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Abstract

This paper is mainly concerned with the free boundary problem for an approximate model
(for example, arising from the study of sonoluminescence) of a gas bubble of finite mass
enclosed within a bounded incompressible viscous liquid, accounting for surface tensions
at both the gas-liquid interface and the external free surface of the entire gas-liquid region.
It is found that any regular spherically symmetric steady-state solution is characterized by
a positive root of a ninth-degree polynomial for which the existence and uniqueness are
proved and a one-to-one correspondence between equilibria and pairs of gas mass and lig-
uid volume is established, by a rescaling argument. We prove that these equilibria exhibit
nonlinear and exponential asymptotic stability under small perturbations that conserve
gas mass and liquid volume, and an equilibrium solution acts as a local minimizer of the
energy functional under perturbations that are allowed to be large, as long as the ratio of
perturbations to equilibrium remains small, with the proportionality constant determined
by the adiabatic constant. Moreover, we construct a global center manifold to apply the
center manifold theory. Our results apply to gases and liquids of all sizes. Furthermore,
we derive the optimal exponential decay rate for small liquid volumes by analyzing the
spectrum bounds of the associated linear operator and show that decreasing the gas mass
or increasing the temperature can accelerate the convergence rate, a behavior not seen in
unbounded liquid scenarios.

Mathematics Subject Classification 35B35 - 35B40 - 35R35 - 76D45 - 76T10

1 Introduction

Consider the free boundary problem of a gas bubble immersed in an incompressible viscous
liquid with finite gas mass and liquid volume. The external liquid dynamics are governed by
the following incompressible Navier—Stokes equations:
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8t(plv1) + diV(prl ® Vl) = diV(fplI -+ SZ(VI)), in Ql(t), (1.1&)
divy, =0, in (1), (1.1b)
pic [ale + (Vl . V) Iﬂ = diV(IﬂVTl) + S](Vl) : Vv, in Ql(t), (1.1C)

where €;(¢) C R? is a bounded connected domain that varies with time. The constant p; > 0
represents the density of the liquid. The variables v;, p;, and 7; denote the velocity field,
pressure, and temperature of the liquid, respectively. The tensor product is denoted by ®,
and I represents the identity matrix. The viscous stress tensor is given by S;(v;) = 2, D(v;),
where 1; > 0 is the dynamic viscosity and D(v) is the symmetric part of the gradient of the
velocity field, defined as (Vv + (Vv) T)/2. The constants ¢; and x; denote the specific heat
capacity and thermal conductivity of the liquid, respectively. Additionally, v; - V represents
the directional derivative, and A : B denotes the trace of the matrix product AB'. In the
following, vectors, matrices, and tensors will be represented using bold typefaces.

The internal gas is governed by the following compressible Navier—Stokes equations in
a simply connected domain (see, e.g., [9]):

Op +div(pvy) = 0, in Q4(t), (1.2a)
Oe(pvg) + div(pvy @ vg) = div (—pgl + Sq(vg)),  in Q4(1), (1.2b)
pTg (Ors +vg - Vs) =div(kVTy) + Sg(vy) : Vvg, in Q4(t), (1.2¢)
pg = RT,p, in Q,(1), (1.2d)
s = clog(pg/p?), in (1), (1.2¢)

where the variables p, vy, py, Ty, and s denote the density, velocity field, pressure, tempera-
ture, and entropy per unit of mass of the gas, respectively. The viscous tensor

Sg(vg) =2p <D(vg) - ;(divvg)l) + ((divvg)l,

where p denotes the dynamic viscosity, and ¢ represents the bulk viscosity. The positive
constants «, ¢ and 2R denote the thermal conductivity, specific heat capacity, and the ratio of
the ideal gas constant to the molar mass, respectively. The adiabatic constant v = 1 4+ R/,
which is 5/3 for monoatomic gases and 7/5 for diatomic gases (see, e.g., [3]), is also included.
Moreover, (1.2d) and (1.2¢e) follow from Boyle’s law, Joule’s second law, and the second
law of thermodynamics for ideal gases.

We take into account the surface tension acting on the gas-liquid interface 9, (t) as well
as on the free boundary of the entire gas-liquid region, specifically 9€;(¢) \ 0€4(t). The
boundary conditions on the gas-liquid interface read

VitV =vVgV=0_, on 084(t), (1.3a)
v [—pil+Si(vi) — (=pgIl + Sg(vg))] = —cHr, on 04(t), (1.3b)
T, =1, on 0Qy(t), (1.3¢)

where v denotes the unit outer normal to 9€24(t), and v_ is the normal velocity of the
interface. The mean curvature is given by H = —V - v, where V represents the tangential
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gradient (see, e.g., [8]), and the constant o > 0 is the surface tension coefficient. Similarly,
on the external free surface, it holds

ViV =1vg, on 08 (t) \ 084(1), (1.4a)
v-(—pll+8Si(vi)) =cHv, on dQ(t)\ 0Q(t), (1.4b)
T, =T, on 08 (t) \ 0824(1), (1.4c)

where v denotes the unit outer normal, and v, represents the normal velocity of the free
surface. The constant ¢ > 0 denotes the surface tension coefficient of the external free
boundary 0€Y(t) \ 0€Q,(¢), with o # & in general. Moreover, the temperature outside the
gas-liquid region remains constant at the temperature 7., which is positive and provides the
continuity condition (1.4¢c). Finally, we assume that the compatibility conditions hold for
the initial data v;(-,0), T3(-, 0), p(-,0), v4(+,0) and py(-,0) in the initial gas-liquid domain
Q4(0) U (0).

Since we are considering the scenario where the liquid volume is finite, the divergence-
free condition (1.1b) ensures that the liquid volume remains constant

() =V € (0,00), t=0.

Moreover, by the conservation of mass (1.2a), we have

[ stetde= [ palda 10 (15)
Qq(t) Q,4(0)

where po(-) = p(-,0) is the initial gas density.
1.1 The approximate model of the full free boundary problem (1.1)-(1.4)
This paper is primarily concerned with the stability of equilibrium (time-independent) solu-

tions for the following approximate model (1.6)—(1.8), which arises, for instance, in the
study of sonoluminescence [1, 2]. This model reads

o1 (Opvi + vy - Vvy) — wAvy + Vp, =0, in (1), (1.6a)
divv; =0, in (1), (1.6b)
T,=T, in (1), (1.6¢)

where T, is a prescribed temperature consistent with the boundary condition (1.4c),

Op +div(pvy) = 0, in Qg4(¢), (1.7a)
Pg = pg(t), in (), (L.7b)
pTy (O¢s +vg - Vs) =div(kVTy), in Qg4(t), (1.7¢)
pg = RTyp, in Q4(1), (1.7d)
s =clog(py/p”), in Qg(1), (1.7¢)

and the boundary conditions
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ViV =vVgU=10_, on 084(t), (1.8a)
(pg —p)v +2mv -D(v)) = —cHv, on 084 (t), (1.8b)
Ty =1, on 0Q(t), (1.8¢)
ViV =y, on O (t) \ 0Q(t), (1.8d)
—pv + 2wy -D(v;) = cHv, on 08 (t) \ 0Q4(1). (1.8¢)

The above approximation gas system (1.7) can be found in [3, 9]. As noted in [3, Section 2],
the gas pressure equation (1.7b) is derived under the high sound velocity assumption. This
implies that disturbances in the fluid propagate quickly through the gas region, allowing the
momentum equation (1.2b) to be simplified to Vpy = 0in Q,4(¢).

For gas dynamic (1.7), if we substitute (1.7e) into (1.7c) and eliminate the temperature
T, by using (1.7d), it holds

(8 + vy - V) [c(logpg —logp?)] = kA (p~1), in Qy(2).
Upon simplification by applying (1.7a), we obtain
Pg/pg = ke A (p7h) —ydivvg, in Qg(t), (1.9)
where we have denoted p, = 0;p,. This implies that the divergence of the gas velocity is

determined by both the gas density and the pressure at the gas-liquid interface. Therefore,
system (1.7) is equivalent to

dep + div(pv,) = 0, in Q(t), (1.10a)
Py = pg(), in Qy(t), (1.10b)
Py/pg = ke 'A(p7h) —ydivvg, in Q). (1.10c)

Furthermore, by eliminating the divergence of the gas velocity, one has

2 .
ye P YPg

From the form of the equivalent gas system (1.10), it is evident that without imposing the
irrotational condition (curl v, = 0) or any symmetry assumptions, the approximate model
(1.6)—(1.8), in general, may not have a unique solution. Even for steady-state solutions,
except for the spherically symmetric equilibria, other solutions involve rigid rotations.
Additionally, when considering steady-state solutions, the liquid viscosity and the presence
of surface tension require that both the gas bubble and the gas-liquid region exhibit spherical
symmetry, as per Alexandrov’s theorem. A recent study [10] shows that assuming the flows
are irrotational, the shape of any steady-state gas is exclusively spherical by the surface
tension alone.

Remark 1 We discuss the steady-state solutions of the full model (1.1)—(1.4). Specifically,
surface tension and liquid viscosity alone do not guarantee spherically symmetric steady-
state solutions. For instance, we cannot exclude the possibility of a rotational liquid veloc-
ity of the form v;(x) = (¢1, ca,¢3) T + (wy,wo,w3) T x (21,72, 23) 7, where (cy,c2,¢3) "
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and (w1, we, ’LU3)T # 0 are constant vectors. However, it remains unknown whether such
a liquid velocity can be used to construct a nonspherical steady-state gas state that satisfies
the corresponding boundary conditions. Moreover, if the liquid is assumed to be irrotational,
surface tension alone ensures a spherical outer boundary. On the other hand, when both
surface tension and liquid viscosity are present, and both gas and liquid are irrotational,
it remains unclear whether the steady-state configuration must be spherical. Nevertheless,
under the additional assumption of an inviscid gas bubble, it can be shown that both the
equilibrium gas region and the entire gas-liquid domain must be spherical. Thus, classify-
ing equilibrium solutions to the full model (1.1)—(1.4) presents significant challenges. In
particular, the existence of nonspherically symmetric equilibrium solutions remains an open
problem, which we intend to investigate in future research.

Therefore, our focus will be on spherically symmetric solutions to the free boundary
problem (1.6)—(1.8). For a spherically symmetric solution, the gas domain €2, () is assumed
to be a ball centered at the origin with radius R(¢). Given the density p of the gas in the
spherical region Br, we define the corresponding mass as

Mp, R] = /B pla)d.

1.2 Main results

We will study the stability of the spherically symmetric equilibria of free boundary problem
(1.6)—(1.8) under the assumption of spherical symmetry. Under this assumption, system
(1.6)—(1.8) is equivalent to problem (2.1) for the density and radius of the gas bubble, as
will be shown in Proposition 1. Based on this, we establish a one-to-one correspondence
between the equilibrium gas state (p, R) = (p+, R+) and the mass-volume pair (M, V) for
system (1.6)—(1.8).

Theorem 1 There exists a smooth bijective mapping (M, V) € (0,00) x (0,00) —
(R[M, V], ps[M, V]), as defined in (2.11) and (2.12), such that any regular spherically
symmetric equilibrium solution to system (1.6)—(1.8) is uniquely determined by the mass-
volume pair (M, V).

Remark 2 1f no confusion arises, we use subscript T to indicate the steady-state solutions
or other related quantities. For instance, R; represents the equilibrium gas radius and E}
denotes the equilibrium energy.

Remark 3 Based on Theorem 1, we will show in Appendix A that, for the original full free
boundary problem (1.1)—(1.4), the mass-volume pairs are the sole determinants of the regu-

lar spherically symmetric equilibria provided that the liquid temperature remains constant.

To state our stability result, we introduce the following manifold of equilibria to system
(2.1), which is parameterized by the gas mass and liquid volume
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2 = {(p(x,t), R(t)) = (p;[M, V], R{[M,V]) | 0 < M,V < oo}, (1.12)

where p; and Ry are smooth functions defined in Theorem 1.

The main result of this paper is to demonstrate the nonlinear and exponential asymptotic
stability of spherically symmetric equilibria > to small perturbations. This is significant
because the spherically symmetric solution to system (1.6)—(1.8) can be reconstructed from
the density and radius of the gas bubble. Therefore, we can conclude that the equilibria of
the free boundary problem (1.6)—(1.8) are also nonlinearly and exponentially asymptotically
stable. It should be noted that in the following theorem, B; refers to the unit open ball and
the norm |[-[| c2+20 5, ) is defined in Appendix B, where the global existence and the unique-

ness of spherically symmetric solutions are also provided.

Theorem 2 Given any mass of the gas, M > 0, and any liquid volume V > 0. For free
boundary problem (2.1) with the liquid volume V, there exists a constant g > 0 such that
the following holds:

(i) For any initial data (po, Ro, Ro) such that the mass M[po, Ro] = M and

lpo(Roy) — pt[M, V]l 242 5, + [Ro — Ri[M, V]| + | Ro| < 1o, (1.13)

where o € (0,1/2) and the equilibrium (p;[M, V], R4[M, V]) € £, the global-in-time
solution (p(r,t), R(t)) satisfies

||p(R(t)y7 t) - pT [M7 V] HC;JJ“(BI)

R (1.14)
+ |R(t) — R4y[M, V]| + |R| + |R|+|R| = 0, ast— oo.

(if) The global solution (p(r,t), R(t)) converges to the equilibrium at an exponential rate.
More precisely, there exists a constant zo; > 0, such that

PR30 = 1M, V] gz,
+R() = R M V]| + R = O (7™"), ast = ox.

Therefore, any spherical equilibrium solution of free boundary problem (1.6)—(1.8) is non-
linearly and exponentially asymptotically stable.

1.3 Background and history

The dynamics of gas bubbles immersed in a liquid with finite volume is a multifaceted
subject that intersects fluid dynamics, thermodynamics, and material science. This topic has
significant implications in various fields such as industrial engineering [7], environmental
science [13], and biomedical applications [5, 21]. Other discussion of bubble phenomena
and applications can be found in the review article [16].

Gas bubbles in liquids exhibit complex behavior due to the interplay between pressure,
surface tension, and the surrounding fluid’s viscosity. When a gas bubble is immersed in a
liquid, the dynamics of the bubble are influenced by both the properties of the gas and the
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liquid, as well as the interactions at their interface. The gas-liquid interface plays a crucial
role in bubble dynamics. The behavior at this interface is influenced by surface tension and
the pressure difference between the gas inside the bubble and the surrounding liquid. The
movement and deformation of this interface can affect the stability and motion of the bub-
ble. The finite volume constraint adds an additional layer of complexity, as it implies that the
bubble dynamics are affected by altering the pressure distribution and potential interactions
with surfaces within the liquid.

In the unbounded liquid scenario, where () = R3 \ Qg (t), Prosperetti [15] first con-
sidered the approximate model (1.6), (1.7), and (1.8a)—(1.8c) for the original problem (1.1)—
(1.3) (without external boundary conditions (1.4)). Later, Biro and Velazquez [3] proved
the global existence of solutions in Holder space for initial data near the spherically sym-
metric equilibria, as well as the Lyapunov stability of the equilibria under small mass-pre-
serving perturbations, assuming that the liquid is inviscid on the gas-liquid free interface
(i.e., pgv —pv = —cHv in (1.8b)). They also considered the liquid pressure far away
from the gas bubble, represented by an external forcing term poo (t) = lim, 00 pi(z, t).
Subsequently, Lai and Weinstein [9] proved the exponentially asymptotic stability of the
manifold of spherically symmetric equilibria, taking into account the liquid viscosity on the
gas-liquid interface. They also demonstrated the existence and uniqueness of an exponen-
tially asymptotically stable periodic spherically symmetric pulsating solution [11], given a
small-amplitude, time-periodic poo ().

When considering compressible liquids, Shapiro and Weinstein focused on the linearized
problem of a gas bubble immersed in an inviscid compressible liquid. They demonstrated
that the system exhibits exponential point-wise decay towards a family of equilibria [18]. In
the case of an unbounded liquid governed by compressible Navier—Stokes equations and a
homogeneous spherical gas bubble following the polytropic gas law, Zhao and Zou proved
the existence of global solutions and the asymptotic stability of the spherical equilibria in
this free boundary problem [22].

From the physical point of view, it is natural and of fundamental importance to consider
the case when the gas-liquid region is bounded, for which we are not aware of any relevant
rigorous theoretical studies, though some numerical investigations are available. Indeed,
Siegel conducted simulations in two dimensions, assuming that the gas motion is governed
by the Stokes equations with a free boundary [20]. Lozinski and Romerio presented numeri-
cal results for the case that both the gas and the liquid are incompressible, and the entire
gas-liquid system occupies a bounded, time-independent domain [14]. For the problem con-
sidered in this paper, the possibility of collision of the two free surfaces is one of issues
we have to resolve, which does not occur in the case when the liquid region is unbounded
without an exterior boundary, as most studied in the references mentioned earlier.

1.4 Novelties and structure of the paper

The novelties of this study are as follows.

(i) We consider the scenario of a gas bubble immersed in a liquid with a finite volume.
Unlike in an unbounded liquid, the presence of distinct boundaries in a finite liquid

volume imposes additional constraints on the bubble’s movement and interactions. Spe-
cifically, the bubble dynamics are influenced by a well-defined free boundary where
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surface tension plays a crucial role. In this bounded gas-liquid system, the steady-state
gas-liquid region must assume a spherical shape.

(ii) For general surface tension coefficients o # &, we analyze the unique positive real root
of a ninth-order polynomial to establish that spherical equilibrium solutions correspond
uniquely to specific pairs of gas mass M and liquid volume V. Indeed, we prove that the

steady-state radius of the gas bubble Ry € (VI/+/1+ ¢ /0, V1), where I = 32LM

8mo

and R; is a positive real solution to the following polynomial (see (2.10) in Sect. 2)

6’3

3V s 9V
P(R) = <3 + 1) R’ —3IR" + ——R® +3I’R° — ——
o 4

™

IR* -~ IPR® + %1232 3V
47 47

I
As a ninth-order polynomial, it is quite challenging to determine the distribution of the
roots or directly analyze its monotonicity. Indeed, the polynomial P(R) fails to exhibit
monotonicity for general coefficients o, 0,1 and V. In order to resolve this issue, we
observe that, by the scaling R = wv/I,w € (1/1/1 + /0, 1), we can separate a dis-
tinct positive power factor I 29, ie.,

3 _

The advantage of doing so is that we can obtain the monotonicity of L(w), which
leads us to prove the existence and uniqueness of the steady-state gas radius, and deter-
mine its upper and lower bounds in terms of given physical quantities 7, o, I and V, as
another benefit of this strategy. In contrast, when the liquid region is unbounded [9], the
steady-state gas radius satisfies a cubic equation 47 RY + 810 R? — 3RT.M = 0
with a constant p, > 0, and the existence and uniqueness of its positive root can be
readily deduced.

(i) We analyze the energy dissipation for general solutions (not necessarily symmetric) to
the free boundary problem (1.6)—(1.8), which is important to the asymptotic stability
analysis in general and extends the results from the unbounded liquid case presented
in [9, Proposition 7.4]. Our results demonstrate that the equilibrium solution serves as
a local minimizer of the energy functional even when subjected to relatively large per-
turbations. Specifically, this means that perturbations in the gas density can be accom-
modated up to a certain proportion of the equilibrium state, with the proportionality
constant depending solely on the adiabatic constant «y. This result is notable because
it shows that the extent of acceptable disturbance is independent of the liquid volume,
making it particularly relevant for scenarios involving small liquid volumes.

(iv) When applying the central manifold theory, we construct general global central mani-
folds based on the algebraic equations of the steady-state solution parameterized by the
mass-volume pair. This approach generalizes the local central manifold identified in [9,
Lemma 9.6].

(v) For sufficiently small liquid volumes, we nearly achieve the optimal exponential decay
rate. Additionally, we demonstrate that reducing the gas mass or increasing the tem-
perature can accelerate the convergence — an effect not observed with an infinite liquid
volume. For spherically symmetric solutions, the convergence rate is solely determined
by the spectrum of a linear operator, specifically sup{Re(\) : A € sp(£) \ {0}} (see
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Sect. 4.2 for details). By analyzing its upper bound and estimating the lower bound of a
specific negative eigenvalue, we establish the existence of a constant Oy € (0, 1) such
that

—m?x < sup{Re()\) : A € sp(£) \ {0}} < =672y,

where 72y ~ \/T./v/M, revealing a clear correlation between the exponential decay
index, gas mass M, and external temperature 7.

The rest of the paper is structured as follows. In Sect. 2, we reduce free boundary prob-
lem (1.6)—(1.8) to system (2.1) and specify the equilibria under the spherical symmetry
assumption. Section 3 demonstrates the energy dissipation and shows that the steady-state
solution acts as a local minimizer of the energy functional under proportional perturbations.
In Sect. 4, we establish the nonlinear and exponential asymptotic stability of the equilibria
using center manifold theory, as detailed in Appendix C. The calculation of equilibria for
problem (1.1)—(1.4) is provided in Appendix A, while Appendix B covers the well-posed-
ness and Lyapunov stability of system (2.1). Appendix D includes necessary verifications
for applying the center manifold theory.

2 Spherically symmetric solutions and equilibria

In this section, we will show that, under the assumption of spherical symmetry, the free
boundary problem (1.6)—(1.8) can be simplified to a system involving the gas density and
the bubble radius, provided that the liquid volume and other parameters are fixed. Further-
more, we will demonstrate that the regular spherically symmetric equilibrium solution is
uniquely determined by the gas mass and liquid volume.

We assume that the velocity fields of the gas and the liquid are spherically symmet-
ric (e.g., vg(x,t) = vg(|z|,t)x/|z|, x # 0), and the other scalar variables are radial (e.g.,
p(z,t) = p(|x|,t)), to rewrite problem (1.6)—(1.8) as follows.

Proposition 1 Given the liquid volume V, solving the regular spherically symmetric solution
to system (1.6)—(1.8) reduces to an initial boundary value problem for the bubble radius R(t)
and the gas density p(r,t) = p(z, t), where r = |z| < R(t). More precisely, for r < R(t)
and t > 0, we have

utrt) = S 0wt + e (P ). (210
(1) = RT.p(R(1), ), (210)
pUR(0,1) = 5 {4m (RZ) - R@) e

T { R(t) - 1%((?;) Bt (g - %&? + 2%(8;) Rﬂ } (2.1d)
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where R = {/R3 + (3V/4) represents the external radius of the entire gas-liquid region.
The initial condition reads (p(-,0), R(0), R(0)) = (py, Ry, Ry). Above, we omit the
subscript for the gas pressure p,, and denote the operator A,.(-) = r=?9,(r?9,(-)) with
r =z

Proof Recalling that the gas and gas-liquid regions are spheres Bg(;) and By R(t) centered
at the origin, respectively, we can assume that the spherically symmetric velocities are
vi(z,t) = v(r, t)x/rand vy(z,t) = vg(r, t)x/r for & # 0, where v; and v, are scalar func-
tions. Additionally, p;, p, T, and s are radial functions. Direct calculations yield

POy = (Arvl — 22}17"72) — p1vOpvp — Oy, R(t) <r < R(t), (2.2a)
=20, (r*v) =0, R(t) <r < R(t), (2.2b)
Op + 1720, (priv,) =0, r < R(t), (2.3a)
pp~t = ke 20, (r28r (p’l)) —r20,(r?v,), r < R(t), (2.3b)
and the boundary conditions (1.8) become
u(R(),1) = vy(R(1).t) = R(t), u(R(1).t) = R(t), (2.4a)
p(t) — pi(R(t),t) + 2ud v (R(t), 1) = 20 R(t) ", (2.4b)
—pu(R(t),t) + 28, ui(R(t),t) = —20 R(t) ", (2.4¢)
T(R(t),t) =T, (2.4d)

where we have used the fact that the curvature of a sphere Br is —2R~".
Clearly that (2.1c) follows from (1.6¢), (1.7b), (1.7¢) and (1.8c). Then, the divergence-
free condition (2.2b) and kinematic boundary condition (2.4a) imply that for ¢ > 0,

v(r,t) = R(t)*R(t)r=2 = E(t)Qﬁ(t)r*, R(t) <7 < R(1). (2.5)

We also note that RQR.: RR. Omitting the variable 7 and substituting (2.5) into (2.2a),
we have (2RR? + R?R)r=2 = 2R*R*~° — p; ' 9,p;. By integrating, we deduce that for
R(t) <r < R(t)andt >0,

pi(r,t) —pi(R,t) = py [R‘lR2 (R =r71)/2— (2RR2 +R*R) (R —r71)].
Moreover, (2.5) implies dv;(r,t) = —2R?Rr—3 = 9R’Rr3. As a result,

dwui(R(t),t) = —2RR™'  and arvl(ﬁ(t),t):fQE_lﬁ. Therefore, we obtain

p(t) — pi(R(),t) — 4uRR~' =20R~* and —p(R(t),t) — 4R R=—26R
Combining these calculations, it follows that

. 1., 1 _,. -R
p(r,t) = p(t) —4mRR™" —20R™ + py 5R2 - 534327«*4 - —

(2R + RE)

where R < r < R. Setting » = R, one has
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R R\ 20 2 R2 R'R® R-R, . .
p(t) = 4 (R R) TR AR = ( ) (26

From the gas dynamics in (1.10) and (1.11), for 0 < r < R(t), we have

K 1 rp K D P
vg=—0. -] —=—=and Oyp = —A,logp+ —7r0p+ —p. 2.7
T (p> 3p T e 3p vp @7)

Thus, equation (2.1a) follows. Taking the time derivative of both sides of (2.1c), we obtain
pp~ ' = dip(R,t)p(R, 1)~ + RO.p(R,t)p(R,t)~". Evaluating (2.7) at r = R(t) and
using the kinematic boundary condition (2.4a), we derive (2.1b). Finally, combining (2.1c¢)
and (2.6) leads to the boundary condition (2.1d). This completes the proof. O

We note that a regular solution (p(r,t), R(t)) to system (2.1) corresponds a spherically
symmetric solution (v, i, p, vg, pg, Ty, 5) to system (1.6)—(1.8), where the velocity v; is
given by formula (2.5).

In the following proof and the rest of the paper, the external radius will always be denoted
by

R=VR3+V,

where V' = 3V /4r represents the modified liquid volume and R denotes a generic radius of
the gas bubble.

Proof (Proof of Theorem 1) According to Proposition 1, it suffices to compute the
steady solutions to system (2.1). Setting 9;p = R = 0, we obtain from (2.1a) and (2.1b)
that R(t) = Ry (equilibrium gas radius), Alogp =0 in Bg,, and 9,p(R;) = 0. Then
it follows that p(r) = p;+ (equilibrium gas density). This, combined with (2.1d) yields

pr = mLTp (R% + E%) . Moreover, the conservative mass of the gas can be expressed by the

pair (p;, Ry), i.e., M = % p; RY. Therefore, for any mass-volume pair (M, V') € (0,00)?,
the equilibrium (p;, R;) is determined by the following algebraic equations:

47 2 o o
i R3 = M and p: = —+=. .
5 PrE and p; RT. (RT + R,u) (2.8)
We denote
T.M o
I = 3R and Opatio = g > 0.
8mo o

Then, (2.8) is equivalent to

3
Lo L Tratio _ I- K (29)
Ry Ry R} RI+V B |
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207 Page 12 of 45 C. Hao et al.

where V' = 3V/4r. The equilibrium radius Ry (if it exists) is exactly a positive real root to
the polynomial

P(z) = (0240 + 1)2” — 312" + Vab + 31%2° — 3IVa* — 1323 4+ 31°Va? — IPV. (2.10)

At the same time, R+ satisfies Ry € (\ﬁ/\/l + Oratios \ﬁ) by using (2.9).
From these observations, we introduce a function K(w) = P(w+/T), where the variable
w € [1/4/1+ Oratio, 1], and a direct calculation shows

3 _
K(w) = — {(I‘éw_?’ — I_%w_1> (I%w3 + V) - ofatio] RIS f]L(w)I%wg.
We note that the function LL(w) is strictly decreasing, since for w € (1 /V1+ Oratio, 1), it
holds

3
2

L(w) =31 [-2rfu? ~ V(3 —u?)] (u? - 1) <0,

Furthermore, we have
L(1/VI + Oratio) = VI™2 (1 4 0ratio) * 02,4 > 0 and L(1) = —o?,,;, < 0.

In the above, we emphasize that L(1/+v/1 + 0vatio) is positive regardless of the modified
volume V.

We conclude that IL has a unique positive solution in (1/+/1 + 0yatio, 1). Therefore, the
same result holds for K(w). Coming back to P(x), the ninth-degree polynomial, it pos-
sesses a unique positive root Ry within (v7/v/T + Gratio, V'I), which is uniquely deter-
mined by M and V, with the other parameters being constants. Thus, the map R;[M, V] is
well-defined and satisfies

. 5 RT, M
\/BERTM/\/1+U<RT[M,V]< 3 : @.11)
g

8ro 8mo

The smoothness of the map R+ [M, V] is the consequence of the smooth dependence of a
simple root to the polynomial P on its coefficients.

Once we determine the equilibrium gas radius R;[M, V], the equilibrium density is
expressed as

)= M 2 o _,_ ¢ 2.12
PR S RMVE ~ R\ RiM,V] " Ry[M,V]) 212
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and the equilibrium gas pressure p follows by using (2.1c). Then, we can recover the cor-
responding steady state solution to system (1.6)—(1.8). That is, vy = v; =0, T, =T,
s = clog(p/p]), and p; = 20/ Ry.

In turn, given any equilibrium state (p;, R;), we can specify the mass of the gas and
liquid volume by (2.9) since the coefficients of both V' and (R? — I)? are nonzero. More

precisely, there exists a one-to-one correspondence between (p;, R+) and (M, V)

ArR: M, V]? 202 ¥
M, V)= "0 00 oMLY ~1].
(M, V) 3 Y] T VIR MLV] = 2075 (2.13)
This completes the proof. O

Remark 4 1f there is no surface tension on the external free boundary (i.e., & = 0), equa-
tions (2.8) reduce to a quadratic function. In this case, the equilibrium radius simplifies to

_ [3\TM
R; =

8mo

, which is independent of the liquid volume. Consequently, (2.13) no longer

holds. Nevertheless, R+ remains the unique positive root of (2.10) and corresponds to the
critical case of (2.11).

The local well-posedness, global well-posedness, and the Lyapunov stability for system
(2.1) are detailed in Appendix B. In the next section, after introducing the physical energy,
we will prove the energy dissipation and show that any equilibrium solution acts as a local
minimizer of the energy functional.

3 Energy dissipation and local minimizers of the energy functional
The physical energy of a general solution (without any symmetric assumption) to the approx-

imate model (1.6)—(1.8) is given by E(t) = E1(t) + E2(t). The energy E1(t) denotes the
Helmholtz free energy (see, e.g., [12])

Eq(t) = c/ pTydr — Tc/ psdx,
Q,(t) Q,(t)

The energy Fs(t) includes both the kinetic energy of the liquid and the surface energy,
encompassing the gas-liquid interface as well as the external free boundary of the gas-liquid
region

1
Es(t) = f/ oilvi|dx + 0/ dS—i—&/ ds.
2 Jo, ) 09, (t) B0 (£\09 (1)
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207 Page 14 of 45 C. Hao et al.

3.1 Energy dissipation law for general solutions to problem (1.6)-(1.8)

Recalling that the liquid volume is finite and Q4(¢) U €;(¢) is bounded, we compute the
associated energy dissipation.

Proposition 2 For free boundary problem (1.6)—(1.8), we have the following energy dis-
sipation law:

d H T2 |VP‘2
—E(t)=-"= |Vvi+ Vv | da — KT, dx. (3.1)
dt 2 ! 2

() Q@ P

Proof Given that boundary conditions (1.8a) and (1.8d) are satisfied, we recall the transport
formulas for the time-dependent regions

d

dt Ja, )

4 fdr = / 0y + vy - V) fdx,
dt Jo, () )

fdz = / (O +vg- V) f+divv, fdz,
Qqy(t)

and the analogous formula on the liquid moving surface 9 (t), which encompasses both
the gas-liquid interface 0§, () and the external free boundary 0€ (t) \ 99 (t) (see, e.g.,
[19])

d

e de:/ O +vi V) f+V v fdS.
dt Joq, 1) a0 (1)

These, along with (1.6a), (1.8b), (1.8e), integration by parts formula, and the divergence
theorem on the moving surface, yield
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Ba(t)

Pl (8tvl + v Vvl) -vidx + O’/
Qu(t) 0 (1)

,ul/ Avlyiv}:’dx f/ Dipyvidr + 0'/ H[v;-(—v)]dS
Q(t) Q(t) Q4 (t)

+ &/ H (Vl . I/) dS
O ()\0Qq ()

= —,u,l/ |Vvl|2dz+u1/ (—Vj)ajvl’ivids
Q(t) 0, (t)

+ m/ Vjﬁjvlvivde 7/ 7Vipr§dS 7/ u,—plvde
o0 (£)\0Q (1) 0Qq(t) 0 (£)\0Q ()

—O’/ H(V['V)ds-‘r&/ H(Vl~I/)dS
a9, (t) 0 (£)\0Q ()

= — 1y / |Vvl|2d$ +/ (pu/ — ,ulujajvl — UHV) -vidS
Qi (t) 09, (t)

v-vldS—i-c_T/ VY -vidS
0 (£)\0Qq (1)

—/ (pr—,ull/jale‘i‘a'H) -vdS
00 (1)\0Q, (1)

= — [y / |Vvl|2dx -I—pg/ vy -vdS + /«Ll/ aijV{l/de
Q(t) 8, (t) 0, (t)

— / ajvafukds
O (1)\0Q (1)

= — / Vv : (VV[ + VVZT> dx +pg/ v - vdS.
() 9y (1)

For the energy E1(t), we apply the transport formula, gas system (1.7), boundary conditions
(1.8a) and (1.8c) to obtain

Ey(t) ldz + ~ divvgde — TC/ p(Ops +vy-Vs)dz

c .
= —p —p
R o, R Jo, 2,(t)

; AT,
= pig/ ldz + 29 / divvgd:c—chi/ 9 dy
7= LJa,m =1L, 2, Lo
:pig/ 1dx+p79/ vy - vdS
=1 Ja,w =1 Jaq, @

2
(-1 VT G e V15 ¥ g
Q, () 17 o0, Ly
g\~ E g

. 2
S / ldx — Tcli/ 7\V/2)\ dz + Lo / v -vdS
7= 1o, 2, P v =1 Joq,u

- n/ VT, -vdS,
Q4 (t)
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207 Page 16 of 45 C. Hao et al.

where we have used the relation v = 1 4+ 93/c. Noting that

/4;/ VT, -vdS = R/ ATydx = by KA (pfl) dz,
00, (1) 9 (1) R Jo,m

and recalling (1.9), we deduce

/-@/ VT, - vdS = ipg/ 1dm+ﬂpg/ divvydz
09, (1) R o, R Ja, 0

= pig/ ldz + Lpg/ vy - vdS.
=1 Ja,u 7= Jaa,m

Collecting the above calculations, energy dissipation (3.1) follows since the algebraic iden-
tity Vvi : (Vvi+ Vv]) = [Vvi + Vv | /2 holds. O

3.2 Equilibria as local minimizers of the energy functional relative to proportional
perturbations

To establish the nonlinear stability, we will show that any equilibrium density-radius pair
(p4[M, V], R4[M, V]), determined by the mass-volume pair (M, V), serves as a local mini-
mizer of the energy functional E(f) with respect to mass-persevering and volume-invariant
perturbations.

For this problem, in the case of an infinite liquid volume and an external forcing term
Poo(t), Biro and Velazquez [3, Lemma 4.2] used Taylor’s theorem with Peano’s remainder
form to expand the total energy at the equilibrium state up to quadratic terms and derived the
coercivity energy estimate. Based on this estimate, the Lyapunov stability was established
[3, Theorem 4.1]. More recently, Lai and Weinstein [9, Theorem 7.5] extended these results
to scenarios with more general far-field pressure conditions. The key coercive energy esti-
mate [9, (7.17)] was obtained under sufficiently small perturbations, which depend on the
mass of the gas bubble.

We extend the results to the case where the liquid volume V is finite. This is a significant
improvement as we have removed the assumptions, regarding the upper and lower bounds
of the gas density and the bubble radius, made in previous studies (suchas C~! < p, R < C
in [3, 9]), and now allow for relatively larger perturbations, as long as they are within a
certain proportion of the equilibrium density (see (3.2)). It should also be noted that the
constant dy in (3.2) is independent of the constants T, p;, the equilibrium state (p+, R;), the
mass M, and the volume V. This is a crucial result that enables us to prove the main stability
results, specifically (1.14) in Theorem 2.

The strategy we have adopted is as follows. We first consider a specific proportion of dis-
turbance to the equilibrium density. Since the mass of the gas and the volume of the liquid
remain constant, the amplitude of the disturbance in the bubble radius will be determined
by the change in gas density. Next, we utilize Taylor’s theorem to approximate the energy
functional near the equilibrium state. We then apply the Lagrangian form of the remainder,
which provides the most precise expression for the nonlinear terms. This is because the bulk
terms I7, Is, and Iy (in the second-order derivative below) are related to the liquid volume.
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Peano’s form of the remainder cannot provide the necessary control, as the liquid volume
can be arbitrarily small.

Theorem 3 There exists a constant 69 > 0 depending only on ~y, such that the following
holds: given any equilibrium (p;, Ry) = (p:[M, V], R¢[M, V) with mass M and liquid
volume V, for any mass-persevering and volume-invariant spherically symmetric state

(p(r, £), R(t), R(t) = (R()* + V)'"?), such that

1 + [log py) < do, (3.2)

L*(Br(t))

H p(,t) — Pt (
Pt

then, we have

B(t) > ET+4{MT(5“’”"’*— ’ /ﬁ<y,t>—pfdy)

pi dmpy
% R? ( RT ) </ ’ ) 2 mTCR% ’ 2
+ -= ply,t)dy | + ' ply,t) —pil"dy (3.3
In? A . (y,1) 3 Bll( ) = P+l (33)
R} G R} : ?
T g g T _
+=|1-—5 (/ p(yw)—pdy) ;
™} | 2Rt Ry ( 2Rf> By T

where E(t) = E[p(-, t), R(t)] with p(y, t) = p(R(t)|y|, t), Ex = E[ps, Rs], and t > 0 is
arbitrary. Moreover, (p(r, t), R(t)) is not restricted to be a solution of system (2.1).

Proof Setting = = R(t)y for y € By, the domain Bp() is fixed to Bj. Defining
o(lyl, ) = p(R(t)|y|, t) and using (1.7d), we have p = RT.p(1,t). Then, the energy F (t)
becomes

4me
Ei(t) = IR P pyR® — ¢<T.M|p, R]logp, + c'ch/ plog pdx
Br
47TCTC _ 3 _ 3 _ _
= —5 P(LYR()” — TMlog [RTp(1,1)] + eyTR(t)" | plx,t)logp(z,t)dw.
B1

Combined with the energy E»(t) in the spherically symmetric scenario, i.e.,
Eo(t) = 2np R*R? — 2np  R*R? /R + 4o R(t)* + 4na R(t)?,

we obtain that E(t) = E[p(z,t), R(t)] is a functional of (p(x,t), R(t)) since R(t) can be
expressed by R(¢) and V'

4rcT,
E(t) = W; p(1,t)R® — ¢T.M log(RT.) — cTchogﬁ(17t)+cchR3/ plog p
By

2 RPR? — 2np RAR? R + A (oR? + 6R),

@ Springer



207 Page 18 of 45 C. Hao et al.

where we omit dx and abbreviate the notations R = R(t), p = p(z, 1), etc.

Fix any t>0, we set ps(-,t)=p;+3do(-,t) where 0<d<1 and
o, )l L B,y < p1/2. Then, there exists a unique R; = Rs(t) >0 such that
Rs(t)? fBl ps(y,t) = M, where M = %ﬂpTRi’. Define ps(z,t) = ps(z/Rs,t), and we
have

15 (s t) = Pl oo (B ) S 9P1/2: (3.4)

Also, (ps, Rs) satisfies M[ps (-, t), Rs(t)] = M, i.e.,

Simg =0t =m0 [ ety = Ro* (5 [ ot

Then, we have

Rs(t)® = i h t) = 3 / t 3.5
5()_W¢(t)were¢()_4wm BIQ(%)- (3.5
Also, it holds
—6R;9(1)

) _ RS _\®
R5(t) = and R(;(t) = <1+(5¢(t) + V> .

el

3(1+d9(t))

Next, we define f(d) = f(0,t) = E[ps + do(-,t), Rs(t),] for § € [0, 1] and it holds

dreT, R‘f
f((S) = 3 (/JT + 5@(17t))w - CTCM IOg(SRTr) - CTCM IOg(pT + 5Q(l7t))
2
TR} / R} —OR1(1)
— 50)1 5 2
T T 60 Bl(ﬂf +30)log(p + de) + 2mpi7 F5000 \ 301+ d0(0))}

4 9 .
— o RT _5Rf¢() ( R? ) 3
2 pl<<1+5¢<t>>é> ( 3(14d0(t >>§> ORI
3
i

T lo| — Ry i = R )g
o <<1+a¢<t>>%> o (1+5¢’<>+V

From Taylor’s theorem with Lagrangian remainder, we have

F8) = £(0) + f1(0)5 + £ (0)62/2 + £ (£(8))8 /6, where 0 < £(6) < 6. Direct calcula-
tions show that
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TR3 AT R3 3

t Te.o(1,t) — t Teprop — t Teo(1,t) — wTCR?qﬁ py log ps
By

f10) =

3 8 . 1
+OL | (elosloy) +o) - g [oR2 o+ R0 (R} +V)

47TR3 47TR? 3 3
= T g [ oo T 2 [ sy v emrt [ o
+ C’chR$ logpf/ 0— —R? (QU/RT + 26/RT) i/ 0
By 3 dmpt Jp,

=(y— l)cTCR?/B 0— R?p?l (20/R; +25/R;) / 0

B
= [RT. - p;* (20/R; +25/Ry)] Ri/ 0=0,
B

where we have used v = 1 4+ 93/c and (2.8). For f (0), one has

£ = - 2McTcg(17t)¢ M T, pr +60(1,1) 5,  McT.o(1,1)

pi(1+69)? Pt (1+69)° (pi + 00(1,1))°
ZC'yTCRT3 9

<(1+5¢)3 /B1 (pi + 60) log(p; + 59)) @

( 20T R}

C’}/TCR:J;) QZ
(1+6¢)° /31 (Qlog(pﬁégwrg)) - 1+4d¢ <p1+59)

R RS R f%
+4mp 0 — ( —I—V) $?
! 9(1+6¢)3 9(1—|—5¢)4 1+6¢
1
d R}r’ R]‘f ( R3 ) o3
+ 8mp1d— = — +V ¢
T |91+ p)Y 9L+ 60) r+ds
d2 R? R?
+27Tp62 i1
T 9010 9(1+060) 1+5¢’

se[ SoR: 2R [ R
o -+ . +V
3 3(1+6¢)3 (140¢)% \1+d¢

6'R6 3

T R E 2 4
3(1+ 00)8 (1+5¢+V ¢ Zl

Therefore, setting § = 0 yields
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"

2
F1(0) = —2McT, (p )¢>+2M T,$° +MT9(p 2 + 2y M T, log i ¢°
i t

= 2yM T, log pr¢” — 2MYTd* + ey T Rip; / o
By
N dmp Ry it 100 . 5 QE ﬁ;
9 pi |3R: Ry 3R; R
2
1,t dmp R? > .
_METC<Q( ,>_¢> +Plf(1_m)¢2
P 9 Ry

— M (c+2R) To¢® + eyT.R}pi " / o+ —
B,

2 5
1,t dmp R
> McT, (Q( s ) _ i Q> + Pl T (1 RT) ¢2
pr Ampt Jp, 9 Ry

7(c+9‘i769‘i)TCR$pfl/ 92+(c+%)TCR?pfl/ 0?
B B

M [20 25
—MZR+€9%TC¢2+1+5{+]¢2
( ) ( )pT "R

4 25 R}
”(1—35)+U 11— —L
3R 2 ) R 3Ry
2 5 2 3
R NT.R
o (2 ) S (]
P Ampt s Ay Ry B Pi U,
i 1(1,§€>+ o (3 M s, </ Q>2
R\ 27) R oR, 2 B )

ﬂp?
where € € (0,2/3) and we have used v = 1 4+ R/c, (2.8), (3.5), and Cauchy’s inequality
¢* < 27 [ 0% Chosen e = 1/3, it holds
mpy J B1

2 5 2
1. McT o(1,t 3 o R R .
2 Pi dmp; [, 87rpT R B,

RT.R3 R3 5 R} 2
+ T/ P84 oy [T (1 (/ @) 6
6ot Jp, 2mpi | 2Ry Ry 2R, Bi

L1162 + Jo02 + J56° + Ju62.
To deal with f, using & < 1and || (-, )|, (B1) < pi/2, wenote that all the denominators
of I; arebounded, i.e., 1/2 < 14+ £(6)¢ < 3/2, p+ /2 < py + £(0)o(r, t) < 3p+/2. With this
lower bound, all the terms in f (£(8))82/6 coming from Iy, Is, Iy, I5, I and Io can be
3 _ 2
absorbed into J362 and J40% > 47Tp (R% + E%) (fBl Q) 62 for 6 < 83/ (1 + |log p+|),

where 5(1) > 0 depends only on ¢/93. We show the calculation of I, I5, I1 and the others
are similar or easier. The derivatives of the first two terms can be absorbed by using (2.8)

M
pi

@ Springer



Exponential stability of a free boundary problem with spherical. .. Page 21 of 45 207

_RTpy co(1,t) 3R3< ) 3 o (72) )
“ R (1+E@) ;7 /Bf’ v )
| 2T Ry o ) )
= ‘ 2((1+€(5)¢)3 /31 (olog(pt +£(0)0) +0) ) ¢

20yT. R} / ( &2 ))
+<(1+§(5)¢)2 B, \pt +&(0)e ¢
2
B 2 ], '

dl
EO

d]5
()5

53

IN

R

12 R3 2 19¢y RT.R3
R pT B, R 3pr Jp

[W (14 |10gpf|)(5} Ja8% + (Wa) Jad2.

RS
RTept 71_—;2 max {
T

N

For the derivative of I, it is sufficient to notice that |¢| < 1/2 from (3.5), and

i [ B -3 e A S 2 _ 100
@[(Hawv) ]W” (T 7)) wee < w
af[( B NT? |agom N R |
d<5K1+5¢+V> ](5(5)) - 3<1+£<5>¢+V> (+e@or| " '

where we have used

-

R3 _\ 3 2 92__ *% 3 %7_1
i 3
——+V <R+ ZV <(z) R:,
(e +?) <(m+v) <() ™
which is independent of the liquid volume V' € (0, 00). Then, “£117(£(6))5%/6 can be
absorbed into J,62.

For the derivative of I3 which contains the term o(1,¢)3, we have

dI
2o

_ ' 2McT.0(1,t)3
(pi +E€(B)e(1,))*

3 < (320) J16% + (16%) 82,

where we have used

2 ﬁ Q(lvt) _ 1 2
o1, D)lle(L O < 5 U o Bl /Bl ‘+B1| Pr </Blg) ]
s (e(Lt) 1 1
= [( Pt |B1py /Blg> ] (/ 9)]
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Therefore, this term can also be absorbed into f (0)§2/2 for all 0 < § < 62, where 2>0
depends on ¢/fR.
To deal with the derivatives of I7, I's and Iy containing ( [ B, 0)2, we need to calculate the

first three order derivative of p; R‘,;’1/J(§)<;32 where

() = (1L+60)F — Ry (L+00) " (B} (L+69) " +V) .

We only control diy/dd since d?+)/d?6, d>)/d>§ can be calculated similarly. By direct cal-
culation, we obtain

Wiy=—2
do 3(1+4d9)s

-
IS

[12 (1+ VR (14389) 7 — (1+ VR (1+469) " - 11} .

) — 1
Therefore, from |¢| < 1/2 and % =1-(1+ VRT_?’) %, it follows that
i

4

+ ’1 — (14 VR (1 +1/2)

}

dip

Z5 (6] < [12‘1_(”?3?3(1“/2))_%

}

1 1
3 3

6[19[1- (1+VR;?)

< 200 (M> 7
Ry

and VR; ? < 63 where 03 > 0 is a small constant independent of T., p;, p, Ri, M and V.
Moreover, for all « > 0, we have

+7[1- (14 VR

g LBk

1—(1+68)" % I

1—-(1+VR*(1+1/2)) , VR >4

We conclude that

1

-1
<100 [(1 —(1+5)7) +1} RTR B
)

for all V and R+. Therefore, all the terms %(17 + Is + I9)(£(5))° containing ¢ can be
absorbed into J262, for all § < ¢ with &3 independent of T, py, pt, Ry, M and V.

Summarizing the above results and recalling that we choose any (p5(+,t), Rs(t)) satisfy-
ing (3.4). We conclude that for all (p(-,t), R(t)) satisfying

dy
e

PG ) = pill Lo (B, < G0pt/ (14 [log pil)

or equivalently, (3.2), where o > 0 is a constant that depends on & and hence only on ¢ /%R,
or v, it holds

@ Springer



Exponential stability of a free boundary problem with spherical. .. Page 23 of 45 207

2
Blp, 1.&+4{mwr((l“ o _ 3lé(ﬂ%ﬂ—m0

Pt Ampy

pZR? < RT ) (/ ) 2 SRTCR? / ’ 2
+ 1-= p) + py;t) —p
R? 5 R? 2
i | o o t ( / _
st (1 )| ([ e -m) b
2Ry RT ( QR}‘) B

where we have used p(-,t) = ps(-,t) = py + do(-, t). This completes the proof. O

TP}

4 Nonlinear and exponential asymptotic stability
4.1 Proof of the nonlinear asymptotic stability

In this subsection, we prove the first part of main Theorem 2, especially the asymptotic
stability in (1.14).

Given the equilibrium state (p;[M, V], R;[M, V]) determined by the mass-volume pair
(M, V) and any initial data (po, Ro, Ro), since free boundary problem (1.6)—(1.8) is equiva-
lent to system (2.1) in the spherical case, the energy dissipation (3.1) reduces to

S Vopllal D, o VRE) .
Ho= RTC/BR(T o(lel e 1 g p ) @D

where V,. denotes the radial gradient. In the above, we have used the velocity formula (2.5),
Qg (t) = BR(t) and Ql(t) = Bﬁ(t) \BR(t)

Integrating from 0 to # and applying the local minimizer (3.3) together with the Lyapunov
stability (B.1)—(B.3), we obtain

t 7 > 2
a [ [T e, (TR,
Briy, PUTLT o R(T)P3+V

< Eo— By — (BE() - ET)
< Eo - ET7

provided the constant g > 0 is small enough, which is independent of the initial data. Also,
we have denoted Ey = E[pg, Ro| and Et = E[p;, Ry] in the above. By the regularity of
(p(x,t), R(t)) in (B.3), we deduce that the time-dependent functions

2
/ Neoeh DI, v mr) R > 0
pne,  PUTLT)
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are uniformly continuous. This, combined with the bound 0 < V'/ (R(7)* + V) < 1, fol-
lows that the function V.R(7)(1(r))?/ (R(7) 4 V') is also uniformly continuous indepen-
dent of the liquid volume V.

The remaining proof of (1.14) is similar to that of [9, Proposition 8.1], as we can apply
Theorem 1, Barbalat’s lemmas in stability theory, and interpolations. This proof is valid
because we have shown that the algebraic system (2.8), or equivalently, the equation

(0240 + )R> —3IR" + VR® + 31?R° — 3IVR* — I?R? + 3I°VR*> - I’V =0,
has a unique positive root for any fixed liquid volume.
4.2 Proof of the exponential convergence rate

The exponential convergence in Theorem 2 is established through the utilization of the cen-
ter manifold theory in Appendix C, where the relevant definitions are provided.

Step 1: We start with transforming free boundary problem (2.1) into an equivalent sys-
tem within an appropriate Banach space. Specifically, we select Z = £2 as specified in (C.1).

Proposition 3 Under the assumptions of Theorem 2, if we abbreviate the equilibrium state
(psM, V], Rs[M, V]) = (pt, Rt), and decompose the global-in-time solution (p,R) as
follows

p(R(t)y,t) = pr + o(y,t) = py + 01(y, ) + 02(1), 0<y <1, >0,
R(t) = Ry + 0

then, system (2.1) is converted to the following initial-boundary value problem
1
81591(:[/7 t) = XAgl(y7t) - (1 - 7) Q? + H7 0< Yy < 17 91(17 ) = 07 t> 07 (43&)

. R 1
R=——1 (xaygl(l,t) + @2) + @, t>0, (4.30)
P+ 37

b
RT.

02 =

9%  25R2 IR
[+ = | R+ — L R4 pRR|+¥, >0,  (430)
RT R, RT(R;’-FV)

with the initial condition

(01(y,0), 02(0),R(0),R(0)) = (po(Roy) — po(Ro), po(Ro) — pt, Ro — Ry, Ro),  (4.4)

for 0 < y < 1.Moreover, in system (4.3), we denote R; = R; — Rf /Ri,x = m/(R:r@pwc),
and the following nonlinear terms
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K { 1 1 ]A (0.1
e - 01(Yy;
ve LRt + R (ps + oy, 1) Ripr] "7 wsa
Da
K [Vyor(y, )| 1 0 <1 )
- + = ~ydy01(y,t) + 01(y,t) |,
ve (Ry +R)2(pi + o(y,1))2 7 pi + 02 3Y% 1(y:1) 1(y,1)
y ! 1 Ro>
b= -— — 0y01(1,t) — ———————
e [(RT+R)(PT+Q2)2 Rm?] ver(L.1) 3v(pi + 02) w.sb)
Ry 0200 '
3y pilpr + 02)’
U= o (4uV = - —— | R+ 53R+ - =
AT, | (R(R3+V) RT(R¢+V)> (R? Ri+R RT)
(4.5¢)

26 R? 2% 95
+ | =R+ =2 -2
R, R Ry

. (R. R. 4N
PRy (S ) (22 E ) el
RT., R; R 2 R 9R

We denote the normalized radial Dirichlet eigenfunctions defined on the unit ball B; by

{EJ(y) = S%Z) } K which satisfies — A, Z; = (;Z; with ¢; = (jm)?, Zj|y=1 = 0, and
v Jj=

Jp, =7 (|z])dw = 1 for j > 1. We expand ¢; as

o1(y,) = > 0;()Z5(v)- (4.6)

Jj=1

Then, system (4.3) is further equivalent to the following infinite dimensional dynamical
system for z = [g2 R R 60, 0y - ~]T. That is,

2=Lz+N(z,2) = L2+ N (2)z + N°(2), (4.7)

where both the linear operator £ and the nonlinear term A (z, %) are defined in (4.11). The
terms N'? and N7 are given in (4.14). Finally, the initial condition of problem (4.7) can be
deduced from the original condition (4.4).

Proof Tobeginwith, (4.3a) and (4.3b) are derived by substituting (4.2) into (2.1). We point out
that (4.3c) is deduced by applying (2.8), Taylor’s theorem (R; + x) = R;l — R;Qx + e

and (Rt + )3 + V) s = (R? +V) 5 — Rfﬁ:lx + ---. More precisely, we calculate
as follows
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1 1% . 20 20 20 20
=57 " Rwv)  TRIR R R R
. R2. (3 2R R*) .
R 2 R 9R
1 [ V . 20 25’R$ -
fy————— R — R — R+ pR:R
R | M RR ) m g
1 v . vV .
+ dpyp————R — 4y —————R
RT, (MZR(R3+V) "R(R V) )
20 20 20 20RY 25 25
SR+ ——= - )+ R+=—-=
<R$ Ri+R RT) (? R R;
. [(R?. R2. 2 4\ .
LRy (Blp o ) (22 B el
RT, Ry R 2 R 2R

where we have denoted RT = R; — R% /ET. Then, equations (4.3c) and (4.5¢) follow.
Next, substituting (4.6) into (4.3a) and computing the inner product in L?(B;) with
Ek(y) yields the following

X -1 k'7123/2 -1
Or = —xCeOr — Epo2 + 1, & = (=1) =1

II, = =k dy.
N o g /Bl kdy.  (4.8)
Using 9, Z;(1) = /m(—1)75/+/2, the second equation (4.3b) becomes

I R; . RTX\/? .
R = E Ojw; — 02+, wj=——"=4/=-(-1)3. 4.9
=77 3wy ’ ! Pi p (Y *9)

Moreover, the third equation (4.3c) implies

RT, 2 26 R? 44V . - RT.V
¢ oy = — f2+ NL:R+—T—ﬂ?ij+R+ iy
PRy PRLRE o Ry R, PRy Ry (B +V) il

As a consequence, problem (4.3) forms an infinite-dimensional dynamical system
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(2 1 0 0 0 02
3vp
0 100 0 R
0 0 1 00 R
& 0 0 1 0 bh| =
& 0 0 0 1 )
r 0 0 w1 w2 d
0 0 0 0 2 0
RT, 20 20K 4V 0 0 2 _ Ry
pRy  pRi R} pll_?,fﬁ;l iRy Ry (RI+V) 0. | + PR
0 0 _XCI 0 91 gl
0 0 0 0 —xCo 2 2

Multiplying both sides of the above equation by the inverse of the infinite-dimensional
matrix and denoting z = [Qz R R 6, 0, ~-]T, (4.7) follows, where the linear

operator £ equals

[0 0 — wr B wy 2t .
0 0 1 0 0
RT, 20R+25 R} 4V 0 0
PRt plfif R?E? leT R (R3+V) (4 10)
3 3vpi , (4.
0 0 & W =&t w. - XxXG —E1wa !
0 0 & 3w+ —Gowr 3];;* —Gows B — XG
and the nonlinear term N = N(z, 2) is equal to
3vp RT, 3vp 3vp
RTT(I) pRT\I/ 51 *<I)+H1 —ggRiff(b—i-Hz 4.11)

where ® = &(z,2), ¥ = VU(z,2), I = lx(z,2),& and wy are defined in (4.5b), (4.5¢),
(4.8) and (4.9), respectively. Writing N (z,2) = N(z,w) (denoting w = %), we further

decompose
II(z,w) = éHl (Z),W> +11%(2),
D(z,w) = (B(2),w) + 2°(2), (4.12)
U(z,w) = <\Ill(z),w> + U0(z),

ie.,
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a © g (Y9 = 12 4..T
H(Z7W)=<[sz19](30y~g+~g) 00 } ,w>

o e [ B } ZC-G-E,
(Ri +R)2 (pr +0)° ¢ LB +R? (pr +0)  Ripr] "7

R Rio2 T
P(z,w) = { |— + 00 - ,
(2. ) <[ 3v(pt +02)  3vpi(pt + 02) ] v
K 1
|Eroe e RTpT] 2 3w
R2 2 T
\Il(z,w)—<[0 0 9512 [R-i—(};-i)} 0 0 :| ,w>
c t
— 1 1 . 20 20 20
4V = - — | R+ R+ - =
. (R(R3+V) RT(REr”—i—V)) (R? Ri+R RT)

26 R? 25 20 3 2R RY)\ .

i o g 2

+ R+=-=—1|+ - - =4+ =R
( R R )" (2 R 234)

t

L1
NT,

Above, (-, -) denotes inner product in the Hilbert space £2. Therefore, the nonlinear term
N (z, w) can be further decomposed as follows

N(z,w) = N(z)w + N°(z), (4.13)
where
NI = [%‘Iﬂ 0 _L}%\Pl - & 3797,1,1 & ?wprq,l JT
37,0 0 ;le 0 3%0 0 0 370 §0 (4.14)
i c 9Pt T
NO = [ ®° 0 -2v —620 0 HZ—.gQR—T@ }

.
Here, Nl (z)w denotes the point-wise inner product [<37%%<P1(z)7w> (0, w) } ,

fB (z)Z;dz, and Hl( )= fBl IT' (z)=;dx. This completes the proof of the
proposmon. U

Step 2: The asymptotic stability result (part (i)) in Theorem 2 can now be expressed for
system (4.7) within the Banach space #2 (cf. Lemma 3). Next, to examine the decay rate, we
analyze the spectrum of the linear operator £ : £2 — 2 in the following proposition, with
its proof provided in Appendix D.

Proposition 4 Denote the spectrum of the linear operator L defined in (4.10) by sp(L).

Then, sp(L) ={0}U{\ € C:M(X\) = 0}. The eigenvalue A = 0 has multiplicity one,
and M()) is a meromorphic function defined by
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T (4 X 8(y—1)x - 4V 20 20R?
M — = 2N A el B W
(\) ST <3 + kz Y RN+ A +

3, 17 2 —1
= BE+V) A\ B ] 4as)
Pi
4 I
+ 4 RT,
where Ry = Ry — Rf/ﬁ]» and x = fi/(R]'?pwc) as in Proposition 3.
Moreover, there exists a constant w >0, such that

sup{Re()\) : A € sp(£) \ {0}} < —2w < 0.

By further analyzing the spectrum bound sup{Re(X) : A € sp(£) \ {0}}, we discover
that the characterization of the operator spectrum is more accurate when the liquid volume
is small.

More precisely, given the mass of the gas M > 0, we assume that the liquid volume
V' > 0 is sufficiently small. Then, using the notations in Appendix D and applying (2.8),
we have

2 — 2
44,V RT.p1 R RiR; — R?
B? — 4KC? = ’f,fv — ] - 82 Lepthy (1,217~ T4
RT(RT +V) PZRT(RT - Ry) Ry

1602 — 5
- g g, (U U) (1 - RT)
R%(R‘;’ + V)2 Ry Ry Ry

1607 o2 1 o
Oy _ 10mo (1- (1 +v/R) )

/N

RS Ry
16pu —2  16p0 (3V —2

< Db 240 (V ) <0,
RS R \® T

where we have used the lower bound of the equilibrium radius R; in (2.11). Then, from the
20T pt Rt
pR? (Rt —Ry)

1 614 1 2 1 2
w = — min @ngx,max — ,O17m%x = -Og7m7X,
2 { {le?R?I—Q—O(V) 2

where the constant O satisfying 0 < O; < ©¢ < ©2 < 1. However, by inspecting the
form of MI(\), it has a pole (nearest to the origin, i.e., choosing k& = 1) at —72y. For A near
this pole, since V' > 0 is sufficiently small, it holds that the following term in the bracket
of (4.15)

_ A1V 2 26 R2 2 26 R?
leT/\Q—l—'LLilV/\— ( o + 1) is close to —R—U—iT <0.

Ry(RE+V)" \ B R T O

results in Lemma 4, direct calculations show that K = is large, and

Consequently, M()\) tends to —oc as \ approaches the pole —m%y from the right side on the
real axis. According to the estimates of Case 3 in Lemma 4, M(A\) > 0on{\ € R: A > 0}.
This observation shows that at least on the interval (—72y, 0), M()) has a real root. Thus,
we find both the lower and upper bounds
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—m?x < sup{Re(\) : A € sp(£) \ {0}} < —Op7?x.

From the center manifold theory in Appendix C and main Theorem 2, the index —wo; in the
convergence rate e~ @1t is determined by this spectrum bound (difference by a constant).
Therefore, it is reasonable to anticipate that the convergence rate of the spherically sym-
metric solution will be determined by the magnitude of —n2y. Utilizing the radius bound
(2.11) again, we see that

9 K2 4,"<U7T3RJf c B 2R 1 +
2y = _
XT TRy T 3Mye \/ V v \

We conclude that for small liquid volumes, a reduction in gas mass or an increase in tem-
perature can accelerate convergence. This effect has not been observed when the liquid
volume is infinite.

Remark 5 When the liquid volume is sufficiently small, surface tension dominates over lig-
uid viscosity, and the evolution of the free boundary is primarily governed by capillary
forces. In this case, even small asymmetric perturbations may disrupt the spherical bound-
ary, generate large curvature variations, and potentially lead to pinch-off or instability. In
contrast, small spherically symmetric perturbations preserve the uniform curvature of the
free surface, allowing us to establish the nonlinear asymptotic stability of the corresponding
equilibrium. However, understanding the stability or instability of the system under asym-
metric perturbations, particularly when the liquid volume is small, is a challenging open
problem that we plan to consider in future work.

Step 3: As we have demonstrated the asymptotic stability in the space ¢2 (cf. Lemma 3),
we will decompose the space into the direct sum £ = X @ Y and then derive a correspond-
ing system, (4.17) below, which is equivalent to systems (4.3) and (4.7) in Proposition 3, as
well as the original free boundary problem (2.1).

Following the setup in Appendix C, we first observe that according to Proposition 4, the
eigenvalue A = 0 has multiplicity one. Therefore, the linear operator £ defined in (4.10) has
a one-dimensional kernel X = ker £ = span(U), where

U= |20/ (RT.E}) — 20K}/ (RTE;) 1 0 0 0 r (4.16)

Moreover, the vector Y1 = [47/3 4dmpi/Ri 0 ~&/(y—1) ~&/(y—1) --is
the corresponding left eigenvector of £ once we note that Z;il §J2- =4(y — 1)/ (372).
Applied the equilibrium algebraic equations (2.8), it follows that

(X7, Uy = (20 20RF 3RTp ) dr (4o G0 208
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where we notice that the term 65/ R Ry — 26 R?/ E? is strict positive since Ry < Ry. Then,
we can normalize Y such that (Y, U) = 1 by setting T = (T, U>71 T

Having obtained both the left and right eigenvectors, we decompose £ = X @ Y as fol-
lows:z=x+y,wherex = Q1z= (Yjz)U€ Xandy = Qaz =2z — Qiz € Y.

Since LU=TTL =0, we have 0 = TJEZU =1Lz, LOiz= (TJZ)EU =0, and
QoL7 = LQsz = Ly = Lz. In particular, L|x = 0, and Qgﬁ’Y =Ly

of £ on Y satisfying sup{Re()\) : A € sp(ﬁ‘y)} < —2w < 0.

’Y is the restriction

Then, we derive a dynamical system of (x,y) from (4.7), which is of the same form as
system (C.3). That is,

x=QN(x+y,x+7y)

= Q1 [M(x+y)k+7]] + QN (x+y), t>0,
§=Ly+ QN (x+y,%+7)

=Ly + Qo [N (x+y)[x+7]] + QN(x+y), t>0.

(4.17)

The initial condition can be deduced from (4.4).

Step 4: We verify the remaining requirements in (i)—(iii) in Appendix C, especially the
decay estimates in (C.2). Since the one-dimensional subspace X is L-invariant (£|x = 0)
and Y is closed, we need to check the following results.

Proposition 5 The subspace Y is e“-invariant, and for any t > 0,

eLtQQH[g g C€7Wt,

where the constant ¢ > 0, and the index w > 0 is given in Lemma 4.

Proof Given any y, € Y, one has

n!

© tLy" 0 tQ L)n > tQ L n—1
€£ty0 = Z ( ) Yo = ngo + Z %}’0 = QQ (yO + tﬁz (Qn!)y0> )
n=0

n=1 n=1

where we have used the fact that for n>1,
L Lyo = LM 0Ly = LY 2LOoLyy = L7200 LD Ly = (Q2L)" yo. Therefore,
we deduce e“ty, € Y, and we conclude that Y is e“!-invariant. The operator estimate
||e“ Qs || follows from the boundedness of Q, and the spectrum analysis in Proposition 4,
together with the Gearhart-Priiss theorem [6, 17] for Cy semigroups. O

Step 5: In the following, we show the existence of a global center manifold for (4.17),
and verify the Lyapunov stability of the zero solution to the equation on the center manifold,
as required in Lemma 2.

Compared to the local center manifold constructed in [9, Lemma 9.6], it is worth men-
tioning that the manifold of equilibria 3 given in (1.12) is actually a global center manifold
since we do not utilize the smallness assumption in this part.

Proposition 6 Given any (p;, Ri) = (pt[M, V], R¢[M, V]) € Z, for a € R, we define
plex) by
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pa) = D%LTC (20/R(a) + 25/\3/}?(@)3 + v> , 4.18)

where R is an arbitrary positive C'! function such that R(0) = Ry and R'(0) # 1.

Then, it holds p(0) = p;. Denote x € X by x=aU,a € R, and define the curve
y = h(x) = h(aU) by

h(x) = |p(a) 20 208 R(a) R 0 0 '
x) = |pla) + + — | o — py Q) — o — [t el
%TCRf %Tch:

It follows that the curve 4 is a global center manifold for system (4.17).
Moreover, for x(t) = a(t)U with |a(t)| small enough, the equation on the center mani-
fold given by

%= Q) [N (x + h(x)[x + I (x)%]] + QN (x + h(x)), (4.19)

is trivial. That is, (4.19) is equivalent to ¢ = 0. Therefore, the zero solution to (4.19) is
Lyapunov stable.

Proof Without loss of generality, for any (x(0), h(x(0))), we consider the solution in the
form of (x(t) = a(t)U, y(t)) to system (4.17). Note that the initial data yield the initial

condition 2(0) = x(0) + h(x(0)) = [(a) — pr R(a)—R; 0 0 ---].

Recalling in Proposition 3, z= [Qg R R 6, 6, -~]T, combining with
the changing variables (4.2) and the decomposition (4.6), we deduce that 6;(0) =0

and therefore ¢1(-,0) = 0. Also, it holds R(0) = R(«(0)), 02(0) = p((0)) — pt, and
p(R(0)y,0) = pt + 02(0) = p(a(0)) for any y < 1. That s, p(-,0) = p((0)).

From the trajectory defined in (4.18), these initial data are exactly the equilibrium of the
gas-liquid system with the gas mass

7477
T3

M pa(0))R(a(0))*

and the liquid volume V. Therefore, the global-in-time solution is
(x(t),5(t)) = (x(0), ¥(0)) = (x(0), h(x(0)))-
In other words, it follows that
plx,t) = p(a(0)),z € Bao)) R(t) = R(a(0)), and a(t) = a(0).

Next, we verify that the curve y = h(x) is tangent to the subspace X at the origin by dif-
ferentiating (4.18)
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20 25 R(r)?

R'(a).
far " (e )] -

It follows that

A~ 20 26R% 2%
P0)=— + ——5 | R(0),
(SRTJ%? D%TCR?

by setting @ = 0 and using the assumption ]:2(0) = R;. Recalling the vector U defined in
(4.16), we conclude that

.
dh(aU 2 20R? \ . .
C(ZO‘ )‘ = |- %TURZ+7J4 (R(0)-1) RO -1 0 ---| eX.
R - B RTR,

Finally, we check that equation (4.19) on the center manifold is trivial, provided x(t) = a(t)U
with |a(t)| sufficiently small. Since y(¢) = h(x(t)) on the center manifold, we have

4.21)

{z<t>=x<t>+h<x<t>>=[A<a<t>>—m Rla@®) =Ry 0 0 -],
(1) = %(t) + W (x(#)x(1) = a(t) [ (1)) R(a(t)) 0 0 -] .

Thus, for the nonlinear terms II° IT', ®0 &' WO and ®' defined in (4.12), from
R =0,0;, =0, and p; = 0, we deduce that

Rla(t)
2R} (5 a _ 25 25
- R, (Fla(®) = Br) + (Rla()2+V)3 Ew‘:| .
W (x(t) + h(x(t)) = {o 0 5 (I:E(a(t))—RT—I—ﬁ—m) 0 ] ,
where
_ R [, piR(at)
g(a(t)) = S (1 ﬁ(a(t»RT). (4.22)

By (4.14), the nonlinear term N (x(¢) + h(x(t))) [%(t) + A’ (x(t))%(t)] equals

Bypr R (a()gla®)a@ [l 0 0 & —& T,
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0 0 “2R90()+hx(6) 0 0 ] Then, ot

and VO (x(t) + h(x(t)))
)

ing that <T8—,N0(x(t + h(x(t)))> = 0, equation (4.19) is further equivalent to

X = <YOT,N1(x(t)+h(x(t)))[x+h’ >U
= ampi R (YT, U) ﬁ’(a(t))g(a(t))a

4(y=1)°x

372 and the left eigenvector Y . Com-

where we have used the identity Y, £ =
bining (4.22) and (4.20), we conclude that

&t —ampy R (X7 0) Fa(®)g(al)]

_ 4 47Tf3’( (t)) 20 20 R(a(t))® N CI0)
B [l 3(TT.U) ATy ( Rla()? | (Rla(®) + v>‘s‘) (1 ﬁ(a(t))RTﬂ
£ a {1+ [1 - piR(a(t)/ (plal(t)) Ry)] K (clt))}
vanishes, since x(t) = &(¢)U and U # 0. Note that for |« (¢)| small enough, K (a(t)) is
bounded and the factor 1 — ,oTJ?(a(t)) / (p(a(t))Ry) is sufficiently small. This yields that

a(t) = 0 for all |«(t)] sufficiently small. In other words, the dynamic on the center manifold
is trivial, and the proof is completed. O

Step 6: The assumptions for the nonlinear terms in system (4.7) are verified in the fol-
lowing lemma.

Lemma 1 For the nonlinear term N (z,w) defined in (4.11), where z is computed by (4.2) and
(4.6) from the solution (p, R) of problem (B.1). Then, we have N (z,w) € €2, N(0,-) =0
dwN(0,0) = 0, and 3,N(0,0) = 0.

Proof The fact that A'(z,w) € ¢2 follows from the same arguments in [9, Proposition
9.7]. Also, it is clear that A/(0, w) = 0 for all w by using the definition in (4.12). To com-
pute the partial derivatives, we utilize the decomposition A (z, w) = N'(z)w + N(z)
from (4.13). Applying (4.12) again, we have |TT*(z)| + |®1(2)| + | ¥ (z)| < O(||z]|) and

|FO(2)] + |®°(2)| + |¥°(2)| < O(]|z H ). To see this, for terms ¥ (z) and ¥°(z), using Tay-

lor’s theorem at the equilibrium radius R+ (e.g., R'= R, - RZR; R+ O(R?)), one

has

U

RT. R R =O0(||z]]), as ||z]| = 0.

Therefore, [¥1(z)| < O(||z])), as ||z|| — 0. Also, from the ratio R/R < 1, it holds
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1
ol - s

v 1 1 n 20R?
"A\REAT) T RV R (R; + R)

By

We conclude that A1 (0) = A°(0) = 0, and 9,N°(0) = 0 by applying (4.14). This com-
pletes the proof. O

Step 7: By incorporating the aforementioned preparations, we close the proof of the
nonlinear exponential decay rate.

We recall that free boundary problem (2.1) is equivalent to system (B.1) defined in B;,
and is also equivalent to dynamical system (4.7) by Proposition 3.

Applying part (i) in Theorem 2 and Lemma 3, we obtain |R(t)| + | R(t)] — 0 and
z(t) — 0 as t — oo. We also deduce that 9;p — 0 uniformly from (B.1a). Combining these
results, ||z(t)]|,- — O follows. Without loss of generality, we may assume that ||z(t)]| is
small enough for all time. Applying Lemma 2 to system (4.7), there exists o € R with |«
small, such that

[x(t) — aU + y(t) — h(@U) || = O(e”™°"), ast— oc.
In other words, from the first equation in (4.21), we obtain
[[e2 R R 61 6 -] =[pla)—pt R(a)—Ri 0 0 ]|, =0,

as t — oo. Clearly, (p(a), R()) coincides with the equilibrium (pt[M, V], Ry [M, V]),
since z(t) — 0. This yields the exponential convergence of (o, 01, R, R)

loallZz () + (P(R(2),8) = pi[M,V])® + (R(t) = Ry [M, V])* + R(1)* = O (e *"),

as t — oo, where we have used the changing variables in (4.2). Again from (4.2), it holds
p(R(t)y,t) — pt[M, V] = 01(y,t) + p(R(t),t) — ps[M, V], and we deduce that

2 —2w,
lp(R(t)y, ) = pt[M, V]Il 5,y = O (€727") ,  ast — oo,
by triangle inequality. The remaining proof is similar to the W1:°° estimates and the C?*2~
decay estimates in [9, Lemma 9.8 and Proposition 9.9]. This completes the proof of Theo-
rem 2.
Regular spherical equilibria to system (1.1)-(1.4)
In this appendix, we show that the regular spherically symmetric equilibrium solutions to

the original full free boundary problem (1.1)—(1.4) are determined by the mass-volume
pairs, provided that the liquid temperature remains constant.
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Proposition 7 Any regular spherical equilibrium solution to system (1.1)—(1.4) with mass
(of the gas) M and liquid volume V satisfying 1; = T is given by

20 —
vi=0, vy4=0, plzm, QQEBRT[JVI,VH QgUQlEBE

1,v)?

— 2 o o = J 7
pT[]\/[,V] = WTL (RT[M,V] + RHM,V]) » Pg= 2 (RT[M,V} + RT[M,V]) ’

_ 1—v
20 20
T7,=7., T,=T,, =clo RT.)” + = ,

where R; € C°°((0, 00)?; (0, 00)) is the smooth map denoting the equilibrium radius of the
gas bubble as defined in Theorem 1, R4[M, V] = {/ R;[M, V|3 + V represents the exter-

nal radius of the entire gas-liquid region and V = 3V/4x is the modified liquid volume.

Proof Assume that v;(z)=wv;(r)z/r with r=|z|. The divergence-free condi-
tion reads O,u(r) + (2/r)vi(r) =0, or 8,(r’v(r)) =0,Rt <r < Ry. Therefore,
vi(r) = a/r*, Ry <r < Ry for some constant a. However, the boundary condition (1.3a)
implies v;(Ry) = 0. Thus, v; = 0, and (1.1a) becomes Vp; = 0. From (1.4b), we conclude
that the pressure p; = 25/ R;.

For the gas velocity vy, (1.2a) implies 8,.(r?pv,) = 0 for r < R;. Therefore, r?pv, is
a constant. Again by (1.3a), v4(R;) = 0 follows and pvy = 0. Since we consider the regu-
lar solution, p # 0 by (1.2e). Therefore, vy, = 0 and p, is a constant from (1.2b). Now
that v; = v, =0, (1.2b) yields py, = 20/Rt + p; = 20/ R+ + 26 /Ry. Moreover, (1.2¢)
becomes ATy = 0 in Bg,. Since T}, is regular, we have Ty, = T,(R+) = T, by (1.3c) and
the maximum principle.

Finally, by (1.2d), p = (20/R; + 26 /R;) / (RT.). Due to the conservation of mass
(1.5), M = %’TpRif’. These imply that the spherically symmetric equilibrium (p, R+) can be
obtained by solving the algebraic equation (2.8). Therefore, the proposition follows from
the same arguments as in the proof of Theorem 1. O

Well-posedness and Lyapunov stability of problem (2.1)

To state the well-posedness and the Lyapunov stability results, given any gas density and
bubble radius (p(-,t), R(t)), we define p(y,t) = p(R(t)y,t),y € By for t > 0, and intro-
duce the norm |- || c2+20 (5, @s follows. For a function f(r),r < A, where A > 0 is a con-

stant, we define a radial function f(x) = f(|z|) for z € B, and

7 _ 87 ‘ | D2 f (1) — D*f(2)|
I7llczrze = [ llgzean = s sup [DPF@] + | swp | ===

We state the local well-posedness by adapting the arguments in [3, Theorem 3.1]
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Proposition 8 Fix any liquid volume V >0, for problem (2.1) with initial data
(po, Ro, Ro), where the initial gas radius Ry > 0 and density py € C**2% ([0, Ryl; (1, 00))
for some a € (0,1/2) and 1 > 0, there exists a unique solution R € C?7%([0,4]) and
p € Cy([0,0); C7H2([0, R(1)))), where 6 = 8([|pol| 2420 ) > 0.

Proof By changing the variable z = R(t)y, we reduce problem (2.1) on Bﬁ( ptoa problem
on the fixed domain

_ kAylogp(y,t) P (yOyp(y,t)

o t) = —4 oA E Nl TaCARTA
tp(ya ) "}/CRQ + yp 3

kOyp(1,t) Rp

veRp(1,1)2  3yp’

+p(y7t)> ,lyl<1, t>0, (B.la)

p(t) =RTep(1,1), t>0,  (B.1b)

=l (BB 2, %
PO =g ™M\ R R) "R R
R—R . 3 2R RY)\ .
+p | —=—RR+ (- -=+— | R* )], t>0, (B.lc)
R 2 R R

where p(y,t) = p(R(t)y,t). Compared to the proof in [3, Theorem 3.1], the extra terms
. — . — 1 1 - P
in (B.1c) are analytic in R > 0 and R, since R = (R*+V)® >V® and R = RQR/R2.
Thus, (B.1c) can be written in the same form as equation (3.18) in [3, Theorem 3.1], i.e., an
analytic function of R, R, R and ¢. Then, (2.1) can be treated as that in [3, Theorem 3.1], and
one can follow the same procedure to complete the proof. 0

The global well-posedness and stability results are derived following the proof'in [3] (see
also [9, Section 6]), where the global well-posedness of the free boundary problem (2.1) is
established under conditions where the liquid volume is infinite, there are no viscous terms
at the gas-liquid interface, and the external far-field pressure is constant. Additionally, they
showed the Lyapunov stability of the problem when the initial data are sufficiently close to
a spherically symmetric equilibrium.

For the problem we are considering here for which the liquid has a finite volume 7,
the presence of viscous terms on the gas-liquid interface (see (1.8c)) and the exter-
nal liquid free surface (see (1.8¢)) lead to the boundary condition (2.1d). Consequently,
—16m, V(R(t))2R(t)/(R(t)® + V) appears on the right-hand side of the energy dissipa-
tion law (4.1) and it is a negative term. As a result, the arguments used in the proof of
[3, Theorem 4.1], particularly those involving key energy dissipation estimates (4.16) and
(4.40) in [3], remain applicable.

More precisely, fix the gas mass M and the liquid volume V, given ¢ > 0, there exists
70 = 1o(£0) > 0 such that the following holds: for any mass-preserving (M = M|po, Ro))
initial data (po, Ro, Ro) with liquid volume ¥ satisfying

llo(Roy) — pi[M, V|| ca+20 5,y + [Ro — B [M, V]| + | Ro| < o, (B.1)
the global-in-time solution satisfies

(R0, 1) — pt[M V]| vz g,y + 1R — BeM. V]| + R < <o, B2)
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||pg||ct1+a(R+) < €o, and ||R(t) — RT[M7 V”‘cﬁa(ﬂh) < gg, VE> 0. (B.3)

Therefore, given the gas mass M and the liquid volume V, we have the spherical equilibrium
Lyapunov stability for mass-preserving and volume-invariant perturbations to the equilib-
rium (p;[M, V], Rt [M, V]).

Center manifold theory

In this short appendix, we recall the center manifold theory developed in [9], and we refer to
[4] for more information on this topic. Consider the following equation on a Banach space

(Z1-1)
7z=Lz+ N(z,2), z(0)e€Z, (C.1)

where N'(z,w) : Z X Z — Z has a uniformly continuous second order derivative satisfying
N(0,w) = 0 = 9(,,w)N(0,0) = 0. We further assume that

(i) Z = X @Y, where Xis afinite-dimensional L-invariant subspace and Y'is a closed e**
-invariant subspace.

(ii) All the eigenvalues of £|x have zero real parts.

(iii) Let Q; : Z — X be a projection, and Qs = Ix — Q;. There exist positive constants w
and ¢, such that

HeuQ2HY—>Y ce™ ™ >0

(C.l)asz=x+4y = Q1z+ Qsz. Then, (C.1) becomes

(C'Z)Decompose a solution to

k= Lxx+ f(x,y,%7y), where f(x,y,%,y) = QN (x+y,%x+7¥),
{ 2GR VRIRY, M sEyEd S ot vty €3)
Recall that an invariant manifold for (C.3) is a curve y = h(x), defined for |x| small, such
that the solution (x(t),y(t)) passing through (x(0), h(x(0))) satisfies y(t) = h(x(t)). A
center manifold is an invariant manifold that is tangent to the subspace X at the origin. Let
M be a center manifold for (C.3) given by y = h(x). The equation on the center manifold
is given by

%= L|xx+ f(x, h(x),%, b (x)%). (C4)

Assume that z(¢) converges to some point in M as ¢ — oo, and that sup, [|z(t)]| is suf-
ficiently small. Then, the following lemma holds:

Lemma 2 Denote by (x(t),y(t)) a solution of (C.3). Assume that there exists € > 0 such

that if ||(x(0),y(0)|| < ¢, then ||(x(t),y(¢))|| < €forany t > 0. Then there exist constants
Cy,w; > 0 suchthat ||y(t) — h(x(¥))]] < Cre™®1t||y(0) — h(x(0))| for t > 0.
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If we further assume that the zero solution of (C.4) is Lyapunov stable, then there exists a
solution X(t) of (C.4) such that x(t) = %(t) + O(e=%) and y(t) = h(£(t)) + O(e~=0?),
as t — oo, where wy = min(w, w; ) and w is given in (C.2).

Asymptotic stability in £2 and the spectrum analysis

We first reformulate the asymptotic stability result in the first part of Theorem 2 for system
(1.6)—(1.8) by using the variable z to express it in terms of the equivalent system (4.7) within
Banach space £2. The proof involves adapting [9, Proposition 9.2], as it primarily addresses
the results related to (2.1a) and (2.1b).

Lemma 3 Fix any mass-volume pair (M, V). For any initial data
(po.Ro,Ry) € C2T2*(Bp, ) xRy xR with  «ac€(0,1/2)  such  that
Mlpo, Ro]l = M, denote 02(0) = po(Ro) — p+|M, V],R(0) = Ry — Rt[M, V], and
0r(0) = fB1 (po(Roy) — po(Rp))Zk(y)dy, where Zisdefinedin Proposition 3. Then, wehave

2(0) = (02(0),R(0), Rp,01(0),02(0),---)T € £, andthesequence{*0;(0) X, €2

Furthermore, assume that (1.13) holds. Let
(p,R) € 07%T2“’1+Q(BR(25) x [0,00)) x C7+ be the global solution of (2.1) with initial
data (pg, Ry, Ry) and liquid volume V as in Theorem 2. Let z be the corresponding solution
to system (4.7). Then, it follows that {j*0;}32 ; € £* and ||%]| ;> + ||2(#)]|,» — 0, as t — oc.

Then, we analyze the spectrum of the operator £ on the space ¢? using the Laplace
transform Given a function f#) defined for ¢ > 0, we denote the Laplace transform by

el

Proof of Proposition 4 Note that the linear system z = Lz is equivalent to the linear part of
system (4.3)

dor =x0yo1— (L1=7"") 02, 0<y<1l, o(L,t)=0, ¢t>0, (D.1)
R = —xRip; '0y01(1,t) — Ryy ™" pid2/3, t>0, (D.2)
02 = (RT.) ' (~AR + BR + piRi R), t>0, (D.3)
where

=20/R} +20R? /RT and B = 4,V /Ry (R} + V).

Similar to the proof as i'n Proposition 3, substituting the decomposition (4.6) into (D.1) and
testing by Zg, it holds 0y (t) = —x (kO (t) — x02(t). Taking the Laplace transform yields

0k(0) +&ko2(0) &7
XCk + T XCk+ 7

O (1) = 02(7). (3.4)

Again by the Laplace transform, (D.2) and (D.3) become
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—R(0)+7R(T) = > 0;(7)w; — 37 Ry py (—02(0) + 702(7)), (D.5)
j=1
(pRy7? + Br — AYR(7) — RT.0(7) = py R (R(0) + 7R(0)). (D.6)

Substituting (3.4) and (D.6) into (D.5) and using &;w; = w, we obtain

“R(0) + TR(T) = = (RT) ™ [(aufy7* + Br = A)rR(7) = pRi7(R(0) + 7R(0))]
€ 0k (0) +&2(0) By
(Z e 3’7PT> + Z wg + Q2(0)} .

—  XGtT 3Py
Therefore, we obtain Tﬁ(T)M(T) = S(7), where M(7) is defined in (4.15) and

_ ﬁ PzRTT Epwi + .
S(r) = (Z it s m) (R(0) + TR(0))
~ 05(0) + Ex02(0) R
- ;:1 XCr + T Wi + 3vps 02(0) + R(O)]

is analytic for all 7 € C\ {—72xj%:j=1,2,---} since —x¢; = —m2xj> Then, (3.4)

and (D.6) yield that Z = (32(7), R(7), R(7),01(7),02(7),---) T = (£ — 71)~'%(0) for
T€C\{-7%xj%:j=1,2,---} satisfying TM(7) # 0.

To estimate the upper bound of sup{Re()) : A € sp(£) \ {0}}, we rewrite

1 [=18(y—1ax 4n )
M(\) = 47 R + R (waw2k2+/\+3 )(CA +BX— A),

where C' = py(Ry — R} /Ry). The remaining proof of the lemma is a consequence of
Lemma 4 below. g

Lemma 4 There exists a constant w > 0 such that v < —2w for all complex roots
A = x + iy to the function M in (4.15). The constant w can be chosen as

1 B K
w:2mm{@27r2x,max{2c mln{®17r2x, 2}}}7 B? <4K(C?,

— VB2 —4K(C? }

B2 > 4KC?,

1
3 min {@ngx, 50

where the constants ©; and O are defined in (D.15) and (D.21), respectively. Moreover,
K = 2R TeptRi /R (Rt — Ry)].

Proof Let A = x + iy be a complex root of M. Substituting A = x + iy into (4.15) and
splitting the real and imaginary parts of M, we obtain
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1 4w 1 8(y— 1)m3x?%52
{5 B

].:1’7(# XJ +x) + 3?2

[C (1'2 fy2) JerfA]

— 1 8(y — Dmx 2 2
+ ——= (Cx+ B)(z* + y°) — Ax +47r =0, D.8a
;7(7T2xj2+x)2+y2 I s v) ) Rt ( )

i 4 0018 — Dy (m2xj% +z
1 7T+ ( )X( XJ ) (QC’x+B)y
R |37y (o2 +a)? g2
o0
-y —X2 [C (s> %) + Br— A]y s =0. (D.8b)
=7 (m2xj2 +z)" +y
. 180 Dmx(n?xi%+2) 1 8O-Dry®
We will denote D = + ZJ 1 ’YW’ Z, 17 (m2xj242) 452’ and

F= Z;il %% to simplify the above formulas.

Case 1: 0 < y? < K/2.1f y # 0, eliminating y for the imaginary part (D.8b) yields
4
(3: ) (2Cz + B) + F [C(2® + y*) + A] . (D.9)

FromE>0andF[Cw +9?) +A} > 0, it holds

B
N — D.10
z < 20<0’ (D.10)

provided y # 0. Splitting F in (D.9) and substituting into the real part (D.8a), we derive

<4l +E) {0(952 —y*)+Bx— A— (2Cz + B) [(Cm+B)(x2 +°) *Am} }
(D.11)

Cx?2+y?)+ A

Denote the term in the big brace by w, and a straightforward calculation shows that
[C(:E2 +yH) + A] w
= —C*2*+9*)* - B(20z+B) (2> +y*) + A (20962 +2Bx — 2C’y2) — A?
> — Y@ 4 %)% - 24C(2° +12) — A = — [C(a® +y*) + A]°

In the above, we have used (D.10) to deduce 2Cx? + 2Bx = z (2Cx + 2B) > —2(2Cx).
Then, one has w > —C(2? + %) — A, and (D.11) yields

1 4m 2, .2 Pt
AT ( +E) [C(2? + %) + A] >47rRT (D.12)

Assume that x > —On%y, where © € (0,1) will be chosen later. It is clear that
z > —On?x;? forall j > 1. By equilibrium equation (2.8) and recalling Ry < Ry, it holds
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2RT.p; WRT.p; 20  20RY  3MT.p;
<KC+A= + =5 < —.
Ry Ry R? E;‘ R (D.13)
We further assume that
x> —/K—1y2 (D.14)

if 0 <y? < K. Since (D.10) implies 2 < 0, we have C(z? +y?)+ A< KC + A, if
0 < y? < K. Then (D.12) yields

1 (4 8(y-1) 1 <~ Pt
- PR k7 N S KC+ A)+4r 20
0>~ 5o <37+ - (1_@)2]21 (KC + A) + 47

where we have substituted 2 > —On?x2. Upon simplification the above inequality, one
has

9>@1£1_\/(7_1)/<1m_1>6(0’1)' (D.15)

We simply choose © = ©; to reach a contradiction to (D.14), since we will deduce © > ©;.
Thus, we have for 0 < y? < K that 2 < — min {617r2x, VK- yQ}. Combining (D.10),

we have
B . | K . K
z<—max{w,m1n{®1ﬁ2x, 2}}, 1f0<y2<5. (D.16)

Case 2: y?> > K/2. We eliminate D in the imaginary part (D.8b) and substitute it into
the real part (D.8a)

Ampi RyYRT. (2Cx + B) = —F [OX® + BA — A[”. (D.17)

Note that A,B,C >0 and therefore |CA%+ BX— A‘z =C? A= M A=A
has real roots \; €R,i=1,2. Then, we have |CA*+ BX-— A|2 > C?y* since

A= Xi| = |z + iy — \i| > |iy|. Using y? > K/2, we further derive

1 B 2 (K ‘1 8(y — 1)mx
Ampi Ry ML, (207 + B) < =C* ( o > y a2t K2 (D.18)
7=1 '

Then, recalling the definitions of C, K and x, we have from (D.18) that
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B (y-LRT, > 1 B ., K
< N - 5 | <55, ify > .
v 2C ok 1-— Ri/R; Z j4+ K 20 1y B) (D.19)

j=1 2wy 2

Case 3: y = 0. We claim that < 0. Suppose = > 0, and we rewrite M((z) as

mx(Cz+B) (4 <= 8(y—1)x 4mpy mA (4 L 8(y— 1)y
RT.y (3 * Z m2xj? + * Ry ATy \ 3 * Z m2xj% +

Jj=1 Jj=1

From x > 0, the first term is non-negative, and we apply (2.8) to deduce that the term in the
bracket is greater than

8T o o T 20 25R? 4 8(y-1)x s Ly
s \mt== ) " | 53 T — s+t —— J
RT. (R? RTRT> RT .y (R? R? 3 w2y ;
>8ﬂ—(0+6>18ﬂ— i+5R% >0
T RT.\R?  RiR;) 3WI. \ R R,

This contradicts M(x) = 0. To search for a negative upper bound, we assume that
x> —0'1?y, where 0 < ©’ < 1 will be chosen. We further assume that

—B+VB? —4K(C?
x > s

2
G (D.20)

if B2 > 4K C?. In this case, Cx? + Bx — A > —KC — A, and this inequality also holds
when B? < 4K C?. Then, we have

1 A 8(y—1) - 2 Pi
_ _ il > KC+ A) + 4L
0=M(z) > AT (37+7W(1—@’)j1j (KC+ A)+ "R,

1 dm  Am 1 1 Pt
=— T (12 ) —— ) (KC+ A) + 4n 2L
DQTC<37+3( 7)1—6’)( A Ay

Recalling (D.13), it follows that 3RT.p /Ry < [y~ ' + (1 —~y71) (1 - ) (KC + A),
or equivalently,

. 3RT,
®’>@2=1—(7—1)/<RT(KCTTA)—1) € (0,1). (D.21)

Therefore, we reach a contradiction to (D.20) by choosing ©’ = Os.
Summingup, inthecaseof y = 0,z < — min {@27r2x, B=vB- _4KC® VB;CT“(CZ }, ifB2 > 4KC?.

Otherwise, z < —O972y. This, combined with the upper bounds (D.16), (D.19) and the fact
O, > O, gives the upper bound. O
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