(ε) be the truncated linear operators with kernels

K(ε)(x, y) = K(x, y)χ|x−y|>ε. Show that the integral defining T(ε) f
converges absolutely for f ∈ S .

Hint (ii) Consider the annuli ε2j ⩽ |x| ⩽ ε2j+1 for j ⩾ 0.

Exercise 8.3. [Gra14b, Exercise 4.3.1] Let T be a continuous linear operator
from S (Rn) to S ′(Rn) and f ∈ S (Rn). Let Pt be as in (8.63).

(i) Show that Pt( f ) converges to f in S (Rn) ad t → 0.
(ii) Conclude that TPt( f ) → T( f ) in S ′(Rn) as t → 0.

(iii) Conclude that PtTPt( f ) → T( f ) in S ′(Rn) as t → 0.
(iv) Observe that (i)-(iii) are also valid if Pt is replaced by P2

t .

Hint (i) Use that gk → g in S iff gk

∨→ g∨in S .

Exercise 8.4. [Gra14b, Exercise 4.3.2] Let T and Pt be as in Exercise 8.3
and let f be a Schwartz function whose Fourier transform vanishes in a
neighborhood of the origin.

(i) Show that Pt( f ) converges to 0 in S (Rn) ad t → ∞.
(ii) Conclude that TPt( f ) → 0 in S ′(Rn) as t → ∞.

(iii) Conclude that PtTPt( f ) → 0 in ˙S ′(Rn) as t → ∞.
(iv) Observe that (i)-(iii) are also valid if Pt is replaced by P2

t .

Hint (i) Use the hint in Exercise 8.3 and the observation that |Φ

∨

(tξ) f

∨

(ξ)| ⩽
C(1 + tc0)−1| f

∨

(ξ)| if f

∨

is support outside the ball B(0, c0). (iii) Pair with a
function g ∈ ˙S (Rn) and use (i) and the fact that all Schwartz seminorms
of Pt(g) are bounded uniformly in t > 0 (iff all Schwartz seminorms of
Pt(g)

∨

are bounded uniformly in t > 0).





9
Besov and Triebel-Lizorkin Spaces

§ 9.1 The smooth dyadic decomposition

In this section, we will introduce smooth Littlewood-Paley dyadic de-
composition, which is also a very basic way to carve up the phase space.

The dyadic decomposition with rectangles is very intuitionistic for
the statement, but it is not convenient to perform some operations such
as differentiation and multiplier. Therefore, we use a smooth form of this
decomposition.

Throughout, we shall call a ball any set {ξ ∈ Rn : |ξ| ⩽ R} with R > 0
and an annulus any set {ξ ∈ Rn : R1 ⩽ |ξ| ⩽ R2} with 0 < R1 < R2.

Now, we give the fundamental Bernstein inequalities.

Proposition 9.1 (Bernstein inequalities). Let k ∈ N0, 1 ⩽ p ⩽ q ⩽ ∞,
A be an annulus and B be a ball. Then, we have

∀ f ∈ Lp(Rn) with supp f

∨

⊂ λB =⇒ sup
|α|=k

‖∂α f ‖q ⩽ Ck+1λ
k+n( 1

p−
1
q )‖ f ‖p,

∀ f ∈ Lp(Rn) with supp f

∨

⊂ λA =⇒
C−k−1λk‖ f ‖p ⩽ sup

|α|=k
‖∂α f ‖p ⩽ Ck+1λk‖ f ‖p.

Proof. Since f

∨

∈ S ′ has a compact support, we have f

∨

∈ E ′ in view of
the arguments below Definition 3.38. Then, it follows from Theorem 3.45

that f

∨∨

∈ C∞ which implies that f coincides with a C∞ function by Fourier
inversion in S ′.

Let ϕ be a function of D(Rn) with value 1 near B and denote ϕλ(ξ) =

ϕ(ξ/λ). As f

∨

(ξ) = ϕλ(ξ) f

∨

(ξ) pointwise, we have

∂α f = ∂αgλ ∗ f with gλ = (ϕλ)
∨ .

Thus, gλ(x) = λnϕ

∧

(λx) = λng(λx), where we denote g := g1.
Applying Young’s inequality with 1

r := 1 − 1
p +

1
q , we obtain

‖∂α f ‖q =‖∂αgλ ∗ f ‖q ⩽ ‖∂αgλ‖r‖ f ‖p

=λn+k‖(∂αg)(λx)‖r‖ f ‖p = λk+n/r′‖∂αg‖r‖ f ‖p
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=λ
k+n( 1

p−
1
q )‖∂αg‖r‖ f ‖p.

The first assertion follows from

‖∂αg‖r ⩽‖∂αg‖∞ + ‖∂αg‖1

⩽‖∂αg‖∞ +
∫

Rn
|∂αg|(1 + |x|2)n 1

(1 + |x|2)n dx

⩽‖∂αg‖∞ + ‖(1 + |x|2)n∂αg‖∞

∫
Rn

1
(1 + |x|2)n dx

⩽Cn‖(1 + |x|2)n∂αg‖∞ = Cn‖F−1F ((1 + |x|2)n∂αg)‖∞

⩽Cn‖F ((1 + |x|2)n∂αg)‖1 = Cn‖(1 − ∆)n((iξ)αϕ(ξ))‖1

=Cn

∥∥∥∥∥ n

∑
j=0

Cj
n(−1)j∆j(ξαϕ(ξ))

∥∥∥∥∥
1

⩽ Cn

n

∑
j=0

Cj
n‖∆j(ξαϕ(ξ))‖1

⩽Cn sup
0⩽|β|⩽|α|, 0⩽|σ|⩽2n−|β|

‖∂β(ξα)∂σϕ‖1

⩽Cn sup
0⩽|β|⩽|α|, 0⩽|σ|⩽2n−|β|

‖ξβ∂σϕ‖1

⩽CnCk sup
0⩽|σ|⩽2n

‖∂σϕ‖1 (since ϕ is compactly supported)

⩽Ck+1
n .

To prove the second assertion, we consider a function ϕ̃ ∈ D(Rn \
{0}) with value 1 on a neighborhood of A. From the algebraic identity

|ξ|2k = ∑
1⩽j1,··· ,jk⩽n

ξ2
j1 · · · ξ2

jk = ∑
|α|=k

aα(iξ)α(−iξ)α,

for some integer constants aα and the fact that f

∨

= ϕ̃ f

∨

for λ = 1, we
deduce that there exists a family of integers (aα)α∈Nn

0
such that

f = ∑
|α|=k

hα ∗ ∂α f , hα := (2π)−n/2aαF
−1
(
(−iξ)α|ξ|−2kϕ̃(ξ)

)
∈ S ⊂ L1.

For λ > 0, from supp f

∨

⊂ λA we have

f

∨

(ξ) = ∑
|α|=k

aα
(−iξ)α

|ξ|2k ϕ̃(ξ/λ)(iξ)α f

∨

(ξ)

=λ−k ∑
|α|=k

aα
(−iξ/λ)α

|ξ/λ|2k ϕ̃(ξ/λ)(iξ)α f

∨

(ξ)

=λ−k ∑
|α|=k

(2π)n/2aαhα

∨

(ξ/λ)(iξ)α f

∨

(ξ)

=λ−k ∑
|α|=k

(2π)n/2aαλnhα(λ·)

∨

(ξ)∂α f

∨

(ξ),
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which implies that

f = λ−k ∑
|α|=k

λnhα(λ·) ∗ ∂α f .

Then, by Young’s inequality, we obtain

‖ f ‖p ⩽ λ−k ∑
|α|=k

‖hα‖1‖∂α f ‖p ⩽ Ck+1λ−k ∑
|α|=k

‖∂α f ‖p,

by a similar argument for ‖hα‖1 as in ‖∂αg‖r, and the result follows from
the first inequality. q

Remark 9.2. When the frequency is localized, one can upgrade low
Lebesgue integrability to high Lebesgue integrability at the cost of some
powers of λ; when the frequency λ is very slow, this cost is in fact a gain,
and it becomes quite suitable to use Bernstein’s inequality whenever the
opportunity arises.

The following lemma describes the action of Fourier multipliers which
behave like homogeneous functions of degree m.

Lemma 9.3. Let A be an annulus, m ∈ R, and k > n/2 be an integer.
Let σ be a k-times differentiable function on Rn \ {0} satisfying that for any
α ∈ Nn

0 with |α| ⩽ k, there exists a constant Cα such that

|∂ασ(ξ)| ⩽ Cα|ξ|m−|α|, ∀ξ ∈ Rn.

Then, there exists a constant C, depending only on the constants Cα, such
that for any p ∈ [1, ∞] and any λ > 0, we have, for any function f ∈ Lp

with supp f

∨

⊂ λA,

‖σ(D) f ‖p ⩽ Cλm‖ f ‖p, with σ(D) f :=
(

σ f

∨)∨
.

Proof. It is clear that

‖σ(ξ)χλA(ξ)‖2 =Cnλm+n/2,

‖∂α(σ(ξ)χλA(ξ))‖2 =Cnλm−k+n/2, and |α| = k.

Thus, we have by the Bernstein multiplier theorem for p ∈ [1, ∞]

‖σχλA‖Mp ⩽ Cn

(
λm+n/2

)1−n/2k (
λm−k+n/2

)n/2k
= Cnλm,

which implies the desired result. q

Let α ∈ (1,
√

2) and ψ : Rn → [0, 1] be a real radial smooth bump
function, e.g.,

ψ(ξ) =


1, |ξ| ⩽ α−1,
smooth, α−1 < |ξ| < α,
0, |ξ| ⩾ α.

(9.1)
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Let φ(ξ) be the function

φ(ξ) := ψ(ξ/2)− ψ(ξ). (9.2)

Thus, φ is a bump function supported on the annulus

A =
{

ξ : α−1 ⩽ |ξ| ⩽ 2α
}

. (9.3)

By construction, we have

∑
k∈Z

φ(2−kξ) = 1

for all ξ 6= 0. Thus, we can partition unity into the functions φ(2−kξ) for
integers k, each of which is supported on an annulus of the form |ξ| ∼ 2k.

For convenience, we define the following functions:{
ψk(ξ) = ψ(2−kξ), k ∈ Z,
φk(ξ) = φ(2−kξ) = ψk+1(ξ)− ψk(ξ), k ∈ Z.

(9.4)

Since supp φ ⊂ A, we have

supp φk ⊂2kA :=
{

ξ : 2kα−1 ⩽ |ξ| ⩽ 2k+1α
}

, k ∈ Z,

supp ψk ⊂
{

ξ : |ξ| ⩽ 2kα
}

, k ∈ Z.
(9.5)

We now define the k-th homogeneous dyadic blocks ∆̇k and the ho-
mogeneous low-frequency cut-off operators Ṡk by

∆̇k f =F−1 φkF f , Ṡk f = F−1ψkF f = ∑
j⩽k−1

∆̇j f , k ∈ Z. (9.6)

Informally, ∆̇k is a frequency projection1 to the annulus{
ξ : 2kα−1 ⩽ |ξ| ⩽ 2k+1α

}
,

while Ṡk is a frequency projection to the ball
{

ξ : |ξ| ⩽ 2kα
}

. The nonho-
mogeneous dyadic blocks ∆k are defined by

∆k f = 0 if k ⩽ −2, ∆−1 f = Ṡ0 f , and ∆k f = ∆̇k f if k ⩾ 0.

The nonhomogeneous low-frequency cut-off operator Sk is defined by

Sk f = ∑
j⩽k−1

∆j f .

Obviously, Sk f = 0 if k ⩽ −1, and Sk f = Ṡk f if k ⩾ 0.

Observe that Ṡk+1 = Ṡk + ∆̇k from (9.4). Additionally, if f is an L2

function, then Ṡk f → 0 in L2 as k → −∞, and Ṡk f → f in L2 as k →
+∞ (this is an easy consequence of Parseval’s theorem). By telescoping

1Strictly speaking, these are not quite projections, even though they are self-adjoint.
They do not quite square to themselves because we choose ψ to be a smooth cut-off rather
than a rough cut-off. However, the operator ∆̇k∆̇k is of the same form as ∆̇k, and similarly
for Ṡk, and so it is still quite reasonable to think of these operators as (smoothed out)
projection operators.
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the series, we can thus write the following (formal) Littlewood-Paley (or
dyadic) decomposition2

Id = ∑
k∈Z

∆̇k and Id = ∑
k∈Z

∆k. (9.7)

The homogeneous decomposition takes a single function and writes it as
a superposition of a countably infinite family of functions ∆̇k f , each one
of which has a frequency of magnitude of approximately 2k. Lower values
of k represent low-frequency components of f ; higher values represent
high-frequency components.

Both decompositions have advantages and drawbacks. The nonhomo-
geneous one is more suitable for characterizing the usual functional spaces
whereas the properties of invariance by dilation of the homogeneous de-
composition may be more adapted for studying certain PDEs or stating
optimal functional inequalities having some scaling invariance.

In the nonhomogeneous cases, the above decomposition makes sense
in S ′(Rn).

Proposition 9.4. Let f ∈ S ′(Rn), then f = lim
k→+∞

Sk f in S ′(Rn).

Proof. Note that 〈 f − Sk f , g〉 = 〈 f , g − Skg〉 for all f ∈ S ′(Rn) and g ∈
S (Rn), so it suffices to prove that g = lim

k→+∞
Skg in S (Rn). Because the

Fourier transform is an automorphism of S (Rn), we can alternatively
prove that ψ(2−k·)g∨tends to g∨in S (Rn). This can easily be verified, so
we left it to the interested reader. q

We now state another result of convergence.

Proposition 9.5. Let {uj}j∈N be a sequence of bounded functions such that
supp uj

∨⊂ 2jA

∼

, where A

∼

is a given annulus. Assume that for some N ∈ N

‖uj‖∞ ⩽ C2jN , ∀j ∈ N, (9.8)

then the series ∑
j

uj converges in S ′.

Proof. Taking ϕ(ξ) ∈ D(Rn \ {0}) with value 1 near A

∼

, we have near A

∼

2Actually, this decomposition works for just about any locally integrable function that
has some decay at infinity, and one usually has all the convergence properties of the sum-
mation that one needs. In many applications, one can make the a priori assumption that
f is Schwartz, in which case the convergence is uniform. However, if f does not decay,
then this formula fails. For instance, if f ≡ 1, then all the projections ∆̇k f vanish because
∆̇k1 =

∫
eixξ φk(ξ)(2π)n/2δ0(ξ)d̄ξ = φk(0) = φ(0) = 0.
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and any k ∈ N,

u0

∨

= ϕ(ξ)u0

∨

(ξ) = ∑
|α|=k

aα
(−iξ)α

|ξ|2k ϕ(ξ)(iξ)αu0

∨

(ξ),

namely,

u0 = ∑
|α|=k

gα ∗ ∂αu0, gα = (2π)−n/2aα

(
(−iξ)α

|ξ|2k ϕ(ξ)

)∨
.

Similarly, on each 2jA

∼

, it holds

uj

∨

= ∑
|α|=k

aα2−jk (−iξ/2j)α

|ξ/2j|2k ϕ(ξ/2j)(iξ)αuj

∨

(ξ),

that is,

uj = 2−jk ∑
|α|=k

2jngα(2j·) ∗ ∂αuj. (9.9)

For any f ∈ S , we obtain from Definition 3.32 and Definition 3.27

|〈uj, f 〉| =2−jk

∣∣∣∣∣ ∑
|α|=k

〈uj, 2jngα(−2j·) ∗ (−∂)α f 〉
∣∣∣∣∣

⩽2−jk ∑
|α|=k

‖uj‖∞‖2jngα(−2j·) ∗ ∂α f ‖1

⩽C2−jk ∑
|α|=k

2jN‖∂α f ‖1.

It is clear that

‖∂α f ‖1 ⩽
∫

Rn

dx
(1 + |x|)n+1 sup

x∈Rn
(1 + |x|)n+1|∂α f (x)|

⩽C sup
x∈Rn

(1 + |x|)n+1|∂α f (x)|.

Taking k = N + 1, we have∣∣∣∣∣∑j∈N

〈uj, f 〉
∣∣∣∣∣ ⩽ C ∑

|α|=N+1
sup
x∈Rn

(1 + |x|)n+1|∂α f (x)|,

which implies that the series converges in S ′ by the equivalent conditions
of S ′ in Theorem 3.23. Thus, the convergent series

〈u, f 〉 := lim
j→∞

∑
j′⩽j

〈uj′ , f 〉

defines a tempered distribution. q

We have some identities as follows:

Proposition 9.6. Let α ∈ (1,
√

2), k, l ∈ Z, and ∆̇k, Ṡk be defined as in
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(9.6). For any f , g ∈ S ′(Rn), we have the following properties:

Ṡk∆̇k+l f ≡ 0, if l ⩾ 1, (9.10)

∆̇k∆̇l f ≡ 0, if |k − l| ⩾ 2, (9.11)

∆̇k(Ṡl−1 f ∆̇l g) ≡ 0, if k − l ⩽ −2 − log2
α2

2 − α2 , or k − l ⩾ −1 + log2 5α2.

(9.12)

In particular, taking α = 9
8 , (9.12) becomes

∆̇k(Ṡl−1 f ∆̇l g) ≡ 0, if k − l ⩽ −3, or k − l ⩾ 2. (9.13)

Remark 9.7. In these properties, we need the condition α2 < 2, which
is the reason that we require α <

√
2 at the beginning of the section.

From now on, we always take α = 9
8 and use (9.13) instead of (9.12) for

simplicity since there are at most four nonzero terms for this choice.

When dealing with the Littlewood-Paley decomposition, it is conve-
nient to introduce the functions

ψ̃(ξ) = ψ(ξ/2), φ̃(ξ) = φ−1(ξ) + φ0(ξ) + φ1(ξ) = ψ(ξ/4)− ψ(2ξ).

and the operators

S̃k =F−1ψ̃(2−kξ)F = Ṡk+1, 4̃k = F−1 φ̃(2−kξ)F .

It is clear that Ṡk = S̃kṠk, and ∆̇k = 4̃k∆̇k from Proposition 9.6.

By Young’s inequality, we can easily prove the following crucial prop-
erties of the operators ∆̇k and Ṡk:

Proposition 9.8 (Boundedness). For any 1 ⩽ p ⩽ ∞ and k ∈ Z, it holds

‖∆̇k f ‖p ⩽ C‖ f ‖p, ‖Ṡk f ‖p ⩽ C‖ f ‖p,

for some constant C independent of p.

We now study how the Littlewood-Paley pieces ∆̇k f (or Ṡk f ) of a func-
tion are related to the function itself. Specifically, we are interested in how
the Lp behavior of the ∆̇k f relates to the Lp behavior of f . One can already
see this when p = 2, in which case we have

‖ f ‖2 ∼
(

∑
k∈Z

‖∆̇k f ‖2
2

)1/2

. (9.14)

In fact, we square both sides and take Plancherel to obtain∫
Rn

| f

∨

(ξ)|2dξ ∼ ∑
k∈Z

∫
Rn

|φk(ξ)|2| f

∨

(ξ)|2dξ.

Observe that for each ξ 6= 0 there are only three values of φk(ξ) that do
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not vanish. That is, for |ξ| ∈ [ 8
9 2`, 9

4 2`],

∑
k∈Z

|φk(ξ)|2 =φ2
`−1(ξ) + φ2

`(ξ) + φ2
`+1(ξ)

=(φ`−1(ξ) + φ`(ξ) + φ`+1(ξ))
2

− 2(φ`−1(ξ)φ`(ξ) + φ`−1(ξ)φ`+1(ξ) + φ`(ξ)φ`+1(ξ))

=1 − 2(φ`−1(ξ) + φ`+1(ξ))φ`(ξ)

=1 − 2(1 − φ`(ξ))φ`(ξ)

=1 − 2φ`(ξ) + 2φ2
`(ξ)

=
1
2
+ 2

(
1
2
− φ`(ξ)

)2

,

which yields

1
2
⩽ ∑

k∈Z

|φk(ξ)|2 ⩽ 1, ∀ξ 6= 0.

The claim follows.

Another way to rewrite (9.14) is

‖ f ‖2 ∼

∥∥∥∥∥∥
(

∑
k∈Z

|∆̇k f |2
)1/2

∥∥∥∥∥∥
2

, (9.15)

which is different from (5.38). More generally, another version of the
Littlewood-Paley square function theorem (Theorem 5.25) is valid:

Theorem 9.9 (Littlewood-Paley square function theorem, another ver-
sion). For any 1 < p < ∞, we have∥∥∥∥∥∥

(
∑

k∈Z

|∆̇k f |2
)1/2

∥∥∥∥∥∥
p

∼ ‖ f ‖p

with the implicit constant depending on p.

We omit the proof. One can read the proof in [Ste93, Page 267], or
[Gra14a, Pages 339-343].

§ 9.2 Definitions and embeddings

The Littlewood-Paley decomposition is very useful. For example, we
can define (independently of the choice of the initial function ψ) the fol-
lowing notations.
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Definition 9.10. Let s ∈ R, 1 ⩽ p, r ⩽ ∞. For f ∈ S ′(Rn), we write

‖ f ‖Ḃs
p,r
=

(
∞

∑
k=−∞

(
2sk‖∆̇k f ‖p

)r
) 1

r

, (9.16)

‖ f ‖Bs
p,r
=‖S0 f ‖p +

(
∞

∑
k=0

(
2sk‖∆k f ‖p

)r
) 1

r

. (9.17)

For r = ∞, it corresponds to the usual `∞ norm.

Observe that (9.16) does not satisfy the condition of the norms, since
we have ∆̇kP(x) = 0 in S ′ for any P ∈ P . In fact,

∆̇kP(x) = 0 in S ′ ⇐⇒ 〈∆̇kP, g〉 = 0, ∀g ∈ S .

It follows from 0 /∈ supp φk for any k ∈ Z that for any α ∈ Nn
0∫

Rn
xα∆̇kg(x)dx =

∫
Rn

xα
(

∆̇kg

∨)∨
(x)dx =

∫
Rn

e−ix·0i|α|
(

∂α
ξ ∆̇kg

∨)∨
(x)dx

=(2π)n/2i|α|
[
∂α

ξ ∆̇kg

∨]
(0)

=(2π)n/2(−1)|α|
[
∂α

ξ (φkg∨)
]
(0) = 0.

Thus, by the property of φk, we obtain∫
Rn
(∆̇kxα)g(x)dx = 0.

Now, we can use ˙S (Rn) to give the following definition.

Definition 9.11. Let s ∈ R, 1 ⩽ p, r ⩽ ∞. The homogeneous Besov
space Ḃs

p,r is defined by

Ḃs
p,r =

{
f ∈ ˙S ′(Rn) : ‖ f ‖Ḃs

p,r
< ∞

}
,

and the nonhomogeneous Besov space Bs
p,r is defined by

Bs
p,r =

{
f ∈ S ′(Rn) : ‖ f ‖Bs

p,r
< ∞

}
.

For the sake of completeness, we also define the Triebel-Lizorkin spaces.

Definition 9.12. Let s ∈ R, 1 ⩽ p < ∞, 1 ⩽ r ⩽ ∞. We write

‖ f ‖Ḟs
p,r
=

∥∥∥∥∥∥
(

∞

∑
k=−∞

(
2sk|∆̇k f |

)r
) 1

r
∥∥∥∥∥∥

p

, ∀ f ∈ ˙S ′(Rn),
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‖ f ‖Fs
p,r
=‖S0 f ‖p +

∥∥∥∥∥∥
(

∞

∑
k=0

(
2sk|∆k f |

)r
) 1

r
∥∥∥∥∥∥

p

, ∀ f ∈ S ′(Rn).

The homogeneous Triebel-Lizorkin space Ḟs
p,r is defined by

Ḟs
p,r =

{
f ∈ ˙S ′(Rn) : ‖ f ‖Ḟs

p,r
< ∞

}
,

and the nonhomogeneous Triebel-Lizorkin space Fs
p,r is defined by

Fs
p,r =

{
f ∈ S ′(Rn) : ‖ f ‖Fs

p,r
< ∞

}
.

Remark 9.13. It is easy to see that the above quantities define a quasinorm
and a norm in general, with the usual convention that r = ∞ in both
cases corresponds to the usual `∞ norm. On the other hand, we have
not included the case p = ∞ in the definition of Triebel-Lizorkin space
because the L∞ norm has to be replaced here by a more complicated
Carleson measure.

Besov spaces and Triebel-Lizorkin spaces were constructed between
the 1960s and 1980s. Recently, they have been widely applied to study
PDEs. Roughly speaking, these spaces are products of the function spaces
`r(Lp) or Lp(`r) by combining the Littlewood-Paley decomposition of phase
space. The index s in the definition, describes the regularity of the space.

From Theorem 9.9, we immediately have the following relations in-
volving Sobolev spaces and Triebel-Lizorkin spaces:

Theorem 9.14. Let s ∈ R and 1 < p < ∞. Then

Hs
p = Fs

p,2, Ḣs
p = Ḟs

p,2, (9.18)

with equivalent norms.

For simplicity, we use X to denote B or F in the spaces, that is, Xs
p,r

(Ẋs
p,r, resp.) denotes Bs

p,r (Ḃs
p,r, resp.) or Fs

p,r (Ḟs
p,r, resp.). However, it will

denote only one of them in the same formula. We always assume that
1 ⩽ p ⩽ ∞ for Bs

p,r (Ḃs
p,r, resp.) and 1 ⩽ p < ∞ for Fs

p,r (Ḟs
p,r, resp.) if no

other statement is declared. We have the following embedding relations:

Theorem 9.15. Let X denote B or F. Then, we have the following embedding:

Xs
p,r1

↪→ Xs
p,r2

, Ẋs
p,r1

↪→ Ẋs
p,r2

, if r1 ⩽ r2,

Xs+ε
p,r1

↪→ Xs
p,r2

, if ε > 0,

Bs
p,min(p,r) ↪→ Fs

p,r ↪→ Bs
p,max(p,r), if 1 ⩽ p < ∞,
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Ḃs
p,min(p,r) ↪→ Ḟs

p,r ↪→ Ḃs
p,max(p,r), if 1 ⩽ p < ∞.

Proof. It is clear that the first one is valid because of `r ↪→ `r+a for any
a ⩾ 0. For the second one, we notice that(

∞

∑
k=0

2skr2 |ak|r2

) 1
r2

⩽ sup
k⩾0

2(s+ε)k|ak|
(

∞

∑
k=0

2−εkr2

) 1
r2

≲ sup
k⩾0

2(s+ε)k|ak|.

Taking ak = ‖∆k f ‖p or ak = |∆k f |, we can obtain

Xs+ε
p,∞ ↪→ Xs

p,r2
,

which yields the second result in view of the first one.
For the third and last one, we separate into two cases and denote

bk = 2sk|∆̇k f | and j = 0 for the third or j = −∞ for the last one.
Case I: r ⩽ p. In this case, we have `r ↪→ `p and

∞

∑
k=j

‖bk‖
p
p =

∞

∑
k=j

∫
Rn

|bk(x)|pdx =
∫

Rn

∞

∑
k=j

|bk(x)|pdx

=
∫

Rn
‖ (bk) ‖

p
`p dx ≲

∫
Rn

‖ (bk) ‖
p
`r dx,

which yields the second parts of embedding relations. Moreover, by
Minkowski’s inequality,a, we obtain∥∥∥∥∥∥

(
∞

∑
k=j

br
k

) 1
r
∥∥∥∥∥∥

r

p

=

∥∥∥∥∥ ∞

∑
k=j

br
k

∥∥∥∥∥
p
r

⩽
∞

∑
k=j

‖br
k‖ p

r
=

∞

∑
k=j

‖bk‖r
p,

which yields the first parts of embedding relations.
Case II: p < r. By Minkowski’s inequality, we have

∞

∑
k=j

‖bk‖r
p =

∞

∑
k=j

‖br
k‖ p

r
⩽
∥∥∥∥∥ ∞

∑
k=j

br
k

∥∥∥∥∥
p
r

=

∥∥∥∥∥∥
(

∞

∑
k=j

br
k

) 1
r
∥∥∥∥∥∥

r

p

,

which yields the second parts of embedding relations. In this case, we
have `p ↪→ `r and

‖‖ (bk) ‖`r‖p
p ≲‖‖ (bk) ‖`p‖p

p =

∥∥∥∥∥ ∞

∑
k=j

bp
k

∥∥∥∥∥
1

=
∞

∑
k=j

‖bk‖
p
p,

which yields the first parts of embedding relations. We complete the
proof. q

aMinkowski’s inequalities read

i) ‖
∞
∑

j=0
f j‖p ⩽

∞
∑

j=0
‖ f j‖p, for any p ∈ [1, ∞];

ii)
∞
∑

j=0
‖ f j‖p ⩽ ‖

∞
∑

j=0
f j‖p, for any p ∈ (0, 1) and f j ⩾ 0.

From Theorems 9.14 and 9.15, we can obtain the following corollary.
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Corollary 9.16. Let s ∈ R. Then we have
(i) For 1 < p < ∞, Bs

p,min(p,2) ↪→ Hs
p ↪→ Bs

p,max(p,2) and Ḃs
p,min(p,2) ↪→

Ḣs
p ↪→ Ḃs

p,max(p,2). In particular, Hs = Bs
2,2 = Fs

2,2 and Ḣs = Ḃs
2,2 =

Ḟs
2,2.

(ii) For 1 ⩽ p ⩽ ∞, Bs
p,1 ↪→ Hs

p ↪→ Bs
p,∞ and Ḃs

p,1 ↪→ Ḣs
p ↪→ Ḃs

p,∞.

Proof. It obviously follows from Theorems 9.14 and 9.15 except the end-
point cases p = 1 or ∞ in (ii). For the proof of the endpoint cases, one can
see [BL76a, Chapter 6]. q

Theorem 9.17. Let X denote B or F. Then,
(i) Xs

p,r and Ẋs
p,r are complete;

(ii) S (Rn) ↪→ Xs
p,r ↪→ S ′(Rn), ˙S (Rn) ↪→ Ẋs

p,r ↪→ ˙S ′(Rn);
(iii) S (Rn) is dense in Xs

p,r, if 1 ⩽ p, r < ∞; ˙S (Rn) is dense in Ẋs
p,r, if

1 ⩽ p, r < ∞.

Proof. We only show the nonhomogeneous cases and leave the homoge-
neous cases to the interested reader (cf. [Jaw77; Saw18]). Clearly, Xs

p,r is
a normed linear space with the norm ‖ · ‖Xs

p,r
since either `r(Lp) or Lp(`r)

is a normed linear space. Moreover, it is complete and therefore Banach
space which will be proven in the future. Let us first prove the second
result. We divide the proofs into four steps.

Step 1: To prove S ↪→ Bs
p,∞. In fact, for some integer σ ⩾ max(s, 0)

and sufficiently largea L ∈ N0, we have for any f ∈ S , from Propositions
9.1 and 9.8, that

‖ f ‖Bs
p,∞

=‖S0 f ‖p + sup
k⩾0

2sk‖∆k f ‖p

⩽C‖ f ‖p + sup
k⩾0

2sk2−σk2σk‖∆k f ‖p

≲∑
α,β

| f |α,β + sup
k⩾0

2sk2−σk sup
|γ|=σ

‖∂γ f ‖p

≲∑
α,β

| f |α,β + sup
|γ|=σ

‖(1 + |x|2)L∂γ f ‖∞ ≲ ∑
α,β

| f |α,β,

where | f |α,β is one of the seminorm sequences of S . Thus, we obtain the
result.

Step 2: To prove S ↪→ Xs
p,r. From Step 1, we know S ↪→ Bs+ε

p,∞ for
any ε > 0. From Theorem 9.15, we obtain Bs+ε

p,∞ ↪→ Bs
p,min(p,r) ↪→ Bs

p,r ∩ Fs
p,r.

Therefore, S ↪→ Xs
p,r.

Step 3: To prove Bs
p,∞ ↪→ S ′. For simplicity, we temporarily denote

∆−1 ≡ 0. For any f ∈ Bs
p,∞ and g ∈ S , we have, from Schwarz’s inequal-
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ity, Proposition 9.8 and the result in Step 1, that

|〈 f , g〉| =
∣∣∣∣∣
〈
(S0 +

∞

∑
k=0

∆k) f , (S0 +
∞

∑
l=0

∆l)g

〉∣∣∣∣∣
⩽| 〈S0 f , S0g〉 |+ | 〈S0 f , ∆0g〉 |+ | 〈∆0 f , S0g〉 |

+
∞

∑
k=0

1

∑
l=−1

| 〈∆k f , ∆k+l g〉 |

≲‖ f ‖p‖g‖p′ +
∞

∑
k=0

1

∑
l=−1

‖∆k f ‖p‖∆k+l g‖p′

≲‖ f ‖p‖g‖p′ +
∞

∑
k=0

1

∑
l=−1

2sk‖∆k f ‖p2−sk‖∆k+l g‖p′

≲‖ f ‖p‖g‖p′ + sup
k⩾0

2sk‖∆k f ‖p

∞

∑
k=0

2−εk2(−s+ε)k‖∆kg‖p′

≲‖ f ‖Bs
p,∞
‖g‖B−s+ε

p′ ,∞

≲‖ f ‖Bs
p,∞ ∑

α,β
|g|α,β.

Thus, we have proven the result.
Step 4: To prove Xs

p,r ↪→ S ′. From Theorem 9.15, we have Xs
p,r ↪→

Bs
p,max(p,r) ↪→ Bs

p,∞ ↪→ S ′.
Finally, let us prove the completeness of Bs

p,r. The completeness of
Fs

p,r can be proved at a similar way. Let { fl}∞
1 be a Cauchy sequence in

Bs
p,r. So does it in S ′ in view of ii). Because S ′ is a complete local convex

topological linear space, there exists a f ∈ S ′ such that fl → f according
to the strong topology of S ′. On the other hand, that { fl}∞

1 is a Cauchy
sequence implies that {∆k fl}∞

l=1 is a Cauchy sequence in Lp. From the
completeness of Lp, there is a gk ∈ Lp such that

‖∆k fl − gk‖p → 0, l → ∞. (9.19)

Since Lp ↪→ S ′ and ∆k fl → ∆k f as l → ∞ in S ′, we obtain gk = ∆k f .
Hence, (9.19) implies

‖∆k( fl − f )‖p → 0, l → ∞.

which yields sup
k⩾0

2(s+ε)k‖∆k( fl − f )‖p → 0 as l → ∞ for any ε > 0.

Similarly, we have

‖S0( fl − f )‖p → 0, l → ∞.

Therefore,

‖ fl − f ‖Bs
p,r
≲ ‖ fl − f ‖Bs+ε

p,∞
→ 0, l → ∞.

Similarly, we can obtain the density statement in (iii). We omit the
details. q
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aIt is enough to assume that L > n
2p . In fact,

‖(1 + |x|2)−L‖p =C
(∫ ∞

0
rn−1(1 + r2)−pLdr

)1/p
⩽ C2L

(∫ ∞

0
rn−1(1 + r)−2pLdr

)1/p

⩽C2L
(∫ ∞

0
(1 + r)−2pL+n−1dr

)1/p
⩽ C2L(2pL − n)−1/p,

where we assume that 2pL > n.

Theorem 9.18 (The embedding theorem). Let 1 ⩽ p, p1, r, r1 ⩽ ∞ and
s, s1 ∈ R. Assume that s − n

p = s1 − n
p1

. The following conclusions hold

Bs
p,r ↪→ Bs1

p1,r1
, Ḃs

p,r ↪→ Ḃs1
p1,r1

, ∀p ⩽ p1 and r ⩽ r1;

Fs
p,r ↪→ Fs1

p1,r1
, Ḟs

p,r ↪→ Ḟs1
p1,r1

, ∀p < p1 < ∞.

Proof. We only give the proof of the nonhomogeneous cases, and the ho-
mogeneous cases can be treated in a similar way.

Let us prove the first conclusion. From the Bernstein inequality in
Proposition 9.1, we immediately have

‖∆k f ‖p1 ≲ 2kn( 1
p−

1
p1
)‖∆k f ‖p, ‖S0 f ‖p1 ≲ ‖S0 f ‖p, (9.20)

since 1 ⩽ p ⩽ p1 ⩽ ∞. Thus, with the help of the embedding Bs
p,r ↪→ Bs

p,r1

for r ⩽ r1 in Theorem 9.15, we obtain

‖ f ‖Bs1
p1,r1

=‖S0 f ‖p1 +

(
∞

∑
k=0

(
2s1k‖∆k f ‖p1

)r1

) 1
r1

≲‖S0 f ‖p +

(
∞

∑
k=0

(
2sk‖∆k f ‖p

)r1

) 1
r1

= ‖ f ‖Bs
p,r1

≲ ‖ f ‖Bs
p,r

.

This gives the first conclusion.
Next, we prove the second conclusion. In view of Theorem 9.15, we

need only prove Fs
p,∞ ↪→ Fs1

p1,1. Without loss of generality, we assume
‖ f ‖Fs

p,∞
= 1 and consider the norm

‖ f ‖Fs1
p1,1

= ‖S0 f ‖p1 +

∥∥∥∥∥ ∞

∑
k=0

2s1k|∆k f |
∥∥∥∥∥

p1

.

We use the following equivalent norm (i.e., Theorem 1.17) on Lp for
1 ⩽ p < ∞:

‖ f ‖p
p = p

∫ ∞

0
tp−1| {x : | f (x)| > t} |dt.

Thus, we have∥∥∥∥∥ ∞

∑
k=0

2s1k|∆k f |
∥∥∥∥∥

p1

p1

=p1

∫ A

0
tp1−1

∣∣∣∣∣
{

x :
∞

∑
k=0

2s1k|∆k f (x)| > t

}∣∣∣∣∣ dt
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+ p1

∫ ∞

A
tp1−1

∣∣∣∣∣
{

x :
∞

∑
k=0

2s1k|∆k f (x)| > t

}∣∣∣∣∣ dt

=:I + II,

where A � 1 is a constant that can be chosen as below. Note that p < p1

and s − n
p = s1 − n

p1
imply s > s1, we have

∞

∑
k=K

2s1k|∆k f | ≲ 2K(s1−s) sup
k⩾0

2sk|∆k f |, ∀K ∈ N0. (9.21)

By taking K = 0 and noticing p < p1 (which implies that tp1−1 ⩽
Ap1−ptp−1 for t ⩽ A), we obtain

I ≲
∫ A

0
tp1−1

∣∣∣∣∣
{

x : sup
k⩾0

2sk|∆k f (x)| > ct

}∣∣∣∣∣ dt

≲
∫ cA

0
τp−1

∣∣∣∣∣
{

x : sup
k⩾0

2sk|∆k f (x)| > τ

}∣∣∣∣∣ dτ ≲
∥∥∥∥∥sup

k⩾0
2sk|∆k f |

∥∥∥∥∥
p

p

≲ 1,

where the implicit constant depends on A, but it is a fixed constant.
Now we estimate I I. By the Bernstein inequality in Proposition 9.1,

we have

‖∆k f ‖∞ ≲ 2kn/p‖∆k f ‖p ≲ 2k(n/p−s)

∥∥∥∥∥sup
k⩾0

2sk|∆k f |
∥∥∥∥∥

p

.

Hence, for K ∈ N, we obtain
K−1

∑
k=0

2s1k|∆k f | ≲
K−1

∑
k=0

2k(s1−s+n/p)

∥∥∥∥∥sup
k⩾0

2sk|∆k f |
∥∥∥∥∥

p

≲2Kn/p1

∥∥∥∥∥sup
k⩾0

2sk|∆k f |
∥∥∥∥∥

p

≲ 2Kn/p1 .

(9.22)

Taking K to be the largest natural number satisfying C2Kn/p1 ⩽ t/2, we
have 2K ∼ tp1/n. It is easy to see that such a K exists if t ⩾ A � 1. Thus,

for t ⩾ A and
∞
∑

k=0
2s1k|(∆k f )(x)| > t, we have, from (9.21) and (9.22), that

C2K(s1−s) sup
k⩾0

2sk|∆k f | ⩾
∞

∑
k=K

2s1k|∆k f | > t/2. (9.23)

Hence, from (9.22) and (9.23), we obtain

II =p1

∫ ∞

A
tp1−1

∣∣∣∣∣
{

x :
∞

∑
k=0

2s1k|∆k f (x)| > t

}∣∣∣∣∣ dt

≲
∫ ∞

A
tp1−1

∣∣∣∣∣
{

x :
K−1

∑
k=0

2s1k|∆k f (x)| > t/2

}∣∣∣∣∣ dt
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+
∫ ∞

A
tp1−1

∣∣∣∣∣
{

x :
∞

∑
k=K

2s1k|∆k f (x)| > t/2

}∣∣∣∣∣ dt

≲
∫ ∞

A
tp1−1

∣∣∣{x : C2Kn/p1 > t/2
}∣∣∣ dt

+
∫ ∞

A
tp1−1

∣∣∣∣∣
{

x : C2K(s1−s) sup
k⩾0

2sk|∆k f (x)| > t/2

}∣∣∣∣∣ dt

≲
∫ ∞

A
tp1−1

∣∣∣∣∣
{

x : sup
k⩾0

2sk|∆k f (x)| > ctp1/p

}∣∣∣∣∣ dt

≲
∫ ∞

A′
τp−1

∣∣∣∣∣
{

x : sup
k⩾0

2sk|∆k f (x)| > τ

}∣∣∣∣∣ dτ

≲‖ sup
k⩾0

2sk|∆k f |‖p
p ≲ 1.

That is, ∥∥∥∥∥ ∞

∑
k=0

2s1k|∆k f |
∥∥∥∥∥

p1

≲ 1.

However, from (9.20), we have ‖S0 f ‖p1 ≲ 1. Therefore, we have obtained
‖ f ‖Fs1

p1,1
≲ 1 under the assumption ‖ f ‖Fs

p,∞
= 1. This completes the proof.

q

Theorem 9.19. Let 1 ⩽ p < ∞, s > n/p and 1 ⩽ r ⩽ ∞. Let Xs
p,r denote

Bs
p,r or Fs

p,r. Then it holds

Xs
p,r ↪→ B0

∞,1 ↪→ L∞.

Proof. By Bernstein’s inequality and Theorem 9.15, we have

‖ f ‖∞ ⩽
∞

∑
k=−1

‖∆k f ‖∞ ≲
∞

∑
k=−1

2kn/p‖∆k f ‖p

≲
(

∞

∑
k=−1

2k(n/p−s)

)
‖ f ‖Bs

p,∞
≲ ‖ f ‖Xs

p,r
. q

Now, we give some fractional Gagliardo-Nirenberg inequalities in ho-
mogeneous Besov spaces.

Theorem 9.20. Let 1 ⩽ p, p0, p1, r, r0, r1 ⩽ ∞, s, s0, s1 ∈ R, 0 ⩽ θ ⩽ 1.
Suppose that the following conditions hold:

s − n
p
= (1 − θ)

(
s0 −

n
p0

)
+ θ

(
s1 −

n
p1

)
, (9.24)

s ⩽ (1 − θ)s0 + θs1, (9.25)
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1
r
⩽ 1 − θ

r0
+

θ

r1
. (9.26)

Then the fractional GN inequality of the following type

‖u‖Ḃs
p,r
≲ ‖u‖1−θ

Ḃs0
p0,r0

‖u‖θ
Ḃs1

p1,r1
(9.27)

holds for all u ∈ Ḃs0
p0,r0 ∩ Ḃs1

p1,r1 .

Proof. Let s∗ = (1 − θ)s0 + θs1, 1/p∗ = (1 − θ)/p0 + θ/p1 and 1/r∗ =

(1 − θ)/r0 + θ/r1. By (9.25), we have s ⩽ s∗ and r∗ ⩽ r. Applying the
convexity Hölder inequality, we have

‖ f ‖Ḃs∗
p∗ ,r∗

⩽ ‖ f ‖1−θ

Ḃs0
p0,r0

‖ f ‖θ
Ḃs1

p1,r1
. (9.28)

Using the embedding Ḃs∗
p∗,r∗ ↪→ Ḃs

p,r, we obtain the conclusion. q

Now, we give the duality theorem:

Theorem 9.21 (The duality theorem). Let s ∈ R. Then we have
i) (Bs

p,r)
′ = B−s

p′,r′ , if 1 ⩽ p, r < ∞.
ii) (Fs

p,r)
′ = F−s

p′,r′ , if 1 < p, r < ∞.

Proof. Please read [BL76a; Tri83] for details. q

§ 9.3 Differential-difference norm on Besov spaces

The next theorem points to an alternative definition of the Besov
spaces Bs

p,r (s > 0) in terms of derivatives and moduli of continuity. The
modulus of continuity is defined by

ωm
p (t, f ) = sup

|y|⩽t
‖ △m

y f ‖p,

where △m
y is the m-th order difference operator:

△m
y f (x) =

m

∑
k=0

Ck
m(−1)k f (x + ky).

Theorem 9.22. Assume that s > 0, and let m and N be integers, such that
m + N > s and 0 ⩽ N < s. Then, for 1 ⩽ p, r ⩽ ∞,

‖ f ‖Bs
p,r
∼ ‖ f ‖p +

n

∑
j=1

(∫ ∞

0

(
tN−sωm

p

(
t,

∂N f
∂xN

j

))r
dt
t

)1/r

.
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Proof. Note that ωm
p is an increasing function of t. Therefore, it is sufficient

to prove that

‖ f ‖Bs
p,r
∼ ‖ f ‖p +

n

∑
j=1

(
∞

∑
`=−∞

(
2`(s−N)ωm

p

(
2−`,

∂N f
∂xN

j

))r)1/r

.

First, we assume that f ∈ Bs
p,r. It is clear that

ωm
p (2

−`,
∂N f
∂xN

j
) = sup

|y|⩽2−`

∥∥∥∥∥△m
y

∂N f
∂xN

j

∥∥∥∥∥
p

= sup
|y|⩽2−`

∥∥∥∥∥ m

∑
k=0

Ck
m(−1)k ∂N f

∂xN
j
(x + ky)

∥∥∥∥∥
p

= sup
|y|⩽2−`

∥∥∥∥∥ ∂N

∂xN
j

(
m

∑
k=0

Ck
m(−1)k f (x + ky)

)∥∥∥∥∥
p

= sup
|y|⩽2−`

∥∥∥∥∥ ∂N

∂xN
j

(
m

∑
k=0

Ck
m(−1)k

(
eiky·ξ f

∨)∨)∥∥∥∥∥
p

= sup
|y|⩽2−`

∥∥∥∥∥ ∂N

∂xN
j

(
m

∑
k=0

Ck
m(−1)keiky·ξ f

∨

)∨∥∥∥∥∥
p

= sup
|y|⩽2−`

∥∥∥∥∥ ∂N

∂xN
j

(
(1 − eiy·ξ)m f

∨)∨∥∥∥∥∥
p

.

Denote ρy(ξ) = (1 − eiy·ξ)m. By the Littlewood-Paley decomposition and
the Bernstein inequalities, we have

ωm
p (2

−`,
∂N f
∂xN

j
)

= sup
|y|⩽2−`

∥∥∥∥∥
(

S0 +
∞

∑
k=0

∆k

)
∂N

∂xN
j

(
ρy(ξ) f

∨)∨∥∥∥∥∥
p

≲ sup
|y|⩽2−`

∥∥∥(ρy
)∨ ∗ S0 f

∥∥∥
p
+ sup

|y|⩽2−`

∞

∑
k=0

2kN
∥∥∥(ρy

)∨ ∗ ∆k f
∥∥∥

p
.

If we can prove that for all integers k

‖
(
ρy
)∨ ∗ S0 f ‖p ≲ min(1, |y|m)‖S0 f ‖p, (9.29)

and

‖
(
ρy
)∨ ∗ ∆k f ‖p ≲ min(1, |y|m2mk)‖∆k f ‖p. (9.30)

Then, we can obtain

n

∑
j=1

(
∞

∑
`=−∞

(
2`(s−N)ωm

p

(
2−`,

∂N f
∂xN

j

))r)1/r

≲
( ∞

∑
`=−∞

(
2`(s−N) sup

|y|⩽2−`

min(1, |y|m)‖S0 f ‖p
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+ sup
|y|⩽2−`

∞

∑
k=0

2(`−k)(s−N)2ks min(1, |y|m2mk)‖∆k f ‖p

)r)1/r

≲
( ∞

∑
`=−∞

(
2`(s−N) min(1, 2−`m)‖S0 f ‖p

+
∞

∑
k=0

2(`−k)(s−N) min(1, 2−(`−k)m)2ks‖∆k f ‖p

)r)1/r

≲‖(2k(s−N) min(1, 2−km)) ∗ (αk)‖`r

≲‖(2k(s−N) min(1, 2−km))‖`1‖(αk)‖`r ≲ ‖ f ‖Bs
p,r

,

where the sequence (αk)
∞
k=−∞ with αk = 2sk‖∆k f ‖p if k ⩾ 0, α−1 = ‖S0 f ‖p

and αk = 0 if k < −1, and we have used the Young inequality for a
convolution of two sequences. In addition, we have

‖ f ‖p ≲‖S0 f ‖p +
∞

∑
k=0

‖∆k f ‖p

≲‖S0 f ‖p +

(
∞

∑
k=0

2−skr′
)1/r′ ( ∞

∑
k=0

(2sk‖∆k f ‖p)
r

)1/r

≲ ‖ f ‖Bs
p,r

,

which implies the desired conclusion.
Now, we turn to prove (9.29) and (9.30). We only need to show ρy ∈

Mp, ρy(·)〈y, ·〉−m ∈ Mp for p ∈ [1, ∞] and

‖ρy‖Mp ⩽ C, ‖ρy(·)〈y, ·〉−m‖Mp ⩽ C, ∀y 6= 0. (9.31)

From the definition of ρy, we obtain

‖ρy‖Mp =(2π)−n/2 sup
f∈S

‖
(
ρy
)∨ ∗ f ‖p

‖ f ‖p
= sup

f∈S

‖∑m
k=0 Ck

m(−1)k f (x + ky)‖p

‖ f ‖p

⩽
m

∑
k=0

Ck
m = 2m.

By Theorem 3.53, we have

‖ρy(ξ)〈y, ξ〉−m‖Mp(Rn) =‖(1 − ei〈y,ξ〉)m〈y, ξ〉−m‖Mp(Rn)

=‖((1 − eiη)/η)m‖Mp(R)

⩽‖(1 − eiη)/η‖m
Mp(R),

since Mp is a Banach algebra and the integer m ⩾ 1 in view of the condi-
tions m + N > s and 0 ⩽ N < s.

In view of the Bernstein multiplier theorem (i.e., Theorem 3.55), we
only need to show (1 − eiη)/η ∈ L2(R) and ∂η((1 − eiη)/η) ∈ L2(R). We
split the L2 integral into two parts |η| < 1 and |η| ⩾ 1. For |η| < 1, we
can use |1 − eiη | ⩽ |η| to obtain |(1 − eiη)/η| ⩽ 1; while for its first order

derivative, we can use Taylor’s expansion ez =
∞
∑

k=0

zk

k! whenever |z| < ∞
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(z ∈ C) to obtain

∂η((1 − eiη)/η) =− η−2(iηeiη + 1 − eiη)

=− η−2

(
iη

∞

∑
k=0

(iη)k

k!
−

∞

∑
k=1

(iη)k

k!

)

=− η−2

(
∞

∑
k=0

(iη)k+1

k!
−

∞

∑
k=0

(iη)k+1

(k + 1)!

)

=
∞

∑
k=1

k(iη)k−1

(k + 1)!

=
∞

∑
k=1

(iη)k−1

(k − 1)!
1

k + 1
,

which implies |∂η((1− eiη)/η)| ⩽ 1
2 e|η|. Then it is easy to obtain the bound

of the L2 integral. Thus, ‖((1− eiη)/η)‖Mp(R) ⩽ C by Theorem 3.55, which
completes the proof of (9.31).

Similarly, we can prove

‖〈y/|y|, ·〉mψ

∼

(·)‖Mp ⩽ C, and ‖〈y/|y|, ·〉m φ

∼

(·)‖Mp ⩽ C,

which implies by Theorem 3.53

‖〈y, ·〉mψ

∼

(·)‖Mp ⩽ C|y|m, ‖〈y, ·〉m φ

∼

(2−k·)‖Mp ⩽ C|y|m2mk.

Thus, we obtain

‖
(
ρy
)∨ ∗ S0 f ‖p ≲ ‖S0 f ‖p,

‖
(
ρy
)∨ ∗ S0 f ‖p

=(2π)−n/2‖
(
ρy(ξ)〈y, ξ〉−m)∨ ∗

(
〈y, ξ〉mψ

∼

(ξ)
)∨

∗ S0 f ‖p

≲|y|m‖S0 f ‖p,

which yields (9.29). Similarly, we have

‖
(
ρy
)∨ ∗ ∆k f ‖p ≲ ‖∆k f ‖p,

‖
(
ρy
)∨ ∗ ∆k f ‖p

=(2π)−n/2‖
(
ρy(ξ)〈y, ξ〉−m)∨ ∗

(
〈y, ξ〉m φ

∼

(2−kξ)
)∨

∗ ∆k f ‖p

≲|y|m2mk‖∆k f ‖p,

which yields (9.30).
The converse inequality will follow if we can prove the estimate

‖∆k f ‖p ≲ 2−Nk
n

∑
j=1

∥∥∥∥∥(ρjk
)∨ ∗ ∂N f

∂xN
j

∥∥∥∥∥
p

, (9.32)

where ρjk = ρ(2−kej)
with ej being the unit vector in the direction of the
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ξ j-axis and ρy defined as the previous. In fact, if (9.32) is valid, we have

‖ f ‖Bs
p,r
≲‖ f ‖p +

 ∞

∑
k=0

2k(s−N)
n

∑
j=1

∥∥∥∥∥(ρjk
)∨ ∗ ∂N f

∂xN
j

∥∥∥∥∥
p

r1/r

≲‖ f ‖p +
n

∑
j=1

(
∞

∑
k=0

(
2k(s−N)ωm

p

(
2−k,

∂N f
∂xN

j

))r)1/r

,

which implies the desired inequality.
To prove (9.32), we need the following lemma.

Lemma 9.23. Assume that n ⩾ 2 and take φ as in (9.2). Then there exist
some functions χj ∈ S (Rn) (1 ⩽ j ⩽ n), such that

n

∑
j=1

χj = 1 on supp φ,

supp χj ⊂
{

ξ ∈ Rn : |ξ j| ⩾ (3
√

n)−1
}

, 1 ⩽ j ⩽ n.

Proof. Choose κ ∈ S (R) with supp κ = {ξ ∈ R : |ξ| ⩾ (3
√

n)−1}
and with positive values in the interior of supp κ. Moreover, choose
σ ∈ S (Rn−1) with supp σ =

{
ξ ∈ Rn−1 : |ξ| ⩽ 3

}
and positive in the

interior. Writing

ξ̄ j = (ξ1, · · · , ξ j−1, ξ j+1, · · · , ξn)

and

χj(ξ) = κ(ξ j)σ(ξ̄
j)/

n

∑
j=1

κ(ξ j)σ(ξ̄
j), 1 ⩽ j ⩽ n,

where
n
∑

j=1
κ(ξ j)σ(ξ̄

j) > 0 on supp φ, only routine verification remains to

complete the proof of the lemma. q

We now complete the proof of the theorem, i.e., we prove (9.32). By
the previous lemma, we obtain the formula

‖∆k f ‖p ≲
n

∑
j=1

∥∥∥∥∥(ρ−1
jk χj(2−k·)ξ−N

j φ(2−k·)
)∨

∗
(

ρjk
∂N f
∂xN

j

∨)∨
∥∥∥∥∥

p

≲2−kN
n

∑
j=1

∥∥∥∥∥(ρ−1
jk χj(2−k·)(2−kξ j)

−N φ(2−k·)
)∨

∗
(

ρjk
∂N f
∂xN

j

∨)∨
∥∥∥∥∥

p

≲2−kN
n

∑
j=1

∥∥∥ρ−1
j0 χjξ

−N
j φ

∥∥∥
Mp(Rn)

∥∥∥∥∥(ρjk
)∨ ∗ ∂N f

∂xN
j

∥∥∥∥∥
p

≲2−kN
n

∑
j=1

∥∥∥∥∥(ρjk
)∨ ∗ ∂N f

∂xN
j

∥∥∥∥∥
p

,
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since, by Theorem 3.53 and 3.55, we have

(1 − eiξ j)−mχj(ξ)ξ
−N
j φ(ξ) ∈ Mp,

for 1 ⩽ j ⩽ n and 1 ⩽ p ⩽ ∞. q

Now, we give a corollary that is very convenient for nonlinear esti-
mates in PDEs.

Corollary 9.24. Assume that s > 0 and s /∈ N. Let 1 ⩽ p, r ⩽ ∞, then

‖ f ‖Bs
p,r
∼ ‖ f ‖p +

n

∑
j=1

(∫ ∞

0

(
t[s]−s sup

|h|⩽t

∥∥∥△h ∂
[s]
xj f
∥∥∥

p

)r
dt
t

)1/r

,

where [s] denotes the integer part of the real number s and △h denotes the
first order difference operator.

Similarly, we can obtain an equivalent norm for the homogeneous
Besov space.

Theorem 9.25. Assume that s > 0, and let m and N be integers, such that
m + N > s and 0 ⩽ N < s. Then, with 1 ⩽ p, r ⩽ ∞,

‖ f ‖Ḃs
p,r
∼

n

∑
j=1

(∫ ∞

0

(
tN−sωm

p

(
t,

∂N f
∂xN

j

))r
dt
t

)1/r

.

In particular, if s > 0 and s /∈ N, then

‖ f ‖Ḃs
p,r
∼

n

∑
j=1

(∫ ∞

0

(
t[s]−s sup

|h|⩽t

∥∥∥△h ∂
[s]
xj f
∥∥∥

p

)r
dt
t

)1/r

,

Exercises

Exercise 9.1. [Gra14b, Exercise 2.2.3] Let α ∈ R, β > 0 and p ∈ [1, ∞). Let
1′ = ∞ and p′ = p/(p − 1) for p 6= 1.

(a) Suppose that the Fourier transform of function g is C∞ and is equal
to |ξ|−α for |ξ| ⩾ 10. Show that g ∈ Bs

p,r(R
n) iff 1 ⩽ r < ∞ and

s < α − n/p′ or r = ∞ and s ⩽ α − n/p′.
(b) If the Fourier transform of function g is C∞ and is equal to |ξ|−α(ln |ξ|)−β

for |ξ| ⩾ 10, then show that g ∈ Bα−n/p′
p,r (Rn) iff r > 1/β.

Exercise 9.2. [Gra14b, Exercise 2.2.5] Let s ∈ R, p, r ∈ [1, ∞), and N =[
n
2 + n

min(p,r)

]
+ 1. Assume that m is a CN function on Rn \ {0} that satisfies

|∂αm(ξ)| ⩽ Cα|ξ|−|α|

for all |α| ⩽ N. Show that there exists a constant C such that for all f ∈ ˙S ′
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we have ∥∥∥∥(m f

∨)∨∥∥∥∥
Ḃs

p,r

⩽ C‖ f ‖Ḃs
p,r

.





10
Paraproducts - An Introduction

§ 10.1 The realization of homogeneous Besov spaces for PDEs

When we consider partial differential equations, it is not conformable
to work on the quotient space. One of the reasons is that the quotient space
does not give us any information on the value of functions. Therefore, at
least we want to return to the subspace of S ′. Although the evaluation
does not make sense in S ′, we feel that the situation becomes better in S ′

than in ˙S ′ = S ′/P . Such a situation is available when s is small enough.

Theorem 10.1. Let 1 ⩽ p, r ⩽ ∞. Assume

s <
n
p

, or s =
n
p

and r = 1. (10.1)

Then, for all f ∈ Ḃs
p,r,

0

∑
k=−∞

∆̇k f is convergent in L∞ and
∞

∑
k=1

∆̇k f is conver-

gent in S ′.

Proof. From Bernstein’s inequality, we have ‖∆̇k f ‖∞ ≲ 2kn/p‖∆̇k f ‖p. It
follows that∥∥∥∥∥ 0

∑
k=−∞

∆̇k f

∥∥∥∥∥
∞

≲
0

∑
k=−∞

‖∆̇k f ‖∞ ≲
0

∑
k=−∞

2k(n/p−s)2ks‖∆̇k f ‖p

≲

‖ f ‖Ḃs
p,∞

≲ ‖ f ‖Ḃs
p,r

, if s < n/p,

‖ f ‖
Ḃn/p

p,1
, if s = n/p and r = 1.

The fact that
∞

∑
k=1

∆̇k f is convergent in S ′ is a general fact. q

There is a way to modify the definition of homogeneous Besov spaces
regarding the regularity index. For convenience, we first define a subspace
of S ′(Rn) that will play an important role in studying PDEs.

Definition 10.2. We denote by S ′
h(R

n) the space of tempered distri-
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butions f such that

lim
λ→∞

‖θ(λD) f ‖∞ = 0, ∀θ ∈ D(Rn), (10.2)

where the operator θ(D) is defined by θ(D) f :=
(

θ f

∨)∨
for a measur-

able function f on Rn with at most polynomial growth at infinity.

Remark 10.3. We have the following facts about S ′
h(R

n).
1) It holds

S ′
h(R

n) =

{
f ∈ S ′(Rn) : lim

k→−∞
Ṡk f = 0 in L∞(Rn)

}
, (10.3)

and

S ′
h(R

n) =

{
f ∈ S ′(Rn) : f = ∑

k∈Z

∆̇k f in S ′(Rn)

}
. (10.4)

In fact, since ψ ∈ D given in (9.1), we have Ṡk f = ψk(D) f =

ψ(2−kD) f → 0 in L∞ as k → −∞ if f satisfies (10.2).
Conversely, for a given θ ∈ D , we may assume supp θ ⊂ {ξ :

|ξ| ⩽ C}. It follows that φk(ξ) = 0 if 2kα−1 > C/λ, i.e., k > log2
C
λα . It

holds for any g ∈ S ,

|〈θ(λD) f , g〉| =|〈 f
∨

(ξ), θ(λξ)g
∧

〉|

=

∣∣∣∣∣
〈

∑
k∈Z

φk(ξ) f

∨

, θ(λξ)g

∧

〉∣∣∣∣∣
=

∣∣∣∣∣∣
〈

∑
k⩽[log2

C
λα ]

φk(ξ) f

∨

, θ(λξ)g

∧

〉∣∣∣∣∣∣
=(2π)−n/2

∣∣∣〈Ṡ[log2
C
λα ]+1 f , θ(λ·)

∨

∗ g
〉∣∣∣→ 0 as λ → ∞,

by (10.3) due to θ(λ·)

∨

∗ g ∈ S and the fact that ‖θ(λ·)

∨

∗ g‖1 ⩽
‖θ(λ·)

∨

‖1‖g‖1 = ‖θ

∨

‖1‖g‖1 by Young’s inequality, i.e., ‖θ(λ·)

∨

∗ g‖1 is
uniformly bounded w.r.t. λ. Taking supremum over all g ∈ S with
‖g‖1 ⩽ 1, we obtain ‖θ(λD) f ‖∞ → 0 as λ → ∞ since the Lebesgue
measure on Rn is obviously semifinite.

For (10.4), noticing ∆̇k = Ṡk+1 − Ṡk and by Proposition 9.4 and
(10.3), we have for any g ∈ S〈

∑
k∈Z

∆̇k f , g

〉
=

〈
∑

k∈Z

(Ṡk+1 f − Ṡk f ), g

〉

=

〈
lim

k→+∞
Ṡk+1 f − lim

k→−∞
Ṡk f , g

〉
=〈 f , g〉.



§10.1. The realization of homogeneous Besov spaces for PDEs 267

On the other hand, from Proposition 9.4 and (10.4), from the above

equality, we obtain
〈

lim
k→−∞

Ṡk f , g
〉

= 0 for any g ∈ S , and it follows

(10.3).
2) It is clear that whether a tempered distribution f belongs to S ′

h de-
pends only on low frequencies. If a tempered distribution f is such
that its Fourier transform f

∨

is locally integrable near 0, then f ∈ S ′
h .

In particular, the space E ′ of compactly supported distributions is
included in S ′

h . In fact, for any g ∈ S , we obtain

|〈Ṡk f , g〉| =|〈ψ(2−kξ) f

∨

(ξ), g

∧

(ξ)〉|

⩽
∫
|ξ|⩽2kα

| f

∨

(ξ)||g

∧

(ξ)|dξ

⩽C
∫
|ξ|⩽2kα

| f

∨

(ξ)|dξ → 0, as k → −∞,

since f

∨

is locally integrable near 0. Thus, f ∈ S ′
h .

3) f ∈ S ′
h(R

n) ⇔ ∃θ ∈ D(Rn), s.t. lim
λ→∞

‖θ(λD) f ‖∞ = 0 and θ(0) 6= 0.

Indeed, the necessity is clear from the definition. For the sufficiency,
by assumption, there is an ` ∈ Z small enough such that supp ψ` ⊂
supp θ, then

|〈Ṡk f , g〉| =
∣∣∣∣〈θ(2`−kξ) f

∨
(ξ),

ψ(2−kξ)

θ(2`−kξ)
g

∧

(ξ)

〉∣∣∣∣
⩽(2π)−n/2‖θ(2`−kD) f ‖∞

∥∥∥∥F (
ψ(2−kξ)

θ(2`−kξ)

)∥∥∥∥
1
‖g‖1

=(2π)−n/2‖θ(2`−kD) f ‖∞

∥∥∥∥F (
ψ`

θ

)∥∥∥∥
1
‖g‖1 (10.5)

⩽C‖θ(2`−kD) f ‖∞ → 0, as k → −∞,

since ψ`
θ ∈ D ⊂ S .

4) Obviously, f ∈ S ′
h(R

n) ⇔ ∀θ ∈ D(Rn) with value 1 near the origin,
we have

lim
λ→∞

‖θ(λD) f ‖∞ = 0.

5) If f ∈ S ′ satisfies θ(D) f ∈ Lp for some p ∈ [1, ∞) and some function
θ ∈ D(Rn) with θ(0) 6= 0, then f ∈ S ′

h . In fact, similar to (10.5), we
can also obtain for any k < `

|〈Ṡk f , g〉| =
∣∣∣∣〈θ(ξ) f

∨

(ξ),
ψ(2−kξ)

θ(ξ)
g

∧

(ξ)

〉∣∣∣∣
⩽(2π)−n/2‖θ(D) f ‖p

∥∥∥∥F (
ψ(2−kξ)

θ(ξ)

)∥∥∥∥
p′
‖g‖1

=(2π)−n/2‖θ(D) f ‖p

∥∥∥∥2knF

(
ψ(·)

θ(2k·)

)
(2k·)

∥∥∥∥
p′
‖g‖1
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=(2π)−n/22kn/p‖θ(D) f ‖p

∥∥∥∥F (
ψ(·)

θ(2k·)

)∥∥∥∥
p′
‖g‖1 → 0,

as k → −∞, with the help of θ(2k·) → θ(0) 6= 0 as k → −∞ and the
uniform continuity of the Fourier transform for L1 functions.

6) A nonzero polynomial P does not belong to S ′
h because for any θ ∈

D(Rn) with value 1 near 0 and any λ > 0, we may write θ(λD)P = P.
In fact, ∀α ∈ Nn

0 , ∀g ∈ S ,

〈θ(λD)xα, g(x)〉 = 〈θ(λξ)xα

∨

(ξ), g

∧

(ξ)〉 = 〈xα, θ(λξ)g

∧

(ξ)

∨

〉

=〈1, xαθ(λξ)g

∧

(ξ)

∨

〉

=〈1, (−i∂ξ)
α(θ(λξ)g

∧

(ξ))

∨

〉

=

〈
(2π)n/2δ0(ξ), ∑

α=β+γ

Cβ
α (−iλ)β(∂

β
ξ θ)(λξ)(−i∂ξ)

γg

∧

(ξ)

〉
=(2π)n/2 ∑

α=β+γ

Cβ
α (−iλ)β(∂

β
ξ θ)(0) (xγg)∨ (0)

=(2π)n/2 (xαg)∨ (0) = 〈(2π)n/2δ0, (xαg)∨〉
=〈1, xαg〉 = 〈xα, g(x)〉,

since (∂βθ)(0) = 0 for any β 6= 0.
7) A nonzero constant function f does not belong to S ′

h because Ṡk f =

f , ∀k ∈ Z, i.e., lim
k→−∞

Ṡk f 6= 0. Indeed, we have for any g ∈ S〈
Ṡk f , g

〉
=
〈

φk f

∨

, g

∧

〉
= (2π)n/2 〈φk f δ0, g

∧

〉 = (2π)n/2 φk(0) f g

∧

(0)

=(2π)n/2 f g

∧

(0) = (2π)n/2 〈 f δ0, g

∧

〉 = 〈 f , g〉 .

We note that this example implies that S ′
h is not a closed subspace of

S ′ for the topology of weak-* convergence, a fact that must be kept
in mind in the applications. For example, taking f ∈ S (Rn) with
f (0) = 1 and constructing the sequence

fk(x) = f
( x

k

)
∈ S (Rn) ⊂ S ′

h(R
n),

we can prove

fk(x)
S ′(Rn)−−−−→ 1 /∈ S ′

h(R
n), as k → ∞.

Now, we redefine homogeneous Besov spaces that can be used in the
context of PDEs.

Definition 10.4 (Realization of homogeneous Besov spaces). Let s ∈ R,
1 ⩽ p, r ⩽ ∞. The homogeneous Besov space Ḃs

p,r is defined by

Ḃs
p,r =

{
f ∈ S ′

h(R
n) : ‖ f ‖Ḃs

p,r
:= ‖ f ‖Ḃs

p,r
< ∞

}
.
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Proposition 10.5. The space Ḃs
p,r endowed with ‖ · ‖Ḃs

p,r
is a normed space.

Proof. It is clear that ‖ · ‖Ḃs
p,r

is a seminorm. Assume that for some f ∈ S ′
h ,

we have ‖ f ‖Ḃs
p,r

= 0. This implies that supp f

∨

⊂ {0}, and thus, for any

k ∈ Z, we have Ṡk f = f . As f ∈ S ′
h , we conclude that f = 0. q

Remark 10.6. The definition of the realized Besov space Ḃs
p,r is indepen-

dent of the function φ used for defining the blocks ∆̇k and changing
φ yields an equivalent norm. Indeed, if φ̃ is another dyadic partition
of unity, then an integer N0 exists such that |k − k′| ⩾ N0 implies that
supp φ̃(2−k·) ∩ supp φ(2−k′ ·) = ∅. Thus,

2ks‖φ̃(2−kD) f ‖p =2ks

∥∥∥∥∥ ∑
|k−k′|⩽N0

φ̃(2−kD)∆̇k′ f

∥∥∥∥∥
p

≲2N0|s| ∑
k′

χ[−N0,N0](k − k′)2k′s‖∆̇k′ f ‖p,

which implies the result by Young’s inequality. We also note that the
previous embedding relations for Ḃs

p,r are valid for Ḃs
p,r.

The (realized) homogeneous Besov spaces have nice scaling proper-
ties. Indeed, if f is a tempered distribution, then consider the tempered
distribution fN defined by fN := f (2N ·). We have the following proposi-
tion.

Proposition 10.7 (Scaling properties). Let N ∈ N0 and f ∈ S ′
h(R

n).
Then, ‖ f ‖Ḃs

p,r
is finite iff ‖ fN‖Ḃs

p,r
is finite. Moreover, we have

‖ fN‖Ḃs
p,r
= 2N(s−n/p)‖ f ‖Ḃs

p,r
.

Proof. By the definition of ∆̇k, we obtain

∆̇k fN(x) =
(

φ(2−kξ) f (2Nx)

∨

(ξ)
)∨

(x)

=
(

φ(2−kξ)2−nN f

∨

(2−Nξ)
)∨

(x)

=
(

φ(2−(k−N)ξ) f

∨

(ξ)
)∨

(2Nx) = ∆̇k−N f (2Nx).

It turns out that ‖∆̇k fN‖p = 2−nN/p‖∆̇k−N f ‖p. We deduce from this that

2ks‖∆̇k fN‖p = 2N(s−n/p)2(k−N)s‖∆̇k−N f ‖p,

and the proposition follows immediately by summation. q

In contrast with the standard function spaces (e.g., general Sobolev
space Hs or Lp spaces with p < ∞), (realized) homogeneous Besov spaces
contain nontrivial homogeneous distributions. This is illustrated by the
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following proposition.

Proposition 10.8. Let σ ∈ (0, n). Then for any p ∈ [1, ∞], it holds
1

|x|σ ∈ Ḃ
n
p−σ
p,∞ (Rn). (10.6)

Proof. By Theorem 9.18, it is sufficient to prove that ρσ := | · |−σ ∈ Ḃn−σ
1,∞ ↪→

Ḃ
n
p−σ
p,∞ . To do so, we introduce χ ∈ D with value 1 near the unit ball and

write

ρσ = ρ0 + ρ1, with ρ0(x) := χ(x)|x|−σ and ρ1(x) := (1 − χ(x))|x|−σ.

It is obvious that ρ0 ∈ L1 and that ρ1 ∈ Lq whenever q > n/σ. This
implies that ρσ ∈ S ′

h . The homogeneity of ρσ gives

∆̇kρσ =(2π)−n/2
(

φ(2−k·)
)∨

∗ ρσ = (2π)−n/22kn φ

∧

(2k·) ∗ ρσ

=(2π)−n/22k(n+σ)φ

∧

(2k·) ∗ ρσ(2k·) = 2kσ(∆̇0ρσ)(2k·).

Therefore, ‖∆̇kρσ‖1 = 2k(σ−n)‖∆̇0ρσ‖1, which reduces the problem to prov-
ing that ∆̇0ρσ ∈ L1. Due to ρ0 ∈ L1, we have ∆̇0ρ0 ∈ L1 by the continuity
of ∆̇0 on Lebesgue spaces. By Bernstein’s inequality, we obtain

‖∆̇0ρ1‖1 ⩽ Ck sup
|α|=k

‖∂α∆̇0ρ1‖1 ⩽ Ck sup
|α|=k

‖∂αρ1‖1.

From Leibniz’s formula, ∂αρ1 − (1 − χ)∂αρσ ∈ D . Then, we complete the
proof by choosing k > n − σ for which |∂α|x|−σ| ≲ |x|−σ−k is integrable
outside the unit ball. q

The following lemma provides a useful criterion for determining whether
the sum of a series belongs to a homogeneous Besov space.

Lemma 10.9. Let s ∈ R, 1 ⩽ p, r ⩽ ∞ and A be an annulus in Rn. Assume
that { fk}k∈Z is a sequence of functions satisfying

supp f

∨

k ⊂ 2kA, and
∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

< ∞.

If the series ∑
k∈Z

fk converges in S ′ to some f ∈ S ′
h , then f ∈ Ḃs

p,r and

‖ f ‖Ḃs
p,r
⩽ Cs

∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

.

Proof. It is clear that there exists some positive integer N0 such that ∆̇j fk =

0 for |j − k| ⩾ N0. Hence,

‖∆̇j f ‖p =

∥∥∥∥∥∥ ∑
|j−k|<N0

∆̇j fk

∥∥∥∥∥∥
p

≲ ∑
|j−k|<N0

‖ fk‖p.
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Therefore, we obtain that

2js‖∆̇j f ‖p ≲ ∑
|j−k|<N0

2(j−k)s2ks‖ fk‖p = C ∑
k∈Z

2(j−k)sχ|j−k|<N0
(k)2ks‖ fk‖p.

Thus, by Young’s inequality, we obtain

‖ f ‖Ḃs
p,r
≲
(

N0−1

∑
j=−N0+1

2js

)∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

≲s

∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

.

As f ∈ S ′
h by assumption, this proves the lemma. q

Remark 10.10. The above convergence assumption concerns { fk}k<0. We
note that if (s, p, r) satisfies the condition (10.1), i.e.,

s <
n
p

, or s =
n
p

and r = 1, (10.1)

then, from the proof of Theorem 10.1, we have

lim
j→−∞

∑
k<j

fk = 0 in L∞.

Hence, ∑
k∈Z

fk converges to some f ∈ S ′, and Ṡk f tends to 0 when k goes

to −∞. In particular, we have f ∈ S ′
h .

Lemma 10.9 will enable us to establish the following important topo-
logical properties of homogeneous Besov spaces.

Theorem 10.11. Let s1, s2 ∈ R and 1 ⩽ p1, p2, r1, r2 ⩽ ∞. Assume that
(s1, p1, r1) satisfies the condition (10.1). Then the space Ḃs1

p1,r1 ∩ Ḃs2
p2,r2 en-

dowed with the norm ‖ · ‖Ḃs1
p1,r1

+ ‖ · ‖Ḃs2
p2,r2

is complete and satisfies the Fatou

property: If { fk}k∈N0 is a bounded sequence of Ḃs1
p1,r1 ∩ Ḃs2

p2,r2 , then there
exists a subsequence { fk j}j∈N0 and an element f ∈ Ḃs1

p1,r1 ∩ Ḃs2
p2,r2 such that

lim
j→∞

fk j = f in S ′, and ‖ f ‖Ḃ
sl
pl ,rl

⩽ C lim inf
j→∞

‖ fk j‖Ḃ
sl
pl ,rl

for l = 1, 2.

Proof. We first prove the Fatou property. According to Bernstein’s in-
equality, for any m ∈ Z, the C∞ sequence {∆̇m fk}k∈N0 is bounded
(uniformly in k) in Lp for any min(p1, p2) ⩽ p ⩽ ∞, especially in
Lmin(p1,p2) ∩ L∞, since

‖∆̇m fk‖p ⩽ 2mn(1/pl−1/p)2−msl 2msl‖∆̇m fk‖pl , for p ⩾ pl , l = 1 or 2.

Cantor’s diagonal process supplies a subsequence { fk j}j∈N0 and a se-
quence { f̃m}m∈Z ⊂ C∞ with Fourier transform supported in 2mA (where
A has been defined in (9.3)) such that, for any m ∈ Z, ϕ ∈ S , and l = 1, 2,

lim
j→∞

〈∆̇m fk j , ϕ〉 = 〈 f̃m, ϕ〉, and ‖ f̃m‖pl ⩽ lim inf
j→∞

‖∆̇m fk j‖pl .

Now, the sequence
(
{2msl‖∆̇m fk j‖pl}m

)
j∈N0

is bounded in `rl (Z). Hence,
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there exists an element {c̃l
m}m∈Z of `rl such that (up to an omitted extrac-

tion) we have, for any test sequence {dm}m∈Z ∈ c00
a of nonnegative real

numbers different from 0 for only a finite number of indices m,

lim
j→∞

∑
m∈Z

2msl‖∆̇m fk j‖pl dm = ∑
m∈Z

c̃l
mdm, and ‖{c̃l

m}m‖`rl ⩽ lim inf
j→∞

‖ fk j‖Ḃ
sl
pl ,rl

.

Passing to the limit in the sum and using the Hölder inequality gives that

{2msl‖ f̃m‖pl}m ∈ `rl (Z).

From the definition of f̃m, we easily deduce that F f̃m is supported in the
annulus 2mA. As (s1, p1, r1) satisfies (10.1), Lemma 10.9 thus guarantees
that the series ∑

m∈Z

f̃m converges to some f ∈ S ′
h . By Proposition 9.6, we

have, for all M < N and ϕ ∈ S ,

〈
N

∑
m=M

∆̇m f , ϕ〉 = 〈
N

∑
m=M

∑
|m′−m|⩽1

∆̇m f̃m′ , ϕ〉.

Hence, by the definition of f̃m and Proposition 9.6 again, we have
N

∑
m=M

∆̇m f = lim
j→∞

N

∑
m=M

∑
|m′−m|⩽1

∆̇m∆̇m′ fk j = lim
j→∞

N

∑
m=M

∆̇m fk j , in S ′.

Since the condition (10.1) is satisfied by (s1, p1, r1), and { fk j}j∈N0 is
bounded in Ḃs1

p1,r1 , Lemma 10.9 ensures that ṠM fk j tends uniformly to 0
when M goes to −∞. Similarly, (1 − ṠN) fk j tends uniformly to 0 in Ḃs2

p2,r2

as N → ∞. Hence, f is indeed the limit of { fk j}j∈N0 in S ′, which com-
pletes the proof of the Fatou property.

We will now check that Ḃs1
p1,r1 ∩ Ḃs2

p2,r2 is complete. Consider a Cauchy
sequence { fk}k∈N0 . This sequence is of course bounded, so there exists
some f in Ḃs1

p1,r1 ∩ Ḃs2
p2,r2 and a subsequence { fk j}j∈N0 such that { fk j}j∈N0

converges to f in S ′. For any positive ε, there exists an integer jε such
that

j ⩾ j′ ⩾ jε =⇒ ‖ fk j′
− fk j‖Ḃs1

p1,r1
+ ‖ fk j′

− fk j‖Ḃs2
p2,r2

< ε,

the Fatou property for { fk j′
− fk j}j∈N0 ensures that

∀j′ ⩾ jε, ‖ fk j′
− f ‖Ḃs1

p1,r1
+ ‖ fk j′

− f ‖Ḃs2
p2,r2

< Cε.

Hence, { fk j}j∈N0 tends to f in Ḃs1
p1,r1 ∩ Ḃs2

p2,r2 . This completes the proof. q

ac00 is the space of all infinite sequences with only a finite number of nonzero terms
(sequence with finite support), which is dense in `r for any r ∈ [1, ∞).

In the case of negative indices of regularity, homogeneous Besov spaces
may be characterized in terms of operator Ṡk, as follows.
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Theorem 10.12. Let s < 0 and 1 ⩽ p, r ⩽ ∞. Assume that f ∈ S ′
h(R

n);
then, f ∈ Ḃs

p,r(R
n) iff {

2ks‖Ṡk f ‖p

}
k∈Z

∈ `r.

Moreover, we have

2−|s|−1‖ f ‖Ḃs
p,r
⩽
∥∥∥{2ks‖Ṡk f ‖p}k

∥∥∥
`r
⩽ 1

|s| ln 2
‖ f ‖Ḃs

p,r
.

Proof. We write

2ks‖∆̇k f ‖p ⩽ 2ks(‖Ṡk+1 f ‖p + ‖Ṡk f ‖p) ⩽ 2−s2(k+1)s‖Ṡk+1 f ‖p + 2ks‖Ṡk f ‖p.

Then, the left inequality is proved. To obtain the right inequality, we write

2ks‖Ṡk f ‖p ⩽2ks ∑
j⩽k−1

‖∆̇j f ‖p = ∑
j⩽k−1

2(k−j)s2js‖∆̇j f ‖p

= ∑
j∈Z

2(k−j)sχ{k−j⩾1}2js‖∆̇j f ‖p,

where χ{k−j⩾1} = 1 if k − j ⩾ 1 and is zero otherwise. As s is negative, the
result follows by Young’s inequality for `r spaces. Precisely, the coefficient
is

∑
j⩾1

2js =
2s

1 − 2s =
1

2|s| − 1
⩽ 1

|s| ln 2
,

since 2|s| =
∞
∑

k=0

(|s| ln 2)k

k! implies 2|s| − 1 ⩾ |s| ln 2. q

Theorem 10.13. Let s ∈ R, p, r ∈ [1, ∞]. Then, Ḃs
p,r(R

n) is a Banach space

when s < n
p . In addition, Ḃ

n
p
p,1(R

n) is also a Banach space.

Proof. By Proposition 10.5, both Ḃs
p,r(R

n) and Ḃ
n
p
p,1(R

n) are normed
spaces.

Step 1. To prove the embedding: Ḃs
p,r(R

n) ↪→ S ′ for s < n
p , and

Ḃ
n
p
p,1(R

n) ↪→ S ′.

We know that Ḃs
p,r(R

n) ⊂ S ′ for s < n
p and Ḃ

n
p
p,1(R

n) ⊂ S ′ by the
definition of Besov spaces due to S ′

h ⊂ S ′, but the embedding relation
in the topological sense needs to be proven. From Bernstein’s inequality,
it follows that

‖∆̇ku‖∞ ≲ 2k n
p ‖∆̇ku‖p. (10.7)



274 10. Paraproducts - An Introduction

For u ∈ Ḃ
n
p
p,1, we have

‖u‖∞ ⩽ ∑
k∈Z

‖∆̇ku‖∞ ≲ ∑
k∈Z

2k n
p ‖∆̇ku‖p = C‖u‖

Ḃ
n
p
p,1

,

which yields Ḃ
n
p
p,1 ↪→ L∞ ↪→ S ′.

For s < n
p , we first consider the part of low frequencies k < 0. For

any f ∈ S , we obtain

|〈∆̇ku, f 〉| ⩽‖∆̇ku‖∞‖ f ‖1 ≲ 2k n
p ‖∆̇ku‖p‖ f ‖1

≲2k
(

n
p−s

)
‖u‖Ḃs

p,∞
sup
x∈Rn

(1 + |x|)n+1| f (x)|. (10.8)

Thus, ∣∣∣∣∣
〈

∑
k<0

∆̇ku, f

〉∣∣∣∣∣ ≲ ‖u‖Ḃs
p,r

sup
x∈Rn

(1 + |x|)n+1| f (x)|.

For high frequencies k ⩾ 0, we can use, as in (9.9),

∆̇ku = 2−kl ∑
|α|=l

∂α(2kngα(2k·) ∗ ∆̇ku), (10.9)

gα := (2π)−n/2aα

(
(−iξ)α

|ξ|2l φ(ξ)

)∨
. (10.10)

Then, it holds for l ∈ N0 and any f ∈ S ,

〈∆̇ku, f 〉 =2−kl ∑
|α|=l

〈∂α(2kngα(2k·) ∗ ∆̇ku), f 〉

=2−kl ∑
|α|=l

〈∆̇ku, 2kngα(−2k·) ∗ (−∂)α f 〉

≲‖∆̇ku‖∞2−kl sup
x∈Rn
|α|=l

(1 + |x|)n+1|∂α f (x)|

≲2k
(

n
p−s−l

)
2ks‖∆̇ku‖p sup

x∈Rn
|α|=l

(1 + |x|)n+1|∂α f (x)|.

Thus, for large l > n
p − s, it follows that∣∣∣∣∣

〈
∑
k⩾0

∆̇ku, f

〉∣∣∣∣∣ ≲ ‖u‖Ḃs
p,r

sup
x∈Rn
|α|=l

(1 + |x|)n+1|∂α f (x)|.

Therefore, we obtain for any f ∈ S

|〈u, f 〉| ⩽ ∑
k∈Z

|〈∆̇ku, f 〉| ≲ ‖u‖Ḃs
p,r

sup
x∈Rn
|α|⩽l

(1 + |x|)n+1|∂α f (x)|, (10.11)

which implies Ḃs
p,r ↪→ S ′.

Step 2. To prove the completeness. Let {u`}`∈N be a Cauchy se-
quence in Ḃs

p,r, where s < n
p or s = n

p and r = 1. Replacing u by u` − uj in
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(10.11), there exists a u ∈ S ′ such that

u`
S ′
−→ u ∈ S ′, as ` → ∞.

Step 2.1. To show u ∈ S ′
h . For s < n

p , by the assumption, it is clear
that u` ∈ S ′

h for any ` ∈ N. Similar to (10.8), we have for any ` ∈ N and
j ∈ Z

|〈Ṡju`, f 〉| ⩽ ∑
k⩽j−1

|〈∆̇ku`, f 〉| ⩽ ∑
k⩽j−1

‖∆̇ku`‖∞‖ f ‖1

≲s2
j
(

n
p−s

)
sup
`

‖u`‖Ḃs
p,r
‖ f ‖1.

From u`
S ′
−→ u ∈ S ′, it follows that

|〈Ṡju, f 〉| ≲s 2j
(

n
p−s

)
sup
`

‖u`‖Ḃs
p,r
‖ f ‖1, ∀ f ∈ S .

Hence, we obtain

lim
j→−∞

Ṡju = 0, i.e., u ∈ S ′
h .

For the case s = n
p and r = 1, since {u`} is Cauchy in Ḃ

n
p
p,1 ↪→ Ḃ0

∞,1, we
have ∀ε > 0, ∃`0 ∈ N, s.t. ∀j ∈ Z and ` ⩾ `0

∑
k⩽j−1

‖∆̇ku`‖∞ ⩽ ∑
k⩽j−1

‖∆̇k(u` − u`0)‖∞ + ∑
k⩽j−1

‖∆̇ku`0‖∞

⩽‖u` − u`0‖Ḃ0
∞,1

+ ∑
k⩽j−1

‖∆̇ku`0‖∞

⩽ ε

2
+ ∑

k⩽j−1
‖∆̇ku`0‖∞.

We can choose j0 so small that

∑
k⩽j−1

‖∆̇ku`0‖∞ <
ε

2
, ∀j ⩽ j0.

Thus, it follows that for u` ∈ S ′
h , we have, ∀j ⩽ j0, ∀` ⩾ `0

‖Ṡju`‖∞ ⩽ ∑
k⩽j−1

‖∆̇ku`‖∞ < ε. (10.12)

Since Ḃ
n
p
p,1 ↪→ Ḃ0

∞,1 ↪→ L∞, {u`}`∈N is also a Cauchy sequence in L∞, i.e.,
u` → u ∈ L∞ as ` → ∞. Taking ` → ∞ in (10.12) yields

‖Ṡju‖∞ ⩽ ε, ∀j ⩽ j0,

which indicates u ∈ S ′
h .

Step 2.2. To show u ∈ Ḃs
p,r. From the definition of Besov spaces, it

follows that for any fixed k, {∆̇ku`}`∈N is a Cauchy sequence in Lp. By
the completeness of Lp, there exists ūk ∈ Lp such that

lim
`→∞

‖∆̇ku` − ūk‖p = 0.
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Since u`
S ′
−→ u as ` → ∞, we have ∆̇ku`

a.e.−→ ∆̇ku as ` → ∞. Then,
ūk = ∆̇ku. Thus,

lim
`→∞

2ks‖∆̇ku`‖p = 2ks‖∆̇ku‖p, ∀k ∈ Z.

For ` ∈ N, {2ks‖∆̇ku`‖p} is bounded in `r(Z), then so is {2ks‖∆̇ku‖p}. It
follows that u ∈ Ḃs

p,r from Lemma 10.9.
Step 2.3. To show the convergence in Ḃs

p,r. For any given K > 0, due
to ∆̇kum → ∆̇ku in Lp as m → ∞, we obtain(

∑
|k|⩽K

(
2ks‖∆̇k(u` − u)‖p

)r
) 1

r

= lim
m→∞

(
∑

|k|⩽K

(
2ks‖∆̇k(u` − um)‖p

)r
) 1

r

.

Noticing that {u`}`∈N is Cauchy in Ḃs
p,r, thus, for any ε > 0, there exists

a `0 ∈ N independent of K such that for all ` > `0, we have(
∑

|k|⩽K

(
2ks‖∆̇k(u` − u)‖p

)r
) 1

r

< ε.

Taking K → ∞, it yields that u` → u in Ḃs
p,r as ` → ∞. Thus, we complete

the proof. q

Remark 10.14. The realization Ḃs
p,r coincides with the general definition

Ḃs
p,r when s < n/p, or s = n/p and r = 1. However, if s > n/p (or

s = n/p and r > 1), then Ḃs
p,r is no longer a Banach space. This is due to

a breakdown of convergence for low frequencies, the so-called infrared
divergence.

Example 10.15. Let χ(ξ) ∈ D(R) with value 1 when |ξ| < 8/9 and
supp χ = {ξ : |ξ| ⩽ 9/10}. Define

fk

∨

(ξ) =


χ(ξ)

ξ ln |ξ| , |ξ| ⩾ 2−k,

0, otherwise.

It is clear that for k > ` > 0

fk

∨

(ξ)− f`

∨

(ξ) =


0, |ξ| ⩾ 2−`,

1
ξ ln |ξ| , 2−k < |ξ| < 2−`,

0, |ξ| ⩽ 2−k.

Thus, we have

‖ fk − f`‖Ḃ1/2
2,∞

= sup
j∈Z

2j/2‖∆̇j( fk − f`)‖2

= sup
j∈Z

2j/2

(∫
2−k<|ξ|<2−`

∣∣∣∣ φj(ξ)

ξ ln |ξ|

∣∣∣∣2 dξ

)1/2
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⩽ sup
j∈Z

2j/2 1
` ln 2

(∫
R

∣∣∣∣ φ(2−jξ)

ξ

∣∣∣∣2 dξ

)1/2

=
1

` ln 2

(∫
R

∣∣∣∣ φ(ξ)

ξ

∣∣∣∣2 dξ

)1/2

→ 0, as k, ` → ∞,

namely, { fk} is Cauchy in Ḃ1/2
2,∞. However, it holds

lim
k→∞

fk

∨

(ξ) =
χ(ξ)

ξ ln |ξ| , ∀ξ > 0,

which is not integrable near {0}, therefore lim
k→∞

fk /∈ S ′
h and then

lim
k→∞

fk /∈ Ḃ1/2
2,∞.

Finally, we give the dual of realized homogeneous Besov spaces. Ob-
serve that in Littlewood-Paley theory, the duality on S ′

h reads for ϕ ∈ S ,

〈u, ϕ〉 = ∑
|k−j|⩽1

〈∆̇ku, ∆̇jϕ〉 = ∑
|k−j|⩽1

∫
Rn

∆̇ku(x)∆̇jϕ(x)dx.

For the Lp space, we can estimate the norm in Ḃs
p,r by duality.

Proposition 10.16. For all s ∈ R and p, r ∈ [1, ∞],
Ḃs

p,r × Ḃ−s
p′,r′ −→ R

(u, ϕ) 7→ ∑
|k−j|⩽1

〈∆̇ku, ∆̇jϕ〉

defines a continuous bilinear functional on Ḃs
p,r × Ḃ−s

p′,r′ . Let

Q−s
p′,r′ :=

{
ϕ ∈ S ∩ Ḃ−s

p′,r′ : ‖ϕ‖Ḃ−s
p′ ,r′

⩽ 1
}

.

If u ∈ S ′
h , then we have for p, r ∈ (1, ∞],

‖u‖Ḃs
p,r
⩽ C sup

ϕ∈Q−s
p′ ,r′

〈u, ϕ〉.

Proof. For |k − j| ⩽ 1, by Hölder’s inequality, we have

|〈∆̇ku, ∆̇jϕ〉| ⩽ 2|s|2ks‖∆̇ku‖p2−js‖∆̇jϕ‖p′ .

Again using Hölder’s inequality, we deduce that

|〈u, ϕ〉| ≲s ‖u‖Ḃs
p,r
‖ϕ‖Ḃ−s

p′ ,r′
.

To prove the second part, for N ∈ N, let

Qr′
N :=

{
(αk) ∈ `r′(Z) : ‖(αk)‖`r′ ⩽ 1, with αk = 0 for |k| > N

}
.

By the definition of the Besov norm and the dual properties of `r, we
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obtain

‖u‖Ḃs
p,r
= sup

N∈N

∥∥∥(χ|k|⩽N(k)2
ks‖∆̇ku‖p

)
k

∥∥∥
`r

= sup
N∈N

sup
(αk)∈Qr′

N

∑
|k|⩽N

‖∆̇ku‖p2ksαk (by duality of `r)

= sup
N∈N

sup
(αk)∈Qr′

N

∑
|k|⩽N

2ksαk sup
ϕ̃∈S

‖ϕ̃‖p′⩽1

〈∆̇ku, ϕ̃〉, (by duality of Lp).

By definition of supremum, for |k| ⩽ N and any ε > 0, there is a ϕk ∈ S

with ‖ϕk‖p′ ⩽ 1 such that

sup
ϕ̃∈S

‖ϕ̃‖p′⩽1

〈∆̇ku, ϕ̃〉 < 〈∆̇ku, ϕk〉+
ε2−ks

(1 + |αk|)(1 + |k|2) .

Let

ΦN := sup
(αk)∈Qr′

N

∑
|k|⩽N

αk2ks∆̇kϕk.

Note that (
K

∑
k=1

ak

)α

⩽ Kmax(0,α−1)
K

∑
k=1

aα
k

for α ⩾ 0 and ak ⩾ 0 (cf. [Dan10, p.391]). Then, for r′ ∈ [1, ∞), we obtain

‖ΦN‖Ḃ−s
p′ ,r′

=

∑
j∈Z

2−jsr′

∥∥∥∥∥∥ sup
(αk)∈Qr′

N

∑
|k|⩽N

αk2ks∆̇j∆̇kϕk

∥∥∥∥∥∥
r′

p′


1/r′

=

∑
j∈Z

2−jsr′

∥∥∥∥∥∥ sup
(αk)∈Qr′

N

∑
|k|⩽N

χ[j−1,j+1](k)αk2ks∆̇j∆̇kϕk

∥∥∥∥∥∥
r′

p′


1/r′

≲

3r′−1 ∑
j∈Z

sup
(αk)∈Qr′

N

∑
|k|⩽N

|αk|r
′
χ[j−1,j+1](k)2

(k−j)sr′ ‖ϕk‖r′
p′

1/r′

≲

3r′−1 ∑
j∈Z

sup
(αk)∈Qr′

N

(
∑

|k|⩽N
|αk|r

′

)
sup
|k|⩽N

χ[j−1,j+1](k)2
(k−j)sr′

1/r′

≲2|s|
(

3 · 3r′−1
)1/r′

≲32|s|,

which is independent of N.
Thus, for any N,∥∥∥(χ|k|⩽N(k)2

ks‖∆̇ku‖p

)
k

∥∥∥
`r
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<〈u, ΦN〉+ sup
(αk)∈Qr′

N

∑
|k|⩽N

2ks|αk|
ε2−ks

(1 + |αk|)(1 + |k|2)

⩽〈u, ΦN〉+ ε.

Therefore, we complete the proof. q

§ 10.2 More results on nonhomogeneous Besov spaces

For the nonhomogeneous Besov space, we have the following lemma,
the proof of which is analogous to that of Lemma 10.9.

Lemma 10.17. Let s ∈ R, 1 ⩽ p, r ⩽ ∞ and A be an annulus in Rn.
Assume that { fk}k∈N0 is a sequence of smooth functions satisfying

supp f

∨

k ⊂ 2kA, and
∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(N0)

< ∞.

Then, we have

f := ∑
k∈N0

fk ∈ Bs
p,r, and ‖ f ‖Bs

p,r
≲s

∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(N0)

.

Remark 10.18. If 1 ⩽ r < ∞, then for any f ∈ Bs
p,r, we have

lim
k→∞

‖Sk f − f ‖Bs
p,r
= 0,

since

lim
k→∞

∑
j⩾k

2jsr‖∆j f ‖r
p = 0, ∀r ∈ [1, ∞), f ∈ Bs

p,r.

Theorem 10.19. Let s < 0 and 1 ⩽ p, r ⩽ ∞. Assume that f ∈ S ′(Rn);
then, f ∈ Bs

p,r(R
n) iff {

2ks‖Sk f ‖p

}
k∈N0

∈ `r.

Moreover, for some constant C depending only on n, we have

2−|s|−1‖ f ‖Bs
p,r
⩽
∥∥∥{2ks‖Sk f ‖p}k

∥∥∥
`r
⩽ 1

|s| ln 2
‖ f ‖Bs

p,r
.

Proof. The proof is very close to that of Theorem 10.12 and is thus omitted.
q

Similar to Theorem 10.11, we have the following.

Theorem 10.20. Let s ∈ R and 1 ⩽ p, r ⩽ ∞. Then Bs
p,r is a Banach space

and satisfies the Fatou property, namely, if { fk}k∈N0 is a bounded sequence
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of Bs
p,r, then there exists an f ∈ Bs

p,r and a subsequence { fk j}j∈N0 such that

lim
j→∞

fk j = f in S ′, and ‖ f ‖Bs
p,r
≲ lim inf

j→∞
‖ fk j‖Bs

p,r
.

We will now examine the way Fourier multipliers act on nonhomo-
geneous Besov spaces. Before stating our result, we need to define the
multipliers we are going to consider.

Definition 10.21. Let m ∈ R. A smooth function f : Rn → R is said to
be an Sm-multiplier if, for each multi-index α, there exists a constant
Cα such that

|∂α f (ξ)| ≲α (1 + |ξ|)m−|α|, ∀ξ ∈ Rn.

Theorem 10.22. Let m ∈ R and f be an Sm-multiplier. Then for all s ∈ R

and 1 ⩽ p, r ⩽ ∞, operator f (D) is continuous from Bs
p,r to Bs−m

p,r .

Proof. According to Lemma 10.17, it suffices to prove that

2k(s−m)‖∆k f (D)u‖p ⩽ C2ks‖∆ku‖p, ∀k ⩾ −1. (10.13)

Obviously, we can find the smooth function σk := φ̃k f satisfying the as-
sumptions of Lemma 9.3, i.e., on supp φ̃k

|∂ασk(ξ)| =|∂α(φ̃(2−kξ) f (ξ))|
≲ ∑

α=β+γ

|2−k|β|(∂β φ̃)(2−kξ)∂γ f (ξ)|

≲ ∑
α=β+γ

|2−k|β|(∂β φ̃)(2−kξ)(1 + |ξ|)m−|γ||

≲ ∑
β⩽α

|(∂β φ̃)(2−kξ)|2k(m−|α|)

≲2k(m−|α|),

and such that

∆k f (D)u = ∆̃k f (D)∆ku = σk(D)∆ku, ∀k ⩾ 0.

Hence, Lemma 9.3 guarantees that (10.13) is satisfied for k ⩾ 0.
Next, introducing θ ∈ D(Rn) such that θ ≡ 1 on supp ψ, we see that

∆−1 f (D)u = (θ f )(D)∆−1u.

As (θ f )∨ ∈ L1, Young’s inequality yields (10.13) for k = −1. q
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§ 10.3 Paraproduct and Bony decomposition

In this section, we study the way that the product acts on Besov spaces.
Let f and g be tempered distributions in S ′

h(R
n). We have

f = ∑
k

∆̇k f and g = ∑
j

∆̇jg,

hence, at least formally,

f g = ∑
k,j

∆̇k f ∆̇jg.

Paradifferential calculus is a mathematical tool for splitting the above sum
into three parts:

1. The first part concerns the indices (k, j) for which the size of supp ∆̇k f

∨

is small compared to the size of supp ∆̇jg

∨

(i.e., k < j − N0 for some
suitable positive integer N0).

2. The second part contains the indices corresponding to those frequen-
cies of f that are large compared with the frequencies of g (i.e.,
k > j + N0).

3. In the last part, we keep the indices (k, j) for which supp ∆̇k f

∨

and

supp ∆̇jg
∨

have comparable sizes (i.e., |k − j| ⩽ N0).

The suitable choice for N0 depends on the assumptions made on the sup-
port of the function φ used in the definition of the Littlewood-Paley de-
composition, i.e., (9.2).

In what follows, we shall always assume that φ has been chosen ac-
cording to (9.2) so that taking N0 = 1 is appropriate in view of Proposi-
tion 9.6. This leads to the following definition.

Definition 10.23. The homogeneous paraproduct of g by f is defined
as follows:

Ṫf g := ∑
j

Ṡj−1 f ∆̇jg.

The homogeneous remainder of f and g is defined by

Ṙ( f , g) = ∑
|k−j|⩽1

∆̇k f ∆̇jg.

Remark 10.24. It can be checked that Ṫf g makes sense in S ′ whenever
f and g are in S ′

h and that Ṫ : ( f , g) 7→ Ṫf g is a bilinear operator. Of
course, the remainder operator Ṙ : ( f , g) 7→ Ṙ( f , g), when restricted to
sufficiently smooth distributions, is also bilinear.

The main motivation for using operators Ṫ and Ṙ is that, at least for-
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mally, the following so-called Bony’s paraproduct decomposition holds
true:

f g = Ṫf g + Ṫg f + Ṙ( f , g). (10.14)

Therefore, to understand the product operators in Besov spaces, it suffices
to investigate the continuity properties of the operators Ṫ and Ṙ.

For simplicity, it will be understood that whenever the expressions
Ṫf g or Ṙ( f , g) appear in the text, the series with general terms

Ṡj−1 f ∆̇jg, or ∑
|ν|⩽1

∆̇j−ν f ∆̇jg

converges to some tempered distribution that belongs to S ′
h .

Similarly, we can define nonhomogeneous paraproducts as follows.

Definition 10.25. The nonhomogeneous paraproduct of g by f is de-
fined by

Tf g := ∑
j

Sj−1 f ∆jg.

The nonhomogeneous remainder of f and g is defined by

R( f , g) = ∑
|k−j|⩽1

∆k f ∆jg.

At least formally, the operators T and R are bilinear, and we have the
following Bony’s paraproduct decomposition

f g = Tf g + Tg f + R( f , g). (10.15)

We shall sometimes also use the following simplified decomposition

f g = Tf g + T′
g f , with T′

g f := ∑
j

Sj+2g∆j f . (10.16)

We can now state our main result concerning continuity of the homo-
geneous paraproduct operator Ṫ.

Theorem 10.26. Let s ∈ R and 1 ⩽ p, r ⩽ ∞. Then, for any ( f , g) ∈
L∞ × Ḃs

p,r, we have

‖Ṫf g‖Ḃs
p,r
⩽ C1+|s|‖ f ‖∞‖g‖Ḃs

p,r
.

Moreover, let s1 < 0, s2 ∈ R and 1 ⩽ p, r1, r2 ⩽ ∞, then, we have, for
any ( f , g) ∈ Ḃ

s1
∞,r1 × Ḃ

s2
p,r2 ,

‖Ṫf g‖
Ḃ

s1+s2
p,r

⩽ C1+|s1+s2|

|s1|
‖ f ‖

Ḃ
s1
∞,r1

‖g‖
Ḃ

s2
p,r2

, with
1
r

:= min
(

1,
1
r1

+
1
r2

)
.
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Proof. From Proposition 9.6 and Proposition 9.8, we have

‖Ṫf g‖r
Ḃs

p,r
= ∑

k∈Z

2sk

∥∥∥∥∥∆̇k

(
∑
j∈Z

Ṡj−1 f ∆̇jg

)∥∥∥∥∥
p

r

⩽ ∑
k∈Z

(
∑

−2⩽k−j⩽1
2sk ∥∥∆̇k

(
Ṡj−1 f ∆̇jg

)∥∥
p

)r

⩽Cr4r−1 ∑
k∈Z

∑
−2⩽k−j⩽1

(
2s(k−j)2sj‖ f ‖∞

∥∥∆̇jg
∥∥

p

)r

=Cr4r−1‖ f ‖r
∞ ∑

j∈Z

∑
−2⩽k−j⩽1

2s(k−j)r
(

2sj ∥∥∆̇jg
∥∥

p

)r

⩽Cr4r22|s|r‖ f ‖r
∞‖g‖r

Ḃs
p,r

,

which yields

‖Ṫf g‖Ḃs
p,r
⩽ 4C · 22|s|‖ f ‖∞‖g‖Ḃs

p,r
.

Similarly, we obtain

‖Ṫf g‖
Ḃ

s1+s2
p,r

=

∑
k∈Z

2k(s1+s2)

∥∥∥∥∥∆̇k

(
∑
j∈Z

Ṡj−1 f ∆̇jg

)∥∥∥∥∥
p

r1/r

⩽
(

∑
k∈Z

(
∑

−2⩽k−j⩽1
2k(s1+s2)

∥∥∆̇k
(
Ṡj−1 f ∆̇jg

)∥∥
p

)r)1/r

⩽C41−1/r

(
∑

k∈Z

∑
−2⩽k−j⩽1

(
2(k−j)s22ks12js2‖Ṡj−1 f ‖∞

∥∥∆̇jg
∥∥

p

)r
)1/r

=C41−1/r

(
∑
j∈Z

∑
−2⩽k−j⩽1

(
2(k−j)s22ks12js2‖Ṡj−1 f ‖∞

∥∥∆̇jg
∥∥

p

)r
)1/r

.

For the case 1
r = 1

r1
+ 1

r2
⩽ 1, by Hölder’s inequality and Theorem 10.12,

we have

‖Ṫf g‖
Ḃ

s1+s2
p,r

⩽41−1/r

(
∑
j∈Z

∑
−2⩽k−j⩽1

(
2(k−j)(s1+s2)+s12(j−1)s1‖Ṡj−1 f ‖∞

)r1

)1/r1

·
(

4 ∑
j∈Z

(
2js2

∥∥∆̇jg
∥∥

p

)r2

)1/r2

⩽ C
|s1|

41−1/r+1/r1+1/r222|s1+s2|‖ f ‖
Ḃ

s1
∞,r1

‖g‖
Ḃ

s2
p,r2

=
C
|s1|

422|s1+s2|‖ f ‖
Ḃ

s1
∞,r1

‖g‖
Ḃ

s2
p,r2



284 10. Paraproducts - An Introduction

⩽ C
|s1|

22|s1+s2|‖ f ‖
Ḃ

s1
∞,r1

‖g‖
Ḃ

s2
p,r2

.

For the case 1
r1
+ 1

r2
> 1 and so r = 1, we have r2 < r′1 with 1

r1
+ 1

r′1
= 1 and

so `r2 ⊂ `r′1 . Thus, by replacing r2 with r′1 in the first case, we can obtain
the desired result. q

Similarly, the main continuity properties of nonhomogeneous para-
products are described below.

Theorem 10.27. Let s, s1, s2 ∈ R and s1 < 0, and 1 ⩽ p, r1, r2 ⩽ ∞. Then,
there exists a constant C > 0 such that

‖Tf g‖Bs
p,r
⩽C|s|+1‖ f ‖∞‖g‖Bs

p,r
,

‖Tf g‖Bs1+s2
p,r

⩽C|s1+s2|+1

|s1|
‖ f ‖Bs1

∞,r1
‖g‖Bs2

p,r2
, with

1
r

:= min
(

1,
1
r1

+
1
r2

)
.

Proof. The proof is analogous to that of Theorem 10.26 and is thus omit-
ted. q

We now examine the behavior of the remainder operator Ṙ. Here, we
have to consider terms of the type ∑

|k−j|⩽1
∆̇k f ∆̇jg, the Fourier transforms

of which are not supported in the annulus but rather in balls of the type
{ξ ∈ Rn : |ξ| ⩽ 9

8 · 2k}. Thus, to prove that the remainder terms belong to
certain Besov spaces, we need the following lemma.

Lemma 10.28. Let s > 0, 1 ⩽ p, r ⩽ ∞ and B be a ball in Rn. Assume that
{ fk}k∈Z is a sequence of smooth functions satisfying that the series ∑

k∈Z

fk

converges to f in S ′
h and

supp fk

∨

⊂ 2kB and
∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

< ∞.

Then, we have

f ∈ Ḃs
p,r and ‖ f ‖Ḃs

p,r
⩽ Cs

s ln 2

∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

,

where C is a positive constant independent of s.

Proof. Denote Aj = {ξ ∈ Rn : 8
9 · 2j ⩽ |ξ| ⩽ 9

8 · 2j+1}. There exists an

integer N1 such that if j ⩾ k + N1, then Aj ∩ 2kB = ∅ and so ∆̇j fk

∨

= 0.
Hence, we have, by Young’s inequality for series and Proposition 9.8, that

‖ f ‖Ḃs
p,r
=
∥∥∥{2js‖∆̇j f ‖p}j

∥∥∥
`r(Z)

=

∥∥∥∥∥∥∥
2js

∥∥∥∥∥ ∑
k>j−N1

∆̇j fk

∥∥∥∥∥
p


j

∥∥∥∥∥∥∥
`r(Z)
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⩽

∥∥∥∥∥∥
{

∑
k>j−N1

2(j−k)s2ks ∥∥∆̇j fk
∥∥

p

}
j

∥∥∥∥∥∥
`r(Z)

⩽ ∑
j<N1

2js
∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

=
2N1s2−s

1 − 2−s

∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

⩽ 2N1s

s ln 2

∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(Z)

,

since s > 0. q

Now, we can state a result concerning the continuity of the remainder
operator.

Theorem 10.29. Let s1, s2 ∈ R and 1 ⩽ p1, p2, r1, r2 ⩽ ∞. Assume that
1
p

:=
1
p1

+
1
p2

⩽ 1, and
1
r

:=
1
r1

+
1
r2

⩽ 1.

If s1 + s2 > 0, then we have, for any ( f , g) ∈ Ḃ
s1
p1,r1 × Ḃ

s2
p2,r2 ,

‖Ṙ( f , g)‖
Ḃ

s1+s2
p,r

⩽ C1+|s1|+s1+s2

s1 + s2
‖ f ‖

Ḃ
s1
p1,r1

‖g‖
Ḃ

s2
p2,r2

.

If r = 1 and s1 + s2 ⩾ 0, then we have, for any ( f , g) ∈ Ḃ
s1
p1,r1 × Ḃ

s2
p2,r2 ,

‖Ṙ( f , g)‖
Ḃ

s1+s2
p,∞

⩽ C1+|s1|+s1+s2‖ f ‖
Ḃ

s1
p1,r1

‖g‖
Ḃ

s2
p2,r2

.

Proof. By the definition of the homogeneous remainder operator,

Ṙ( f , g) = ∑
k

Rk, with Rk = ∑
|ν|⩽1

∆̇k−ν f ∆̇kg.

Because supp Rk

∨

⊂ {ξ : |ξ| ⩽ 2k+1 · 27
8 } and supp φj ⊂ {ξ : 8

9 · 2j ⩽ |ξ| ⩽
9
8 · 2j+1}, we have

∆̇jRk = 0, ∀j > k + 2.

Thus, we obtain

∆̇jṘ( f , g) = ∑
k⩾j−2

∆̇jRk.

By Hölder’s inequality, we infer that

2j(s1+s2)‖∆̇jṘ( f , g)‖p

≲2j(s1+s2) ∑
|ν|⩽1
k⩾j−2

‖∆̇k−ν f ∆̇kg‖p

≲2j(s1+s2) ∑
|ν|⩽1
k⩾j−2

‖∆̇k−ν f ‖p1‖∆̇kg‖p2

≲ ∑
|ν|⩽1
k⩾j−2

2νs12(j−k)(s1+s2)2(k−ν)s1‖∆̇k−ν f ‖p12ks2‖∆̇kg‖p2 .
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Using Hölder’s and Young’s inequalities for series, we obtain the conclu-
sion in the case where s1 + s2 is positive.

In the case where r = 1 and s1 + s2 ⩾ 0, it follows immediately from
the fact that

2j(s1+s2)‖∆̇jṘ( f , g)‖p

≲ ∑
|ν|⩽1

2νs122(s1+s2) ∑
k

2(k−ν)s1‖∆̇k−ν f ‖p12ks2‖∆̇kg‖p2 ,

take the supremum over j, and use Hölder’s inequality for series. q

By taking advantage of Bony’s paraproduct decomposition (10.14),
many results on continuities may be deduced from Theorems 10.26 and
10.29. As an initial example, we derive the following so-called tame esti-
mates for the product of two functions in Besov spaces.

Corollary 10.30. Let s > 0 and 1 ⩽ p, r ⩽ ∞. If (s, p, r) satisfies con-
dition (10.1), then L∞ ∩ Ḃs

p,r is an algebra under pointwise multiplication.
Moreover, there exists a constant C, depending only on n, such that

‖ f g‖Ḃs
p,r
⩽ Cs+1

s

(
‖ f ‖∞‖g‖Ḃs

p,r
+ ‖ f ‖Ḃs

p,r
‖g‖∞

)
.

Proof. Using Bony’s paraproduct decomposition, we have

f g = Ṫf g + Ṫg f + Ṙ( f , g).

According to Theorem 10.26, we have

‖Ṫf g‖Ḃs
p,r
⩽ Cs+1‖ f ‖∞‖g‖Ḃs

p,r
, and ‖Ṫg f ‖Ḃs

p,r
⩽ Cs+1‖ f ‖Ḃs

p,r
‖g‖∞.

Now, using Theorem 10.29, we obtain

‖Ṙ( f , g)‖Ḃs
p,r
⩽ Cs+1

s
‖ f ‖Ḃ0

∞,∞
‖g‖Ḃs

p,r
.

Since ‖ f ‖Ḃ0
∞,∞

≲ ‖ f ‖∞, we obtain the desired inequality. q

Our second example addresses the product of two functions in homo-
geneous Sobolev spaces.

Corollary 10.31. For any s1, s2 ∈ (−n/2, n/2), if s1 + s2 > 0, then we
have

‖ f g‖
Ḃ

s1+s2−n/2
2,1

⩽ C‖ f ‖Ḣs1‖g‖Ḣs2 ,

where the constant C is bounded by

Cs1+s2
n max

(
1

n − 2s1
,

1
n − 2s2

,
1

s1 + s2

)
with Cn depending only on the dimension n.
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Proof. We again use Bony’s paraproduct decomposition. First, for k = 1, 2,
as Ḣsk = Ḃ

sk
2,2 ⊂ Ḃ

sk−n/2
∞,2 with sk − n/2 = sk − n/2 − n/∞, and sk − n/2 <

0, Theorem 10.26 implies that

‖Ṫf g + Ṫg f ‖
Ḃ

s1+s2−n/2
2,1

⩽C|s1+s2−n/2|+1

|s1 − n/2| ‖ f ‖
Ḃ

s1−n/2
∞,2

‖g‖
Ḃ

s2
2,2
+

C|s1+s2−n/2|+1

|s2 − n/2| ‖ f ‖
Ḃ

s1
2,2
‖g‖

Ḃ
s2−n/2
∞,2

⩽C‖ f ‖Ḣs1‖g‖Ḣs2 .

Second, as s1 + s2 > 0, Theorem 10.29 guarantees that

‖Ṙ( f , g)‖
Ḃ

s1+s2
1,1

⩽Cs1+s2+1

s1 + s2
‖ f ‖

Ḃ
s1
2,2
‖g‖

Ḃ
s2
2,2

⩽ C‖ f ‖Ḣs1
‖g‖Ḣs2

.

As the embedding Ḃ
s1+s2
1,1 ⊂ Ḃ

s1+s2−n/2
2,1 , the corollary is proved. q

For the continuity properties of the remainder operator R in the non-
homogeneous case, we also need the following nonhomogeneous version
of Lemma 10.28.

Lemma 10.32. Let s > 0, 1 ⩽ p, r ⩽ ∞ and B be a ball in Rn. Assume that
{ fk}k∈N0 is a sequence of smooth functions satisfying

supp fk

∨

⊂ 2kB and
∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(N0)

< ∞.

Then, we have

f := ∑
k∈N0

fk ∈ Bs
p,r, and ‖ f ‖Bs

p,r
⩽ Cs

∥∥∥{2ks‖ fk‖p}k

∥∥∥
`r(N0)

.

Then, we have, via a similar proof to Theorem 10.29:

Theorem 10.33. Let s1, s2 ∈ R and 1 ⩽ p1, p2, r1, r2 ⩽ ∞. Assume that
1
p

:=
1
p1

+
1
p2

⩽ 1, and
1
r

:=
1
r1

+
1
r2

⩽ 1.

If s1 + s2 > 0, then for any ( f , g) ∈ Bs1
p1,r1 × Bs2

p2,r2 ,

‖R( f , g)‖Bs1+s2
p,r

⩽ C1+|s1|+s1+s2

s1 + s2
‖ f ‖Bs1

p1,r1
‖g‖Bs2

p2,r2
.

If r = 1 and s1 + s2 = 0, then we have, for any ( f , g) ∈ Bs1
p1,r1 × Bs2

p2,r2 ,

‖R( f , g)‖B0
p,∞

⩽ C1+|s1|‖ f ‖Bs1
p1,r1

‖g‖Bs2
p2,r2

.

From this theorem and Theorem 10.27, we infer the following tame
estimate.
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Corollary 10.34. If s > 0 and 1 ⩽ p, r ⩽ ∞, then L∞ ∩ Bs
p,r is an algebra.

Moreover, there exists a constant C, depending only on n, such that

‖ f g‖Bs
p,r
⩽ Cs+1

s

(
‖ f ‖∞‖g‖Bs

p,r
+ ‖ f ‖Bs

p,r
‖g‖∞

)
.

§ 10.4 The paralinearization theorems

In this section, we first consider the action of smooth functions on the
space Ḃs

p,r. More precisely, if f is a smooth function vanishing at 0, and u
is a function of Ḃs

p,r, does f (u) belong to Ḃs
p,r? The answer is given by the

following theorem which is based on three lemmas.

Theorem 10.35. Let s1, s2 > 0 and 1 ⩽ p1, p2, r1, r2 ⩽ ∞. Let f be a
smooth function on R satisfying f (0) = 0. Assume that (s1, p1, r1) satisfies
condition (10.1). Then, for any real-valued function u ∈ Ḃ

s1
p1,r1 ∩ Ḃ

s2
p2,r2 ∩ L∞,

the function f (u) belongs to the same space, and we have, for k = 1, 2, we
have

‖ f (u)‖
Ḃ

sk
pk ,rk

⩽ C( f ′, ‖u‖∞)‖u‖
Ḃ

sk
pk ,rk

.

Proof. As u is bounded, we can assume without loss of generality that f is
compactly supported. We introduce the telescopic series

∑
j∈Z

f j, with f j := f (Ṡj+1u)− f (Ṡju).

The convergence of the series is ensured by the following lemma.

Lemma 10.36. Under the hypotheses of Theorem 10.35, the series ∑
j∈Z

f j

converges to f (u) ∈ S ′
h in S ′, and we have

f j = mj∆̇ju, with mj :=
∫ 1

0
f ′(Ṡju + t∆̇ju)dt. (10.17)

Proof. The identity (10.17) readily follows from the mean value theorem,
so we will concentrate on the proof of the convergence of the series. We
observe that

0

∑
j=−N

f j = f (Ṡ1u)− f (Ṡ−Nu).

As u ∈ S ′
h and f (0) = 0, we have ‖ f (Ṡ−Nu)‖∞ → 0 as N → ∞. Moreover,
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for all 2 ⩽ M ∈ N, we have
M−1

∑
j=1

f j = f (ṠMu)− f (Ṡ1u).

By virtue of the mean value theorem, we have

‖ f (u)− f (ṠMu)‖pk ⩽ ‖ f ′‖∞‖u − ṠMu‖pk .

Because sk > 0, the function ṠMu → u in Lpk as M → ∞. Indeed, u −
ṠMu = ∑

j⩾M
∆̇ju, and then by Hölder’s inequality for `-spaces, we have,

for u ∈ Ḃ
sk
pk ,rk with sk > 0,∥∥∥∥∥∑

j⩾M
∆̇ju

∥∥∥∥∥
pk

⩽ ∑
j⩾M

‖∆̇ju‖pk = ∑
j⩾M

2jsk‖∆̇ju‖pk 2
−jsk

⩽



(
∑

j⩾M
(2jsk‖∆̇ju‖pk)

rk

)1/rk
(

∑
j⩾M

2−jskr′k

)1/r′k

, if rk 6= 1,

2−Msk ∑
j⩾M

2jsk‖∆̇ju‖pk , if rk = 1

⩽


2−Msk

(1 − 2−skr′k)1/r′k
‖u‖

Ḃ
sk
pk ,rk

, if rk 6= 1,

2−Msk‖u‖
Ḃ

sk
pk ,rk

, if rk = 1

→0, as M → +∞.

Therefore, the series ∑
j∈Z

f j = f (u) in L∞ + Lpk .

Next, we prove that f (u) ∈ S ′
h . It suffices to show that ‖Ṡj f (u)‖∞ →

0 as j → −∞. For that, we use the decomposition

Ṡj f (u) = Ṡj ∑
j′<−N

f j′ + Ṡj ∑
j′⩾−N

f j′ .

Let ε > 0. As the series ∑
j<0

f j converges in L∞, we can choose an integer

Nε such that ∥∥∥∥∥Ṡj ∑
j′<−Nε

f j′

∥∥∥∥∥
∞

⩽ ε/2.

As the f j’s are in Lpk and ∑
j∈N0

f j is convergent in Lpk , we then have, using

Bernstein’s inequality,∥∥∥∥∥Ṡj ∑
j′⩾−Nε

f j′

∥∥∥∥∥
∞

⩽ C2jn/pk

∥∥∥∥∥Ṡj ∑
j′⩾−Nε

f j′

∥∥∥∥∥
pk

⩽ Cε2jn/pk .

Thus, ‖Ṡj f (u)‖∞ → 0 as j → −∞. q

The terms mj’s will be handled according to the following lemma.
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Lemma 10.37. Let g be a smooth function from R2 to R. For j ∈ Z, we
define

mj(g) := g(Ṡju, ∆̇ju).

For any bounded function u, then we have

‖∂αmj(g)‖∞ ⩽ Cα(g, ‖u‖∞)2j|α|, ∀α ∈ Nn
0 , ∀j ∈ Z.

Proof. For the case α = 0, it is clear that ‖mj(g)‖∞ ⩽ C(g, ‖u‖∞) since g
is smooth and both Ṡju and ∆̇ju are bounded by ‖u‖∞. Thus, we need
only to deal with the cases |α| ⩾ 1. The proof relies on Faà di Bruno’s
formula,a which provides us with the formula

∂αmj(g) = ∑
`1,`2,ν

Cν
`1,`2

∂`1
1 ∂`2

2 g(Ṡju, ∆̇ju)

 ∏
1⩽|β|⩽|α|

(∂βṠju)νβ1 (∂β∆̇ju)νβ2

 ,

where the coefficients Cν
`1,`2

are nonnegative integers, and the sum is taken
over those `1, `2 and ν such that 1 ⩽ `1 + `2 ⩽ |α|,

∑
1⩽|β|⩽|α|

νβk = `k for k = 1, 2, and ∑
1⩽|β|⩽|α|

(νβ1 + νβ2)β = α.

Note that, from Proposition 9.8, there exists a constant C such that

max(‖∆̇ju‖∞, ‖Ṡju‖∞) ⩽ C‖u‖∞, ∀j ∈ Z.

Since g and all its derivatives are bounded on B(0, C‖u‖∞), Bernstein’s
inequality and the above formula thus ensure that

‖∂αmj(g)‖∞ ⩽ Cα(g, ‖u‖∞)2j|α|,

due to ∑
1⩽|β|⩽|α|

(νβ1 + νβ2)|β| = |α|. This completes the proof of the lemma.

q

aFaà di Bruno’s formula is an identity in mathematics generalizing the chain rule to
higher derivatives, named after Francesco Faà di Bruno (1855, 1857), although he was not
the first to state or prove the formula. The general case can be stated as follows.

Theorem ([BCD11, Lemma 2.3, p.54]). Let u : Rn → Rm and F : Rm → R be smooth
functions. For each multi-index α ∈ Nn

0 , we have

∂α(F(u)) = ∑
µ,ν

Cµ,ν∂µF ∏
1⩽|β|⩽|α|

1⩽j⩽m

(∂βuj)
νβj ,

where the coefficients Cµ,ν are nonnegative integers, and the sum is taken over those µ
and ν such that 1 ⩽ |µ| ⩽ |α|, νβ j ∈ N,

∑
1⩽|β|⩽|α|

νβ j = µj, for 1 ⩽ j ⩽ m, and ∑
1⩽|β|⩽|α|

1⩽j⩽m

νβ j β = α.

In contrast with the situation that was encountered when proving The-
orems 10.26 and 10.29, here, the elements f j’s of the approximating series
∑ f j are not compactly supported in the frequency space. This difficulty is
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overcome by the following lemma.

Lemma 10.38. Let s > 0 and 1 ⩽ p, r ⩽ ∞. Assume that {uj}j∈Z is a
sequence of smooth functions where ∑ uj converges to some u ∈ S ′

h and

Ns,p,r({uj}j∈Z) :=

∥∥∥∥∥∥
{

sup
|α|∈{0,[s]+1}

2j(s−|α|)‖∂αuj‖p

}
j

∥∥∥∥∥∥
`r(Z)

< ∞,

then there exists a constant Cs such that u ∈ Ḃs
p,r and

‖u‖Ḃs
p,r
⩽ CsNs,p,r({uj}j∈Z).

Proof. As the series ∑ uj converges to u in S ′, we have

∆̇ku = ∑
j⩽k

∆̇kuj + ∑
j>k

∆̇kuj.

By Proposition 9.8, we obtain

2ks

∥∥∥∥∥∑j>k
∆̇kuj

∥∥∥∥∥
p

≲ 2ks ∑
j>k

‖uj‖p ≲ ∑
j>k

2(k−j)s2js‖uj‖p. (10.18)

By Bernstein’s inequality, we may write that

‖∆̇kuj‖p ≲ 2−k([s]+1) sup
|α|=[s]+1

‖∂αuj‖p,

from which it follows that

2ks

∥∥∥∥∥∑j⩽k
∆̇kuj

∥∥∥∥∥
p

≲ ∑
j⩽k

2(j−k)([s]+1−s) sup
|α|=[s]+1

2j(s−|α|)‖∂αuj‖p.

This inequality, combined with (10.18), implies that

2ks‖∆̇ku‖p

≲
(

∑
j>k

2(k−j)s + ∑
j⩽k

2−(k−j)([s]+1−s)

)
sup

|α|∈{0,[s]+1}
2j(s−|α|)‖∂αuj‖p

≲∑
j

(
2(k−j)sχ{j−k>0} + 2−(k−j)([s]+1−s)χ{j−k⩽0}

)
· sup
|α|∈{0,[s]+1}

2j(s−|α|)‖∂αuj‖p,

which proves the lemma by the Young inequality for series. q

Given the above three lemmas, it is now easy to prove the theorem.
Note that, according to Lemma 10.38, it suffices to establish that

Nsk ,pk ,rk({ f j}j∈Z) < ∞. (10.19)

Now, using Leibniz’s formula, Bernstein’s inequality and Lemma 10.37
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with the function

g(x, y) =
∫ 1

0
f ′(x + ty)dt,

then, from (10.17), we have

mj = mj(g) = g(Ṡju, ∆̇ju) =
∫ 1

0
f ′(Ṡju + t∆̇ju)dt.

Thus, we obtain, by Lemma 10.37,

‖∂α f j‖pk =‖∂α(mj∆̇ju)‖pk

⩽ ∑
β⩽α

Cβ
α‖∂βmj‖∞‖∂α−β∆̇ju‖pk

≲ ∑
|β|⩽|α|

Cβ
α 2j|β|Cβ( f ′, ‖u‖∞)2j(|α|−|β|)‖∆̇ju‖pk

⩽Cα( f ′, ‖u‖∞)2j|α|‖∆̇ju‖pk ,

from which it follows that, for k = 1, 2,∥∥∥∥∥∥
{

sup
|α|∈{0,[sk ]+1}

2j(sk−|α|)‖∂α f j‖pk

}
j

∥∥∥∥∥∥
`rk

(10.20)

⩽Csk( f ′, ‖u‖∞)

∥∥∥∥{2jsk‖∆̇ju‖pk

}
j

∥∥∥∥
`rk

⩽Csk( f ′, ‖u‖∞)‖u‖
Ḃ

sk
pk ,rk

. (10.21)

This completes the proof of the theorem. q

In the case where f belongs to the space C∞
b (R) of smooth bounded

functions with bounded derivatives of all orders and satisfies f (0) = 0,
a slightly more accurate estimate may be obtained. Indeed, for α = 0,
the bound of mj just follows from the boundedness of f ′; in addition, for
|αk| ⩾ 1, there exists a βk ∈ Nn

0 such that βk ⩽ αk and |βk| = 1, then for
any j ∈ Z, we have, from Bernstein’s inequality and Theorem 10.12,

‖∂αk Ṡju‖∞ =‖∂αk−βk Ṡj∂
βk u‖∞ ≲ 2j(|αk |−1)‖Ṡj∂

βk u‖∞

≲2j|αk |‖∇u‖Ḃ−1
∞,∞

≲ 2j|αk |‖u‖Ḃ0
∞,∞

.

Thus, for |αk| ⩾ 1 and any j ∈ Z, we have

max(‖∂αk Ṡju‖∞, ‖∂αk ∆̇ju‖∞) ≲ 2j|αk |‖u‖Ḃ0
∞,∞

.

Arguing as in the proof of Lemma 10.37, we thus obtain

‖∂αmj‖∞ ⩽ Cα( f , ‖u‖Ḃ0
∞,∞

)2j|α|, ∀α ∈ Nn
0 . (10.22)

We now state the result we have just proven.

Corollary 10.39. Let f ∈ C∞
b (R) satisfy f (0) = 0. Let s1, s2 > 0 and 1 ⩽

p1, p2, r1, r2 ⩽ ∞. Assume that (s1, p1, r1) satisfies condition (10.1). Then,
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for any real-valued function u ∈ Ḃ
s1
p1,r1 ∩ Ḃ

s2
p2,r2 ∩ Ḃ0

∞,∞, we have f (u) ∈
Ḃ

s1
p1,r1 ∩ Ḃ

s2
p2,r2 , and

‖ f (u)‖
Ḃ

sk
pk ,rk

⩽ C( f , ‖u‖Ḃ0
∞,∞

)‖u‖
Ḃ

sk
pk ,rk

, k = 1, 2.

Finally, by combining Corollary 10.30 and Theorem 10.35 with the
equality

f (u)− f (v) = (u − v)
∫ 1

0
f ′(v + τ(u − v))dτ,

we readily obtain the following corollary.

Corollary 10.40. Let f be a smooth function such that f ′(0) = 0. Let s > 0
and 1 ⩽ p, r ⩽ ∞ and (s, p, r) satisfy the condition (10.1). For any pair
(u, v) of functions in Ḃs

p,r ∩ L∞, the function f (u) − f (v) then belongs to
Ḃs

p,r ∩ L∞ and

‖ f (u)− f (v)‖Ḃs
p,r
⩽C
(
‖u − v‖Ḃs

p,r
sup

τ∈[0,1]
‖τu + (1 − τ)v‖∞

+ ‖u − v‖∞ sup
τ∈[0,1]

‖τu + (1 − τ)v‖Ḃs
p,r

)
,

where C depends on f ′′, ‖u‖∞ and ‖v‖∞.

Next, we investigate the effect of left composition by smooth functions
on Besov spaces Bs

p,r. We state an initial result.

Theorem 10.41. Let s > 0 and 1 ⩽ p, r ⩽ ∞. Let f be a smooth function
on R satisfying f (0) = 0. If u ∈ Bs

p,r ∩ L∞, then so does f (u), and we have

‖ f (u)‖Bs
p,r
⩽ C(s, f ′, ‖u‖∞)‖u‖Bs

p,r
.

This theorem can be proved along the same lines as that of Theo-
rem 10.35. We note that it is based on the following lemma, the proof of
which is left to the interested reader.

Lemma 10.42. Let s > 0 and 1 ⩽ p, r ⩽ ∞. Assume that (uj)j∈N0 is a
sequence of smooth functions satisfying

Ns,p,r({uj}j∈N0) :=

∥∥∥∥∥∥
{

sup
|α|⩽[s]+1

2j(s−|α|)‖∂αuj‖p

}
j

∥∥∥∥∥∥
`r(N0)

< ∞,

then there exists a constant Cs such that u := ∑
j∈N0

uj ∈ Bs
p,r and ‖u‖Bs

p,r
⩽

CsNs,p,r({uj}j∈N0).
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In the case where the function f ∈ C∞
b (R), Theorem 10.41 may be

slightly improved.

Theorem 10.43. Let f ∈ C∞
b (R) satisfy f (0) = 0. Let s > 0 and 1 ⩽

p, r ⩽ ∞. If u ∈ Bs
p,r and the first derivatives of u belongs to B−1

∞,∞, then
f (u) ∈ Bs

p,r and we have

‖ f (u)‖Bs
p,r
⩽ C(s, f , ‖∇u‖B−1

∞,∞
)‖u‖Bs

p,r
.

Remark 10.44. If u ∈ Bn/p
p,r , then ∇u ∈ B−1

∞,∞. Thus, the space Bn/p
p,r is

stable under left composition by functions of C∞
b vanishing at 0. This

result applies in particular to the Sobolev space Hn/2 = Bn/2
2,2 .

Finally, we state the nonhomogeneous counterpart of Corollary 10.40.

Corollary 10.45. Let f be a smooth function such that f ′(0) = 0. Let s > 0
and 1 ⩽ p, r ⩽ ∞. For any couple (u, v) of functions in Bs

p,r ∩ L∞, the
function f (u)− f (v) then belongs to Bs

p,r ∩ L∞ and

‖ f (u)− f (v)‖Bs
p,r
⩽C
(
‖u − v‖Bs

p,r
sup

τ∈[0,1]
‖τu + (1 − τ)v‖∞

+ ‖u − v‖∞ sup
τ∈[0,1]

‖τu + (1 − τ)v‖Bs
p,r

)
,

where C depends on f ′′, ‖u‖∞ and ‖v‖∞.

When the function u has enough regularity, we can obtain more in-
formation on f (u). In the following theorem, we state that, up to an error
term that proves to be more regular than u, f (u) may be written as a para-
product involving u and f ′(u).

Theorem 10.46. Let s1, s2 > 0 and s2 /∈ N, 1 ⩽ p, r1, r2 ⩽ ∞ with r1 ⩽ r2,
and f be a smooth function satisfying f ′(0) = 0. Let 1 ⩽ r ⩽ ∞ be defined
by 1/r = min(1, 1/r1 + 1/r2). For any u ∈ Bs1

p,r1 ∩ Bs2
∞,r2 , we then have

‖ f (u)− Tf ′(u)u‖Bs1+s2
p,r

⩽ C( f ′′, ‖u‖∞)‖u‖Bs1
p,r1

‖u‖Bs2
∞,r2

.

Proof. To prove this theorem, we again write that

f (u) = ∑
j

f j, with f j := f (Sj+1u)− f (Sju).

According to the second order Taylor formula,a we have

f j = f ′(Sju)∆ju + Mj(∆ju)2, with Mj :=
∫ 1

0
(1 − t) f ′′(Sju + t∆ju)dt.
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Since Tf ′(u)u = ∑
j

Sj−1 f ′(u)∆ju, we have

f (u)− Tf ′(u)u = ∑
j
[( f ′(Sju)− Sj−1 f ′(u))∆ju + Mj(∆ju)2].

Let µj := f ′(Sju)− Sj−1( f ′(u)). Obviously, we have

f j − Sj−1( f ′(u))∆ju = µj∆ju + Mj(∆ju)2.

Applying Lemma 10.37 with g(x, y) =
∫ 1

0 (1 − t) f ′′(x + ty)dt gives

‖∂α Mj‖∞ ⩽ Cα( f ′′, ‖u‖∞)2j|α|, ∀α ∈ Nn
0 . (10.23)

Using Leibniz’s formula, we can write

∂α(Mj(∆ju)2) = ∑
γ⩽β⩽α

Cα,βCβ,γ∂α−β Mj∂
β−γ∆ju∂γ∆ju.

Using Bernstein’s inequality and (10.23), we obtain

‖∂α−β Mj∂
β−γ∆ju∂γ∆ju‖p ⩽ Cα( f ′′, ‖u‖∞)2j|α|‖∆ju‖∞‖∆ju‖p.

Thus, according to the definition of Besov spaces, we have∥∥∥∥{2j(s1+s2−|α|)‖∂α(Mj(∆ju)2)‖p

}
j⩾−1

∥∥∥∥
`r
⩽ Cα( f ′′, ‖u‖∞)‖u‖Bs1

p,r1
‖u‖Bs2

∞,r2
.

(10.24)

We temporarily assume that∥∥∥∥{2j(s2−|α|)‖∂αµj‖∞

}
j⩾−1

∥∥∥∥
`r2

⩽ Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

. (10.25)

Using (10.24), we have∥∥∥∥{2j(s1+s2−|α|)‖∂α( f j − Sj−1( f ′(u))∆ju)‖p

}
j⩾−1

∥∥∥∥
`r

=

∥∥∥∥{2j(s1+s2−|α|)‖∂α(µj∆ju + Mj(∆ju)2)‖p

}
j⩾−1

∥∥∥∥
`r

⩽Cα( f ′′, ‖u‖∞)‖u‖Bs1
p,r1

‖u‖Bs2
∞,r2

.

Applying Lemma 10.42 then yields the desired result.
To complete the proof of the theorem, we must justify the inequality

(10.25). First, we investigate the case where |α| < s2. We have

µj = µ
(1)
j + µ

(2)
j ,

where µ
(1)
j := f ′(Sju) − f ′(u) and µ

(2)
j := f ′(u) − Sj−1( f ′(u)) =

∑
k⩾j−1

∆̇k f ′(u). Using the fact that Sju converges to u ∈ L∞ in S ′ as j → ∞,

we obtain

f ′(u)− f ′(Sju) = ∑
k⩾j

f̃k, with f̃k := f ′(Sk+1u)− f ′(Sku). (10.26)
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Applying (10.20) yields∥∥∥∥{2k(s2−|α|)‖∂α f̃k‖∞

}
k⩾j

∥∥∥∥
`r2

⩽ Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

. (10.27)

Then, by Young’s inequality, we have, for |α| < s2,∥∥∥∥{2j(s2−|α|)‖∂α(µ
(1)
j )‖∞

}
j⩾−1

∥∥∥∥
`r2

⩽

∥∥∥∥∥∥
{

∑
k⩾j

2(j−k)(s2−|α|)2k(s2−|α|)‖∂α f̃k‖∞

}
j⩾−1

∥∥∥∥∥∥
`r2

⩽Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

.

By Bernstein’s inequality and Theorem 10.41 (need f ′(0) = 0), we have

∂α f ′(u) ∈ Bs2−|α|
∞,r2 and ‖∂α f ′(u)‖

Bs2−|α|
∞,r2

⩽ Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

.

Thus, in view of Young’s inequality, we can write that∥∥∥∥{2j(s2−|α|)‖∂αµ
(2)
j ‖∞

}
j⩾−1

∥∥∥∥
`r2

⩽

∥∥∥∥∥∥
{

2j(s2−|α|) ∑
k⩾j−1

‖∆k∂α f ′(u)‖∞

}
j⩾−1

∥∥∥∥∥∥
`r2

⩽Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

∑
k⩽1

2k(s2−|α|)

⩽Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

.

This completes the proof of (10.25) when |α| < s2.
Since s2 /∈ N, we only need to consider the remainder case when

|α| > s2 which is treated differently. As ∂α f ′(u) ∈ Bs2−|α|
∞,r2 , we have, using

Theorems 10.19 and 10.41,∥∥∥∥{2j(s2−|α|)‖∂αSj−1 f ′(u)‖∞

}
j⩾−1

∥∥∥∥
`r2

⩽ Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

.

We now estimate ∂α f ′(Sju). Because Sju converges to 0 in L∞ as
j → −∞, we can write that

f ′(Sju) = ∑
k⩽j−1

f̃k, with f̃k := f ′(Sk+1u)− f ′(Sku).

Using (10.27) and Young’s inequality, we obtain∥∥∥∥{2j(s2−|α|)‖∂α f ′(Sju)‖∞

}
j⩾−1

∥∥∥∥
`r2

⩽

∥∥∥∥∥∥
{

2j(s2−|α|) ∑
k⩽j−1

‖∂α f̃k‖∞

}
j⩾−1

∥∥∥∥∥∥
`r2



§10.5. Commutator estimates 297

⩽Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

∑
k⩾1

2k(s2−|α|)

⩽Cα( f ′′, ‖u‖∞)‖u‖Bs2
∞,r2

.

The inequality (10.25) is proved, as is the theorem. q

aIf f : Rn → R is (k + 1)-times continuously differentiable in the closed ball B, then

f (x) =
k

∑
|α|=0

∂α f (a)
α!

(x − a)α + ∑
|β|=k+1

Rβ(x)(x − a)β,

Rβ(x) =
|β|
β!

∫ 1

0
(1 − t)|β|−1∂β f (a + t(x − a))dt.

§ 10.5 Commutator estimates

This section is devoted to various commutator estimates. The follow-
ing basic lemma will be frequently used in this section.

Lemma 10.47. Let θ ∈ C1(Rn) satisfy (1+ | · |)θ̂ ∈ L1, and p, q, r ∈ [1, ∞].
There exists a constant C such that for any a ∈ Lip with ∇a ∈ Lp and any
b ∈ Lq, we have, for any λ > 0,

‖[θ(λ−1D), a]b‖r ⩽ Cλ−1‖∇a‖p‖b‖q, with
1
r
=

1
p
+

1
q

.

Proof. To prove this lemma, it suffices to rewrite θ(λ−1D) as a convolution
operator. Indeed,

([θ(λ−1D), a]b)(x) = θ(λ−1D)(ab)(x)− a(x)θ(λ−1D)b(x)

=(2π)−n/2
[((

θ(λ−1ξ)
)∨

∗ (ab)
)
(x)− a(x)

((
θ(λ−1ξ)

)∨
∗ b
)
(x)
]

=(2π)−n/2
[
λn(θ

∧

(λ·) ∗ (ab))(x)− a(x)λn(θ

∧

(λ·) ∗ b)(x)
]

=(2π)−n/2λn
[∫

Rn
θ

∧

(λz)a(x − z)b(x − z)dz − a(x)
∫

Rn
θ

∧

(λz)b(x − z)dz
]

=(2π)−n/2λn
∫

Rn
θ

∧

(λz)[a(x − z)− a(x)]b(x − z)dz.

Let k1(z) := (2π)−n/2|z||θ

∧

(z)|. From the first-order Taylor formula, we
deduce that∣∣∣([θ(λ−1D), a]b)(x)

∣∣∣ ⩽ λ−1
∫ 1

0

∫
Rn

λnk1(λz)|∇a(x − tz)||b(x − z)|dzdt.

Now, taking the Lr norm of the above inequality, using Minkowski’s in-
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equality and Hölder’s inequality, we obtain∥∥∥[θ(λ−1D), a]b
∥∥∥

r
⩽ λ−1

∫ 1

0

∫
Rn

λnk1(λz)‖∇a(· − tz)‖p‖b(· − z)‖qdzdt.

The translation invariance of the Lebesgue measure then ensures that∥∥∥[θ(λ−1D), a]b
∥∥∥

r
⩽ λ−1‖k1‖1‖∇a‖p‖b‖q,

which yields the desired result since ‖k1‖1 =
∫

Rn |z||θ

∧

(z)|d̄z =∫
Rn |z||θ

∨

(z)|d̄z < ∞. q

Remark 10.48. If we take θ = φ and λ = 2j, then this lemma can be inter-
preted as a gain of one derivative by commutation between the operator
∆j and the multiplication by a function with gradient in Lp, i.e.,

‖[∆j, a]b‖r ≲ 2−j‖∇a‖p‖b‖q.

Theorem 10.49. Let f be a smooth function on Rn. Assume that f is homo-
geneous of degree m away from a neighborhood of 0. Let 0 < ρ < 1, s ∈ R

and 1 ⩽ p, p1, p2, r ⩽ ∞ satisfy 1/p = 1/p1 + 1/p2. Then, we have

‖[Ta, f (D)]u‖Bs−m+ρ
p,r

⩽ C‖∇a‖Bρ−1
p1,∞

‖u‖Bs
p2,r

. (10.28)

In the limit case ρ = 1, we have

‖[Ta, f (D)]u‖Bs−m+1
p,r

⩽ C‖∇a‖p1‖u‖Bs
p2,r

. (10.29)

The above constants C > 0 depend only on s, ρ and n.

Proof. We first treat the case 0 < ρ < 1. For convenience, we redefine

∆̃ j = ∑
−2⩽`−j⩽1

∆`, φ

∼

j = ∑
−2⩽`−j⩽1

φ`.

We have from Proposition 9.6

[Ta, f (D)]u = ∑
j⩾1

[
Sj−1a f (D)∆ju − f (D)(Sj−1a∆ju)

]
= ∑

j⩾1

[
Sj−1a f (D)∆̃ j∆ju − f (D)∆̃ j(Sj−1a∆ju)

]
= ∑

j⩾1
[Sj−1a, f (D)∆̃ j]∆ju.

Note that the general term of the above series is spectrally supported in
dyadic annuli. Hence, according to Lemma 10.17, it suffices to prove that∥∥∥2j(s−m+ρ)‖[Sj−1a, f (D)∆̃ j]∆ju‖p

∥∥∥
`r
⩽ C‖∇a‖Bρ−1

p1,∞
‖u‖Bs

p2,r
. (10.30)

Owing to the homogeneity of f away from 0, there exists an N0 ∈ N such
that

f (D)∆̃ j =F−1 f (ξ)φ̃j(ξ)F = 2jmF−1 f (2−jξ)φ̃(2−jξ)F
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=2jm( f φ̃)(2−jD), ∀j ⩾ N0.

Taking advantage of Lemma 10.47 with θ = f φ̃, we thus infer that for any
j ⩾ N0,

‖[Sj−1a, f (D)∆̃ j]∆ju‖p ⩽ C2j(m−1)‖∇Sj−1a‖p1‖∆ju‖p2 .

Of course, if 1 ⩽ j < N0, we can still write, according to Lemma 10.47
with θ = f (2j·)φ̃,

‖[Sj−1a, f (D)∆̃ j]∆ju‖p ⩽C2−j‖∇Sj−1a‖p1‖∆ju‖p2

⩽C2N0|m|2j(m−1)‖∇Sj−1a‖p1‖∆ju‖p2 .

Because ‖∇Sj−1a‖p1 ⩽ C2j(1−ρ)‖∇a‖Bρ−1
p1,∞

if ρ < 1 in view of Theo-

rem 10.19, we can now conclude that (10.30) is satisfied, and complete
the proof.

For the case ρ = 1, we only need to modify (10.30), where we replace
the term ‖∇a‖Bρ−1

p1,∞
by ‖∇a‖p1 . Then, by the same lines after (10.30), we

can obtain the desired results. q

Finally, we give an important estimate for the commutators.

Theorem 10.50. Let σ ∈ R, 1 ⩽ r ⩽ ∞ and 1 ⩽ p ⩽ p1 ⩽ ∞. Let v be a
vector field over Rn. Assume that

σ > −n min(1/p1, 1/p′) (or σ > −1 − n min(1/p1, 1/p′) if div v = 0).
(10.31)

Define Rj := [v · ∇, ∆j] f (or Rj := div ([v, ∆j] f ) if div v = 0). Then, there
exists a constant C > 0, depending continuously on p, p1, σ and n, such that∥∥∥∥{2jσ‖Rj‖p

}
j

∥∥∥∥
`r
⩽ C‖∇v‖

Bn/p1
p1,∞∩L∞‖ f ‖Bσ

p,r
, if σ < 1 + n/p1. (10.32)

Furthermore, if σ > 0 (or σ > −1 if div v = 0) and 1/p2 = 1/p − 1/p1,
then∥∥∥∥{2jσ‖Rj‖p

}
j

∥∥∥∥
`r
⩽ C

(
‖∇v‖∞‖ f ‖Bσ

p,r
+ ‖∇ f ‖p2‖∇v‖Bσ−1

p1,r

)
. (10.33)

In the limit case σ = −n min(1/p1, 1/p′) (or σ = −1 −
n min(1/p1, 1/p′) if div v = 0), we have

sup
j⩾−1

2jσ‖Rj‖p ⩽ C‖∇v‖
Bn/p1

p1,1
‖ f ‖Bσ

p,∞
. (10.34)

Proof. To show that only the gradient part of v is involved in the estimates,
we split v into low and high frequencies: v = S0v + ṽ. Obviously,

‖S0∇v‖q ≲ ‖∇v‖q, ‖∇ṽ‖q ≲ ‖∇v‖q, ∀q ∈ [1, ∞]. (10.35)

Furthermore, as ṽ is spectrally supported away from the origin, Bern-
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stein’s inequality ensures that

‖∆j∇ṽ‖q ∼ 2j‖∆jṽ‖q, ∀q ∈ [1, ∞], ∀j ⩾ −1. (10.36)

We now have (with the summation convention over repeated indices):

Rj =v · ∇∆j f − ∆j(v · ∇ f ) = vk∆j∂k f − ∆j(vk∂k f ) = [vk, ∆j]∂k f

=[(S0vk + ṽk), ∆j]∂k f = [S0vk, ∆j]∂k f + [ṽk, ∆j]∂k f .

Writing Bony’s paraproduct decomposition for [ṽk, ∆j]∂k f , we end up with

Rj =
8
∑

i=1
Ri

j, where

R1
j = [Tṽk , ∆j]∂k f , R2

j = T∂k∆j f ṽk,

R3
j = −∆j(T∂k f ṽk), R4

j = ∂kR(ṽk, ∆j f ),

R5
j = −R(div ṽ, ∆j f ), R6

j = −∂k∆jR(ṽk, f ),

R7
j = ∆jR(div ṽ, f ), R8

j = [S0vk, ∆j]∂k f .

Bounds for R1
j . By Proposition 9.6, we have

R1
j = ∑

−2⩽j−j′⩽1
[Sj′−1ṽk, ∆j]∂k∆j′ f .

Hence, according to Lemma 10.47 and (10.35), we have∥∥∥∥{2jσ‖R1
j ‖p

}
j

∥∥∥∥
`r

≲

∥∥∥∥∥∥
{

2jσ ∑
−2⩽j−j′⩽1

2−j‖∇Sj′−1ṽk‖∞‖∂k∆j′ f ‖p

}
j

∥∥∥∥∥∥
`r

≲‖∇v‖∞‖ f ‖Bσ
p,r

. (10.37)

Bounds for R2
j . By Proposition 9.6, we have

R2
j = ∑

j′⩾j+1
Sj′−1∂k∆j f ∆j′ ṽk.

Hence, by Bernstein’s inequality, Young’s inequality and using (10.35) and
(10.36), we have∥∥∥∥{2jσ‖R2

j ‖p

}
j

∥∥∥∥
`r
≲

∥∥∥∥∥∥
{

2jσ ∑
j′⩾j+1

‖Sj′−1∂k∆j f ‖p‖∆j′ ṽk‖∞

}
j

∥∥∥∥∥∥
`r

≲

∥∥∥∥∥∥
{

2jσ ∑
j′⩾j+1

2j‖Sj′−1∆j f ‖p‖∆j′ ṽ‖∞

}
j

∥∥∥∥∥∥
`r

≲

∥∥∥∥∥∥
{

∑
j′⩾j+1

2j−j′2jσ‖∆j f ‖p2j′‖∆j′ ṽ‖∞

}
j

∥∥∥∥∥∥
`r

≲‖∇v‖∞‖ f ‖Bσ
p,r

. (10.38)
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Bounds for R3
j . We proceed as follows:

R3
j =− ∑

−2⩽j−j′⩽1
∆j

(
Sj′−1∂k f ∆j′ ṽk

)
(10.39)

=− ∑
−2⩽j−j′⩽1

j′′⩽j′−2

∆j

(
∆j′′∂k f ∆j′ ṽk

)
. (10.40)

Therefore, writing 1/p2 = 1/p− 1/p1 (then p ⩽ p2) and using Bernstein’s
inequality, Young’s inequality, (10.35) and (10.36), we have, for σ < 1 +

n/p1,∥∥∥∥{2jσ‖R3
j ‖p

}
j

∥∥∥∥
`r

≲

∥∥∥∥∥∥∥∥
 ∑

−2⩽j−j′⩽1
j′′⩽j′−2

2jσ‖∆j′′∂k f ‖p2‖∆j′ ṽk‖p1


j

∥∥∥∥∥∥∥∥
`r

≲

∥∥∥∥∥∥∥∥
 ∑

−2⩽j−j′⩽1
j′′⩽j′−2

2jσ2j′′(1+n(1/p−1/p2))‖∆j′′ f ‖p2−j′‖∆j′∇ṽ‖p1


j

∥∥∥∥∥∥∥∥
`r

≲

∥∥∥∥∥∥∥∥
 ∑

−2⩽j−j′⩽1
j′′⩽j′−2

2(j−j′)σ2(j′−j′′)(σ−1−n/p1)2j′′σ‖∆j′′ f ‖p2j′n/p1‖∆j′∇ṽ‖p1


j

∥∥∥∥∥∥∥∥
`r

≲‖∇v‖
Bn/p1

p1,∞
‖ f ‖Bσ

p,r
. (10.41)

Note that, starting from (10.39), we can alternatively obtain∥∥∥∥{2jσ‖R3
j ‖p

}
j

∥∥∥∥
`r

≲

∥∥∥∥∥∥
{

∑
−2⩽j−j′⩽1

2jσ‖∇Sj′−1 f ‖p22−j′‖∆j′∇ṽ‖p1

}
j

∥∥∥∥∥∥
`r

≲‖∇ f ‖p2‖∇v‖Bσ−1
p1,r

. (10.42)

Bounds for R4
j and R5

j . We have

R4
j = ∑

|j−j′|⩽2
∂k(∆j′ ṽk∆̃ j′∆j f ).

Hence, by (10.36) and (10.35), we obtain∥∥∥∥{2jσ‖R4
j ‖p

}
j

∥∥∥∥
`r
≲

∥∥∥∥∥∥∥
 ∑

|j−j′|⩽2
2jσ2j′‖∆j′ ṽk‖∞‖∆j f ‖p


j

∥∥∥∥∥∥∥
`r

≲‖∇v‖∞‖ f ‖Bs
p,r

. (10.43)
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A similar bound holds for R5
j .

Bounds for R6
j and R7

j . We have

R6
j = −∂k∆j ∑

|j′−j′′ |⩽1
j′>j−4

∆j′ ṽk∆j′′ f .

We first consider the case where 1/p + 1/p1 ⩽ 1. Let 1/p3 = 1/p + 1/p1.
Then, under the condition σ > −1 − n/p1, and by embedding Bσ+n/p1

p3,r ⊂
Bσ

p,r (since R6
j is of the form ∆jg) and Young’s inequality, we have∥∥∥∥{2jσ‖R6

j ‖p

}
j

∥∥∥∥
`r
≲
∥∥∥∥{2j(σ+n/p1)‖R6

j ‖p3

}
j

∥∥∥∥
`r

≲

∥∥∥∥∥∥∥∥
 ∑

|j′−j′′ |⩽1
j′>j−4

2j(1+σ+n/p1)‖∆j′ ṽ‖p1‖∆j′′ f ‖p


j

∥∥∥∥∥∥∥∥
`r

≲

∥∥∥∥∥∥∥∥
 ∑

|j′−j′′ |⩽1
j′>j−4

2(j′−j′′)σ2(j−j′)(σ+1+n/p1)2j′n/p1‖∆j′∇ṽ‖p12j′′σ‖∆j′′ f ‖p


j

∥∥∥∥∥∥∥∥
`r

≲‖∇v‖
Bn/p1

p1,∞
‖ f ‖Bσ

p,r
. (10.44)

Now, if 1/p + 1/p1 > 1, then the above argument has to be applied
with p′ instead of p3, and by the embedding Bσ+n/p′

1,r ⊂ Bσ
p,r and Bern-

stein’s inequality (due to p1 < p′), we still obtain, for σ > −1 − n/p′,∥∥∥∥{2jσ‖R6
j ‖p

}
j

∥∥∥∥
`r
≲
∥∥∥∥{2j(σ+n/p′)‖R6

j ‖1

}
j

∥∥∥∥
`r

≲

∥∥∥∥∥∥∥∥
 ∑

|j′−j′′ |⩽1
j′>j−4

2j(1+σ+n/p′)‖∆j′ ṽ‖p′‖∆j′′ f ‖p


j

∥∥∥∥∥∥∥∥
`r

≲

∥∥∥∥∥∥∥∥
 ∑

|j′−j′′ |⩽1
j′>j−4

2(j′−j′′)σ2(j−j′)(σ+1+n/p′)2j′n/p1‖∆j′∇ṽ‖p12j′′σ‖∆j′′ f ‖p


j

∥∥∥∥∥∥∥∥
`r

≲‖∇v‖
Bn/p1

p1,∞
‖ f ‖Bσ

p,r
. (10.45)

Note that in the limit case σ = −1 − n min(1/p1, 1/p′), a similar
argument yields

sup
j

2jσ‖R6
j ‖p ≲ ‖∇v‖

Bn/p1
p1,1

‖ f ‖Bσ
p,∞

. (10.46)

Similar arguments lead to∥∥∥∥{2jσ‖R7
j ‖p

}
j

∥∥∥∥
`r
≲‖∇v‖

Bn/p1
p1,∞

‖ f ‖Bσ
p,r

, if σ > −n min(1/p1, 1/p′), (10.47)
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j ‖p

}
j

∥∥∥∥
`∞
≲‖∇v‖

Bn/p1
p1,1

‖ f ‖Bσ
p,∞

, if σ = −n min(1/p1, 1/p′), r = ∞.

(10.48)

Finally, we stress that if σ > −1, then taking p1 = ∞ in (10.44),
combined with the embedding L∞ ⊂ B0

∞,∞, yields∥∥∥∥{2jσ‖R6
j ‖p

}
j

∥∥∥∥
`r
≲ ‖∇v‖∞‖ f ‖Bσ

p,r
. (10.49)

Of course, the same inequality holds true for R7
j if σ > 0.

Bounds for R8
j . As R8

j = − ∑
|j−j′|⩽1

[∆j, ∆−1v] · ∇∆j′ f , Lemma 10.47

yields∥∥∥∥{2jσ‖R8
j ‖p

}
j

∥∥∥∥
`r
≲

∥∥∥∥∥∥∥
 ∑

|j−j′|⩽1
2−j‖∇∆−1v‖∞2j′σ2j′‖∆j′ f ‖p


j

∥∥∥∥∥∥∥
`r

≲‖∇v‖∞‖ f ‖Bσ
p,r

. (10.50)

Combining the above inequalities yields the desired results. q

Remark 10.51. There are a number of variations on the statement of The-
orem 10.50. For instance, inequalities (10.32), (10.33) and (10.34) are also
valid in the homogeneous framework (i.e., with ∆̇j instead of ∆j and with
homogeneous Besov norms instead of nonhomogeneous ones), provided
that (σ, p, r) satisfies condition (10.1). The proof follows along the lines
of the proof of Theorem 10.50. It is simply a matter of replacing the
nonhomogeneous blocks by homogeneous ones.

Remark 10.52. The inequalities (10.32), (10.33) and (10.34) are still true for
the commutator

Ṡj+N0 v · ∇∆̇j f − ∆̇j(v · ∇ f ),

where N0 is any fixed integer. Indeed, for all j ⩾ −1, we have∥∥(Ṡj+N0 v − v) · ∇∆̇j f
∥∥

p ≲2j‖Ṡj+N0 v − v‖∞‖∆̇j f ‖p

≲ ∑
j′⩾j+N0

2j−j′‖∇∆̇j′v‖∞‖∆̇j f ‖p

≲‖∇v‖Ḃ0
∞,∞

‖∆̇j f ‖p.

§ 10.6 Time-space Besov spaces

One of the fundamental ideas, in view of Littlewood-Paley theory, is
that nonlinear evolution PDEs may be treated very efficiently after local-
ization by means of Littlewood-Paley decomposition. Indeed, it is often
easier to bound each dyadic block in Lρ([0, T]; Lp) than to directly estimate
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the solution of the whole PDE in Lρ([0, T]; Ḃs
p,r).

As a final step, we must combine the estimates for each block and
then perform a (weighted) `r summation. In doing so, however, we do
not obtain an estimate in a space of type Lρ([0, T]; Ḃs

p,r) since the time
integration has been performed before the summation.

This naturally leads to the following definition.

Definition 10.53. For T > 0, s ∈ R, and 1 ⩽ ρ, p, r ⩽ ∞, we set

‖u‖L̃ρ
T(Ḃ

s
p,r)

:=
∥∥∥(2ks‖∆̇ku‖Lρ

T(Lp)

)
k

∥∥∥
`r(Z)

.

We can then define the space

L̃ρ
T(Ḃ

s
p,r) :=

{
u ∈ S ′((0, T)× Rn) : lim

k→−∞
Ṡku = 0 in Lρ([0, T]; L∞(Rn))

and ‖u‖L̃ρ
T(Ḃ

s
p,r)

< ∞
}

.

The space L̃ρ
T(Ḃ

s
p,r) may be linked with the more classical spaces

Lρ
T(Ḃ

s
p,r) := Lρ([0, T]; Ḃs

p,r)

via the Minkowski inequality:

‖u‖L̃ρ
T(Ḃ

s
p,r)

⩽ ‖u‖Lρ
T(Ḃ

s
p,r)

if ρ ⩽ r, ‖u‖L̃ρ
T(Ḃ

s
p,r)

⩾ ‖u‖Lρ
T(Ḃ

s
p,r)

if ρ ⩾ r.

The general principle is that all the properties of continuity for the
product, composition, remainder, and paraproduct remain true in these
spaces. The exponent ρ must behave according to Hölder’s inequality for
the time variable. For instance, we have the time estimate

‖uv‖L̃ρ
T(Ḃ

s
p,r)

≲ ‖u‖Lρ1
T (L∞)‖v‖L̃ρ2

T (Ḃs
p,r)

+ ‖v‖Lρ3
T (L∞)‖u‖L̃ρ4

T (Ḃs
p,r)

,

whenever s > 0, 1 ⩽ p, r ⩽ ∞, 1 ⩽ ρ, ρ1, ρ2, ρ3, ρ4 ⩽ ∞, and

1
ρ
=

1
ρ1

+
1
ρ2

=
1
ρ3

+
1
ρ4

.

This approach also works in the nonhomogeneous Besov spaces Bs
p,r which

leads to function spaces denoted by L̃ρ
T(Bs

p,r).

Exercises

Exercise 10.1. Let q, p, r ∈ [1, ∞] and s ∈ R. Prove that Lq ∩ Ḃs
p,r is a Banach

space.

Exercise 10.2. Prove Theorem 10.20.
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