授课教师 | 郝成春,邮箱地址 : hcc [at] amss.ac.cn |
上课地点 | 中国科学院大学中关村校区 N401 |
上课时间 | 周一(13:30-15:10)、三(13:30-15:10 & 15:20-16:10), 2月25日--6月19日 |
课程内容 | Book I: Classical Fourier Analysis 1 $L^p$ Spaces and Interpolation 1.1 $L^p$ and Weak $L^p$ 1.2 Convolution and Approximate Identities 1.3 Interpolation 2 Maximal Functions, Fourier Transform, and Distributions 2.1 Maximal Functions 2.2 The Schwartz Class and the Fourier Transform 2.3 The Class of Tempered Distributions 2.4 More about Distributions and the Fourier Transform 5 Singular Integrals of Convolution Type 5.1 The Hilbert Transform and the Riesz Transforms 5.2 Homogeneous Singular Integrals and the Method of Rotations 5.3 The Calderon–Zygmund Decomposition and Singular Integrals 5.5 Vector-Valued Inequalities 5.6 Vector-Valued Singular Integrals 2.5.5 The space of Fourier Multipliers $M_p(R^n)$ 6 Littlewood-Paley Theory and Multipliers 6.1 Littlewood-Paley Theory 6.2 Two Multiplier Theorems Book II: Modern Fourier Analysis 1 Smoothness and Function Spaces 1.1 Smooth Functions and Tempered Distributions 1.2 Laplacian, Riesz Potentials, and Bessel Potentials 1.3 Sobolev Spaces 2.1 Hardy Spaces 2.1.1 Definition of Hardy Spaces 2.1.2 Quasi-norm Equivalence of Several Maximal Functions 3 BMO Spaces 3.1 Functions of Bounded Mean Oscillation 3.2 Duality between $H^1$ and BMO |
教材 | [Book I] Loukas Grafakos,Classical Fourier Analysis,GTM 249, 3rd Edition (2014)Springer. [Book II] Loukas Grafakos,Modern Fourier Analysis,GTM 250, 3rd Edition (2014)Springer. |
Typos corrections | http://faculty.missouri.edu/~grafakosl/FourierAnalysis.html Some other corrections for Book I:
|
2025-02-05 下午好! | © 2007-2025 C. C. Hao