授课教师 | 郝成春,邮箱地址 : hcc [at] amss.ac.cn |
课程内容 |
Chapter 1 Some Fundamental Notions of Real-Variable Theory 1.1 *The maximal function 1.2 Behavior near general points of measurable sets 1.3 Decomposition in cubes of open sets in $R^n$ 1.4 *Two interpolation theorems for $L^p$ Chapters 2 Singular Integrals 2.1 Review of certain aspects of harmonic analysis in $R^n$ 2.2 Singular integrals: the heart of the matter 2.3 Singular integral: some extensions and variants of the preceding 2.4 Singular integral operators which commute with dilations 2.5 Vector-valued analogues Chapter 3 Riesz Transforms, Poisson Integrals, and Spherical Harmonics 3.1 The Riesz transforms 3.2 Poisson integrals and approximations to the identity 3.3 Higher Riesz transforms and spherical harmonics Chapter 4 The Littlewood-Paley Theory and Multipliers 4.1 The Littlewood-Paley $g$-function 4.2 The function $g^*_\lambda$ 4.3 *Fourier multipliers on $L^p$ 4.4 Application of the partial sums operators 4.5 The Littlewood-Paley decomposition 4.6 The Marcinkiewicz multiplier theorem 4.7 *The smooth Littlewood-Paley decomposition Chapter 5 *Smoothness and Function Spaces 5.1 Riesz potentials and fractional integrals 5.2 Bessel potentials 5.3 *Sobolev spaces 5.4 Lipschitz continuous function spaces 5.5 *Inhomogeneous Besov and Lizorkin-Triebel Spaces |
参考文献 |
|
2025-02-05 下午好! | © 2007-2025 C. C. Hao